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a  b  s  t  r  a  c  t

The  pungent  natural  compound  allyl  isothiocyanate  isolated  from  the  seeds  of Cru-
ciferous  (Brassica)  plants  such  as  mustard  is  reported  to exhibit  numerous  beneficial
health-promoting  antimicrobial,  antifungal,  anticarcinogenic,  cardioprotective,  and  neu-
roprotective  properties.  Because  it is  also  reported  to damage  DNA and  is toxic  to  aquatic
organisms,  the objective  of  the  present  study  was  to  determine  whether  it  possesses  tera-
togenic  properties.  The  frog  embryo  teratogenesis  assay-Xenopus  (FETAX)  was  used  to
determine  the following  measures  of  developmental  toxicity  of  the  allyl  isothiocyanate:
(a)  96-h  LC50,  defined  as the  median  concentration  causing  50%  embryo  lethality;  (b)  96-
h EC50,  defined  as  the median  concentration  causing  50%  malformations  of  the  surviving
embryos;  and  (c) teratogenic  malformation  index  (TI),  equal  to 96-h  LC50/96-h  EC50.  The
quantitative  results  and  the  photographs  of embryos  before  and  after  exposure  suggest  that
allyl  isothiocyanate  seems  to  exhibit  moderate  teratogenic  properties.  The  results  also  indi-
cate  differences  in  the  toxicity  of  allyl  isothiocyanate  toward  exposed  embryos  observed
in the  present  study  compared  to  reported  adverse  effects  of  allyl  isothiocyanate  in fish,
rodents,  and  humans.  The  significance  of the  results  for food  safety  and  possible  approaches
to protect  against  adverse  effects  of allyl  isothiocyanate  are  discussed.
©  2015  The  Authors.  Published  by Elsevier  Ireland  Ltd.  This  is  an  open  access  article  under

the  CC  BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Allyl isothiocyanate is a pungent and volatile, color-
less oil that is synthesized in Brassica plants (mustard,
horseradish, radish, wasabi) of the Cruciferae family.
After breakage of the seeds of this group of plants, the

Abbreviations: FETAX, frog embryo teratogenesis assay-Xenopus;
EC50, the median concentration causing 50% malformations of surviv-
ing embryos; LOEC, lowest-observed effect concentration for mortality
and malformation; NOEC, no-observed-effect concentration for mortality
and malformation; LC50, the median concentration causing 50% embryo
lethality; TI, teratogenic malformation index.

∗ Corresponding author. Tel.: +1 256 782 5803; fax: +1 256 782 5587.
E-mail address: jrayburn@jsu.edu (J.R. Rayburn).

glucosinolate (sinigrin) undergoes glucosinolase
(myrosinase)-catalyzed hydrolysis to produce allyl
isothiocyanate (Fig. 1) and other compounds [2,3].

Interest in allyl isothiocyanate arises from the fact that
it is reported to exhibit numerous health-promoting bene-
ficial effects. These include (a) antifungal activities in bread
[4] and on corn kernels and corn flour [5]; (b) antimi-
crobial effects against multiple foodborne pathogens and
spoilage bacteria in laboratory media, water, and on/in
food [4,6–21]; (c) nematicidal effects against Meloidog-
yne incognita [22]; (d) inhibition of mycotoxin toxicity
[23]; (e) insecticidal activity against scarab beetle larvae
(Coleoptera: Scarabedaes), contaminants of ornamental
crops [24]; (f) trypanocidal activity against Trypanosoma
brucei parasites [25]; and (g) anticancer, cardioprotective,

http://dx.doi.org/10.1016/j.toxrep.2014.12.005
2214-7500/© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Enzymatic hydrolysis of allyl glucosinolate (sinigrin) by glucosino-
lase (myrosinase) to allyl isothiocyanate [1].

neuroprotective, antidiabetic, and other beneficial proper-
ties [26–29]. It is also relevant to note that SH-containing
amino acids and peptides such as cysteine and glu-
tathione that are present in meat and in vivo interfered
with the antimicrobial activity allyl isothiocyanate against
Escherichia coil O157:H7, presumably by forming inactive
adducts [30,31].

