
Jacksonville State University Jacksonville State University 

JSU Digital Commons JSU Digital Commons 

Research, Publications & Creative Work Faculty Scholarship & Creative Work 

10-8-2014 

Scalable Tuning of Building Models to Hourly Data Scalable Tuning of Building Models to Hourly Data 

Aaron Garrett 
Jacksonville State University 

Joshua New 
Oak Ridge National Laboratory 

Follow this and additional works at: https://digitalcommons.jsu.edu/fac_res 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Garrett, Aaron and New, Joshua, "Scalable Tuning of Building Models to Hourly Data" (2014). Research, 
Publications & Creative Work. 52. 
https://digitalcommons.jsu.edu/fac_res/52 

This Article is brought to you for free and open access by the Faculty Scholarship & Creative Work at JSU Digital 
Commons. It has been accepted for inclusion in Research, Publications & Creative Work by an authorized 
administrator of JSU Digital Commons. For more information, please contact digitalcommons@jsu.edu. 

https://digitalcommons.jsu.edu/
https://digitalcommons.jsu.edu/fac_res
https://digitalcommons.jsu.edu/fac_scholarship
https://digitalcommons.jsu.edu/fac_res?utm_source=digitalcommons.jsu.edu%2Ffac_res%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.jsu.edu%2Ffac_res%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.jsu.edu/fac_res/52?utm_source=digitalcommons.jsu.edu%2Ffac_res%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@jsu.edu


Scalable Tuning of Building Models to Hourly Data

Aaron Garretta, Joshua Newb,∗
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bOak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

Energy models of existing buildings are unreliable unless calibrated so that

they correlate well with actual energy usage. Manual tuning requires a skilled

professional and is prohibitively expensive for small projects, imperfect, non-

repeatable, and not scalable to the dozens of sensor channels that smart

meters, smart appliances, and sensors are making available. A scalable, au-

tomated methodology is needed to quickly, intelligently calibrate building

energy models to all available data, increase the usefulness of those models,

and facilitate speed-and-scale penetration of simulation-based capabilities

into the marketplace for actualized energy savings. The “Autotune” project

is a novel, model-agnostic methodology that leverages supercomputing, large

simulation ensembles, and big data mining with multiple machine learning al-

gorithms to allow automatic calibration of simulations that match measured

experimental data in a way that is deployable on commodity hardware. This

paper shares several methodologies employed to reduce the combinatorial

complexity to a computationally tractable search problem for hundreds of
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input parameters. Accuracy metrics are provided that quantify model error

to measured data for either monthly or hourly electrical usage from a highly

instrumented, emulated-occupancy research home.

Keywords: Autotune, EnergyPlus, calibration, optimization, evolutionary

computation

1. Introduction

Sustainability is perhaps the defining challenge of our time. With only

4.4% of the world’s population, the United States (US) consumes 19% of the

world’s primary energy production. Buildings account for the largest frac-

tion of energy consumption in the US, accounting for 41% of the primary

energy used in 2010 [1]. Building energy model creation and simulation have

many uses, but they are often fiscally infeasible for all but the largest projects

because of the time required to create a model of an existing building and cal-

ibrate it to measured data. The US Department of Energy’s (DOE) Building

Technologies Office is assisting the development of several Emerging Technol-

ogy applications to significantly reduce costs and drive simulation-informed

actualized energy savings into existing light commercial and residential build-

ings to meet the US goal of reducing building energy use by 50% by 2030

compared with a 2010 baseline.

Many simulation-based analysis tools are available [2] to project how

specific policies or energy retrofit measures [3] would maximize return-on-

investment for government and utility subsidies. These tools can help resolve

issues such as principle-agent, first cost, and cost/performance trade-offs, as

well as maximizing financial metrics such as net present value and simple
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payback. As with all software tools, their analysis suffers from “garbage in,

garbage out.” This is complicated by the fact that, unlike cars or planes

built to a strict engineering specification, buildings are currently based on

one-off designs and constructed in the field. They can last decades or hun-

dreds of years, and rarely do any energy use data exist beyond utility bills.

For older buildings, optimal retrofit packages and similar analyses are cal-

culated for a fictitious building and necessarily yield suboptimal results. A

central challenge in building energy efficiency is being able to realistically

and cost-effectively model existing buildings. Even coarse models are useful

to determine how incremental energy conservation measures affect whole-

building energy consumption. Their usefulness is dramatically greater for

existing buildings, for which existing data can be used to calibrate the en-

ergy model. However, differences between models and actual monthly utility

bills on the order of 24–97% [4, 5] are common. Many measurement and

verification (M&V) protocols specify a required accuracy for a model to be

legally useful. Most large organizations use ASHRAE Guideline 14, 5.3.2.4.f

requirements, which specify a coefficient of variance for root mean squared

error (RMSE) of <15% or 30% and a normalized mean bias error of <5% or

10% for calibrating to monthly or hourly data, respectively [6].

