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The Archimedean Projection Property

Vincent Coll, Jeff Dodd, and Michael Harrison
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Abstract

Let H be a hypersurface in R
n and let π be an orthogonal projection in R

n restricted
to H. We say that H satisfies the Archimedean projection property corresponding to
π if there exists a constant C such that Vol(π−1(U)) = C · Vol(U) for every mea-
surable U in the range of π. It is well-known that the (n − 1)-dimensional sphere,
as a hypersurface in R

n, satisfies the Archimedean projection property corresponding
to any codimension 2 orthogonal projection in R

n, the range of any such projection
being an (n − 2)-dimensional ball. Here we construct new hypersurfaces that sat-
isfy Archimedean projection properties. Our construction works for any projection
codimension k, 2 ≤ k ≤ n − 1, and it allows us to specify a wide variety of desired
projection ranges Ωn−k ⊂ R

n−k. Letting Ωn−k be an (n− k)-dimensional ball for each
k, it produces a new family of smooth, compact hypersurfaces in R

n satisfying codi-
mension k Archimedean projection properties that includes, in the special case k = 2,
the (n − 1)-dimensional spheres.

Keywords Archimedes’ theorem, warped products, hypersurfaces of revolution, equizonal
ovaloids, eikonal equation.

Mathematical Subject Classification (2010) 53A07 · 52A38 · 52A20

1 Introduction

Archimedes’ theorem states that if two parallel planes slice through a 2-sphere, the surface
area of the resulting zone is proportional to the distance between the planes. This property
of the 2-sphere can be recast as a projection property that generalizes to higher dimensional
spheres: consider a unit (n − 1)-sphere Sn−1(1) ⊂ R

n, and let π : Sn−1(1) → R
n−2 be

a codimension 2 orthogonal projection in R
n restricted to Sn−1(1), so that the range of

π is a unit (n − 2)-dimensional ball Bn−2(1). Then for every measurable U ⊂ Bn−2(1),
Vol(π−1(U)) = 2π ·Vol(U). This projection property of the sphere has appeared in a number
of different mathematical contexts. For example, it was recently employed by K. Bezdek
and R. Connelly [2] to resolve an important special case of a longstanding conjecture of
Kneser and Poulsen having to do with disk coverings in the plane. And, in probability
theory, it is essentially the statement that the canonical projection map from Sn−1 onto the
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the (n − 2)-ball Bn−2 is measure preserving, so that a uniform measure on Sn−1 induces a
uniform measure on Bn−2.

To the best of our knowledge, this projection property of the spheres has not been given
a name, so we introduce the following terminology.

Definition 1.1. Suppose that H is a hypersurface embedded in R
n = R

n−k ×R
k, and πn−k

is the codimension n− k orthogonal projection from R
n onto R

n−k restricted to H . We say
that H satisfies the Archimedean projection property (“APP”) corresponding to πn−k if there
exists a non-zero proportionality constant C such that for every measurable set U ⊂ πn−k(H),

Vol(π−1
n−k(U)) = C · Vol(U). (1.1)

We know of only two classes of hypersurfaces in R
n that non-trivially satisfy an Archimedan

projection property: the (n− 1)-spheres, with projection codimension 2, and hypersurfaces
of revolution called equizonal ovaloids, with projection codimension n − 1 (see [5], [6], and
[8]). Here we present a new method for constructing hypersurfaces satisfying Archimedean
projection properties. Our method is flexible enough that, given any projection codimen-
sion k ≥ 2, and any of a wide variety of projection ranges, we can produce a hypersurface
non-trivially satisfying the corresponding Archimedean projection property.

Our constructions are carried out within a class of hypersurfaces that we call spherical
arrays [7].

Definition 1.2. A spherical array is a warped product of the form

H = Ωn−k ×f S
k−1

embedded in R
n = R

n−k × R
k. The region Ωn−k ⊂ R

n−k is the base of H and f : Ωn−k →
[0,∞) is a warping function which specifies the radius of a (k − 1)-dimensional spherical
fiber centered at each point in Ωn−k.

We begin our investigation by describing the possible warping functions of a spherical array
that satisfies the Archimedean projection property corresponding to orthogonal projection
onto its base. Among these spherical arrays, we identify those that are closed, bound a
strictly convex interior, and are of at least C2 smoothness. We call these hypersurfaces
Archimedean spherical arrays. We find that for each ambient space dimension n ≥ 3 and
projection codimension 2 ≤ k ≤ n − 1 there is (up to scaling) a unique Archimedean
spherical array, and that the Archimedean spherical arrays are smoother than we initially
require: when k is even, they are analytic, and when k is odd, they are of Ck−1 smoothness.
The family of Archimedean spherical arrays includes, and interpolates naturally between,
the spheres and the equizonal ovaloids.