Because it has been reported that allyl isothiocyanate
is highly bioactive in cells, animals, and humans, it was
also investigated for possible toxicity. Allyl isothiocyanate
is reported to induce hyperalgesia and edema in rats [32]
and both DNA damage and repair in humans [33] and
has been studied for use as a biofumigant due to its irri-
tant properties [34,35]; it is therefore of interest to study
the effect of allyl isothiocyanate exposure in humans, par-
ticularly in environmental and dietary settings. Adverse
effects in humans include low-grade allergy and altered
drug metabolism [36].

A report by the European Panel on Food Additives
[37] that is relevant to the present study states the fol-
lowing: “The Panel considered that allyl isothiocyanate
did not show any evidence of developmental toxicity
in pregnant rats, hamsters and rabbits at oral doses of
18.5 mg/kg bw/day, 23.8 mg/kg bw/day and 12.3 mg/kg
bw/day, respectively. Allyl isothiocyanate may  be fetotoxic
to mice at doses higher than 6.0 mg/kg bw/day, without
exhibiting any teratogenic effects. The Panel noted that no
reproductive toxicity study (one or two generation) was
provided by the petitioner and that no information was
identified in the published literature.”

Allyl isothiocyanate has been shown to possess geno-
toxic properties in rats that result in the formation of
papillomas and hyperplasia [35,38]. Reported 50% lethal
doses (LD50) for rats (≥200 mg/kg body weight) and mice
(≥50 mg/kg body weight) [39,40] suggest relative low tox-
icity in rodents. Because a lower lethal concentration in 50%
of the population (LC50) for Pimephales promelas (fathead
minnow) of 85.6 �g/L (0.863 �mol/L) [41] implies that
aquatic species might be susceptible to possible adverse
effects, the objective of the present study was to find
out if this highly reactive molecule has the potential to
induce teratogenicity in frog embryos. To the best of our
knowledge, this is the first report on teratogenicity of allyl
isothiocyanate.

2. Materials and methods

2.1. Materials

Allyl isothiocyanate (cat. No. AAA02901-18) was
obtained from Aldrich–Sigma (St. Louis, MO,  USA). The fol-
lowing chemicals were obtained from Sigma (St. Louis,

MO,  USA): l-Cysteine (cat. No. C7352); human chorionic
gonadotropin (cat. No. CG5); MS-222 (cat. No. E10521);
calcium sulfate (cat. No. C-3771); magnesium sulfate (cat.
No. M-7506); sodium bicarbonate (cat. No. S8875); potas-
sium chloride (cat. No. P-5405); calcium chloride (cat. No.
C-1016); sodium chloride (cat. No. S7653).

2.2. Animal care and husbandry

Xenopus frogs were purchased from Xenopus I, Inc.
(Dexter, MI,  USA) and housed in a glass aquaria recircu-
lation system with two  to four frogs per 10 gallons of
dechlorinated tap water. Human chorionic gonadotropin
(250–500 IU) was injected in the dorsal lymph sac of
both male and female frogs to induce breeding. Breed-
ing pairs were placed in false-bottom breeding chambers
and embryos were collected the next morning. The jelly
coat was  removed by swirling the embryos for 1–3 min
in a 2% l-cysteine solution (pH 8.1). Embryos were then
rinsed and placed into sorting dishes. Embryos were double
sorted into test dishes of 20 embryos per 8 mL  of FETAX test
solution in plastic disposable 60 mm × 15 mm Petri dishes.
The negative control was FETAX solution (0.625 g/L NaCl,
0.086 g/L NaHCO3, 0.03 g/L KCl, 0.015 g/L CaCl2, 0.006 g/L
CaSO4·2H2O, and 0.075 g/L MgSO4 in distilled ASTM type I
water) [42]. Frogs were not bred more than once every 2
months.