Several simulation engines, and tools that leverage them, are actively sup-

ported by DOE [2]. DOEs flagship simulation engine is EnergyPlus [7], which

has been supported with over $65 million since 1995. OpenStudio [8] now

serves as the primary middleware between simulation engines and analysis

tool applications. High-level graphical interfaces and low-level, text-based

files allow a user to provide information that fully describes a given building
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and from which EnergyPlus can calculate detailed heat flow and energy us-

age information for the building. The number and instances of these input

parameters are extensive and highly variable in their combinatorial effects,

and their sensitivities are not yet fully explored. This relegates simulation

calibration to an “art,” and only a few hundred people have qualified for

ASHRAE’s building energy modeling professional certification. It is unreal-

istic to expect even an advanced user to be able to provide accurate values for

each of the approximately 3,000 parameters expected by EnergyPlus for the

average building. To mitigate such issues, a reference or template building al-

ready in the preferred tool, which is similar to the user’s own building, is used

as a default point for parameter values. These values are then “corrected”

to more closely match the actual building under consideration, depending on

the level of information available (e.g., the data specified by an ASHRAE

level 1, 2, or 3 audit). In addition, average material properties are typically

used from the ASHRAE Handbook of Fundamentals (HoF) which is begin-

ning to include significant variances in material properties identified from

controlled laboratory tests [9].

As the variance in material properties increases; as building systems,

equipment, and materials become more complicated and diverse; and as en-

ergy simulation modeling algorithms evolve to more thoroughly model ex-

isting systems and capture new equipment technologies, there is a need to

mitigate this complexity by relying on cost-effective, intelligent algorithms to

calibrate building energy models to use as many data as are available. The

Autotune project [10] aims to solve this need with an automated process and

has previously demonstrated calibration results for envelope parameters us-
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ing monthly utility data [11]. This paper extends that work by discussing the

scalable methodologies used to tune a building energy model’s 100+ envelope

parameters to whole-building hourly electrical usage data.

2. Background

2.1. Autotune Background

The Autotune project has used 269+ channels of 15-minute sensor data

from a robotically-emulated-occupancy ZEBRAlliance [12, 13] 2800 ft2 re-

search home. Parametric ensemble models of this building were simulated

using high performance computing (HPC). The Titan supercomputer at Oak

Ridge National Laboratory (ORNL) allowed the use of 131,072 cores to cal-

culate 524,288 simulations and write 44 TB of data to disk in 68 minutes [14].

Some of the latest advances in web-oriented database storage were used to

allow queryable simulations generated from varying 156 inputs and report-

ing 96 outputs at 15-minute resolution (35 MB per simulation) for 8 million

EnergyPlus simulations [15]. Measured data often are corrupt because of

uncalibrated sensors or missing data, so statistical techniques have been re-

fined for autonomous quality assurance and gap-filling [16]. Extensive big

data mining was conducted through the creation of an HPC-enabled suite of

machine learning algorithms (MLSuite [17]) to generate agent-based encapsu-

lation of knowledge for Autotune deployment on mobile devices. EnergyPlus

was approximated with machine learning algorithms to reduce simulation

runtime from 3 minutes to 4 seconds with a minimal trade-off in accuracy

for the processed building types [17]. The Autotune project, to promote

open science, is making a portion of the 267 TB (26.9 trillion data points) of
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EnergyPlus simulation data freely available online1.

2.2. Simulation Accuracy

Despite the proliferating use of building energy tools, there remain many

concerns and shortcomings applicable to all simulation engines. The pri-

mary concern is typically the accuracy of the simulation engines for realisti-

cally modeling (via inputs) a virtual building so that it matches a real-world

building. A Home Energy Rating System (HERS) study in 1999 [18] using

the REM/Rate simulation engine for 2,300 homes in Wisconsin found that

the median home’s heating use—40% of the average annual Wisconsin en-

ergy bill—was overestimated by 22%, with the worst 15% median being off

by 62%. Another study in 2000 [19] covering 500 homes in 4 states found

no relationship between asset ratings and energy consumption. A 2008 pilot

study [4] found 190 Home Energy Saver, REM/Rate, and SIMPLE residen-

tial simulation models had a 25.1–96.6% error rate compared with actual

monthly electrical energy usage. A 2012 study [5] found that 859 residential

models across Home Energy Saver, REM/Rate, and SIMPLE had a mean

absolute percentage difference of 24% compared with actual monthly elec-

trical energy use and of 24–37% compared with actual natural gas use for a

sample size of 500 houses. All of these studies use comparisons with monthly

utility bill data; the challenge of accurately matching hourly or 15-minute

data for dozens of sub-metered data channels is significantly more difficult.

The challenge for simulation accuracy can be reduced to two primary is-

sues: (1) a gap between the as-modeled and as-built structure, and (2) lim-

1http://autotune.roofcalc.com
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itations of the modeling engine’s capabilities.

2.3. Common Errors with Simulation Inputs

Gaps between as-modeled and as-built structures have many sources, with

the fault being traceable to an inaccurate input file rather than the simula-

tion engine itself. We have worked with building scientists and conducted a

sensitivity analysis to identify the most important input parameters.