The paper is organized as follows: Section 2 is a presentation of our main theorems.
Section 3 is devoted to proofs of the main theorems; it features an explicit formula for the
volume element on an arbitrary spherical array that is of independent interest. Section 4
contains formulas for the (n− 1)-volumes of the Archimedean spherical arrays. Concluding
comments and questions for further study of the Archimedean projection property can be
found in Section 5.
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2 Main Results

When discussing a spherical array H , we will always use the coordinate system indicated in
Figure 1:

H =
{
(x′′, x′) ∈ Ωn−k × R

k : ‖x′‖2 = [f(x′′)]2
}

=
{
(x1, . . . , xn) ∈ R

n : x2
1 + x2

2 + · · ·+ x2
k = [f(xk+1, . . . , xn)]

2
}
.

When k = n− 1, H is an embedded hypersurface of revolution: an (n − 1)-dimensional
hypersurface embedded in R

n whose cross-sections orthogonal to the xn-axis are (n − 2)-
dimensional spheres.

Ωn−k R
n−k

R
k−1

R

Sk−1(f(x′′))

(x′′, x′)

Figure 1: A spherical array: x′′ = (xk+1, . . . , xn) ∈ R
n−k, x′ = (x1, . . . , xk) ∈ R×R

k−1 = R
k.

Given any orthogonal projection πn−k : Rn → R
n−k and any projection range Ωn−k ⊂

Rn−k, the spherical array H , with base Ωn−k and with the constant warping function f = 1
(which would look like a cylinder in Figure 1) trivially satisfies the Archimedean projection
property corresponding to the orthogonal projection πn−k onto its base. In this case, the
proportionality constant C in (1.1) is the volume of the unit (k−1)-dimensional sphere, C =
Vol(Sk−1(1)). If a spherical array with a non-constant warping function satisfies the same
Archimedean projection property over the same base Ωn−k and with the same proportionality
constant C = Vol(Sk−1(1)), then its non-constant warping function f(x′′) must perform a
balancing act. Namely, suppose that as x′′ moves in some direction in Ωn−k, the radius
f(x′′) of the corresponding spherical fibers increases. Locally, near x′′, this increase in the
radius f(x′′) tends to increase the ratio of the volume of the hypersurface to the volume of
its projection onto the base. The only way that this effect can be offset is if the rate of
increase of the radius f(x′′) decreases, since this has the opposite effect, tending to decrease
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the volume of the projection of the hypersurface onto the base relative to the volume of the
hypersurface itself.

In the special case of the ordinary unit 2-sphere S2(1), the balance between these opposing
effects is easy to visualize: the base of this spherical array is a diameter of the sphere, and as
x′′ moves away from an endpoint of this diameter, the radius of the corresponding circular
cross-sections centered at x′′ increases, but at a decreasing rate. When the radius of the
circular cross-sections reaches 1, the rate of increase of the radius reaches 0, and the radius
cannot increase further. For a spherical array in general, due to the multiple directions in
which x′′ can move in the base Ωn−k, an analogous balance between size and rate of growth
of the spherical fibers is much more complicated to imagine geometrically. But we have
found that it is surprisingly simple to arrange analytically. In particular, the key principle
that emerges in our constructions is the remarkable fact that the warping function f that
maintains this balance is always given locally by the composition of two functions.

The first function, which plays the role of distance from a pole along a diameter in the
case of the unit 2-sphere, is an appropriate solution ω of the eikonal equation ‖∇ω(x′′)‖ = 1
on the base Ωn−k. The second function, which determines how the radii of the spherical
fibers respond to the value of ω(x′′) as x′′ changes in Ωn−k, is an increasing, concave down
scalar function fk : [0,Mk] → [0, 1] that depends only on the projection codimension k.
When k = 2, Mk = 1 and the graph of fk is a quarter circle. As k increases, Mk decreases,
but the range of fk is always [0, 1], representing the possible radii of the spherical fibers (see
Figure 2). We call fk the codimension k Archimedean scaling function.

