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Abstract 
Agricultural biotechnol.ogy is becoming the major sector in crop improvement through the use of scientific techniques for the 
modification of genes conferring resistance to biotic, abiotic stress and improving the quality of crops. With the evolvement 
from Mendelian genetics to molecular biotechnology, there have been several developments in the field of crop improvement. 
Recent biotechnological advances have aimed towards removing the physiological constraints of the crops and increasing 
crop yield potential. With the use of different tools of agricultural biotechnologies like genetic engineering, tissue culture, 
embryo rescue, somatic hybridization, molecular marker-assisted selection, genome doubling, and omics technologies, 
various transgenic crops have been developed over the decades and have been approved for commercialization. This 
development and adoption of transgenic technology have been shown to increase crop yields, reduce CO2 emission, reduce 
pesticide and insecticide use and decrease the costs of crop production.  Even though the biotechnological approach and 
transgenic organisms have immense potential to contribute to the world’s food security, several concerns of genetically 
modified crops being a threat to the environment and human health have developed. This review will address applications 
and concerns of biotechnology in crop improvement considering health hazards and ecological risks. 
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Introduction 
Biotechnology refers to the implementation of 

comprehensive scientific techniques to alter and enhance 

the characteristics of different plants, animals, and 

microorganisms that are of economic importance [1]. 

Biotechnology is a broad term that includes applications 

of microorganisms and different foreign genes (gene of 

interest) in the processing of food; agriculture and 

forestry; environmental protection, medical sector, etc. 

[2]. Agricultural biotechnology is the branch of 

biotechnology that involves the exertion of scientific 

techniques for the modification and improvement of 

crops as well as livestock [3]. With the increasing 

population, traditional agriculture is not sufficient to 

meet the demands of food worldwide, thus the 

continuous increase in agricultural productivity depends 

on effective unification of biotechnology with classical 

breeding to create an "Evergreen Revolution" [4].  

Crop productivity has advanced largely during the 20th 

century based on applications of Mendelian genetics, but 

if farmers are to address the demands that will be laid on 

them over the next half-century more effectively, 

research in biotechnology and molecular biology should 

be aimed towards removing the physiological constraints 

of the crops and increasing crop yield potential [5]. 

Recent developments in plant molecular biology and 

genomes not only has provided us the knowledge and 

understanding of plant genomes but also the possibility 

of modifying them [6]. Biotechnology provides series of 

techniques that give access to a wider gene pool and also 

permits the accurate progress to produce new and useful 

plant and animal genotypes working along with 

conventional breeding techniques side by side  [7]. The 

use of traditional techniques, without any question, has 

profoundly improved important heritable characters 

such as yield, resistance to disease, etc. in crops, however, 

there are certain restrictions to these techniques like it 

may take a very long time to introduce, select and 

establish a trait into a cultivar or it may be impossible to 

incorporate certain traits with these techniques. Genetic 

engineering overcomes these limitations by introducing 

the desired trait in short time without altering other 

characters of the plant [8]. 

In this technological era, agriculture faces a new stream 

of technological revolution associated with 

biotechnology which could offer considerable assurance 

for agricultural sustainability by quality enhancement of 

the product, disease and insect pest resistance, 

environmental protection, and improving agricultural 

productivity [9]. With the advances in the field of 

molecular biology, scientists can manipulate DNA to 

produce transgenic organisms, the process is known as 

“Genetic Engineering” and offers a range of benefits 

along with possible risks [3]. There are controversial 

social and regulatory consequences with genetic 

engineering and food made from transgenic crops [10]. 
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So, all of transgenic crops developed are not released for 

commercial cultivation. This review tries to address the 

recent advances of biotechnology in agriculture and its 

major concerns. 

Background and History of biotechnology in 
Agriculture 
Agriculture is the backbone of the human food supply. 

Agriculture was practiced manually, in the beginning, 

using primitive technologies based on plow and harrow. 

