
International Journal of Integrated Engineering, Vol. 4 No. 3 (2012) p. 19-25 

*Corresponding author: hamzah@ump.edu.my 
2012 UTHM Publisher. All right reserved. 
penerbit.uthm.edu.my/ojs/index.php/ijie 

1

Covariance Bounds Analysis during Intermittent 
Measurement for EKF-based SLAM  

 
Hamzah Ahmad1,*, Toru Namerikawa2 
 
1Faculty of Electrical & Electronics,  

University Malaysia Pahang, 26600 Pekan, Pahang, MALAYSIA. 
2Department of System Design,  
Keio University, Yokohama, JAPAN. 
 

Received 1 October 2012; accepted 1 December 2012, available online 20 December 2012 

 

1. Introduction 
History has shown that the role of robot has 

significantly improves and helps human in doing several 
tasks. Not limited to only industrial robots, mobile robots 
have extending their applications in household appliances 
such as vacuum cleaner robot and lawn-mover robot. 
However, in pursuing a truly autonomous robot has 
exhibits a lot of challenges to overcome. One of the 
research area that is believed to provide a solution for this 
problem is known as Simultaneous Localization and 
Mapping (SLAM) problem[1]-[6]. The problem defines a 
situation where a mobile robot attempts to observe its 
surroundings while consistently updates its location. 
Then, the robot continually constructs a map based on the 
information obtained during its observations. 

In realizing a solution for SLAM problem, researcher 
has to deal with several issues such as uncertainties, data 
association, and feature extraction[6]. This paper reveals 
the uncertainties affect to the state covariance whenever 
robot losses its information. 

Up to date, there are few approaches have been 
introduced such as Extended Kalman Filter(EKF), H 
infinity Filter, Unscented Kalman Filter(UKF), and also 
Particle Filter[6] for estimation purposes. Most of those 
techniques share the identical technical properties where 
they are based on Bayesian method. Between above 
mentioned approaches, EKF are the most celebrated 

method for SLAM solution.  The reason could be due to 
the filter offers simple algorithm to follow and has lower 
computational cost compared to others. 

One factor that can effects the mobile robot 
performance is the sensoring devices. Its existence is very 
important to provide information about the mobile robot 
location and the environment. Hence, if the mobile robot 
does not received any measurement data during its 
observations, then the probability of loosing confidence 
will be increased. Any sensor may not function as 
expected, intermittently or continuously after a period of 
time due to its life-span or due to the environment 
conditions. If information is not arriving to the controller 
during measurement, then this situation is known as 
intermittent measurement.  This case will be analyzed in 
details in this paper later. 

Motivated from above findings, this paper 
determines the condition of statistical bound during 
intermittent measurement[7]-[12] when EKF[13] is 
applied for SLAM problem. EKF that has been developed 
and proposed in various attempts for SLAM for example 
in [14] and [15] offers a reliable and satisfying result for 
estimation purposes. Until now, there are only few 
numbers of works have developed the explanations for 
intermittent measurement in mobile robot applications 
such as demonstrated by [16]-[17].  
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Fig.1 Illustration of SLAM problem 
However both references did not explicitly determines 
how the state covariance behaves whenever measurement 
data are missing during mobile robot observations. Hence 
the paper attempts to discover the properties of estimation 
if this problem happens.  

This paper is proposed to support the previous 
findings[16]-[18] to demonstrate the upper and lower 
bounds of state covariance behavior during intermittent 
measurement. Sinopoli et al.[10] and Plare et al.[11] have 
discovered a good references about the statistical bounds 
where the state covariance matrix are bounded to a 
defined level. Using those results as references, three 
conditions are analyzed to examine their effect and 
characteristics i.e initial state covariance, measurement 
noise covariance, and the state covariance statistical 
bounds. Previous results[18] which identifies the 
statistical bounds of the state covariance is extended to 
explain why the statistical bounds are approximating the 
lower bound or the upper bound. It is also worth to 
suggest that this work also able to provide essential 
information to H∞ Filter based SLAM[19] as well due to 
the filter has almost same characteristics. 

The remaining of this paper is organized as follows. 
Section two describes the kinematic model of the mobile 
robot together with a brief theoretical explanation about 
intermittent measurement.  Our proposed theoretical 
results follow later in section three. Next, section four 
shows the simulation results and discussions. Finally, 
section five concludes our paper.  