Our first theorem describes precisely how these two functions, fk and ω, work in tandem
to impose an Archimedean projection property on a spherical array. An analytical description
of the Archimedean scaling functions fk arises naturally in the proof of the theorem in Section
2, and formulas for the corresponding numbers Mk are derived in Section 4.

Theorem 2.1. Consider the spherical array H = Ωn−k ×f S
k−1 ⊂ R

n−k × R
k, where Ωn−k

is a domain in R
n−k.

(a) Suppose f is a nonnegative, continuously differentiable, function on Ωn−k such that H
satisfies the APP corresponding to orthogonal projection onto its base with the constant
of proportionality in (1.1) being C = Vol(Sk−1(1)). Then f(x′′) ≤ 1 for all x′′ ∈ Ωn−k,
and on A = {x′′ ∈ Ωn−k : 0 < f(x′′) < 1}, f = fk ◦ ω, where fk is the codimension k
Archimedean scaling function and ω is a positive, continuously differentiable solution
of the eikonal equation ‖∇ω(x′′)‖ = 1 on A.

(b) Conversely, suppose that ω is a positive, continuously differentiable, solution of the
eikonal equation ‖∇ω(x′′)‖ = 1 on Ωn−k, such that ω(x′′) ≤ Mk, for all x′′ ∈ Ωn−k.
Then for B = {x′′ ∈ Ωn−k : 0 < ω(x′′) ≤ Mk}, f = fk◦ω is a continuously differentiable
function such that the spherical array B ×f Sk−1 ⊂ R

n−k × R
k satisfies the APP

corresponding to orthogonal projection onto its base with the constant of proportionality
in (1.1) being C = Vol(Sk−1(1)).

Theorem 2.1 allows for the construction of many different spherical arrays satisfying the
APPs corresponding to orthogonal projection onto their bases.
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x

y

1

1

y = f2(x) =
√

1− (x− 1)2

y = fk(x)
(Mk, 1) (1, 1)

Mk, k > 2

Figure 2: The Archimedean scaling functions fk for k = 2 and k > 2.

Examples 2.2. Suppose the domain Ωn−k ⊂ R
n−k is bounded, and that the maximum

distance from any point x′′ in Ωn−k to the boundary of Ωn−k is exactly Mk. Let f = fk ◦ ω,
where ω is the distance to the boundary function on Ωn−k. According to Y. Li and L.
Nirenberg [13], if the boundary of Ωn−k is of at least C2,1 smoothness, then ω is continuously
differentiable and solves the eikonal equation ‖∇ω(x′′)‖ = 1 on Ωn−k\Σ, where Σ is a closed,
path connected set whose (n-k-1)-dimensional Hausdorff measure is finite, and therefore
whose (n-k)-dimensional Lebesgue measure is zero. So by part (b) of Theorem 2.1, the
spherical array H = Ωn−k ×f Sk−1 is a closed and bounded hypersurface in R

n that is of
C1 smoothness outside of a set of measure zero and satisfies the APP corresponding to
orthogonal projection onto its base Ωn−k.

Among the many spherical arrays satisfying an APP corresponding to orthogonal pro-
jection onto the base, we can identify those that resemble spheres as closely as possible in
the following sense:

Definition 2.3. Suppose that a spherical array H = Ωn−k×f S
k−1 ⊂ R

n−k×R
k satisfies the

APP corresponding to the codimension k orthogonal projection πn−k : Rn → R
n−k. If, in

addition, H is closed, bounds a strictly convex interior, and is of at least C2 smoothness, then
we refer to H as a k-Archimedean spherical array, or simply as an Archimedean spherical
array when k is understood.

There is only one way to build an Archimedean spherical array:

Theorem 2.4. For each ambient space dimension n ≥ 3 and for each projection codimension
k ≥ 2, there is (up to scaling) a unique (n− 1)-dimensional k-Archimedean spherical array
embedded in R

n that we denote A
n−1
k . When the constant of proportionality in (1.1) is
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C = Vol(Sk−1(1)), these are the spherical arrays for which the base Ωn−k is an (n − k)-
dimensional ball of radius Mk, B

n−k(Mk), and the warping function is f = fk ◦ ω, where ω
is the distance to the boundary function associated with this ball and fk is the codimension
k Archimedean scaling function.

While an Archimedean spherical array has at least C2 smoothness by definition, the
Archimedean spherical arrays turn out to be smoother than this for all projection codimen-
sions k 6= 3:

Theorem 2.5. The Archimedean spherical array A
n−1
k is real analytic when k is even and

of Ck−1 smoothness when k is odd.

