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1. Introduction 
The interest in the rehabilitation engineering using 

functional electrical stimulation (FES) has been increased 
in recent years [1-4,11,19,20,98-100]. The uses of FES 
are extremely varied and innovative in designs and 
applications [10,27,29]. FES is a treatment that uses the 
application of small electrical current signal to improve 
mobility and to restore the function of the paralyzed 
muscles due to spinal cord injury (SCI) [1,7,10,17,22-
25,67,68], brachial plexus injury, stroke, multiple 
sclerosis,99, and traumatic brain injury [1-
4,17,19,22,23,26,27]. Its benefits include: muscle 
strengthening and cardiovascular reconditioning, 
endurance, standing and gait control, enhancement of 
limb function, facilitation of voluntary responses, wound 
healing, reduction of osteoporosis, improving range-of-
motion (ROM), and orthotic substitution 
[1,10,19,30,68,98,100]. 

Since the 1960s, FES-evoked leg muscle contractions 
have been widely employed as a rehabilitation therapy or 
as an exercise regimen for the paralyzed lower limbs or 
muscles of individuals with SCI with timeline stated in 
Fig. 1, [5,14,18,19]. 

 

 
Fig. 1: Timeline of FES evolution [98] 
 

First application of FES has been designed to restore 
lower limb with paraplegia, function or paralyzed 
muscles in patients who had experienced a stroke or a 
SCI [1,17-20,28,29]. The functional based on lower limb 
training using FES includes the gait pattern, the retraining 
cycle ergometry and the individual muscle activation 
[7,8,10]. Either the lower or the upper limb, the primary 
objective of FES is to produce, develop and control 
muscle contractions by using the electrical current as a 
stimulation mediator between a patient's desired motion 
and standard actual physiological contractions 
[7,8,10,25]. In another word, based on paralyzed muscles, 
although atrophied after upper motor nerve spinal cord 
lesions, are still able to produce muscle contractions 
under FES control and thus generate power, force, and 
motion [5,17-19,28] . 
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Next, rehabilitation application of FES, as a 
therapeutic and rehabilitation modality, has the potential 
to increase strength, force production of the muscle 
contractions, voluntary movement, and functional skill 
abilities [1,17-18,29]. The use of FES has been proven to 
work well with rehabilitation exercises, such as cycling 
and rowing [1,6,11-13,16,19,29,68]. Based on findings, 
the aapplications of cycling is abroad 
[1,3,615,21,29,67,68]. Cycling is also a more efficient 
way of transportation, although the majority of FES 
cycling is done with stationary bikes [1,3,6]. In FES 
cycling, the hamstrings gluteal muscles and the 
quadriceps are stimulated [15,19]. Sometimes the calf 
muscles are also stimulated [1,15,29,67,68]. Due to the 
very highly demand, the FES application induced 
movement control is a significantly challenging area due 
to the complexity and nonlinearity of musculoskeletal 
system [2-4,8,9,17,29]. 

Development of the control system also focus on the 
efficiency aspects of paraplegic cycling and underline the 
advantages of an assisting motor in FES-cycling systems 
for both efficiency investigations and driving supports 
[1,3,6,31]. Therefore, the auxiliary motors can enhance 
FES-cycling performance, the overall power increased, 
loss of power due to muscle fatigue can be compensated 
for and leg cycling motion can be maintained 
[19,29,67,68] .Cycling by means of FES is an attractive 
training method for paraplegics. The stimulation patterns 
has been optimized for surface stimulation of quadriceps, 
hamstrings, gluteus maximus, and peroneus reflex as 
shown in Fig. 2 [32]. FES cycling has been applied to 
persons with SCI to counteract the secondary 
complications associated with paralysis and reduced 
physical activity (e.g., osteoporosis, pressure ulcers, 
muscle atrophy, poor circulation, and reduced cardio 
respiratory fitness) [1,5,33]. 

 

 
 
Fig.2: The major muscle groups of legs, by Quadriceps, 
adductors, abductors, gluteus, harmstrings, gastrocnemius 
and soleus. (http://suppversity.blogspot.com) 

 

Based on current research, FES with certain 
predetermined parameter, such as current and frequency, 
evoked the muscles and induced the contractions which 
resulting the force production of the lower and upper 
extremities [5,6]. The aims of this research are to develop 
the very complex system, to design the basic application 
approach due to next developments of paraplegic knee 
and hip joint models, and to analyze the control strategy 
for mobile FES-cycling. The developed knee and hip 
joint models should be capable with relating electrical 
stimulation and joint angles, especially for FES control 
development [2,3,4]. 