Infiltration—the rate at which air and energy flow through the building

envelope (typically measured in cubic feet per minute per square foot)—

cannot be cheaply tested. Blower-door tests can determine the infiltration

rate at a given pressure (usually 50 Pascals), but these are one-time mea-

surements that vary significantly as a function of other variables such as

temperature, wind speed, and wind direction. Therefore, infiltration is often

one of the first variables energy modeling experts use to manually align a

simulation model with actual data.

A second issue is the schedule of building usage, which includes the

number of occupants; times of occupancy; heating, ventilation, and air-

conditioning (HVAC) set points; operation schedule; and other factors. These

also constitute inputs to the simulation engine but are often specified in a

separate EnergyPlus file for convenience. For many of these, cost-effective

sensors do not exist or are not typically deployed in a building (especially

sensors providing data that are easily leveraged by energy modelers). In

many cases, estimates of occupancy schedules and relatively static set point

temperatures are estimated and then used later to “true-up” the simulation

to match whole-building data without regard to the accuracy of the actual

HVAC thermostat set points.
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A third component that modelers often do not use, but which is a major

contributor to model variance, is material properties used within a building

model. Modelers typically use material properties from the ASHRAE HoF,

which relates the average value of a physical property (e.g., conductivity,

thermal absorptance) for a given material (e.g., gypsum board, glass fiber

insulation, plywood) based on standard tests. Occasionally, the manufac-

turer labels on materials give more reliable estimates than the average values

found in the HoF. However, hotbox testing of specific materials has shown

significant variance in materials even from a single manufacturer. Although

many of these values are used to update HoF numbers over time, data have

traditionally not been reported for variance. In such cases, energy modelers

have few reliable data on which to base the precise values necessary to create

an accurate model of material properties for the construction of an individual

building.

A fourth gap is that energy modelers typically use building design, build-

ing information model files, or similar documents; but craftsmanship influ-

ences how those designs are implemented (e.g., a contractor might neglect to

put insulation in a corner wall). Many other gaps exist, and most of them

persist because business models find saving relatively cheap energy an inad-

equate incentive to justify the energy modeling expense. For example, the

Federal Energy Management Program (FEMP) has rigorous M&V guidelines

[20]for calibrating a model. A financial analysis of 26 FEMP-related energy

service company projects on commercial buildings showed that project de-

velopment costs involving simulation ranged from 10 to 45% of the total

cost for projects smaller than $1 million. This increased risk (and associated
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cost) prohibits financing for traditional, simulation-informed calibration and

optimization of building retrofits for all but the largest building renovation

projects.

2.4. Common Errors with Simulation Algorithms

The limitations of engine modeling capabilities are a well-understood, ac-

tive issue for funded development teams or active communities behind pop-

ular simulation engines and tools. There often is a backlog of hundreds of

user requests involving the inaccuracies of specific algorithms. The develop-

ment of a capable software engine applicable to the entire US building stock

would result in significant market incentives and policy impacts. Simulation

engines are often used to inform policy decisions regarding cost-effectively

meeting national energy goals. Although several companies have developed

simulation engines closely tied to their product lines, an increasing number

are either using co-simulation or switching to large simulation engines like

EnergyPlus. However, a few primary factors should be considered regarding

the inaccuracies of simulation engines.

First, most simulation engines are engineering models that attempt to

model the underlying physics involved in energy consumption. Engineer-

ing algorithms are necessarily an approximation of reality (e.g., they use

1-dimensional heat transfer processes because 3-dimensional transfer would

take too long to calculate). Some simulation engines allow users to select

the needed level of precision on an algorithmic level to allow customization

for a particular area of interest. Statistical models show some promise, but

they are more useful for normative-based models for policy decisions than

for product-level or system-level building modifications.
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Second, there is a lag between the development of innovative technolo-

gies and the capability to accurately model them within a simulation engine.

Only the most active simulation engine development teams can keep up with,

or foresee the need to model, building products, components, or systems be-

fore they achieve a significant market share. As the code base grows, so

does the challenge of maintaining a software architecture that can accom-

modate new, integrated technologies (which may impact several parts of a

building). Third, virtually all known simulation engines are single-threaded;

only recently have attempts been made to leverage traditional multi-core and

graphical processing unit computational hardware. Given the significantly

different multi-threaded software development paradigms, it is difficult to

scale additional simulation capabilities without an increase in runtime for

models using them. Fourth, the computer, itself an approximation engine,

can provide only limited accuracy in a unit of time for a given algorithm.

Most simulation engine development focuses on a reactive process of building

a tool sufficient to meet a small fraction of the needs expressed by users.

The Autotune project [10] goal is to create an automated process for

tuning simulation inputs so that simulation output matches measured data.

This repeatable, transferable, scientifically rigorous process can address in-

accuracies in both input and algorithms by (1) adapting a model to more

closely match real-world data from the as-built structure, and (2) doing so in

a way that accommodates inaccuracies in the underlying engineering model.