Examples 2.6. When the projection codimension k is 2, the Archimedean spherical arrays
are spheres: A2

2 is the 2-sphere and, more generally, An−1
2 is the (n−1)-sphere. At the other

extreme, when the projection codimension k is n−1, the Archimedean spherical arrays An−1
n−1

are the equizonal ovaloids: embedded hypersurfaces of revolution which were developed and
studied in detail in [5] and [8].

Remark. We maintain a proportionality constant of C = Vol(Sk−1(1)) throughout our dis-
cussion since a hypersurface satisfying an APP with C 6= Vol(Sk−1(1)) is just a rescaled
version of a hypersurface satisfying an APP with C = Vol(Sk−1(1)).

3 Proofs of Theorems 2.1, 2.4, and 2.5

In order to prove Theorem 2.1, which characterizes the spherical arrays H = Ωn−k ×f S
k−1

satisfying the APP corresponding to orthogonal projection onto the base Ωn−k, we require a
formula for the (n− 1)-volume of the portion of H lying over a measurable U ⊂ Ωn−k. This
formula results from the following sequence of three lemmas.

Lemma 3.1. Given an open set U ⊂ R
k−1 and a continuously differentiable function h :

U → R, the (k − 1)-volume of the graph of the function x1 = h(x2, . . . , xk) is given by
∫

U

√
1 + h2

x2
+ · · ·+ h2

xk
dx2 . . . dxk.

Proof. To compute the volume form, we require the quantity
√

det(g), where g is the matrix
representing the first fundamental form. We first compute the matrix of partial derivatives

B =




hx2
hx3

. . . hxk

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




,

and then g is given by

g = BTB =




1 + h2
x2

hx2
hx3

. . . hx2
hxk

hx3
hx2

1 + h2
x3

. . . hx3
hxk

...
...

. . .
...

hxk
hx2

hxk
hx3

. . . 1 + h2
xk


 .
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We rewrite g in the special form, g = Ik−1 + hTh, where

h =
(
hx2

hx3
· · · hxk

)
.

From this, we see that any vector orthogonal to h is an eigenvector of g with eigenvalue 1;
there are k−2 of these. The other eigenvector is h itself, with eigenvalue 1+h2

x2
+ · · ·+h2

xk
,

and so
√

det(g) =
√

1 + h2
x2

+ · · ·+ h2
xk
.

Lemma 3.2. The volume of a (k − 1)-dimensional sphere of radius r is given by

Vol(Sk−1(r)) = 2

∫

Bk−1(r)

r√
r2 − x2

2 − · · · − x2
k

dx2 . . . dxk. (3.1)

Proof. A hemisphere can be represented by the graph of the function x1 = h(x2, . . . , xk) =√
r2 − x2

2 − · · · − x2
k, over the domain Bk−1(r). We compute

1 + h2
x2

+ · · ·+ h2
xn

= 1 +
x2
2 + · · ·+ x2

k

r2 − x2
2 − · · · − x2

k

=
r2

r2 − x2
2 − · · · − x2

k

.

The result then follows from Lemma 3.1.

Lemma 3.3. The (n − 1)-volume of the spherical array H = Ωn−k ×f Sk−1 lying over a
measurable U ⊂ Ωn−k is given by

Vol(U) =

∫

U

Vol(Sk−1(1))[f(xk+1, . . . , xn)]
k−1
√

1 + f 2
xk+1

+ · · ·+ f 2
xn
dxk+1 . . . dxn.

Proof. We can represent half of a fiber Sk−1(f(xk+1, . . . , xn)) as the graph of the function

x1 = h(x2, . . . , xn) =
√

[f(xk+1, . . . , xn)]2 − x2
2 − · · · − x2

k.

