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1. Introduction 

Effects of high rate loading on concrete structures are 

highly likely to cause substantial local and global 

damage. For a concrete structure loaded by ballistic or 

explosion, the progressive damage take only a fraction of 

second subsequently leads to a total structural collapse. 

Therefore, numerous investigations in both experimental 

and numerical works have been conducted in order to 

provide more effective structural protection. Currently, 

many studies in protective structures have exerted the 
fibre reinforced polymers [1,2] or aluminium foam 

composites [3,4] to protect structures from the massive 

energy of blast loading. However, the ability of these 

materials is presently limited to prevent damage in the 

moderate level.   

Meanwhile, innovative technologies have resulted in 

more effective ceramic composite as high rate loading-

resistance and protective layer. The ceramic composite 

layer consists of ceramic frontal plate and softer-strong 

reinforced polymer network. These materials serve 

specific purposes of defeating high rate loadings and 

maintaining the structural integrity of the layer [5]. 
Ceramic composite has been vastly applied in ballistic 

and explosion resistances, many exclusively for the 

military purposes as the material has paramount functions 

in absorbing and dissipating kinetic energy. Ceramic 

composite layer has showed ample success in lowering 

damage and enhance the performance of structures. 

Several studies [6-9] have shown that ceramic composite 

has high potential to sustain reinforced concrete 

structures from further damage when subjected to 

ballistic or explosion. 

Since ceramic composite layer is produced by 
combining two different artificial materials, the 

complexity of the constituent model would almost be 

intractable analytically and make the computational 

solution prohibitively expensive in the heterogeneous 

manner. Alternatively, the homogeneous material model 

is a subject of considerable practical and theoretical 

interest [10]. The homogenisation approach provides an 

appropriate framework to relate the material properties in 

an equivalent manner. This can be achieved based on the 

numerical estimation of the mechanical response of the 

material in microstructure level. Basically, the simplest of 
the analytical strategies by the rule of mixtures can be 

adopted with assumption that the overall linear elastic 

behaviour of the composite material is given by the 

average of the corresponding microscopic values of each 

constituent phase weighted by the respective volume 

fractions. However, the rule of mixtures does not 

generally provide a very accurate estimate of composite 
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material behaviour as it takes no account of interactions 

between different phases. A confident and accurately 

technique to determine the mechanical and material 

properties of the ceramic composite is dependable on the 

multi-scale analysis. 

 

2. Multi-Scale Analysis 

More common and longer established examples of 

heterogeneous engineering materials such as reinforced 
concrete, fibre polymer and laminated timber have been 

treated as homogenous material. As a result, the 

principles to evaluate the equivalent mechanical 

behaviour of the heterogeneous materials using a multi-

scale analysis have been confidently developed in various 

levels from macroscale up to microscale [11-14].  

 

2.1 The representative volume element 

Central to homogenisation approach is the concept of 

the representative volume element (RVE). The RVE is a 

microscopically scaled continuum domain containing a 

distribution of materials that considered to be 

representative of the microstructures of the heterogeneous 

material. Fig. 1 shows the RVE of heterogeneous in a unit 
cell of structure. Homogenisation approach has two 

essential steps [10], localisation (macro to micro 

transition) and homogenisation proper (micro to macro 

transition). Localisation consists of determining the 

microscopic fields over the RVE from given macroscopic 

values while the homogenisation proper consists of 

calculating overall macroscopic variables from the micro 

fields. In the multi-scale analysis, the numerical solutions 

of the RVE can be achieved by solving a micro level 

boundary value problem at each Gauss point.  

 

 
 

Fig. 1 The representative volume element from 

microscale structure to a unit cell structure. 

 

In the case where RVE constituents are linear elastic 
and the material is assumed as isotropic, a single loading 

is sufficient to determine the effective shear and bulk 

modulus. In the finite element method, this can be easily 

conducted using the implicit procedure. Some studies 

[15,16] have applied simple load histories such as 

incremental uniaxial stretching or shear to the RVE in 

order to obtain homogenised stress-strain curves. 

Basically, the kinematic constraint is imposed to ensure 

that the motion of the RVE is driven by the history of the 

macroscopic deformation and enforced consistency 

between microscopic and macroscopic stress power [10]. 

Further kinematical constraints may be applied to obtain 

different classes of homogenised constitutive models. 