2.5. Tuning of Building Models

Although inaccurate models can be useful in comparative analysis, cali-

brated models are more useful and often must meet specific calibration cri-
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teria to be legally permitted for use in a specific context. To satisfy these

requirements, modification of simulation algorithms to address the mismatch

(often by working around limitations of a given simulation engine) remains

one of the most tractable methods used by experts. This tuning process re-

mains an “art” that even the practitioners usually do not enjoy. Practitioners

often use infiltration and schedules as the primary “knobs” for tuning the

simulation to measured data. Properties of the many materials alone pro-

vide hundreds more “knobs.” Hence building model calibration is a severely

under-determined problem with thousands of inputs that can be varied to

match potentially only 12 data points, leading to questions as to the physical

realism of the final tuned model compared with the large number of valid

models. As a starting point, this paper focuses on the most important task of

getting the thermal characteristics of the envelope right by tuning envelope

properties to match electricity consumption throughout the building.

Initial attempts to develop self-calibrating energy models began around

the early 1980s. Many such efforts can be found for individual simulation

tools, such as ESP-r [21] while others propose multi-engine frameworks to

calibration for sub-components of a building’s dynamics [22]. It has also

been applied for calibrating calibrating residential energy user to regional

data while explicitly taking into account uncertainty [23]. Much of the history

and previous approaches are consolidated in ASHRAE report 1051-RP [24].

A more recent paper by Coakley et al. [23] surveys and characterizes multiple

calibration techniques.
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2.6. Computational Complexity

The EnergyPlus whole-building energy simulation engine was consoli-

dated from diverse sources around 1995, with functionality traceable back

to DOE-2 and DOE’s Building Loads Analysis and System Thermodynam-

ics (BLAST) from the late 1970s [7]. Its original design goals were to provide

a more consistent software structure for development and modification, to

allow third-party programs and components to easily interface with the core

system, and to fully integrate the loads, systems, and plants into the simula-

tion [7]. The workflow for a building modeler using a system like EnergyPlus

is to create a building’s geometry using external software, layer it with de-

tailed metrics encoding material properties, and add equipment currently in

or expected to be in the building, including anticipated operational schedules.

A typical residential building model in EnergyPlus has approximately

3,000 input parameters that must be specified. The search space in such

a problem is extremely large. Even if each parameter were a simple bi-

nary value (e.g., yes or no), the search space for a 3,000-parameter building

would contain 23000 possibilities. This is a best-case scenario; the actual size

of the search space is effectively infinite because many of the parameters

are continuous-valued. This study relied on building simulation experts to

identify 156 input parameters, along with minimums and maximums within

which they will be varied. Even with this simplification it would take Ti-

tan more than 13.8 billion years to calculate all the necessary EnergyPlus

simulations to find the best model for a single residential building. Many

of the experiments in this paper discuss algorithms and methods to find

near-optimal models in a tractable amount of time on commodity hardware.
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2.7. Evolutionary Computation

A common approach to such search problems, successfully applied in pre-

vious building model tuning work [11], is evolutionary computation (EC).

EC [25, 26, 27, 28] is a stochastic search algorithm that attempts to mimic

biological evolution by maintaining a set of candidate solutions (see Fig-

ure 1), referred to as a population. Each candidate solution is evaluated

to determine its fitness, a problem-dependent measure of how well it solves

the problem [29]. In essence, the candidate solutions act as samples of the

search space, and their fitness values provide an approximation of the gradi-

ent. However, unlike strict gradient-based techniques, an EC provides some

(typically small) opportunity for less fit candidates to influence the search

process, which helps the EC to avoid local optima [30].

Figure 1: Candidate solutions represent the essential components of the problem that

should be optimized. In the building-model-calibration case, the design of a candidate

solution progresses as follows: (a) The base model is analyzed to determine optimization

variables. (b) The optimization variables are isolated. (c) The optimization variables are

encoded in some structure that can participate in the evolution (known as the genotype).

Since EC is a population-based search, it has a number of aspects that are

inherently parallel. Most important for this work, each candidate in the pop-
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ulation must be evaluated to determine its fitness, and the evaluation of one

candidate is typically independent of the others. For expensive evaluation

functions, the ability to determine the fitness values of an entire population

simultaneously greatly increases the search efficiency. In addition to parallel

evaluations, EC approaches called island models [31] maintain multiple popu-

lations, each of which performs parallel evolution. In many cases, each island

(i.e., isolated population) is allowed to explore a different region of the search

space, possibly in different ways. Most island models have mechanisms in

place that allow candidate solutions to migrate between islands (usually with

low frequency), allowing information exchange between the populations.

In the context of this work, a candidate solution is a building with a

chromosome represented by a list of building model parameters to be tuned.

To evaluate a candidate solution, its corresponding EnergyPlus input data

file (IDF) model is constructed and passed to the EnergyPlus simulation

engine, producing an entire set of output measures (e.g., heating/cooling

loads). These output measures are then compared with actual measured

data from the building. The resulting measure of accuracy is used as the

fitness value for the candidate solution.

The interaction among candidate solutions in the population, defined in

terms of evolutionary operators, drives the evolutionary process. These oper-

ators determine how current solutions are recombined or modified to produce

new solutions, as well as which solutions get to contribute information to the

next generation. Figure 2 illustrates the basic concept of an evolutionary op-

erator (recombination, in this case). The particular evolutionary operators

used in this work were heuristic crossover, Gaussian mutation, tournament
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selection, and generational replacement. Each of these operators is standard

in the EC literature, and all were described previously in [11].