By computing

hxi
=

−xi√
f 2 − x2

2 − · · · − x2
k

for 2 ≤ i ≤ k, and

hxi
=

ffxi√
f 2 − x2

2 − · · · − x2
k

for k + 1 ≤ i ≤ n,

we have

1 + h2
x2

+ · · ·+ h2
xn

=
f 2(1 + f 2

xk+1
+ · · ·+ f 2

xn
)

f 2 − x2
2 − · · · − x2

k

. (3.2)

For any measurable U ⊂ Ωn−k, applying (3.2) in Lemma 3.1 and using Lemma 3.2 yields

Vol(U) = 2

∫

U

√
1 + h2

x2
+ · · ·+ h2

xn
dx2 . . . dxn

= 2

∫

U

√
f 2

f 2 − x2
2 − · · · − x2

k

√
1 + f 2

xk+1
+ · · ·+ f 2

xn
dx2 . . . dxn

=

∫

U

Vol(Sk−1(f))
√
1 + f 2

xk+1
+ · · ·+ f 2

xn
dxk+1 . . . dxn

=

∫

U

Vol(Sk−1(1))fk−1
√
1 + f 2

xk+1
+ · · ·+ f 2

xn
dxk+1 . . . dxn,

where the final equality follows from the fact that Vol(Sk−1(R)) = Rk−1 · Vol(Sk−1(1)).
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Proof of Theorem 2.1

Part (a) The hypotheses of part (a) and Lemma 3.3 imply that the warping function f of
H must satisfy the following for every measurable U ⊂ Ωn−k:

∫

U

Vol(Sk−1(1))fk−1
√
1 + f 2

xk+1
+ · · ·+ f 2

xn
dxk+1 . . . dxn = Vol(Sk−1(1)) · Vol(U). (3.3)

It follows that f must be a solution of

[f(xk+1, . . . , xn)]
k−1 ·

√
1 + f 2

xk+1
+ · · ·+ f 2

xn
= 1 (3.4)

on Ωn−k. Note that the constant function, f ≡ 1, is one such solution. For any solution f ,
f ≤ 1 on Ωn−k and on A = {(x2, . . . , xn) ∈ Ωn−k : 0 < f((xk+1, . . . , xn)) < 1},

(
fk−1

√
1− f 2k−2

· fxk+1

)2

+ · · ·+
(

fk−1

√
1− f 2k−2

· fxn

)2

= 1. (3.5)

The substitution

ω(xk+1, . . . , xn) =

∫ f(xk+1,...,xn)

0

tk−1

√
1− t2k−2

dt

transforms (3.5) into (ωxk+1
)2 + · · · + (ωxn

)2 = 1, that is, ‖∇ω‖ = 1. This means that
everywhere on A, f = fk ◦ ω, where fk is the Archimedean scaling function given by

f−1
k (y) =

∫ y

0

tk−1

√
1− t2k−2

dt. (3.6)

Here fk : [0,Mk] → [0, 1], where Mk =
∫ 1

0
tk−1/

√
1− t2k−2 dt. The graph of fk is indicated

in Figure 2; an explicit formula for Mk is given in Section 4.

Part (b) Under the hypotheses of part (b), f = fk ◦ ω is continuously differentiable on B
and satisfies (3.4), and therefore (3.3), for all measurable U ⊂ B. �

Proof of Theorem 2.4

Suppose that the spherical array H = Ωn−k×f S
k−1 ⊂ R

n−k×R
k is an Archimedean spherical

array, and that the constant of proportionality is C = Vol(Sk−1(1)). Since H is closed, Ωn−k

is bounded and f = 0 on ∂Ωn−k (the boundary of Ωn−k). SinceH is of at least C2 smoothness,
f must be continuously differentiable on the interior of Ωn−k. By part (a) of Theorem 2.1
(and its proof), 0 < f(x′′) ≤ 1 for all x′′ in the interior of Ωn−k. Moreover, since H bounds a
strictly convex interior, Ωn−k is strictly convex and f(I) = 1 for at most one point I in the
interior of Ωn−k. Therefore by part (a) of Theorem 2.1, everywhere on the interior of Ωn−k

with the possible exception of one point I, f = fk ◦ω where ω is a continuously differentiable
solution of ‖∇ω(x′′)‖ = 1.
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Since f = 0 on ∂Ωn−k, ω satisfies the boundary condition ω = 0 on ∂Ωn−k, so ω is the
distance to the boundary function, that is, ω(x′′) = dist(x′′, ∂Ωn−k). Suppose now that we
extend ω to be the signed distance function defined on all of Rn−k:

ω̃(x′′) =

{
dist(x′′, ∂Ωn−k) if x′′ ∈ Ωn−k

−dist(x′′, ∂Ωn−k) if x′′ 6∈ Ωn−k.