The Industrial revolution (1875-1885) enabled accelerated 

economic development which led to the movement of 

people from rural areas to industrialized cities. It was 

around this time the chemical fertilizers were introduced 

for protection against disease and attainment of higher 

yields [11]. The human population at present is 7.87 

billion increasing at 1.1%  average annual rate of 

population change in year 2015-2020 [12]. This 

continuous increase in population, estimated to reach 9 

billion by 2050, poses a serious challenge to global food 

security. With the increasing world population, 

agricultural land has been utilized for settlement 

purpose. This has decreased the land under cultivation 

and ultimately the productivity. So, increasing food 

demands of the world can be met by increasing the global 

agriculture productivity. But lower land under 

agriculture cultivation demanded a drastic innovation in 

technology which not only increase the agriculture 

productivity but also sustain it for long time. This was 

provided by the breakthrough of biotechnology field [13].  

Gregor Mendel’s paper “Experiments on plant 

hybridization”, published in 1866; included how 

different traits were passed from generation to 

generation which marked the beginning of new 

technologies designed for improvement in crop species 

[1].  But, gene modification in crops is supposed to have 

begun around 10,000 years ago as a result of random or 

chance through the selection of novel crop types [14]. In 

1960, Green Revolution helped in increasing productivity 

of three main cereal crops viz. rice, maize, and wheat. A 

particularly important finding was the discovery of the 

molecular structure of deoxyribonucleic acid (DNA) and 

the fact that DNA was involved in inheritance. The 

genetic code was cracked in the 1960s and made a way 

for the transfer of genetic material even easier. With the 

transfer of genes from one organisms to another, different 

novel organisms are created, often referred as 

‘Genetically modified organisms (GMOs)’ [15]. With 

development of several GMOs; modern biotechnology 

has focused on genetic manipulation for agriculture, 

horticulture, environment, medicine, forensic science, 

and many other fields [16]. The major events in history of 

biotechnological development is presented in Table 1 

[11]. 

Table 1: Summary of the main events in the development 

of biotechnology [11]  

Classical biotechnology 

1664 Discovery of microorganisms. 

1884 Discovery of bacteria. 

1857 Microbiology of lactic fermentation. 

1860 End of the spontaneous generation theory 

1866 Theory of Inheritance (Gregor John Mendel) 

1902 Chromosomal Theory of Inheritance  

1910 Discovery of linkage  

1928 Transformation in bacteria  

1941 One gene-one enzyme hypothesis 

1946 Bacterial conjugation. 

1947 Chargaff’s rule  

Modern Biotechnology 

1953 DNA structure. 

1958 Semi-conservative Replication of DNA 

1959 Gene regulation. 

1960 Green Revolution 

1966 Genetic code decoding 

1970 The high specificity of restriction enzymes. 

Rise of phyto-genetics 

CIMMYT foundation 1973 Recombinant DNA replication in E.coli 

1978 Human proinsulin gene isolation 

1985 Polymerase chain reaction. 

1992 Beginning of the Golden Rice project 

1996 Full-fledged commercialization of GM crops 

Agricultural Biotechnology in Crop 
Improvement 
Agricultural biotechnology refers to the use of biological 

organisms or range of tools for the improvement of the 

plants, animals, microorganisms, or food derived from 

them. Following are some biotechnology tools used in 

agriculture: 

Transgenesis 
Transgenesis also called genetic engineering or 

recombinant DNA (rDNA) technology; includes multiple 

techniques used for the desired manipulation of genetic 

material (cutting and joining together) particularly DNA 

from various species, and subsequent introduction of the 

resulting hybrid DNA into a new organism to form new 

combinations of heritable genetic material [17][18]. 

Organisms resulting from transgenesis are called 

Genetically Modified Organisms (GMOs). 