 
2. General Model 

Process and measurement models are the best 
representation to provide a general picture on how 
actually SLAM problem is developed. The process model 
determines the mobile robot movements through an 
unknown environment. It calculates the mobile robot 
position based on two inputs i.e mobile robot velocity and 
angular acceleration which also incorporates associated 
noise during the movement. On the other hand, 
measurement model explains the measurement made by 
the mobile robot through its sensors regarding the relative 
angle and distance every time the mobile robot detects 
any objects. These two models are shown separately in 
Fig.2.  

 
Fig. 2 SLAM general model showing the mobile robot 
movements (a) and landmarks measurements (b) 

 
For process model, we consider a nonlinear discrete-

time dynamical system as follows. 
),,,,( vvXfX kkkk δδωω=                   (1) 

where Xk∈R3+2m is the augmented state of mobile robot 
which consists of the heading angle θi

r and Xk
r, Yk

r 
positions, together with any landmarks xi, yi location 
being observed. The mobile robot angular acceleration is 
defined by ωk and its velocity by vk. δω, δv are the 
associated process noise to the angular acceleration and 
velocity respectively. To simplify without losing 
generality, this paper considers a case for a stationary 
landmarks.  

The measurement model is defined as below.  
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From (3), ri and φi are the relative distance and angle 
from mobile robot to any landmarks encountered during 
observations. 

ir
v ,

i
vθ defines the associated measurement 

noise to above equation both relative distance and angle. 
Notice that in (3), γk+1 was added to the normal equation 
which makes the equation differs to the original 
measurement model[2]. With the existence of γk+1, (3) is 
now describing the condition of intermittent 
measurement. This characteristics is actually relies to the 
Bernoulli process as follow. 

Now, the Extended Kalman Filter algorithm is 
presented to give an overview before going into details 
about the intermittent measurement scenario.  
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The addition of γk+1 also explains the stochastic behavior 
of measurement data whether available or unavailable for 
a period of time. Equation (3) can also be represented in 
the following equation. 
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Recognized that by comparing (1) and (6), δω, δv 
now have becomes zero as there are no process noise 
included in the prediction. 

The associated a priori state covariance Pk+1
- is 

shown as follows. 
T
vkv

T
kkrk fffPfP ωω Σ+= +−

+1                           (7) 

where fr, fωv are the mobile robot jacobian and 
control noise jacobian matrices evaluated from (1). Σk is  
the control noise covariance and Pk

+ is showing the 
previous updated state covariance. For T=1, the following 
equation is obtained. 
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From above, gωv,In are the process noise and identity 
matrix with an appropriate dimension. The updated state 
covariance yields the following equation. 
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Finally, by using the EKF algorithm, the updated state 
can be derived where  
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Based on the EKF algorithm, the prediction and update 
will be recursively done to obtain the newest location of 
both mobile robot and landmarks. As uncertainties are 
one issue in SLAM, this paper focuses on the updated 
state error covariance characteristics to identify its 
performance in certain statistical bounds through 
simulation. It is assumed that the data association is 
available at all time and the mobile robot is expected to 
moves in a planar environment. 

 
3. Theoretical Results 

Information is important for EKF to gain better 
picture about the state being updated. Fisher Information 

Matrix is applied in this work to analyze how the 
information behaves during estimation.  

The FIM is given as follow. 
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This paper refers to (11) to understand how actually 
information being delivered when the mobile robot starts 
to observe its surroundings. Let the initial state 
covariance to be P0 and consider a 1-D SLAM (a mobile 
robot with one axis) problem which makes the 
measurement matrix Hk instantly becomes an identity 
matrix. The measurement noise normally is set to be 
smaller than 1. If this case is referred, it can be explains 
by the above equation that if P0, R is initially set to 
possess smaller covariance and smaller noise 
respectively, then Jk becomes bigger.  

There is also other issue comes in if measurement 
data are missing. Theoretically, it should be identified 
that whenever data is not arriving at an update, the state 
covariance might become bigger than the previous state. 
However, is this true or the results will show opposite 
states? In our best knowledge, this characteristic is yet to 
be described by any preceding works[16]-[17]. Therefore, 
this paper attempts to clarify the state covariance 
behavior after the measurement data are missing.  