We have already established that ω̃ is continuously differentiable everywhere on the interior
of Ωn−k with the possible exception of one point I, and the (strict) convexity of Ωn−k is
enough to ensure that ω̃ is differentiable everywhere outside of Ωn−k. Because H is of at
least C2 smoothness, ∂Ωn−k is of at least C2 smoothness, so ω̃ is of at least C2 smoothness
in some neighborhood of ∂Ωn−k (see [11]). Therefore, ω̃ satisfies ‖∇ω̃(x′′)‖ = 1, and ω̃ is
differentiable on all of Rn−k with the possible exception of one point I in the interior of Ωn−k.

By a result of L. A. Caffarelli and M. G. Crandall [4], since the set of singularities of of
ω̃ has Hausdorff 1-measure zero, ω̃ must either be affine (which is certainly not the case)
or a “cone function”: ω̃(x′′) = a + ||x′′ − z|| for some a ∈ R and z ∈ R

n−k. Thus, Ωn−k is
a ball, and the center of the ball, which is the one point on its interior where ω fails to be
differentiable, is the only point I where f(I) = 1. Since f(I) = 1, ω(I) = Mk, so Ωn−k is an
(n− k)-dimensional ball of radius Mk, and the warping function f = fk ◦ ω, where ω is the
distance to the boundary function associated with this ball.

Therefore, the only spherical array, H = Ωn−k ×f S
k−1 ⊂ R

n−k ×R
k, that could possibly

be an Archimedean spherical array in the sense of Definition 2.3, with constant of propor-
tionality C = Vol(Sk−1(1)), is An−1

k = Bn−k(Mk)×fk◦ω Sk−1, where ω is the distance to the
boundary function on the base Bn−k(Mk). Finally, using the differential equation (3.4), it is
straightforward to check that An−1

k does, in fact, satisfy the APP corresponding to orthog-
onal projection onto its base with constant of proportionality C = Vol(Sk−1(1)). It is also
straightforward to check that An−1

k is of at least C2 smoothness, and the proof of Theorem
2.5 determines the exact degree of smoothness of An−1

k . �

Proof of Theorem 2.5

The warping function f of the Archimedean spherical array A
n−1
k is given by f = fk ◦ ω,

where fk is the Archimedean scaling function defined by (3.6) and ω is the distance to the
boundary function on its base Bn−k(Mk), which we may assume is centered at the origin in
Rn−k so that

ω(x′′) = Mk − ‖x′′‖ = Mk −
√
x2
k+1 + · · ·+ x2

n. (3.7)

There is no useful closed-form expression for fk, but we have the following.

Lemma 3.4. The function y = fk(x) is analytic on the interval (0,Mk]. In particular, fk is
given by a power series of the form

fk(x) = 1 +
f ′′

k (Mk)

2!
(x−Mk)

2 +
f
(4)
k (Mk)

4!
(x−Mk)

4 + · · · (3.8)

whose radius of convergence is Mk.
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Proof. The issue is the behavior of y = fk(x) at the point (Mk, 1), where the integral
representation (3.6) of the inverse function f−1

k is singular. In [8], it is shown that the
function y = fk(x), there written in the form

x = f−1
k (y) =

1

2

∫ y2

0

t(k−1)/2

√
1− tk−1

dt,

is a solution of the initial value problem

y2k−2 + y2k−4(yy′)2 = 1, y(0) = Mk. (3.9)

An inductive argument based on the differential equation (3.9) is used to establish that
y = fk(x) has derivatives of all orders on the interval (0,Mk], and moreover that for odd

j ≥ 1, f
(j)
k (Mk) = 0. In [5] this inductive argument is extended to show that for all j ≥ 1,

(−1)jf
(j)
k (x) < 0 for 0 < x < Mk. The lemma then follows from Bernstein’s theory of

absolutely monotonic and completely monotonic functions (see [1] and [17]).

Recall now that

A
n−1
k =

{
(x1, . . . , xn) ∈ R

n : x2
1 + · · ·+ x2

k = [fk (ω(xk+1, . . . , xn))]
2} (3.10)

where ω is given by (3.7) and fk is given by (3.8). The function ω is not differentiable at the
origin in R

n−k, but the composition with fk smooths out this singularity, leading to

A
n−1
k =



(x1, . . . , xn) ∈ R

n : x2
1 + · · ·+ x2

k =

[
∞∑

j=0

f (2j)(Mk)