Around 530 different transgenic events in 32 crops have 

been approved for cultivation in different parts of the 

world [19]. Among them, Maize accounts for the 

maximum number of events (240), followed by cotton 

(67), potato (50), Argentine canola (42), soybean (42), 

carnation (19), and so on. Transgenesis has been applied 

to develop Herbicide-tolerant (HT) transgenic crops, 



Nepal J Biotechnol. 2021  Jul ;9 (1): 8 5 -92               KC & Lamichhane   

©NJB, BSN  87 

Insect-resistant (IR) transgenic crops, Abiotic stress-

tolerant (AST) transgenic crops, disease-resistant 

transgenic crops, and nutritionally improved transgenic 

crops. 

Herbicide Tolerant transgenic crops 
The first herbicide-tolerant transgenic crop to be 

commercialized was Glyphosate-tolerant soybean 

(Roundup Ready soybean), which harbored EPSPS gene 

from CP4 strain of Agrobacterium tumefaciens.  Most of the 

commercialized glyphosate-resistant crops harbor this 

gene [20]. Two different genes from Streptomyces spp., 

namely pat and bar, were utilized for developing 

Glufosinate-resistant crops. Similarly, other HT 

transgenic crops specific to other herbicides like 2,4-D, 

Isoxafutole, Oxynil, and Sulfonylurea, have been 

commercialized recently [21]. A total of 351 herbicide 

tolerance events have been approved for cultivation [19]. 

Of these, the maximum number of HT events (212) has 

been commercialized in Maize, followed by Cotton (45), 

Argentine canola (34), and others.  

Insect Resistant Transgenic Crops 
Most of the insect-resistant transgenic crops are 

developed from cry genes from Bacillus thuringiensis (Bt); 

which provides resistance against a wide variety of insect 

pests (Lepidopterons, Coleopterans, and Dipterans) [22]. 

Cry genes not merely provide resistance against insect 

pests but also is non-toxic to mammals. The first 

commercially successful crop was Cotton in which cry 

gene was inserted that provided resistance against its 

lepidopteron insect pest. After the success of transgenic 

cotton, cry genes have been incorporated in many crops, 

viz., potato, rice, canola, soybean, maize, chickpea, 

alfalfa, and tomato [21]. Similarly, vip genes isolated 

from Bacillus species (B. thuringiensis and B. cereus) are 

incorporated in cotton and maize for insect resistance 

[23][19]. Genes encoding protease inhibitor (PI) from 

different sources (plants, bacteria, and fungi) have been 

used to produce insect resistant plants. The cptII and 

potato protease inhibitor II genes have been introduced 

in tobacco, and rice, and cotton, respectively to provide 

resistance against insects [21][19]. To date, 305 insect 

resistance events have been approved for cultivation [19]. 

Of these, the maximum number of insect-resistant events 

(208) has been commercialized in Maize, followed by 

Cotton (50), Potato (30), and others. 

Abiotic Stress Tolerant Transgenic Crops 
The impact of abiotic stresses is increasing in crops with 

changing climatic conditions. Certain plants adapt to 

these abiotic stresses at the molecular level by altering the 

expression of an array of genes. This helps to create near-

optimal conditions for plant growth and development 

[21]. Due to the complexity of the abiotic stress 

adaptation trait (many genes are involved), a lesser 

number of abiotic stress tolerance events have been 

commercialized as compared to traits like disease, insect, 

and herbicide tolerance.  A total of 12 abiotic stress 

tolerance events have been approved for cultivation in 

Maize(7), Sugarcane(3), and Soybean (2)  [19]. The use of 

bacterial cold shock proteins (csp) to mitigate the effects 

of abiotic stresses, like cold in Arabidopsis, cold, heat, and 

water deficit in rice, and water deficit in maize, has been 

demonstrated by Castiglioni et al. in 2008 [24]. Two 

genes: the cspA gene from E. coli and the cspB gene from 

soil bacterium B. subtilis were incorporated in maize, 

which not only showed better adaptation during water-

scarce conditions but also did not lead to pleiotropic 

effects in maize. Recently, Hahb-4 gene from Helianthus 

annus (Sunflower) is introduced in Verdeca’s drought 

tolerant transgenic Soybean commercialized as Verdeca 

HB4 Soybean. The gene produces isolated nucleic acid 

molecule encoding the transcription factor Hahb-4 which 

binds to a dehydration transcription regulating region of 

plant [19].  Similarly, using betA gene from E. coli and 

Rhizobium meliloti drought-tolerant transgenic Sugarcane 

has been made. These transgenic sugarcane crops 

withstand drought conditions up to 36 days and produce 

10-30% higher sugar as compared the non-transgenic 

plants under drought conditions in field trial [25,26]. 