In this research, the main purpose also based on 
research on musculoskeletal of paraplegia. Thus, deeply 
focus on lower-limb modeling of knee and hip joint 
models with FES-cycling applications. For instance, in 
the current study, the issue that focused on the fatigue is 
the most challenging problem needed to be highlighted in 
the control development. Numerous literatures regarding 
control strategy in FES assisted cycle have been critically 
reviewed. Hence, the modeling application of fuzzy logic 
based on the genetic algorithm (GA) optimization 
approach has been proposed for this research. In order to 
obtain the data for the modeling purposes, the 
experimental data has been collected and the 
patient/subject for this experimental work has been 
identified. However, these experiments are still in 
progress.   

 
2. Theoretical Study 
 This pilot study more on development of a paraplegic 
knee and hip joint model and control of electrically 
stimulated muscle for FES-cycling [1,3,4,11,19]. 
Research study has contributes to develop the FES-
cycling system control strategy by stationary cycling. 
FES-cycling is largely influenced by the method of 
delivery of the current to the muscle during cycling. The 
modeling of musculoskeletal of paraplegic’s lower limb 
is significantly challenging due to the complexity of the 
system [2,3,11,19].  Then, for next stage of development 
of this study is to develop a knee and hip joint model that 
capable to relate electrical parameters with the dynamic 
joint torque as well as the knee angle for FES application 
which will be discussed for the next session with the 
development of FES-induced cycling control. 
Furthermore, a same case for the next stage of 
development, the crucial issue of FES is the control of 
motor function by artificial activation of paralyzed 
muscles. Then, major problems that limit the success of 
current FES control systems are nonlinearity of the 
musculoskeletal system and rapid changes of muscle 
properties due to fatigue [4,7,9,10,12,18,28,29,67,68] also 
has been planned for the next development that have 
potential to be discussed for the next paper. Majority of 
this system already developed [2-4]. However, for fine 
tuning in the term of performance, the efficiency of the 
system has been discussed in term of general method by 
previous researcher. 
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2.1 FES System 

Lots of elements of the neuro-musculoskeletal 
system interact to enable the coordinated movement. In 
fact, researchers has been fascinated with the human 
movement that performs an extensive range of studies to 
describe these elements [37,43]. Thus, the same concept 
has been applied in this study. A theoretical framework is 
needed in order to standardize the system with the 
suitable control strategy. Hence, the development of this 
research starts with the data gathering, from the 
experimental test by using FES, for the electrical 
stimulation test, which is demosnstrated based on the 
flowchart of Fig.3. In order to conduct pendulum test for 
the knee joint, FES that collaborated with the goniometer 
has been used for colllecting experimental data of sensory 
system [3,4,5,17]. 

Based on the system requirement, the problem arises 
due to the data collection from anthropometric data is the 
data parameter of the lower limb characteristic. However, 
another challenge issue is due to synthesizing detailed 
descriptions of the elements of the neuro-musculoskeletal 
system with measurements of movement, to create an 
integrated understanding of normal movement [37,43,44], 
especially during swing phase of gait and cycling 
procedure. 

 

 
Fig. 3: Flowchart of the system [98-100] 

 
In the proposed frameworks, this project is 

concerned in order to develop the system with more 
efficient way and easy to handle for each procedure. 
Every parameter for modeling each system will be 

developed by using Matlab/Simulink [1,4,5,98-100]. 
Moreover, the problem arises when the parameters by 
data gathering from the previous literature studies has 
been combined. Thus, the data gathering process of this 
research is more on to develop equation of motion, 
passive joint model and active muscle model, although it 
is difficult to establish the control parameters for these 
systems. These reflexes that contribute the knee joint 
model are more on the control development of trajectory- 
based control in order to develop the better knee joint 
dynamic model [1,3,4,5,45,50].  