 

2.2 Periodic boundary conditions 

In the numerical homogenisation, composite 

materials are assumed to be periodic and consists a lot of 

repeating cells. A unit cell is very small when compared 

to the whole body of the material, but it is big enough to 

represent all the heterogeneous behaviour of the material. 
Homogenisation approach uses asymptotic expansion to 

solve problems relating to periodic. For the periodic 

structure material, function that represents its physical 

properties has the following form: 
 

             
 

where              is the position vector of the point 

M, and             
 

 is a constant vector that 

determine the period of the structure. The periodic 

function of the elastic constant can then be written as: 
 

                     

 

Periodic boundary condition is a widely used in 

dynamic microstructure. When periodic boundary 
conditions are used, all cells are connected and do not 

sense the existence of a free surface [17].  This allows 

structure to split into autonomous units due to periodic 

behaviour of constituent materials. 

 

2.3 The strain tensor 

If the cell domain undergoes a displacement, the 

local periodicity hypothesis [18] ensures that composite 

material, despite its deformation, retains its periodicity 

relation with its neighbouring cells. Consequently, the 

periodicity vector can be written as: 
 

                        

 

where       and          is the displacement 

difference between the periodic points. The 

transformation of the cells space is related to the change 

of periodicity vectors. Therefore, the average strain 

components of a unit cell on macroscopic can be 
evaluated as: 

 

   
  

       

 
 

 

   
  

       
 

 

 

   
  

 

 
 
       

 
 
       

 
  

 

where   and   refer to the dimensions of the cell 

respectively. Equations (4) to (6) are known as the 

homogenized strain components and are related to the 

change of periodicity vectors.  

(1) 

(2) 
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2.4 The simplified homogenized method 

By using the simplified homogenisation method, a 

unit cell is restrained at particular sides of the cell’s 

boundaries and appropriate prescribed displacement 

loadings are applied at the released boundaries. If only 

plain strain conditions are considered, therefore the 

elasticity tensor of plain strain can be substituted into the 

linear stress-strain relation given by equation (7).   

 

    
  

    
          

 

where C is called as the elasticity tensor. As the plain 

strain analysis is used, the stress-strain relation gives: 
 

 

   
   
   

  
 

           
    

   
   
   

  

 

     

     
     

  
    

 

  

 

The applied displacement is incrementally increased 

and the reaction forces in both x and y directions are 

calculated for each displacement applied. It is then 
possible to calculate the stress for each strain value and 

hence plot a stress-strain curve. Due to the boundary 

conditions and uniaxial loading, the stress-strain relation 

can be further simplified. The stiffness matrix for a 

composite material in plain strain is given by:  

 

 
   
   
 
  

  

             
     

   
 
 
  

 

      

       
       

  
     

 

  

 

where     is the stress in the x-direction,     is the stress 

in the y-direction,     is the strain,    is the equivalent 

Young’s modulus of the RVE and    is the equivalent 

Poisson’s ratio. When expanded, this yields the equations 

for stress in the x-direction and stress in the y-direction: 

 

    
  

             
          

 

    
  

             
      

 
Solved simultaneously, these yield the equations for 

calculating the equivalent Young’s modulus and 

equivalent Poisson’s ratio of the RVE: 

 

   
                   

            
 

 

 

   
   

         
 

 
When a unit thickness is used in the finite element 

analysis, the forces are found to be equivalent to the 
stress. The strain is therefore found to be equal to 1. Thus, 

the equivalent of Young’s modulus and equivalent 

Poisson’s ratio can be simplified as:  

 

   
               

       
 

 

   
  

       
 

 
where    and    are the reaction forces that produced on 

the boundary of the unit cell in x-direction and                

y-direction respectively.  
 

3. The Hybrid Finite-Discrete Element 

Method 

The hybrid finite-discrete element method is recently 

developed to model the problems of solid mechanics 

where crack, fracture or other types of extensive material 

damage are expected. The method combines the finite 

element approach and the discrete element method to 

model the transition from continuous to discontinuous of 

solid bodies. The hybrid finite-discrete element method 
has been generally developed in order to simulate the 

geomechanics problems [19-21]. This method has been 

further developed to various irregular and deformable 

particles in many applications.  

 

3.1 The material modelling  

Ceramic composite as quasi-brittle material shows 

pressure dependent strength properties and has various 

state of stress which produces different failure modes. 

Therefore, the time independent elastoplastic model is 

often used to describe the stress-strain relationships of 

ceramic composite where the material is linearly elastic 

up to the yield point and then becomes perfectly plastic. 