To begin our analysis, it is worth to know that the 
updated state error covariance is converging to a steady 
state[2] such that 

nkkk PPPP >>> ++ ....21  
This relationship instantaneously describes that the FIM 
is increasing if the mobile robot is collecting more 
information each time it observes the environment. 

 nnnn JJJJ >>> −− ....21  
Until now, researchers do not clearly understood that 

the efficiency of their estimation are actually depends on 
several aspects especially when measurement data are 
missing. Even if some of them might know the answers, 
the explanations are still lacking and require further 
descriptions. The next section unveils this condition. We 
propose three distinctive factors that are directly 
influenced the estimations. 
 
3.1 Impact of Initial State Covariance 

 
As mentioned earlier, the first objective of this paper 

is to explain that the initial state covariance has a 
significant effect to the overall estimation especially 
when measurement data are missing intermittently. This 
can be proven easily if (7) and (11) are referred. From 
(7), readers can identify that the updated state covariance 
is depend on the previous state covariance update. By 
substituting (7) into (11),  

kkk
T
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T
krk HRHfffPfJ −+− +Σ+= 1

0 )( ωω  (12) 
Now, assume that the process noise is very small 

such that it can be neglected; this assumption is useful to 
find out the essential feature of covariance update. Then, 
we arrived in 
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If a simple one dimensional localization is considered, 
then the only variable left for above equation becomes 

−− += kk RPJ 1
0 )(                                                   (14) 

Above equation finally explains that, due to recursive 
update of FIM, the final updated state covariance is 
yielding smaller covariance. However, by analyzing 
further, if the initial state covariance is set to have big 
uncertainties in a situation where measurement data are 
not arrived such that the latter of right hand side of (9) is 
not available, then we exhibits erroneous results. The 
consequence becomes even worse if at the beginning of 
the estimation no measurement data are collectible during 
observations. Hence, researcher should take deep analysis 
at the initial start of mobile robot observations. 
3.2 Measurement Noise Covariance 

Continues from the initial state covariance 
explanations given in the earlier section, the measurement 
noise covariance is also contributes the same effects to 
estimation. Equation (14) expresses how the updated FIM 
is being influenced by the measurement noise covariance. 
It can be recognized that if the sensors are unable to 
provide less noise during inference, then estimation 
becomes unpredictable. Moreover, this factor produces 
even greater residue error if the noise statistics is 
completely unknown as EKF only capable to infer in 
environment that possesses Gaussian noise. Remark that 
localization may take place in various circumstances. It 
will be a wise decision to ensure that the designed system 
do not exhibit high measurement noise during 
measurement. H∞ Filter[19] that depends on the 
measurement covariance can potentially become 
unreliable if this issue is not taken seriously. 

 
3.3 EKF Statistical Bounds 

When measurement data are not arriving for 
estimation purposes before updating the current state, 
EKF simply presume that the updated state holds the 
same state covariance calculated in earlier stage. This 
condition is identifiable through (9). . If this happen, then 
it can be expected that the mobile robot still has a good 
estimation. However, this case is not logically acceptable 
as when there is no information, the uncertainties should 
be increasing. In mobile robot localization, or even more 
complex problem such as SLAM, the uncertainties do has 
significant effect to the overall estimation. The 
uncertainties are subjected to the application of different 
sensors devices, feature recognition and dynamic 
environments. Unfortunately, there are no scientific 
explanations until now which discussing in detail 
regarding this matter. Hence it would be a good starts if 
there is a description about how the state covariance 
behaves during this problem. In addition, there are lot of 
unknown and unexpected factor exists that could 
influence the overall estimation such as modeling error, 
or dynamic obstacles. When these issues come in, how 
actually would the state covariance behaves?  This paper 

reveals what happens to the updated state covariance in 
an intermittent measurement case.  

Let the previous covariance to be Pk while the 
probability of when data is available is given by p. 
Therefore the probability of data is missing will be 1-p. If 
p is 0.8, then the Bernoulli process for the opposite 
consequently becomes 0.2. This literally means that at 
time k when measurement data is arrived,  

8.0}1Pr{ == kγ  
Now at time k+1, measurement data becomes 
unavailable. Therefore, at state k+1, the updated state 
covariance seems to acquire previous covariance Pk with 
same probability of 0.8. However, based on Bernoulli 
process, now the state covariance Pk+1 have the following 
characteristics. 