 

 
Fig. 4: Architecture of FES System 

 
The computer-controlled stimulator system that 

consist of each control model will be developed to 
investigate the muscle fatigue characteristic using the 
OpenSim-Matlab/Simulink-Hasomed in Fig. 4[40-49,62]. 
In spite of its suitability, a dynamic simulation of the 
movement, that integrates the models, describes the 
anatomy and physiology of the elements of the neuro-
musculoskeletal system, and the mechanics [37,43,44] of 
the knee joint swinging movement that provides such 
framework in this study. Therefore, the computer-
controlled stimulator system, which has been described in 
Fig.4, has already being studied. 

 
 

 
 

Fig. 5: Application of Electrical Stimulator with the 
surface electrodes on the muscles [98,99] 
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The same concept, in order to develop the 
architecture/control strategy/framework of the system in 
this research, has been applied into some architectures of 
FES system, as illustrated in Fig. 4. The performance 
criterion, according to this architecture, is almost can be 
simplified as the application of Analog to Digital 
conversion by using goniometer as the sensor and the 
data will be both selected and sampled by a software 
using Personal Computer (PC). The computer simulations 
are performed with various data collections that will be 
selected and sent to FES. For instance, the Hasomed 
GmbH functional electrical stimulator, shown in Fig.5, 
will be generated automatically according to the 
developed model and system requirement [4,63].  

In this framework of the experimental study, the 
movement parameters at the end, that is due to the 
musculoskeletal gain. Therefore, such as trials on knee 
free swinging trajectory which is from the OpenSim, as in 
Fig. 6, will be combined together with Matlab/Simulink 
control strategy and the anthropometric measurements of 
the length of the lower limb that has been developed by 
OpenSim [34,43,44]. The model derives much of its 
significance from the architecture/control 
strategy/framework that will be developed, detailed with 
regard to FES-approaches for the function restoration, to 
achieve better analysis in the future work. For the next 
stage, our goal is set to implement an automatic 
procedure for evaluating and monitoring paralyzed person 
due to paraplegia [1,3,4,5].  

This demonstrates through both our model and the 
measurements, based on conducting the real time 
experiments, in on-line mode and in preliminary 
standardized which is in off-line mode, with repeated 
simulation based on the able-body person. In the other 
hand, the human ethical approval considerations that 
discourage the use of invasive methods, which to 
determine the muscle forces in humans, will be applied 
for safety issues. This main system currently focused on 
the development of the lower limb musculoskeletal 
modeling in this stage. The detailed researches, based on 
the next stages of development of both the knee free 
swinging modeling system and the knee-hip joint models 
for FES-cycling system, and the implementation of an 
automatic procedure for evaluating and monitoring 
paralyzed patient due to paraplegia will be discussed in 
another publications. 

 

 
Fig. 6: Application based on knee free swinging 
trajectory. 
 

Based on the system requirement, this project is 
concerned with basic configuration of FES system such in 
Fig. 5, Fig. 6 and Fig. 7 that is more on the basic 
fundamental of either current or voltage flow, between 
two surface electrodes through muscle, with the advance 
development application by using FES. Electrical 
stimulation, once applied properly with the appropriate 
electrical stimulator, can being used for muscle 
strengthening [30,47,64] or even restoration of the 
movement in the paralyzed individuals [30,48,49]. 

 

 
Fig. 7: Basic configuration of FES with surface-
stimulation electrodes causes a muscle contraction by 
stimulating electrically the motor-neurons that are 
attached to the muscle [64]. 

 
The application of FES as a therapeutic and 

rehabilitative, the stimulator will generate the pulse in 
order to replace the function of the brain in controlling 
the lower limb muscle, such in the current researches 
[4,6,8]. Specifically, the application of the electrical 
stimulations generates the action potentials in the motor-
neurons, which propagate along the motor-neurons 
toward the muscle. In this study, during the action 
potentials reach the muscle, it will cause the muscle to 
contract [1-5]. Besides, the electrical stimulators will 
generate the electrical current. It totally can provide either 
a constant voltage or a constant current output. Hence, the 
stimulators that provide a constant output voltage, can 
maintain a voltage which is desired with the irrespective 
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of resistance changes, whereas the stimulators with a 
constant current output will make possible constant 
current pulse. On the other hand, each signal can be 
single, double or multichannel. Therefore, they were 
needed to have the possibility in order to change the 
parameters of the electrical stimulation, such as the 
stimulation pulses amplitude, the frequency of 
stimulation pulses, the duration of stimulation pulses and 
the stimulation pulse train. All these parameters have to 
be selected and adjusted by a therapist. This demonstrates 
that through a functional movement of a paralyzed 
extremity cannot be obtained by a single electric stimulus 
but a series of stimuli, which is called as a stimulation 
pulse train. It is triggered by a control signal [64].  
 