Figure 2: Evolution progresses as candidate solutions undergo the effects of evolutionary

operators, such as recombination. In this illustration, the two genotypes (blue-yellow-red

and yellow-red-blue) are recombined to produce an offspring candidate solution (green-

orange-purple). The particular recombination illustrated here through color-mixing is

similar to an approach in the EC literature known as blend crossover.

3. Methodology

Previous work [11] focused on tuning a building to monthly utility data.

The work presented here takes a more ambitious approach by attempting to

optimize the match between a model building and actual hourly electricity

usage data. The reference building used in this work is house number 1 in

the Wolf Creek subdivision (WC1), an ORNL ZEBRAlliance experimental

energy-efficient home. This house has a plethora of energy-efficiency tech-

nologies: (1) standing seam metal roof with infrared reflective pigments
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to boost solar reflectance, (2) ENERGY STAR appliances, (3) triple-pane,

low-emittance argon-filled windows, (4) compact fluorescent lighting, (5) a

horizontal ground loop that leverages foundation and utility excavations,

(6) high-efficiency water-to-air heat pump for space conditioning, (7) high-

efficiency water-to-water heat pump for hot water heating, (8) an energy

recovery ventilator to transfer heat and moisture between fresh incoming

and outgoing air, and (9) structurally insulated panel walls filled with ex-

panded polystyrene insulation. For more information, see [12, 13]. The house

is fitted with more than 300 sensors that collect data at 15-minute timesteps

using standard, wired-sensor data acquisition systems.

3.1. Base Models

The data, models, and accuracy metrics described in this subsection are

an extension of those previously reported in [11]. In the following experi-

ments, two different model buildings are used. The first model, the refined

model, was last modified on March 29, 2012. It matches whole-building an-

nual electric consumption exactly, but it has a sum of absolute errors (SAE)

of 1,276.34 kWh for monthly and 6,242.04 kWh for hourly electrical data

over the entire year. An earlier version of that same model, the primitive

model was completed on July 28, 2010. It has an SAE of 1,623.36 kWh for

monthly and 8,113.69 kWh for hourly electrical data when summed for the

entire year. These two baseline models are separated by approximately four

person-months of effort over the course of nearly two calendar years, with

the refined model being the recipient of that effort.
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3.2. Tuning Parameters

Only a subset of the real-value parameters of the models, as specified

by domain experts, was used as a part of the tuning process; the phrase

“tuning parameters” refers to these variables. The 156 tunable parameters

provided through the project website2 are too extensive to list, but most of

them are for building material properties. Although these parameters are

individual line changes in an EnergyPlus IDF input file, several instances of

each material, equipment, and so on may be used throughout a building. The

Autotune system currently scales to tune any set of numerical parameters

and can be customized for tuning only selected parameters in customizable

ways. This allows calibration according to the needs of a particular use case

or comparison with manual tuning efforts.

3.3. Measured Data

In 2010, the energy consumed by the average US residential building cost

$2,201 [1]. On average, 53.9% of that energy went to space conditioning

[32], which accounted for 42.9% of the cost and amounted to $944/year. The

energy-efficient HVAC system in WC1, in contrast, actually cost $472.62

for January 1–November 30, 2010. This 50% cost reduction for an energy-

efficient home serves as a reference point for the tuning results presented

throughout the residential study.

For the all-electric WC1, actual energy usage data for all HVAC equip-

ment were reliably collected from January 1 through November 28, 2010, at

which point a new set of test HVAC equipment was installed. Therefore, in

2http://bit.ly/autotune_parameters
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all experiments reported, the “yearly” electrical usage (and likewise the “full”

schedule) always refers to the electrical usage from January 1 to November

28. The electrical usage in this work was calculated as the sum of all of the

heating and cooling ideal loads for every time period (in kilowatt-hours).

3.4. Tuning Accuracy

In the following experiments, the primary metric used for measuring tun-

ing accuracy is the SAE3. The SAE was calculated according to Eq. 1, where

Mi is the heating+cooling load of the model and Ai is the heating+cooling

load of the actual ZEBRAlliance WC1 building. This equation contains only

n = 8016 hours because actual data were not collected for December; this

value is indicated as SAEhour. One of the acceleration methods used is to

tune on an abbreviated schedule of only 4 days (January 1, April 1, August

1, and November 1) before transitioning to a full year; use of this variant of

the metric is indicated as four-day SAE.

SAE =
n∑

i=1

|Mi − Ai| (1)

One practical consideration in moving from monthly to hourly data is

that failures and sensor drift are more prevalent and easily detectable in

hourly data. For this dataset, it was found that sensors failed to make a

measurement in approximately 2% of all measurements. In [11], in dealing

with error calculations, the failures were treated as 0 values in the summa-

tion because it was believed they would not significantly impact monthly

3The SAE was chosen as the primary metric, rather than RMSE, for example, because

of its ease of interpretation in terms of dollar difference.
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usage. For hourly data, however, they make a fourfold larger difference, and

it was decided to ignore any hour that contained at least one sensor failure

(approximately 8% of the data).