2.0}0Pr{ 1 == +kγ  
Above equation explains that the probability has becomes 
smaller or the failure rate is supposed to decrease than 
before. Unfortunately, from EKF algorithm, Pk+1 refer to 
the Pk which has accidentally making the state covariance 
to exhibit the same value as Pk such that if the covariance 
is small at Pk then it is smaller at state Pk+1 if claims by 
S.Huang are taken into account. As a result, the 
estimation becomes overconfident about the updated 
states even though the estimation becomes erroneous. 
Furthermore, we suggest that the measurement matrix Hk 
has a significant existence to the estimation. This 
characteristic will be shown later in this paper. A similar 
definition to [18] is made for evaluations purposes. 

A theoretical explanation could further aid our above 
claims. When the intermittent measurement occurred, the 
updated state covariance becomes smaller than the 
previous state covariance. In similar means, Jk+1 > Jk or 

kkkkkk HRHPPJ −+−+−+
++ +>= 11

11 )()(                    (15) 
Unfortunately, this is not convincingly true as it shows 
contrast characteristics compared to the resulted 
performance. Referring to EKF algorithm, if the 
measurement data is not arriving, then Pk+1 = Pk which 
consequently denying the expected result exhibit by (15). 

Driven by the above explanations on how the state 
covariance eventually ends, it is necessary to identify the 
statistical bounds. This paper suggests that, if 
measurement data are missing unexpectedly in a period of 
time, then the updated state covariance is bounded into a 
range of statistical bounds i.e upper and lower bounds. 
Moreover, interestingly, the state covariance is 
approximating the lower bound instead of the upper 
bound. Previous results[18] are referred for references. 
Some of them are included again to ease references. 
 
Lemma 4[18] Given Po, Qk, Rk>0. If a measurement data 
is missing in the interval of 1<k<N (2<N<∞), then the 
FIM lower bound  and upper bound  becomes as 
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Theorem 1[18] Assume that T
vkv ff ωω Σ , Po>0 and 

Assumption 1 are satisfied. If a measurement data is not 
arrived at any k+1, 1<k+1<N, then state error 
covariance  is bounded to the following if and only if 

. 

 
such that 

 
 
Our analysis show that the updated state error 

covariance going to the lower bound instead of upper 
bound. More interestingly, the result also shows that 
statistical bound proposed by above theorems can define 
opposite state i.e the upper bound becomes the lower 
bound and vice versa. This condition can be best 
described by referring to the FIM matrix in (11).  

Above results can be further examined by 
considering (9) in identifying the conditions when 
measurement data are missing. As presented in [18], the 
state covariance suddenly reached the lower bound of 
state covariance. It is known that the state covariance 
must be positive semi definite at all time to preserve a 
reliable estimation. Then the previous state covariance 
before measurement data are missing must be a positive 
semi definite matrix i.e Pk ≥ 0. As the measurement data 
are not available, it can be presume that the mobile robot 
sensors did not sense any objects nearby. Such that, the 
measurement matrix Hk during intermittent measurement 
is apparently exhibits higher relative distance and angle 
measurements than the Hk without any data losses.  

Remark that some conditions can deteriorate our 
proposed Theorem 1. At time k+1, if measurement data 
are lost, then the landmark could be nearer or the mobile 
robot is leaving further the landmark. Theorem 1 explains 
that if a mobile robot at time k finds a landmark which is 
far to it. Suppose that the mobile robot is approximating 
the landmark, then the measurement matrix becomes 
smaller such that Hk > Hk+1. The next theorem is 
presented to propose the outcomes. 
 
Theorem 1   Assume that the Rk is bounded. The updated 
state covariance reaches the lower bound of state 
covariance matrix when measurement data is missing 
during mobile robot observations if and only if the 
measurement matrix satisfies the following. 

kk HH >+1                                                           (16) 
However, if (17) is satisfied, then the updated state 
covariance shows the upper bound of state covariance. 

1+> kk HH                                                           (17) 
 
Proof :  

A numerical example could give better picture to 
simulate the actual results. Assume Pk , Hk are positive 
semi definite matrix and satisfies (16).  If (9) is 
considered again, then  
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which analogously shows that 
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Given above, it is clearly presented that as the FIM 
consumer a lot of information, then the updated state 
covariance becomes smaller than the previous condition. 
The same procedure can be applied to determine the 
condition if (17) is recognized during observation. Hence, 
the updated state covariance can exhibit both conditions 
whether going to the lower bound or otherwise which are 
depends exactly on (16) and (17). 

□ 
 
The next section presents the simulation results to 

analyze our proposed Theorem 1 stated above. Different 
movements are observed to differentiate the performance 
between each case. 
 