2.2 Spinal Cord System 

Based on spinal cord and nerves system, there are 
severity and range of primary symptoms as determined by 
the point on the spinal cord below which the function and 
the sensory information are impaired. Although at this 
stage, the effect and the position of these points are 
illustrated in Fig.8, where each level is designated by 
both the region in which it lies (cervical, thoracic, lumbar 
or sacral) and the spinal nerve number [4,5,29,65,66] 
.Then, when the spinal cord anthropometric  concept has 
been applied in this study, every level of injury base on 
SCI problem divided into C6, C4, T3 and L1 which the 
Cervical is denoted as C, the Thoracic for T and the 
Lumbar denoted as L. Then, since in practice, the 
numbering system for the spinal cord is based on position 
and location of individual position that has been 
centralized based on human spinal cord and nerves neuro-
musculoskeletal system [1,29]. 

 

 
Fig. 8: The spinal cord and spinal nerves  

In this research area, there are focused on lower 
limb paralyzed injury of paraplegia and data will be 
collected during this research development study [7]. In 
addition, by employing an experimental and a simulation 
study, if below the level of the lesion of both afferent and 
efferent pathways (along with the information they carry) 
are affected, then they are accused as SCI [29,65,66,68]. 
Therefore, major pulse signals from brain cannot go 
through the human body system because the signals have 
been blocked [1,3,5]. This will result in the loss of the 
volitional control over the muscles and the sensation of 
the areas innervated below the lesion site, since the link 
between peripheral and central nervous system has been 
interrupted. An outline of autonomic control of blood 
pressure and heart rate, along with regulation of bladder 
and bowel, might has been disrupted [29,69,70]. 
Additionally, the extent to which a person’s sensory and 
motor control is affected is low-frequency chronic 
electrical stimulation is effective in increasing fatigue 
resistance. This research contributes to prove that the 
muscle fatigue associated with low frequency electrical 
stimulation is of peripheral origin, and to prove that the 
loss of force is probably due to fatigue of the fast 
contracting glycolytic fatigueable type-II motor fibres, 
which is not caused by the failure modes of 
neuromuscular transmission or conductance of the 
peripheral nerve [29, 69,70]. 
 
2.3 Previous modeling approaches 

The application of FES as a therapeutic and 
rehabilitative modality has the potential in recent years. 
Numerous articles that have been published emphasizing 
on the models of the musculoskeletal system are really 
valuable tools in the study of human movement. Since in 
practice, modeling and a simulation study can greatly 
facilitate to test and tune various FES control strategies 
framework. On the basis of an accurate model, it totally 
can facilitate the design of stimulation patterns and 
control strategies that will produce the desired force and 
motion [71,72]. In other cases, modeling of joint 
properties of lower limbs in people with SCI is 
significantly challenging for researchers due to the 
complexity of the system. There are some limitations of 
the model which complexity is due to the combination of 
complicated movement, the complex structural anatomy 
and dynamics as well as the indeterminate muscle 
functions [72,73].  

Furthermore, the forward dynamic models of the 
FES musculoskeletal system have been widely developed 
such as in [36,72,74,75-78]. It is easy to compare the 
results of simulation and experiments in the forward 
models, since the stimulation input and output are the 
same for both simulation and experiment. In this chapter, 
various components or building blocks of the forward 
dynamic approach for the musculoskeletal modeling has 
been briefly surveyed. Therefore, main objective of this 
study is to review a forward dynamic model and to 
identify its drawbacks so that the modeling approach can 
be improved. Moreover, main components of the forward 
joint model, as shown in Fig.9, consist of the segmental 
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dynamics, the active properties (muscle activation and 
contraction) and the passive properties (elasticity and 
viscosity). 