(2j)!
(x2

k+1 + · · ·+ x2
n)

j

]2
 (3.11)

where the series in (3.11) converges to an analytic function on any compact K ⊂ R
n−k in the

interior of Bn−k(Mk). For any point p = (x1, . . . , xn) ∈ A
n−1
k where

√
x2
k+1 + · · ·+ x2

n < Mk,

xi 6= 0 for some i between 1 and k, so there is a neighborhood of p on which A
n−1
k is the

graph of the analytic function obtained by solving (3.11) for xi.
It remains to determine the degree of smoothness of An−1

k at a point p lying on the
boundary of its base Bn−k(Mk), that is, p = (x1, . . . , xn) where x1 = x2 = · · · = xk = 0,√

x2
k+1 + · · ·+ x2

n = Mk and ω(xk+1, . . . , xn) = 0. Because fk(ω) is not differentiable at

ω = 0, the right hand side of (3.10) is not differentiable at such a point p. However, we can
rewrite (3.10) this way:

A
n−1
k =

{
(x1, . . . , xn) ∈ R

n : f−1
k

(√
x2
1 + · · ·+ x2

k

)
= Mk −

√
x2
k+1 + · · ·+ x2

n

}
. (3.12)

At any point p on the boundary of Bn−k(Mk), xi 6= 0 for some i between k + 1 and n,
so there is a neighborhood of p on which A

n−1
k is the graph of the function obtained by

solving (3.12) for xi. The degree of smoothness of this graph is precisely that of the function
f−1
k (
√

x2
1 + · · ·+ x2

k), which by Lemma 3.4 is analytic, except possibly where x1 = x2 =
· · · = xk = 0. Its smoothness is fully resolved by the following, which is Theorem 3.4 of [5].

Lemma 3.5. At x1 = x2 = · · · = xk = 0, the function f−1
k (
√

x2
1 + · · ·+ x2

k) is an analytic
function of the variables x1, . . . , xk when k is even and a Ck−1 function of the variables
x1, . . . , xk when k is odd. �
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4 The Volumes of the Archimedean Spherical Arrays

By construction, the largest (k− 1)-dimensional spherical fiber of An−1
k , which occurs at the

center of the base, has radius 1. Let An−1
k (R) be the scaled Archimedean spherical array for

which the largest spherical fiber has radius R. Then A
n−1
k (R) satisfies the APP corresponding

to orthogonal projection onto its base with constant of proportionality, C = Vol(Sk−1(R)).
The (n− 1)-volume of An−1

k (R) is given by the following beautiful formula.

Theorem 4.1. The (n− 1)-volume of An−1
k (R) is

Vol(An−1
k (R)) =

π
2n−k

2

2n−k−2 · (k − 1)n−k
·

(
Γ( k

2k−2
)
)n−k

Γ(n−k
2
) · Γ(k

2
) ·
(
Γ(2k−1

2k−2
)
)n−k

· Rn−1. (4.1)

Proof. We begin with the observation that (3.6) takes the form of the incomplete Beta
function:

B(z; p, q) =

∫ z

0

up−1(1− u)q−1 du, Re(p) > 0 and Re(q) > 0. (4.2)

Indeed, substituting u = t2k−2 into (3.6) and using (4.2) yields

f−1
k (y) =

1

2k − 2
B

(
y2k−2;

k

2k − 2
,
1

2

)
, 0 ≤ y ≤ 1.

The function B(p, q) := B(1; p, q) is called the complete Beta function. Noting that

Mk = f−1
k (1) =

1

2k − 2
B

(
k

2k − 2
,
1

2

)
,

and using the identity

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)

together with the fact that Γ(1/2) =
√
π gives

Mk =

√
π

2k − 2
·
Γ( k

2k−2
)

Γ(2k−1
2k−2

)
. (4.3)

Now Vol(An−1
k (R)) = Vol(An−1

k (1))Rn−1 and by the APP it follows that

Vol(An−1
k (1)) = Vol(Sk−1(1)) · Vol(Bn−k(Mk)).

Using (4.3) along with the well-known volume formulas

Vol(Sm−1(δ)) =
2 · πm/2

Γ(m/2)
· δm−1 and Vol(Bm(δ)) =

2 · πm/2

m · Γ(m/2)
· δm

yields (4.1).
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Remark. When the codimension k = n − 1, An−1
n−1(R) is an equizonal ovaloid and equation

(4.1) reduces to

Vol[An−1
n−1(R)] =

2π
n

2

(n− 2)

Γ
(

n−1
2n−4

)

Γ
(
n−1
2

)
Γ
(
2n−3
2n−4

) Rn−1. (4.4)

In [8], it is shown that the n-volume of the region bounded by the equizonal ovaloid A
n−1
n−1(R)

is given by another nice formula,

2π
n

2

(n− 1)(n− 2)

Γ
(
n−1
n−2

)

Γ
(
n−1
2

)
Γ
(
3n−4
2n−4

)Rn. (4.5)

Of course when n = 3, the formulas in (4.4) and (4.5) reduce to 4πR2 and 4πR3/3, respec-
tively. As yet, we have no formula for the n-volume of the region bounded by the general
Archimedean spherical array A

n−1
k (R).