The simplest material model which incorporates this 
pressure dependency and is able to predict the stresses on 

the failure plane is the Mohr-Coulomb criterion. The 

Mohr-Coulomb yield criterion is a generalisation of the 

Coulomb friction failure law and is defined by:  

 
           

 
where   is the magnitude of the shear stress,    is the 

pressure,   is the cohesion and   is the friction angle. The 

Mohr-Coulomb strength criterion is the combination 

Mohr failure envelope, approximated by linear intervals 
over certain stress ranges. In principal stress space the 

yield surface is a six-sided conical shape. The conical 

nature of the yield surface reflects the influence of 

pressure on the yield stress and the criterion is applicable 
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to quasi-brittle problems. The strength of Mohr-Coulomb 

is written as:  

 

              

 

where    and    are the principal stresses,   is the 

constant parameter dependent to the friction    angle,   

and the unconfined compression strength,    is defined 

according to the values   and   . In condition when the 

cohesion,   is greater than zero, the Mohr-Coulomb 

model predicts a tensile strength which is larger than the 

tensile strength observed experimentally. This 

discrepancy can be mended by introduction of a tension 
cut-off in the form of complete Rankine tensile corner as 

opposed to a hydrostatic cut-off [22]. The Rankine tensile 

corner introduces additional yield criteria defined by:  

 

         
 

where    refers to each principal stress at         and 

   is the tensile strength or tension cut-off, which is the 

highest tensile stress allowed in the material. Although at 

present no explicit softening law is included for the 
tensile strength, indirect softening does result from the 

degradation of cohesion according to the following 

criteria: 

 

                  

 

This ensures that a compressive normal stress always 

exists on the failure shear plane. The Rankine part of the 

criterion is taken to be associated whereas the Mohr-

Coulomb part is non-associated [22]. The combination of 
these criteria is usually referred to as the Modified Mohr-

Coulomb criterion [23]. 

 

3.2 Crack and fracture formation 

Ceramic composite layer is represented as a 

continuum from which cracking virtually occurs during 

deformation process. The crack then propagates to all 

directions when the material strength is degraded. Before 

experiencing any failure, the material will remain in 

homogenous elastic state. The commonly accepted 

Rankine and Rotating Crack models are used to simulate 

crack formation within a continuum description under 

tensile conditions [24]. In this approach, cracks are 

initiated when limiting tensile stress is reached, after 

which the material follows a softening or damaging 
response governed by an appropriate relation. The 

formation and growth of cracks within a quasi-brittle 

material occur in directions that attempt to maximize the 

strain energy density [25]. The initial failure surface for 

the Rankine and Rotating Crack models can be defined 

by tensile surface failure as represented by: 

 

         
         

 

where     are the principal stress invariants and    is the 

tensile strength of material.  

After the initial yield, the Rotating Crack formulation 

represents the anisotropic damage evolution by degrading 

the elastic modulus in the direction of the major principal 

stress invariant. The strength degradation will occur in all 

stress directions implied by the following equation.   

 

               
 

where   is the damage parameter and     is the local 

stress at the local coordinate system associated with 

principal stresses. The damage parameter is dependent on 

the fracture energy,    which is denoted as: 

 

            

 

The Rankine model uses the same softening model 

however it is applied within a continuum material 

formulation rather than by following the direction of 

cracks or micro-cracks at Gauss point.  

 

3.3 Contact discontinuities 

In the hybrid finite-discrete element method, damage 
and fracture patterns are obtained when the topology of 

the mesh is updated by insertion of discrete fracture in the 

failed region. A discrete fracture is introduced when the 

tensile strength in a principal stress direction reaches zero 

and is oriented orthogonal to this direction.  The fracture 

can be inserted along failure plane (intra-element 

fracture) as can seen in Fig. 2, resulting in creation of 

new node and formation of new element in finite element 

system, or along the boundaries (inter-element fracture) 

of the existing elements [25,26]. This evolution process is 

continued until either the system comes to equilibrium or 
up to the time of interest.  

 

 
 

Fig. 2 Crack insertion procedure; a) initial state, b) 

through element, or c) along element boundary. 