Musculoskeletal 
Model

Segmental 
dynamics

Muscle
model

Active 
properties

Passive 
properties

Muscle
activation

Muscle
contraction Elasticity Viscosity

 
Fig. 9: Main components of the forward dynamics 
musculoskeletal model 
 

The body segmental dynamics are generally modeled 
as a set of rigid limb segments, whose movements relative 
to each other are defined by the joint articulations, i.e. 
skeletal geometry and ligamentous constraints [72,79]. 
Thus, based on the system, the complexity of a body-
segment dynamical model depends on the number and 
types of the body segments, the joints that connecting the 
segments, and the interaction among the segments, as well 
as the environment [72,80]. The degree-of-freedom (DoF) 
of human body can indicate the different levels of 
difficulty. In other cases, the complexity in analyzing 
multi-joint structure is often reduced through reducing the 
number of DoF into a manageable level. Kane’s equations 
[72,81] with the combination of computational 
advantages of d’Alembert’s principle and Lagrange’s 
equations have been utilized successfully in modeling of 
complex systems such as in [72,82-85]. Kane’s method of 
dynamics is a sophisticated mathematical technique that 
allows resolution of a large number of variables through 
the use of generalized speeds that define the motion in the 
system. Through the use of generalized speeds one is able 
to model the human lower extremity as a first-order set of 
differential equations [84]. 

In this study, there are different types of muscle 
model are used for different purposes. For example, the 
range extends from the analytical models that based on 
physical properties of the muscle, either at a microscopic 
or at macroscopic level, has been analyzed to empirical 
models which are purely mathematical descriptions of the 
input-output characteristics of the muscle [72,79]. 
However, most models built on analytical bases are not 
suitable for FES control applications [72,93]. Since the 
one way to develop this model for FES control 
application is to use mathematical models, the empirical 
model strategies, which aim to describe the input-output 
characteristics of muscle (often limited to conditions 
common in FES applications), and whose structure is 
suitable for the design of stimulation controllers, has 
become much useful. As a result, many researches have 

been developed with the mathematical models of 
electrically stimulated muscle based on the Hill-type 
[72,86,87], the Huxley-type [72,88], the analytical 
approaches [18,72,89] and also the physiology approach 
[72,90]. The use of mathematical models can significantly 
enhance the design and evaluation of closed-loop control 
strategies applied to FES [72,91]. In fact, mathematical 
models can be used to promote an understanding of the 
system and they can be used to predict the behavior of the 
system [72,92]. Based on the framework model 
requirement, the accurate models of the artificial muscle 
activation in either healthy or paraplegic subjects have 
been developed. These prominent problems create the 
complexities of the system resulting mathematical 
representation have a large number of parameters that 
make the model identification process that are really 
difficult to develop.  

One promising way of previous research proposed 
models is the application of fuzzy logic (FL). FL 
techniques have been widely applied in the modeling of 
complex non-linear plants [2-4,926,94]. The application 
of FL control strategy is the fastest growing soft 
computing in the medicine and biomedical engineering 
[26,95]. Hence, this model was applied from that, makes 
it capable of approximating complex nonlinear dynamic 
systems. 

 

 
 
Fig. 10: Adaptive control based on T-S fuzzy model 

 
Fig. 10 illustrates the overall control system 

structure. As a result, the scheme consists of two parts: a 
dynamic Takagi-Sugeno, T-S fuzzy model and an 
adaptive controller-based on the model. Structure and 
parameters of the T-S model can be updated on-line [26], 
which makes it capable with approximation complex 
nonlinear dynamic systems. This fact shows the important 
role of the scheme is both computationally efficient and 
suitable for the real time implementation as the rule base 
evolution which is recursive based on the unsupervised 
learning and the parameters [26,72,94]. In other cases, 
beside its suitability in generating the target, fuzzy neural 
network modeling approach combines the advantages of 
both fuzzy modeling and neural networks. The network 
topology based on the structural approach is shown in 
Fig.11. It contains four layers, namely the fuzzification 
layer, the rule layer, the function layer, and lastly, the de-
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fuzzification layer. There are some limitations of the 
model that acquire relational modeling that over the rule-
based system which the values in the relational model can 
be identified directly from the process input-output data 
[26,72,96]. 