Disease Resistant Transgenic Crops 
Diseases are caused by pathogens (fungi, bacteria, 

viruses, and other micro-organisms), and cause huge loss 

in crop yield. Despite the environmental hazards caused 

by the use of agrochemicals, management of diseases in 

plants is usually done using agrochemicals, which pose 

the challenge of the development of chemical-resistant 

pests [21]. Scientists have been able to breed plants with 

disease resistance traits using transgenesis. So far, 29 

disease resistance events have been approved for 

cultivation [19]. Of these, the maximum number of 

disease-resistant events (19) has been commercialized in 

Potato, followed by Papaya (4), Squash (2), and others.  

Most of the disease-resistant crops commercialized 

confer resistance against viruses [21]. Using gene 

encoding the viral coat protein of tobacco mosaic virus 

(TMV), the first disease-resistant plant was found, which 

was resistant to TMV infection [27]. Similarly, transgenic 

papaya conferring resistance to Papaya Ringspot Virus 

(PRSV) has been developed through a “pathogen-

derived resistance mechanism”, where the ‘prsv cp’ gene 

is introduced by microparticle bombardment into papaya 

[28]. In bean (Phaseolus vulgaris L.), RNAi-mediated 
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resistance against Bean Golden Mosaic Virus (BGMV)  

was developed by silencing the sequence region of the 

AC1 viral gene which inhibited the synthesis of the viral 

replication protein of the BGMV [29]. In potato (Solanum 

tuberosum L.), the Rpi-vnt1.1 gene from Solanum venturii 

is introduced using Agrobacterium-mediated gene 

transfer, which produces late blight resistance protein 

and confers resistance to potato late blight [30]. The major 

constituents of the fungal cell wall (chitin and α-1, 3 

glucan) are degraded by the chitinase enzyme thus when 

the chitinase gene was introduced in tobacco and rice, it 

has been reported to enhance fungal resistance in the 

plant [31].  

Nutritionally Improved Transgenic Crops 
Many successful efforts have been made to improve 

nutritional qualities in crops using transgenesis. The 

most recent example includes biofortified rice line GR2E 

(Golden Rice), developed by the introduction of gene 

‘crt1’ from Pantoea ananatis and gene ‘psy1’ from Zea 

mays. Golden Rice is capable of synthesizing carotenoids 

in the endosperm. GR2E was approved for use as food in 

the Philippines, Australia, New Zealand, Canada, and 

the United States [19]. Similarly, to improve the nutritive 

value of potato, the transgenic potato tubers were 

developed by expressing Amaranthus seed albumin gene 

‘AmA1’, which is plentiful of all essential amino acids for 

human diet specification according to the WHO standard 

[32]. An effort was made to enhance the pro-vitamin A 

content in tomato by producing transgenic tomato and 

converting phytoene to lycopene with the transference of 

bacterial gene for phytoene-desaturase enzyme.  And 

also three times more β carotene content was produced 

by these transgenic plants than normal plants [33]. 

Antisense fae1 gene transferred to Brassica napus and 

Brassica juncea has resulted in low erucic acid content 

[34]. In maize, the introduction of the ‘cordapA’ gene 

from Corynebacterium glutamicum has increased the 

production of amino acid lysine [19]. 