 
During the crack and fracture in which elements are 

separated, the condition of contact between finite 

elements and discrete elements is complied with the 

penalty method based on contact surface deformation 

theories [27,28]. The behaviour of post-failure is coupled 

to the tensile softening response and the discrete element 

contact parameters are introduced to control the element 

separation and assuring the maintenance of energy 

balance during the discrete discontinuous transition 

period. The parameters included the contact damping, the 

contact field, the values of normal and tangential 
penalties, size of buffer zone for contact detection and the 

limit size of the element after fracturing [26,29]. 

a)                     b)                        c) 
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4. Isotropic Fracture Models 

Consider a unit cell has enough characteristic length 

and the condition of ceramic is perfect without any 

defects. Because of the properties governing its respective 

constituents are assumed to be known and isotropic over 

the domain, the homogenised material therefore is also 

isotropic.  In order to more accurately represent the 

material behaviour, the non-linear models is adapted to 

include fracture.  

 

4.1 Model description 

A symmetric unit cell is chosen with side length equal to 

20.40mm as illustrated in Fig. 3. The linear triangular 

unstructured elements were used for the hybrid finite-

discrete element model. The Rankine-Rotating Crack 

strain plasticity model and linear elastic constitutive law 
were selected for the analysis. The material properties 

assigned to the model are shown in Table 1. The ceramic 

material was modelled as a brittle material able to 

fracture and the polymer material is assumed to be a 

linear elastic material. 

 

 

 
 

Fig. 3 A symmetric unit cell of ceramic composite. 

 
Table 1 Elastic properties of ceramic composite 

 

Properties Ceramic Polymer 

  (GPa) 304 25 

  0.21 0.16 

  (kg/m3) 3163 1783 

    (MPa-m1/2) 3.5 2.5 

 

To govern the crack formation, the fracture energy based 

on the critical stress intensity factor was defined to the 

ceramic and reinforced polymer materials respectively. 
The fracture energy in the plane strain is calculated by 

equation (25).  

 

   
    

 
   

  

 

The effects of microstructural and mechanical properties 

on the effective yield surface of the RVE are considered 

in two dimensions. 

4.2 Loading conditions 

The effects of macrostructure behaviour of the RVE 

are considered in the whole range of the macro-strains 

without shear component. Hence, the incrementally 

prescribed displacement loading in the uniaxial direction 

(    or    ) or biaxial direction (    and    ) were 

applied over the unit cell following the macro-strain 

tensor in the form:  

 

            
 

                
 

where         ,        , and   is the angle of a 

reference line with respect to the     axis. New 

combinations of the macro-strain component are created 

by increasing the value of   , creating different deformed 

configurations over the RVE. The values for   are; 

  [0°,20°,45°,70°,90°] for pure uniaxial and biaxial 

tensile,   [110°,135°, 150°,160°,170°] for combination 

of compression in x-direction while tensile in y-direction, 

  [190°, 225°,235°,250°] for pure biaxial compression 

and   [280°,315°,320°,330°,340°] for combination 

tensile and compression in x-direction and y-direction.  

 

5. Results 

5.1 Crack behaviour 

Due to the tensile loadings or combination 

tensile/compression or compression/tensile, the 

macrostructure of ceramic composite experiences 

intrinsic cracks when the computed stress exceeded the 

yield stress defined in the materials. Fig. 4 shows the 

stress concentrations present in the ceramic composite 

prior to fracture of the material.  

 

 
a) 

 
b) 

 

 
c) 

 
d) 

 

Fig. 4 Fracture of the specimen at a) uniaxial,   = 0°,    

b) pure tensile biaxial,   45°, c) combination 

tensile/compression,   = 135°, and d)    315°. 

    

    

             

Alumina  

94% 

Polymer  

S-2 glass 
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Along with the macrostructure deformation, the 

microcracks are easier to grow and coalesce under biaxial 

loading rather than uniaxial loading. Since the 

compression strength of ceramic is estimated 10 times 

larger than the tensile strength, there is no crack or 

damage can be observed at the zero strain rates. However, 
further increasing the strain rate at biaxial compression 

loadings may result to the microcracks. 

 

5.2 Stress-strain curve 

The stress responses of the RVE for both tensile and 

compression loading conditions are calculated to plot 

stress-strain curves. Fig. 5 shows the stress-strain curves 

for different volume fractions of ceramic. The 

catastrophic failure of the macrostructure is marked as the 

sudden drop of the stress level. Even though the ceramic 

composite is recognized as nonlinear, all macrostructures 

behave elastically until peak stress, which is followed by 

facture of specimen. Further fracture behaviour of 

specimen is display graphically by oscillating stress-strain 

curves. The peak stress is taken as the strength of the 
specimen and the principal stresses can be calculated in 

order to obtain the normal stress and the maximum shear 

stress.  