 

 
 
Fig. 11: The structural approach fuzzy neural network 
 
2.4 Proposed modeling approach 

Nowadays, there is much interest in biological 
inspired computation techniques such as genetic 
algorithm are used in designing hybrid fuzzy modes, 
particularly for generating the FL rules and for adjusting 
the membership function, (MF) [2,3,4,9,26]. The same 
concept has been applied in this study, where the new 
research resulting to the optimization - improvement in 
the modeling technique [2-4,9,26,72]. Thus, the 
optimization process is divided. Firstly, genetic algorithm 
is used to estimate the anthropometric inertia parameter 
and to adjust the fuzzy parameters in order to represent by 
minimizing the error between the data obtained 
[3,4,9,26,67,72]. In terms of subject numberings, at least 
one subject/patient used for this system, in order for the 
system can both measure and optimize the system based 
on the previous patient data. 

In the trajectory based control, the FES-induced 
swinging motion with reduced energy consumption based 
on ‘natural’ trajectory approach has been developed. The 
controllers have been designed to track the trajectory 
based on natural dynamics of the paraplegic’s leg 
segment. In this strategy, two fuzzy controllers; with and 
without energy efficiency mechanisms have been 
developed MOGA optimization [2,3,4,9,26]. Thus, this 
controller with energy efficiency [26] has been used to 
minimize muscle activation torque as one of the 
objectives in the optimization process. Therefore, both 
controllers have shown a good tracking performance in 
both simulation and practical environment [4,9,26]. In 
contrast to the controller without energy efficiency, the 
energy efficient controller has shown the reduction of 
energy consumption up to 10% in the simulation study 
and also has been able to minimize the fatigue in the 

experimental work [26]. Finally, this control strategy with 
fatigue reduction mechanism provides valuable insight 
into the control of FES-induced paraplegic since muscle 
fatigue being the most prominent pitfall in this area. 

 

 
Fig. 12: Optimization of active properties 

 
These optimized equations are used in modeling. 

Then, secondly the active properties are modeled based 
on input and output data from electrically stimulated test 
using GA/multi-objective genetic algorithm, MOGA 
[9,26,72]. Hence, Fig. 12 shows the optimization of 
active properties using MOGA with integrating estimated 
joint visco-elasticity and optimized equation of motion. 
Moreover, the effectiveness of the technique to control by 
optimization the FL using GA was shown in [26,97]. 
Important to realize, as demonstrated in Fig.12, 
optimization of equation of motion and fuzzy model 
based of knee joint visco-elesaticity. The model derives 
much of its significance from the architecture of overall 
procedure for estimation of the musculoskeletal model 
and optimization of fuzzy inference system, FIS is 
illustrated in Fig.13. This fact shows the important role 
one of the great estimated models and good prediction 
capability less burdened with complex mathematics. This 
model aims to be used as a simpler to implement as it 
eliminates the complicated mathematic modeling 
[9,26,72]. 
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Fig. 13: Optimization procedure 
 

The applications of FES as the therapeutic and 
rehabilitative modality have big potential in future. 
Tendency of simulations will advance the movement of 
science by facilitating the interactions between modeling 
and experimental works. In addition, by employing a 
simulation study, the modeling process needs the 
experimental work to acquire parameters used in 
simulations and to test the accuracy of results derived 
from simulations. The same concept has been applied in 
this study, previous study on Interfacing OpenSim models 
with MATLAB® /Simulink® [44] as the indicators of 
success of future development Matlab/Simulink-
Hasomed. In future, the model derives much of its 
significance from the proposed architecture and has 
possibilities to combine the OpenSim with the 
Matlab/Simulink-Hasomed as shown in Fig.14. This 
combination between Matlab/Simulink and OpenSim [44] 
has already developed a platform in order for both 
dynamic simulation and control of movement based. The 
successful research has been developed in order to know 
the dynamic and the control of movement in simulation 
study. In this research, based on the hardware simulation 
system, the Hasomed-RehaStim hardware has brought a 
great contribution used with the integration of 
Matlab/Simulink template, as illustrated in Fig. 17 which 
has been developed by Hasomed GmbH itself. The idea 
is, it is really practical due to relation between OpenSim 
(software), Matlab/Simulink (software) with Hasomed-
RehaStim stimulator (hardware). In this stage, as 
generally focused on proposal of this research and its 
methodology as an idea proposed. In another publication, 
it will going to be totally highlighted the next stage for 
this system development studies with the suitable 
parameter, the data analysis and the detailed description 
of the overall system proposed. 