5 Comments and Questions

An Archimedian spherical array is designed to satisfy the APP corresponding to orthogonal
projection in one particular direction: onto its base. Other than spheres, do there exist
ovaloids (by which we mean closed hypersurfaces embedded in R

n of at least C2 smoothness
and bounding convex interiors) that satisfy APPs corresponding to more than one projection
direction? There are two ways to ask this question: in the strong sense, requiring the
proportionality constant to be the same for each projection direction, or in the weak sense,
allowing the constant of proportionality to vary with the projection direction.

A classical result of W. Blaschke [3], stated in our language, is that if an ovaloid H em-
bedded in R

3 satisfies the APP corresponding to every codimension 2 orthogonal projection
in the strong sense, then H is a 2-sphere. O. Stamm [16] improved this result by showing
that it is still true under the weaker hypothesis that H satisfies the APP corresponding to
every codimension 2 orthogonal projection in the weak sense.

A generalization of Blaschke’s original result, although not explicitly stated, is implicit
in a recent paper of D. S. Kim and Y. H. Kim [12]. Their results imply that if an ovaloid
H embedded in R

n satisfies the APP corresponding to every codimension n− 1 orthogonal
projection in the strong sense, then H is an (n−1)-sphere. But, as shown in detail by Rudin
[15], an (n− 1)-sphere satisfies the codimension k APP only for k = 2. Thus, if an ovaloid
H embedded in R

n satisfies the APP corresponding to every codimension n− 1 orthogonal
projection in the strong sense, then H is an (n−1)-sphere and n−1 = 2, i.e., H is a 2-sphere
embedded in R

3.
We can also rule out the existence of non-spherical ovaloids in R

n satisfying the APP
corresponding to every codimension k orthogonal projection in the strong sense for two
different values of k. If an ovaloid H embedded in R

n satisfies the APP corresponding
to every codimension k orthogonal projection in the strong sense, then the k-th projection
function for H , that assigns to each k-dimensional subspace S of R

n the k-dimensional
volume of the orthogonal projection of H onto S, is constant. But it follows from recent
results of D. Hug [10] that if such an ovaloidH has constant i-th and j-th projection functions

12



for any integers i and j such that 1 ≤ i < j ≤ n− 2, with (i, j) 6= (1, n− 2), then H must
be an (n− 1)-sphere.

This leaves many open avenues for investigation. For example, does there exist a non-
spherical ovaloid H embedded in R

n satisfying the APP corresponding to every codimension
n − 1 orthogonal projection in the weak sense? More generally, for a single projection
codimension k, 2 ≤ k ≤ n − 2, does there exist a non-spherical ovaloid H embedded in R

n

satisfying the APP corresponding to multiple codimension k orthogonal projections, perhaps
even every codimension k orthogonal projection, in either the weak sense or the strong sense?
Can a non-spherical ovaloid H embedded in R

n satisfy the APP corresponding to every
codimension k projection in the weak sense for two different values of k?

Finally, we note that the equizonal ovaloids An−1
n−1 are also characterized by a remarkable

curvature condition [6]. Namely, the principal curvature in the axial direction is the constant
multiple n − 1 of the common value of the n − 1 principal curvatures in the rotational
directions. This links the unique n-dimensional unit equizonal ovaloid with the unique n-
dimensional minimal hypersurface of revolution, for which the principal curvature in the
axial direction is −(n − 1) times the shared value of the other principal curvatures. In
particular, this establishes a connection between the sphere and the catenoid in the case
when n = 2. More generally, we observe that there is duality between the codimension
n − 1 APP of the equizonal ovaloids (which are compact) and the minimality property of
the generalized catenoids [14] (which are non-compact). Is there a relationship between
Archimedean hypersurfaces and the minimal spherical arrays of W. Hsiang, Z. Teng, and W.
Yu [9]? Is the APP, in some sense, dual to minimality?
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