2.3. FETAX assay procedures

FETAX was  used to determine allyl isothiocyanate tox-
icity and teratogenesis according to ASTM International
Guide for FETAX and our earlier studies with teratogenic
glycoalkaloids [42–50] and acrylamide [51]. Stock solutions
of the test compound were made in FETAX solution. Appro-
priate dilutions were made to achieve final concentrations.
Each day of the four-day test, new solutions were placed
into 60 mm covered glass Petri dishes with various concen-
trations of test compounds dissolved in FETAX solution. At
24, 48, and 72 h, all solutions were prepared and replaced in
the dishes. Dead embryos were removed, and live embryos
counted. The embryos were cultured at 24 ◦C. At 96-h,
surviving embryos were photographed for length measure-
ments and verified that >90% of controls had reached stage
46. Stage 46 embryos possess hind-limb buds and tightly
coiled guts but do not yet feed. At the end of 96-h, the
mortality was  determined and embryos were anesthetized
with MS-222. Malformed survivors, dead embryos, and
the developmental stage were observed under a dissecting
microscope and recorded according to the Atlas of Malfor-
mations [52].

Malformations were determined as follows. All embryos
were observed under a dissecting microscope for mal-
formed survivors, developmental stage, and dead embryos.
Xenopus laevis embryos are transparent and allow for easy
determination of gut, heart, head, axial and other internal
and external malformations. The malformations are quan-
titatively scored on a standard score sheet and tallied. The
data were recorded according to the ASTM International
Guide [43]. The total number of abnormal tadpoles divided
by the total number of living tadpoles multiplied by 100 is
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the percentage malformed from each dish. The teratogenic
index (TI = 96-h LC50/96-h EC50) was calculated from the
experimental data.

For length measurements, embryos were photographed
with an Olympus stylus 720sw (Olympus Corp. America,
Center Valley, PA, USA) on macro setting and analyzed
using Image Pro Plus. Detailed photographs were taken of
selected embryos using a Pro Reg digital camera (Media
Cybernetics, Rockville, MD,  USA) attached to a Nikon dis-
section microscope (Nikon Instruments, Melville, NY, USA).
As a measure of growth, head-tail length was measured
by the following body contour using a computer equipped
with digitizing software.

2.4. Allyl isothiocyanate toxicity experimental design and
analysis

For concentration-response studies of toxic effects on
embryos, four negative controls (four replicates) and nine
test concentrations (two replicates each) of allyl isothio-
cyanate ranging from 1 to 5 �M were tested increasing in
geometric progression. The experiment was repeated three
times. Each experiment used 440 embryos. The 96-h LC50
(concentration causing 50% lethality), 96-h EC50 (concen-
tration inducing malformation or gross terata in 50% of
surviving embryos) was calculated for each experiment
and the teratogenic index (TI) was determined as the 96-h
LC50/96-h EC50 (malformation).

2.5. Statistics

Probit analysis was used to determine the 96-h LC50
and 96-h EC50 values using Systat 13 (Systat Software,
Inc., Chicago, IL, USA). ANOVA was used to determine if
treatments were significantly different (p ≤ 0.05) from each
other using the Bonferroni Post Hoc Test for mortality,
malformation, and embryo length. This was used to deter-
mine the No-Observed-Effect Concentration (NOEC) and
Lowest-Observed Effect Concentration (LOEC) for mortality
and malformation. The Minimum Concentration to Inhibit
Growth (MCIG) was also calculated using the Bonferroni
post hoc test.

3. Results and discussion

The natural compound allyl isothiocyanate is known to
be a pungent irritant [34]. The dermal blistering and gas-
trointestinal irritation of Xenopus embryos (Fig. 2) in this
study fits this profile of a caustic agent, though the iso-
lated compound is notably more purified and potentially
more potent than in mustard extracts. In nature, allyl iso-
thiocyanate comes along with other compounds present in
the natural source, whereas this experiment used the puri-
fied oil. This might exacerbate some of the malformations
seen here compared with those seen with the naturally
occurring mixture.

Fig. 2 illustrates the common malformations seen with
allyl isothiocyanate under the test conditions include blis-
tering, edema (dermal swelling), and deterioration of the
gut. Fig. 3 shows the concentration response from a rep-
resentative experiment (#2). The curves in the diagram

Fig. 2. Photomicrographs comparing normal Xenopus embryo (A) with
malformed Xenopus embryo after exposure to 4 �M allyl isothiocyanate
(B).

indicate quite a separation between mortality and malfor-
mation. The malformation curve has a sharper slope and
may indicate that there is a different mode of action for
the compound at concentrations that cause malformation
than those that cause mortality. Three separate experi-
ments were performed and results indicate very repeatable
results for allyl isothiocyanate (Table 1).