4. Simulation and Discussion 

Our preliminary simulation results have shown that 
most of the time, the updated state error covariance was 
approximating the lower bound of state error covariance. 
The reason relies on the basis that the FIM attempts to 
fully use its information obtained from observations as it 
is the only information available during mobile robot 
observations. 

Table 1 shows the simulation settings that we define 
for our environment conditions. 

 
Table 1 Simulation settings 

Simulation variables Settings 
Sampling Time, T 0.1[s] 
Process Noise, Q 1 X 10-6

Observation noise, Rθ, Rdistance  Rθ=0.002, Rdistance=0.02 
 

Mobile Robot initial 
covariance, Pvv 

1 X 102 

Landmarks initial covariance, 
Pmm 

100 

 
Fig. 3 Case 1: Mobile robot estimation and the 
constructed map based on the mobile robot observations. 
Green, magenta plots are showing the true estimation and 
estimation with EKF without losing any measurement 
data respectively. Blue and cyan plots are illustrating the 
estimation when mobile robot lost its measurement data 
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at 100[s], 400[s] for 1[s] duration while at 800[s] for 
10[s].  

 
Fig. 4 Case 2: Mobile robot estimation and the 
constructed map based on the mobile robot observations 
with different movements. (Simulation settings 
configured for Fig. 3 are applied). 

Fig. 5 Case 3: Mobile robot estimation and the 
constructed map based on the mobile robot observations 
with again different movements. The same simulation 
settings configured for Fig. 3 are applied to analyze the 
performance. 
 

 
Fig. 6 Mobile robot and landmarks covariance 
characteristics for case 1. 
 

The simulations are organized to loss measurement 
data at 100[s], 400[s] each for 1[s] and at 800[s] for 10[s]. 

Fig. 3, Fig.4, and Fig.5 shows estimation profiles for 
different mobile robot movements that consider same 
cases of true positions, as well as integrating the 
investigation of EKF estimation without information loss 
and EKF estimation with intermittent measurement. As 
presented in those figures, the estimation becomes 
erroneous as expected for EKF with intermittent 
measurement. To understand how effective the 
measurement made by mobile robot during its movement, 
state covariance is analyzed at each update. Fig.6, Fig.7, 
and Fig.8 describes the outcome. At 100[s], both mobile 
robot and landmarks state covariance exhibits lower or 
upper state covariance when intermittent measurement 
occurs. These profiles significantly defines and explains 
clearly what we have proposed in the section before 
regarding the state covariance characteristics that can 
exhibit either bigger or smaller state covariance than the 
state covariance in normal observations without any data 
losses. The rate of divergence, however, is not similar and 
unpredictable as it depends on the measurement matrix 
Hk. 

 

Fig. 7 Mobile robot and landmarks covariance results for 
case 2. 

 
 
 

 
 
Fig. 8 Mobile robot and landmarks covariance results for 
case 3. 
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Analyzing further Fig.6 to Fig.8, readers can identify 
that there some inconsistency of the statistical bounds 
especially presented in Fig.5 and Fig.6. These figures 
determine that the upper and lower bounds are defining 
opposite means. Closely looking into the Theorem 1 
suggested in this paper previously, and by incorporating 
theorems from literature reviews[18], the reason is 
actually relies on the behavior of Hk profile. Nevertheless, 
as demonstrated from Fig.6 to Fig.8, it is also can be 
easily recognized that the state covariance never exceed 
its given statistical bounds.  
 
5. Conclusion 

Results of theoretical and simulation analysis of 
intermittent measurement in EKF-based mobile robot 
have been reported in detail. Using almost the same 
analysis and simulation settings reported in Ahmad H. et 
al. [18], validation of theoretical analysis and simulations 
using EKF has been carried out. The prediction of the 
updated states are not actually relatively close to the true 
positions as some times the mobile robot gets to 
overconfident about its estimation. This means that the 
researchers must not only relying on the state covariance 
update without deeper investigations on how the 
estimation really becomes especially when measurement 
data are not arriving in a longer period of time. 
Theoretical analysis also proposed that the measurement 
matrix Hk effects the performance of EKF based SLAM 
as well as the statistical bounds. Currently this is 
unavoidable as the measurement matrix Hk cannot be 
easily controlled; as it is function to consistently measure 
the relative angle and distance between mobile robot and 
landmarks observed.  
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