Tissue Culture 
Tissue culture is the culture of cells, tissues, organs, or 

their components in a nutrient medium under sterile 

conditions [35]. It usually involves the use of small pieces 

of plant tissue (explants) which are cultured in aseptic 

conditions [36]. Tissue culture manipulates and extends 

the period of cells, anthers, pollen grains, or other tissues 

and develops a whole, living growing organisms. Using 

tissue culture, genetically engineered cells can be 

transformed into genetically engineered organisms [37]. 

Tissue culture has been used extensively to create genetic 

variability through the in-vitro culture of protoplasts, 

anthers, microspores, ovules, and embryos, to improve 

crop plants and to increase the number of desirable 

germplasm available to the plant breeder. It is one of the 

pivotal tools of biotechnology [38]. Tissue culture is used 

in the germination of seeds that are difficult to germinate 

like Banana. Grand Naine (G9) variety of banana is 

prepared using tissue culture, which results in mass 

propagation of disease-free high yielding clones, and true 

to type plants [39]. Similarly, the Meristem tip culture of 

banana plants produces plants devoid of banana bunchy 

top virus (BBTV) and brome mosaic virus (BMV) [40]. In 

vitro cell and organ, culture can be used for the 

conservation of endangered germplasms. The plants that 

do not produce seeds (sterile) or produce seeds that 

cannot be stored for a long period (recalcitrant seeds), can 

be preserved using tissue culture techniques for the 

maintenance of gene bank [36]. 

Embryo rescue for wide hybridization  
Embryo resulting from inter-specific or inter-generic 

crosses may fail to produce a hybrid because of pre or 

post-fertilization incompatibility barriers. These barriers 

can be overcome by rescuing such embryos and culturing 

them for producing a whole plant, which facilitates the 

transfer of desirable genes from wild relatives into 

cultivated species [38][18][41]. This technique is known 

as embryo rescue or wide hybridization. Wide 

hybridization and Embryo rescue were done in 

Capsicum to transfer fruit rot-resistant traits by 

Debbarama et al. in 2013 [42].  

Somatic hybridization 
Somatic hybridization is a technique that integrates 

somatic cells from two different cultivars, species, or 

genera of plants for the manipulation of cellular genomes 

[43]. Somatic hybridization by protoplast fusion helps in 

the regeneration of novel germplasm and into whole 

organisms through tissue culture [44][45]. Similarly, 

incompatibility barriers at inter-specific or intergeneric 

levels can be overcome by somatic hybridization. Fusion 

between protoplasts of Potato (Solanum tuberosum) and 

Tomato (Lycopersicum esculentum) has created Pomato 

(Solanopersicon, a new genus). It not only overcomes 

barriers of sexual incompatibility but also creates novel 

genotypes [46] 

A salt-tolerant hybrid callus culture was developed by 

somatic hybridization between Rice (Oryza sativa) and 

Mangrove grass (Myriostachya wightiana), which is useful 

in the development of salt-tolerant rice varieties [47]. 

Disease resistance genes are also transferred using 

somatic hybridization like asymmetric somatic 

hybridization was used to transfer bacterial blight 

resistance trait from wild Oryza meyeriana L. to Oryza 

sativa L. ssp. Japonica [48]. Similarly, those genetic traits 
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that are cytoplasmically controlled like male sterility, 

resistance to certain antibiotics and herbicides, can be 

easily transferred using protoplast transformation 

followed by somatic hybridization [43]. Cybridization 

has been used to transfer Cytoplasm Male Sterility (CMS) 

in rice [49].  

Molecular marker aided genetic analysis and 
selection 
Molecular marker aided genetic analysis helps in gene 

identification i.e. it studies DNA sequences particularly 

to identify the genes, QTL (Quantitative trait loci), and 

molecular markers; as well as associate them with the 

organism. Molecular marker aided selection helps to 

identify and trace the inheritance of previously identified 

DNA fragments through a series of generations [37]. 