3.5. Evolutionary Computation Parameters

The following experiments always use 1,024 fitness evaluations (Ener-

gyPlus simulations compared with actual data) to allow comparison across

experiments. These evaluations are organized into 16 individuals (build-

ing models) evolved over 64 generations, tournament selection with tourna-

ment size 4, generational replacement with weak elitism (one elite), heuristic

crossover, and Gaussian mutation with a usage rate of 1.0 and a mutation

rate of 10% of the allowable range of each variable, unless otherwise specified.

Because of the stochastic nature of this approach, results are shown for eight

independent trials.

4. Experiments

4.1. Experiment 1—Determining a Fitness Surrogate

An annual EnergyPlus simulation for the WC1 reference building at 1

hour time intervals (over 8,000 time periods) requires 8 minutes of runtime

and cannot currently be efficiently parallelized. This type of fine-grained

schedule leads to a much more exact, but computationally expensive, sim-

ulation. A 4 day simulation has only 96 time periods of output data but

can run in seconds. It was also previously established [11] that tuning on

an abbreviated schedule of only 4 days (January 1, April 1, August 1, and

November 1) was a defensible acceleration method for monthly data, and
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this experiment validates the same behavior for hourly data. We do this by

establishing a correlation between the error rate of the 4 day and full sched-

ules, which requires a particular kind of sampling spanning from high to low

error. An EC was used to minimize the error in the abbreviated schedule,

and the hourly error rates in the 4 day and full schedules of each created

individual were measured and stored to determine their correlation. To en-

sure against statistical anomalies, the EC was run four different times with

different initial populations each time.

The entire set of 1,024 individuals for each of the four trials is plotted

in Figure 3. This plot compares the hourly SAE between the candidate

solutions and the actual energy usage, for both the 4 day schedule and the

full schedule, for each of the four independent trials. The graph shows a

strong linear correlation between the electricity usage with the 4 day schedule

and the usage with the full schedule—0.9697, 0.9704, 0.9472, and 0.9382 for

each of the four trials, respectively. This can be seen in the first row of

Table 1, which shows how the correlation changes as the data focus more

on the later generated samples (which would typically have lower SAE). So,

as with previous results, the 4 day abbreviated schedule appears to be an

acceptable surrogate for the full schedule.

4.2. Experiment 2—Tuning Using the Abbreviated Schedule

The abbreviated schedule is desirable since it is significantly less expensive

to compute, has proved to be an effective surrogate for full-schedule error,

and provides a baseline against which other results can be compared and

contextualized. In Experiment 2, we tune the refined and primitive models

on hourly electrical usage with the abbreviated schedule. We then use the 4
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Figure 3: Each of the four independent trials shows a very high correlation between the 4

day and full-year-schedule SAE of hourly electrical usage. This means that an abbreviated

surrogate (4 -day schedule) is a plausible method of expediting the tuning.
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Table 1: The sampling of the SAE to determine correlation was done using an EC with the

objective of minimizing the SAE. This produced initial samples with relatively high SAE

values and subsequent samples with generally lower SAE as more data were used. The

correlation using only the first N% of the samples produced shows that even the initial

samples are strongly correlated most of the time (with the exception of Trial 3).

Data Used Trial 1 Trial 2 Trial 3 Trial 4

100% 0.9603 0.9422 0.9015 0.9555

90% 0.8668 0.8438 0.6545 0.8788

80% 0.8683 0.8573 0.6444 0.8922

70% 0.8726 0.8561 0.6231 0.8944

60% 0.8671 0.8489 0.6078 0.8952

50% 0.8703 0.8489 0.5557 0.8971

40% 0.8774 0.8417 0.5663 0.9020

30% 0.8794 0.8208 0.6015 0.8973

20% 0.8841 0.8231 0.5988 0.8860

10% 0.8796 0.8235 0.3985 0.8714
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day tuned models to calculate data for the entire year to get a full-schedule

SAE that is directly comparable to other experiments.

Table 2 presents the final population statistics for full-schedule SAE on

each model and trial. The actual full-schedule data were compared with

each of the 16 candidates in the final population for each trial, and table

reports the average and minimum SAE values from this comparison. For

the refined model, the average minimum yearly SAE achieved by the EC

was 5,660 kWh. This corresponds to a reduction of 582 kWh in SAE—an

almost 10% reduction from the model, which had an SAE of 6,242 kWh.

For the primitive model, the average minimum yearly SAE was 7,453 kWh,

a reduction of 660 kWh or 8%. This is also a 35% reduction in the error

between the primitive and refined models (8,114 kWh for the primitive and

6,242 kWh for the refined).

Table 2: In Experiment 2, the EC was used to optimize the primitive and refined models

eight independent times (thus, 16 different tunings) using the abbreviated schedule. The

final population of 16 individuals for each tuning were used to produce the statistics in

this table. The average and minimum SAEhour (kWh) values for electrical usage from the

final populations are shown.