 

 
 

Fig 5 Stress-strain curves with different volume  

fractions of ceramic.  

 

At the volume fraction of ceramic varied between 

90% and 99%, the macrostructures retain the similar 

stress strength. But increasing volume fraction of the 

reinforced polymer could produces stiffer ceramic 

composite layers because the strain strength is 

augmented, consequently lowering the Young’s modulus. 

Meanwhile, several studies [30,31,32] have found that 

microstructure does appear to play an important role in 
defining the mechanical properties. Each different 

configuration in microstructure was found to produce a 

different yield point and shaped curve, implying that 

configuration has an effect on the yielding behaviour of 

the RVE. However, different configurations of the 

ceramic in macrostructure level show unfavourable 

results in stress, indicating that the ceramic configuration, 

despite the uniformity and isotropic conditions, have very 

little effect on the strength response. Fig. 6 illustrates the 

stress-strain curves for different configurations of ceramic 

in rectangular, diamond, hexagonal and mix-pellet forms. 

The stresses are almost similar to all ceramic 

configurations but each macrostructure produces different 

strain strength value.  

 

 
 

Fig. 6 Stress-strain curves with different configurations 

of ceramic. 

 

From the averaged stress in the boundary condition, the 
elastic properties of the ceramic composite are calculated 

using the solution of equations (14) and (15). The details 

and comparison with the empirical equation based on 

ceramic and polymer’s volume fractions, and the implicit 

analysis are shown in Table 2. 

 

      Table 2 Homogenous elastic properties 
 

Properties Empirical Implicit Explicit 

   (GPa) 296 269 271 

   0.213 0.195 0.197 

 

From the stress-strain curve for the uniaxial tensile 

loading, the Young’s modulus is estimated to be 295GPa 

which is closed to the empirical result. However, both 

estimations from the stress-strain curve and the empirical 

approach are reluctantly inconsistent because the Young’s 

modulus is estimated in representative of 1D element 

while the explicit method considering 2D stress values at 

x-direction and y-direction.  

 

5.3 Effective yield stress surface 

The homogenised yield stress surface for the 
macrostructure is considered under various conditions. 

The macrostructure is found to be weakest under biaxial 

tensile loading, as expected happen in all quasi-brittle 

materials. Fig. 7 shows the effective yield stress surfaces 

for the ceramic composite and comparison with the plain 

ceramic. It was found that the volume fraction, elastic 

modulus and configuration of ceramic are not give any 

effects to the stress surface, nevertheless, will produce a 

different levels of plastic potential surface which is 

directly affect the amount of volumetric plastic strain of 

the ceramic composite, the dilative behaviour and its 

hardening rate.  
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Fig. 7 Effective yield stress surface for ceramic 

composite and plain ceramic.  

 

Considering the Mohr-Coulomb linear strength envelope, 

the plasticity and damage material properties of the 

ceramic composite are estimated as figured in Table 3. 
While apply the different loading rates to the RVE, the 

strain-rate function with associated dynamic increase 

factor on the failure properties can be defined as shown in 

Table 4 below.  

 

     Table 3 Plasticity properties of the homogenised 

ceramic composite material 
 

Property Value 

Stress cohesion, C  50.83MPa 

Friction angle,   35.64° 

Dilation angle,   6° 

Tensile strength,    210MPa 

Fracture energy,    121N/m 

 

     Table 4 Strain rate function of the homogenised  

ceramic composite material 
 

  (s-1) DIF    (MPa) 

1 1.20 252. 40 

10 1.25 262.93 

100 1.35 283.96 

1000 1.70 357.58 

 

6. Conclusions 

In the current study, the multi-scale analysis and 

numerical homogenisation were performed using the 

hybrid finite-discrete element method. In the numerical 

homogenisation, the constitutive law of ceramic 

composite layer was derived using a multi-scale analysis 

based on the periodic boundary displacement conditions. 

A suitable dynamic model of the ceramic composite layer 

was developed using the Modified Mohr-Coulomb 

constitutive law where fracture in the model was 

governed explicitly by the Rankine and Rotating Crack 

criteria involve a transition from continuum to 

discontinuous elements. The results of stress-strain curves 

showed that the macrostructure configuration and volume 

fraction play an important role in affecting the 

mechanical properties of the RVE. However, it is 

necessary to identify the material properties using the 3D 

multi-scale analysis, therefore the constitutive law can be 

assigned as an anisotropic homogenous material. 
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