Molecular marker-assisted breeding uses molecular 

markers along with linkage maps and genomics to alter 

and improve plants or animal traits based on genotypic 

assays [50]. Rice genotypes having resistance to Bacterial 

Blight(BB) and Basmati quality and desirable agronomic 

traits were identified using phenotypic and molecular 

marker-assisted selection, which can be either directly 

used in the development of commercial varieties or used 

as a donor of BB resistance in Basmati breeding programs 

[51]. Similarly, Marker-assisted selection allowed 

identification of sources of Coffee Berry Disease and 

Coffee rust resistance for use in preventive breeding for 

resistance to these diseases. Several genes from other 

Coffea species were important sources for gene 

pyramiding in breeding programs aimed at multiple and 

durable resistance [52]. Genetic analysis of Fusarium 

Head Blight Resistance in CIMMYT bread wheat line 

C615 was done using traditional and conditional QTL 

mapping by Yi et al. in 2018 [53]. This study showed 

genetic relationships between FHB response and related 

traits at the QTL level providing useful information for 

marker-assisted selection for the improvement of FHB 

resistance while breeding. 

Doubled Haploid/ Genome doubling 
A doubled haploid (DH) is a genotype formed when 

haploid cells undergo chromosome/genome doubling. 

Haploid cells like pollen, egg cells, or other cells of 

gametophyte are subjected to spontaneous chromosome 

doubling, giving a doubled haploid cells, which is then 

grown into a doubled haploid plant [54]. It allows the 

development of pure line varieties or inbred parental 

lines quicker compared to traditional breeding [55].  

Double haploid technology in wheat accelerated time to 

market and faster genetic gains in yield and resistance 

gain, which helped in reducing varietal development 

time [56][57]. Similarly, anther-culture followed by DH 

offers a great opportunity to accelerate breeding progress 

and improve grain quality. DH plants through anther-

culture provide an efficient method for rapid production 

of homozygous lines of rice which are found to be more 

viable than other lines [58]. Similarly, in another study by 

Bakhshi, Bozorgipour, and Shahriari-Ahmadi in 2017, 

chromosome elimination method was used to develop 

double haploid wheat lines via crosses with maize as the 

male parent [59]. Further 3 wheat lines were selected to 

develop and adapt under heat stress conditions. 

‘Omics’ technologies 
‘Omics’ technologies are subcategories of bioinformatics 

which include genomics, proteomics, transcriptomics, 

genome sequencing, and metabolomics [60]. Genomics is 

used to understand the structure, function, and evolution 

of genes; and identify DNA that confers to traits in the 

organisms. Proteomics helps to analyze the protein in 

tissue for identifying gene expression in that tissue as 

well as decipher the specific function of proteins encoded 

by particular genes[61][37].   

Omics based approach helps to decipher the entire 

genome for gaining insights into plant molecular 

responses, which provides specific strategies for crop 

improvement. Using the omics approach, we can identify 

DNA (gene) encoding for a certain trait (genomics), RNA 

coded by it (transcriptomics), proteins formed 

(proteomics), metabolites produced (metabolomics), and 

phenotype expressed (phenomics). Omics technology 

provides valuable information on the structure and 

behavior of crop genomics. Any gene responsible for a 

particular trait can be used to enhance breeding in 

different ways [62]. A herbicide-tolerant maize line was 

developed by precise insertion of a target gene using site 

direct mutagenesis [63]. 

Concerns of Agriculture Biotechnology 
Biotech crops were grown in 29 countries in 2019, 

contributing significantly to food security, sustainability, 

climate change mitigation, and upliftment in the lives of 

farmers and families worldwide [64]. However, some 

concerns regarding gene manipulation in crops being 

ecologically harmful and unsafe for human 

consumptions. Major concerns of agriculture 

biotechnology are briefly discussed below: 

Adverse effects on non-target organisms 
The use of transgenic crops for a specific cause 

(disease/pest resistance) has caused unintended effects 

on non-target organisms. Reduction in monarch butterfly 

population has been reported on the adoption of 

glyphosate-resistant transgenic crops in the USA and 

Mexico [65]; and higher mortality was reported when its 
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larva fed on milkweed leaves dusted with the genetically 

modified Bt maize as compared to laboratory conditions 

[66]. Similarly, wide-scale adoption of Bt cotton in China 

increased the population of minor pest (Mirid bug), 

which acquired the status of major pest later [67]. 