Trial (kWh)

Model Metric 1 2 3 4 5 6 7 8

Primitive Avg 7539 7578 7683 7638 7495 7467 7503 7587

Refined Avg 5720 5708 5792 5762 5750 5783 5806 5698

Primitive Min 7393 7507 7595 7545 7393 7360 7356 7477

Refined Min 5620 5625 5709 5687 5640 5671 5711 5616
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4.3. Experiment 3—Tuning Using the Full Schedule

For comparison, this experiment focuses on using the full schedule for

tuning the models. This approach is more computationally expensive than

using the abbreviated schedule. The only difference between this experiment

and Experiment 2 is the use of the full schedule for the EnergyPlus simulation

to calculate candidate fitness. The expectation is that this would generate

tuned models with lower SAE values compared with actual data.

Table 3 displays the final population statistics, the averages and mini-

mums, for the full-schedule SAE on each model and trial. For the refined

model, the average minimum SAE across eight trials was 5,539 kWh. Com-

pare this error with that of the baseline file (6,242 kWh) and of the abbrevi-

ated schedule EC (5,660 kWh). Clearly, using the full schedule throughout

the evolution provides a lower error (by 121 kWh) than using the abbreviated

schedule. However, this additional 2% reduction in error requires more than

five times the computational resources. The abbreviated-schedule EC was

able to complete a single trial in about 1.5 hours on an eight-core machine,

whereas the full schedule EC required 8 hours on the same machine. For

the primitive model, the average minimum SAE across eight trials was 7,162

kWh. Once again, this error must be compared with the baseline file (8,114

kWh) and with the abbreviated-schedule EC (7,453 kWh). The result shows

a reduction of 291 kWh in SAE from the abbreviated schedule, which cor-

responds to a 4% reduction for a similar fivefold increase in computational

time.
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Table 3: The final population of 16 individuals for each tuning in Experiment 3 were used

to produce the statistics in this table. The average and minimum SAEhour (kWh) values

for electrical usage from the final populations are shown.

Trial (kWh)

Model Metric 1 2 3 4 5 6 7 8

Primitive Avg 7275 7245 7250 7259 7338 7202 7274 7272

Refined Avg 5582 5641 5620 5594 5636 5623 5623 5596

Primitive Min 7175 7138 7150 7122 7253 7114 7162 7179

Refined Min 5518 5568 5527 5510 5560 5550 5558 5523

4.4. Experiment 4—Tuning Using Both Schedules Serially

As shown in Experiment 3, the full schedule produces better tuning re-

sults but requires more computational resources. If additional resources are

allotted, it may be best to employ those after the tuning process has pro-

duced a set of faithful models. The EC can be started from a known set of

good solutions (which we call seeds), permitting tuning in two parts—first

with the abbreviated schedule to produce a set of seeds and then with the

full schedule to produce the final tuning.

In this experiment, the first 768 E+ simulations were done using the 4

day schedule. At the end of those simulations, the best half (8) of the final

population’s candidate solutions were inserted as seeds into a new initial pop-

ulation of 16 candidates. (The other 8 candidates were randomly generated.)

This population was then evolved for the remaining 256 evaluations on the

yearly schedule.

Table 4 shows the final population minimums and averages for each trial
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for both the refined and primitive models. The average minimum SAE was

5,581 kWh for the refined model and 7,343 kWh for the primitive model. As

expected, the performance is better than that using the abbreviated schedule

alone (5,660 kWh and 7,453 kWh for refined and primitive models, respec-

tively) but not as good as using the full schedule throughout the evolution

(5,539 kWh and 7,162 kWh). The SAE reduction was 79 kWh for the refined

model and 110 kWh for the primitive model, corresponding to a movement

of 66% and 38% toward the full schedule performance for each model. This

performance comes at a cost of approximately double the computational ex-

pense of the abbreviated schedule only (3 hours instead of 1.5 hours), which

is less than the fivefold increase of the full schedule (over 8 hours).

Table 4: The final population of 16 individuals for each tuning in Experiment 4 were used

to produce the statistics in this table. The average and minimum SAEhour (kWh) values

for electrical usage from the final populations are shown.

Trial (kWh)

Model Metric 1 2 3 4 5 6 7 8

Primitive Avg 7404 7463 7469 7467 7393 7381 7434 7403

Refined Avg 5626 5670 5688 5614 5695 5667 5642 5646

Primitive Min 7306 7382 7402 7378 7328 7283 7362 7306

Refined Min 5564 5586 5608 5545 5596 5618 5566 5563

4.5. Experiment 5—Tuning Using Both Schedules in Parallel

Rather than execute the different evolutionary approaches in serial fash-

ion, it is possible to perform them in parallel using an island-model EC [31].

26



In this experiment, two different populations of 16 candidate solutions are

maintained. The first (“fast”) island uses the abbreviated schedule for sim-

ulation, and the second (“slow”) uses the full-year schedule. At the end of

each generation (i.e., each 16 simulations), a one-element migration queue is

queried for any existing candidate. If one is found, it replaces the worst can-

didate in the population. In either case, the best candidate in the population

is inserted into the queue. Since both populations perform this migration,

solutions can transfer between the populations, or islands. All immigrant

solutions are re-evaluated to determine the fitness under the new simulation

approach before they are inserted into the population. This island-model

approach is illustrated in Figure 4.