 

 
Fig.14: Interfacing models within OpenSim-
Matlab/Simulink-Hasomed 
  

2.4.1 OpenSim Background 
OpenSim illustrated in Fig. 15 is a freely available 

open-source software system that lets the users to develop 
models of the musculoskeletal structures, biomechanical 
modelling and simulation, as well as to create the 
dynamic simulations analysis of a wide variety of 
movements [34,40,41]. This system has been used in the 
previous studies to simulate the dynamics of individuals 
with pathological gait and to explore the biomechanical 
effects of treatments [36,37,38,43,50]. Also, the OpenSim 
software has been utilized to perform several steps of the 
data elaboration procedure and to compute meaningful 
variables.  

 

Fig. 15: Schematic of OpenSim 
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In this study, OpenSim technology makes it possible 

to develop customized controllers, analyses, contact 
models, and muscle models among other things. As in 
Fig.16, users can analyze existing models and 
simulations, as well as can develop new models and 
simulations from within the graphical user interface 
(GUI). Likewise, a GUI provides the access to key of 
functionality [43,50]. OpenSim is being developed and 
maintained on Simtk.org by a growing group of 
participants.Simtk.org serves as a public repository for 
data, models, and computational tools related to physics-
based simulation of biological structures [36-
38,47,43,50]. OpenSim is easy-to-use, suitable with 
extensible software for modeling, simulating, controlling, 
and analyzing the neuro-musculoskeletal system. 
Furthermore, the OpenSim software also provides a 
platform on which the biomechanics community can 
build a library of simulations that can be exchanged, 
tested, analyzed, and improved through a multi-
institutional collaboration [34] and [40-46]. In other way, 
dynamic simulations of movement allow one to study 
neuromuscular coordination, analyze athletic 
performance, and estimate internal loading of the 
musculoskeletal system. Subsequently, simulations can 
also be used to identify the sources of pathological 
movement and establish a scientific basis for treatment 
planning [36,37,38,43,50]. 

 

Fig. 16: Musculoskeletal model with FES muscle models 
in OpenSim platform 
 

In the early 1990s, Delp and Loan introduced a 
musculoskeletal modeling environment, called SIMM 
[37,43,44,50,51], that lets the users to create, alter, and 
evaluate models of many different musculoskeletal 
structures [52-53]. Until now, this software is commonly 
used by lots of biomechanics researchers to create the 
computer models of the musculoskeletal structures and to 

simulate the movements such as walking [53] and [55], 
cycling [56-58], running [59,60], and stair climbing [61]. 
 

2.4.2 Hasomed/Simulink Background 
An overview of the hardware implementations of the 

hardware setup using Hasomed GmbH FES has been 
illustrated in Fig.17 [1]. This project is concerned with the 
customization between FES and the Matlab/Simulink 
software that already develop by the Hasomed GmbH due 
to the application based on the Matlab 2012b software 
which in some different GUI template model and 
scripting mode. Furthermore, FES system with the 
Matlab/Simulink template model currently built with real 
time function with some identification modes for the 
parameter changing such as current, pulse width and stim 
mode by serial port. Based on the system requirement, 
those GUI template is still need to be installed by 
software development kit, SDK 7.1. This model aims to 
be used to do connection (computer-controlled stimulator) 
between the Hasomed and Matlab /Simulink by MEX 
compiler on the 32/64-bit windows. Another challenge is 
due to checking how many the electrodes will be used and 
will be detected by putting them onto the skin to create a 
closed loop operation.  

 

Fig. 17: Hasomed-RehaStim Matlab/Simulink Model 
[34][99] . 
 
3. Summary 

Various musculoskeletal modeling approaches for 
FES control development have been reviewed. Thus, 
deep survey of literature in this paper is intended to 
highlight the challenges and problems related objective of 
this study was to the forward dynamic model of human 
lower limb for simulating FES-cycling applications.  In 
general, a model should be kept as simple as possible, 
that is, its order and number of parameters should be as 
low as possible.  Although at this stage, application by FL 
based with GA/MOGA optimization approach also being 
proposed in this study in order to create non-
mathematical model based system. Conversely, for future 
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works, a too complex a model may lead to an inability to 
gain sufficient insight into system behaviour due to the 
tendency to get lost in model details such as parameter 
identification. In fact, musculoskeletal systems are 
complex, being inherently higher-order and nonlinear 
system. Therefore, the traditional way of handling such a 
system with using a mathematical model has ended up 
with large equations. 
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