Biosafety issues 
There have been concerns about the safety of transgenic 

food being a threat to human health and the 

environment. Risks associated with human health 

include allergenicity, toxicity, horizontal gene transfer, 

and feed safety [68]. When introducing a gene into an 

organism, the level of allergens might increase in the 

modified organism above the natural range or new 

allergen might be introduced. So, bean crops modified to 

increase the level of cysteine and methionine content 

were discarded after the discovery of the expressed 

protein of transgene being highly allergenic [69]. So 

testing of transgenic food may be required to avoid harm 

to the consumers. Similarly, WHO has claimed genetic 

material can be transferred from transgenic food to cells 

of the human body or bacteria in the intestinal tract or to 

soil microbes mainly because the DNA ingested from 

transgenic food is not completely degraded by digestion 

[68]. The possibility of horizontal transfer of antibiotic-

resistant marker genes from transgenic food to animal 

and human gut microbes may result in antibiotic 

resistance in the gut microflora, though its possibility is 

extremely low [21]. Similarly, the cultivation of 

genetically modified crops could cause “genetic erosion” 

as farmers restrict themselves to few popularly grown 

varieties. GM crops are not part of the natural process, so 

they could cause unpredictable changes in ecology and 

evolutionary response; the resurgence of pests and 

emergence of superweed are the results of these. 

Resistance breakdown 
Extensive cultivation of insect-resistant and herbicide-

tolerant crops increases the chances of the development 

of resistance in the targeted insect population through 

high selection pressure. New insect biotypes may evolve 

with resistance against transgenic technology. Similarly, 

superweed having resistance against herbicides may 

emerge. The field evolved pest resistance to Bt maize has 

been reported in Spodoptera frugiperda (Fall armyworm) in 

Brazil to cry1F expressing corn and cry1Ac expressing 

soybean [67]. In China, field evolved resistance to Bt 

cotton in Cotton bollworm (Helicoverpa armigera) to 

cry1Ac expressing cotton has been reported [70]. 

Economic, Social and Political concerns 
There are economic concerns about GM crops, as the 

price of seeds will be so high that small farmers and 

farmers in developing countries are unable to afford 

seeds for GM crops [71]. Concern about negative socio-

economic impacts of rapid technological change on-farm 

or rural structure is also present. In Muslim communities, 

the use of GMOs is considered halal or haram [72]. The 

labeling of genetically modified foods is one of the major 

political concerns. USA does not label GM foods, but 

there must be a common consensus on labeling 

genetically modified foods and their products in all 

countries. Similarly, differences in biotechnology 

regulations differ in the US and EU, due to minor 

differences in consumers' preferences [68]. 

Conclusion 
Agriculture has come a long way from the green 

revolution to the gene revolution. It is being applied and 

updated more and more daily. With the ability to know 

and modify the genetic makeup of organisms using 

biotechnological tools, we can cope with the increasing 

demand for food through the development of novel 

varieties of crops with a higher yield, better resistance 

against biotic and abiotic factors, and ensure 

environmental sustainability. The use of biotechnology in 

agriculture has not only helped to increase the 

productivity of crops but also reduced the cost of 

production by decreasing needs for inputs (pesticides) 

and improved the livelihood of the farmers. Similarly, 

new varieties of plants with higher yields in fewer inputs 

have wider environment adaptability; give better 

rotation to conserve natural resources has been 

developed through biotechnology applications. Despite 

these rapid developments, concerns regarding the safety 

issues of GM crops on human health, food/feed safety, 

on the environment, social, economic, and political are 

raised continuously. Complete and transparent 

assessment of GM crops application and their effects 

should be done, with strong regulatory implementation 

mechanism for use of GM crops. Alternatively, new 

methods such as cisagenesis, intragenesis, and genome 

editing can be utilized for developing improved crops.  
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