Table 5 shows the final population statistics for the candidates from the

abbreviated-schedule islands for both primitive and refined models. The av-

erage minimum SAE was 5,597 kWh for the refined model and 7,270 kWh

for the primitive model. This is very near the performance obtained from

the serial evolution. However, the parallel approach has a number of ad-

vantages. (1) It makes no assumptions about the number of simulations

that will be carried out, so users are free to stop the tuning process at any

time. Since the full simulation is always being run on one of the islands, this

information is always incorporated in the final population. (2) The parallel

approach appears to provide slightly better performance in terms of the SAE-

to-full-year-simulation ratio because its full island was unable to make use

of particularly good solutions from the abbreviated island until after about

the first 25% of simulations had been run. So it achieved similar error per-

formance using only 75% of the simulations. This 25% is an estimate based
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Figure 4: In this illustration, the upper-left island uses the full year schedule (represented

by the large EnergyPlus “black box”), and the other island at the lower-right uses the

abbreviated schedule. Candidate solutions migrating periodically between the islands are

represented as winged candidate solutions en route. When these candidate solutions arrive

at their destination islands, they must be re-evaluated to determine their appropriate size.
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on the typical convergence of the abbreviated island as shown in Figure 5,

which plots the convergence of the error of the best refined-model candidate

through each generation for each trial (through generation 48, after which

full-schedule information was used).

Table 5: The final population of 16 individuals for each tuning in Experiment 5 were used

to produce the statistics in this table. The average and minimum SAEhour (kWh) values

for electrical usage from the final populations are shown.

Trial (kWh)

Model Metric 1 2 3 4 5 6 7 8

Primitive Avg 7340 7330 7435 7470 7391 7349 7390 7356

Refined Avg 5724 5675 5670 5660 5648 5715 5669 5625

Primitive Min 7218 7201 7360 7373 7281 7211 7293 7226

Refined Min 5639 5597 5582 5578 5580 5633 5591 5573

5. Conclusions and Future Work

The results of the previous experiments are summarized in Table 6 and

Figure 6. The table shows the baseline and various approaches for tuning

for each model, focusing on the SAE and RMSE between the model output

and the actual data. These experiments show that it is possible to use an

evolutionary search to reduce the RMSE by over 7% in a comparison of

hourly electrical usage and that a two-island approach is a feasible, effective

way of combining the abbreviated- and full-schedule approaches.

Experiment 1 verified that a 4 day schedule could serve as a viable sur-

rogate for the full-year schedule in terms of hourly electrical usage, produc-
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Figure 5: The plot shows the convergence of the best individual in each trial of Experiment

4 when the abbreviated schedule is used (i.e., the first 75% of the evaluations). The dotted

line marks generation 12, which is 25% of the 1,024 evaluations allotted to the abbreviated

schedule. Before this point, individuals produced by the abbreviated schedule tuning are

not particularly useful as seeds because of their relatively high SAE.
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ing a correlation coefficient of 0.96 between abbreviated and full schedules.

Experiment 2 showed that an abbreviated-only approach could reduce the

RMSE by 6% and 7% below the baseline for the refined and primitive mod-

els, respectively. Experiment 3 focused on using the full schedule only, which

reduced the RMSE by 7% (refined) and 10% (primitive). Experiment 4 com-

bined the two approaches in serial fashion, using the abbreviated schedule

for the first 768 simulations and then the full schedule for the remaining

256. This approach was better than the abbreviated schedule alone and only

slightly worse than the full schedule alone. Experiment 5 combined the two

approaches in parallel using an island model, in which one island used the

abbreviated schedule and the other the full schedule. This approach was

competitive with the full schedule approach, despite using only 25% of the

full-schedule simulations.

Table 6: The summary comparison of results from Experiments 2–5 shows that significant

reductions can be gained from tuning with an abbreviated schedule, either alone, serially,

or in parallel with full-schedule tuning. Percentages in parentheses are reductions versus

the baseline.

Refined Primitive

Approach SAE (kWh) RMSE SAE (kWh) RMSE

Baseline 6242 1.206 8114 1.625

Abbreviated 5660 (9%) 1.129 (6%) 7453 (8%) 1.514 (7%)

Full 5539 (11%) 1.119 (7%) 7162 (12%) 1.458 (10%)

Serial 5581 (11%) 1.123 (7%) 7343 (9%) 1.497 (8%)

Parallel 5597 (10%) 1.121 (7%) 7270 (10%) 1.482 (9%)
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Figure 6: The graph shows the results of Experiments 2–5 compared with the baseline (see

Table 6). The average minimum SAE value found across all eight trials represents each

method, and each method is accompanied by standard error bars (except for the baseline).

The y-axis minimum value was increased to 5,000 to highlight the differences between the

methods.
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The series of experiments elucidates several methods, advantages, and

trade-offs in the use of EC to automatically calibrate a software model of

an emulated-occupancy experimental residential building to hourly whole-

building electrical data. Work is ongoing to extend these calibration meth-

ods from residential buildings, where fewer things are certain, to larger com-

mercial buildings—calibrating to sub-hourly data for multiple data channels

and to quantitative tests for determining not only how closely the building

matches measured data but also how accurately the tuned model matches

the real building.
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