From this study, the LC50 lethality data for allyl isothio-
cyanate in Xenopus was found to be average 4.69 �mol/L
(Table 1), which is about five times less toxic than in
fathead minnows. The average 96-h EC50 malformation
was  2.98 �mol/L (Table 1). These numbers give an average
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Table  1
The median lethal concentration (96-h LC50), median effective concentration (96-h EC50), teratogenic index (TI = 96-h LC50/96-h EC50), no-observed-
effect-concentration (NOEC), lowest-observed-effect-concentration (LOEC) for mortality and malformation, and minimum concentration to inhibit growth
(MCIG) for allyl isothiocyanate in FETAX.

Experiment Total embryos 96-h LC50 lethalitya 96-h EC50
malformationa

TI Mortalitya Malformationa MCIG growth
inhibitiona

NOEC LOEC NOEC LOEC

1 440 3.84 (3.42–4.45) 2.63 (2.45–2.86) 1.5 3.0 3.5 2.5 3.0 2.0
2  440 3.86 (3.55–4.24) 2.35 (2.20–2.52) 1.6 3.5 4.0 2.0 2.5 1.5
3  440 6.38 (5.52–8.03) 3.95 (3.63–4.38) 1.6 4.5 5.0 2.0 2.5 5.0

Average 4.69 2.98 1.56 3.66 4.16 2.16 2.66 2.83

a All concentrations are in �M.  The 95% Fieller bounds are shown in parenthesis.

Concentration of AITC (µM)

Le
ng

th
 (c

m
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

* * *

*

*
*

*
*

0 1 2 3 4 5 6

Fig. 4. Decreasing lengths of embryos from a representative trial as a func-
tion  of allyl isothiocyanate concentration. * indicates significant difference
from controls at a p < 0.05. Error bars are standard error.

teratogenic index (TI) value of about 1.6. Because the TI
value is >1.5, this suggest possible moderate teratogenicity.

Fig. 4 shows that the average length of the embryos
tended to decrease with increasing concentration of allyl
isothiocyanate causing significant decrease in embryo
length at approximately 60% of the 96-h LC50 values or
2.83 �mol/L. The TI value combined with severity of the
malformations and growth impacts seen indicate that allyl
isothiocyanate is a potential teratogen.

It is instructive to compare the quantitative data from
reported previous studies with fathead minnows and the
results of the present study with the Xenopus embryos.
There are several possible reasons for the difference in
the LC50 value observed between fathead minnows and
Xenopus embryos. First, the fathead minnow studies were
performed using a flow-through bioassay, whereas FETAX
uses a concentration renewal procedure. This would affect
the relative exposure rates of each species. Next, fathead
minnow toxicological studies can be performed with larval
or adult specimens, which can alter the LC50 values dra-
matically. FETAX, on the other hand, is specifically designed
to study embryos. This leads into the third point. In FETAX,
blastula through Stage 46 larvae embryos are used, and
dermal permeability to water is potentially higher than
in larvae Xenopus or scaled fishes due to the thinner der-
mal  tissue and direct uptake of water through gills. Also,
allyl isothiocyanate is a somewhat water soluble oil so
there is the potential for passage through the lipid layers.

Therefore, although the difference between the species is
notable, it is within a reasonable comparative range.

From this data, it seems that allyl isothiocyanate might
be more harmful in the first stages of human life, but
humans may  have developed better systems to metabo-
lize it. It is not known to what extent, if any, the adverse
effects of allyl isothiocyanate observed in the present study
may  impact its use as a health-promoting compound men-
tioned in the Introduction, especially as an antimicrobial
food additive.

It also appears that the reported toxicity of allyl isothio-
cyanate against microbial, fungal, trypanosomal, animal,
and human cells parallels the activity of this highly bioac-
tive natural compound against the frog embryos. We  are
challenged to find out whether SH-containing amino acids
and peptides such as l-cysteine, N-acetyl-l-cysteine, and
reduced glutathione which, as mentioned earlier, protected
the foodborne Escherichia coli bacteria against inactivation
by allyl isothiocyanate as well as against acrylamide-
induced teratogenicity in the frog embryos, would also
protect allyl isothiocyanate against teratogenicity observed
in the present study.
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