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Abstract: Owing to multiple successful orbiter and rover missions in the past two and half 9 

decades, our understanding of the Martian atmosphere, terrain, and subsurface has 10 

continuously evolved. This prompts the need to revisit the first holistic review of Martian 11 

geomorphology based on useful images from Viking Mission orbiters, authored by Prof. Victor 12 

R. Baker. Several of the remote sensing-based interpretations and recommendations in Baker’s 13 

(1981) paper are as valid even today as they were four decades back. With an unprecedented 14 

focus on Mars exploration in the coming decades, it is important to briefly revisit the advances 15 

and prospects in Martian geomorphology research.   16 

Keywords: Mars, geomorphology, Viking Mission, planetary exploration, remote sensing  17 

I Introduction 18 

In our solar system, Mars is the planet with the highest Earth similarity and relative planetary 19 

habitability indices, based on various physical and physicochemical determinants (Schulze‐20 

Makuch et al., 2011). Being terrestrial planets, the structural and compositional similarities 21 

between Earth and Mars are further apparent from the relative geological and 22 

geomorphological interpretations (Baker, 1981). The Martian regolith contains minerals and 23 

the temperatures are within an acceptable range for the existence of life (as we know it). The 24 



2 
 

moderate Martian gravity can enable future colonization, and the Martian obliquity and the day 25 

length are also comparable to Earth, giving the red planet its distinct seasons. Thus, it is not a 26 

surprise that the leading space agencies and space companies are investing significant resources 27 

in enabling further Mars exploration within the next couple of decades. However, while 28 

technological advancements in engineering and computing have certainly bolstered this 29 

confidence, the contribution from the vast influx of orbiter and rover observations, in the past 30 

two and half decades in facilitating our understanding of the Martian atmosphere, terrain, and 31 

subsurface, cannot be ignored (Bhardwaj et al., 2019a).  32 

This prompts the need to revisit the first holistic and comprehensive account of Viking 33 

Mission-based interpretations of Martian geomorphology, titled “The geomorphology of Mars” 34 

and authored by Prof. Victor R. Baker in 1981. Undoubtedly there have been considerable 35 

developments in the discipline since the publication of Baker’s (1981) paper; thus, revisiting 36 

this work will clearly highlight the impacts of evolving techniques and tools on planetary 37 

geomorphological interpretations. Although the short format of this “classics revisited” paper 38 

does not allow for a detailed analysis of all the advances made in Martian geomorphology 39 

research, we have provided key references throughout this article which the interested readers 40 

can further explore. Instead, here we focus on key facets of Baker’s (1981) work to highlight 41 

the status of our understanding of the Martian geomorphology in the Viking Mission era and 42 

the considerable advancements since then. It is interesting to identify and suitable to 43 

acknowledge, how many of Baker’s (1981) viewpoints still hold relevance, across several 44 

themes within the discipline of Martian geomorphology.  45 

II. Planetary geomorphology through terrestrial analogy 46 

Baker starts his paper with an interesting example of the Chief Geologist for the US Geological 47 

Survey, G.K. Gilbert, who had to abandon planned fieldworks after 1892 congressional budget 48 
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cuts to the Survey. Gilbert channelised this to an opportunity by utilising his time in studying 49 

the moon through the naval observatory telescope in Washington, and thus, publishing one of 50 

the most detailed accounts of contemporary lunar geomorphology (Gilbert, 1893). This 51 

highlights how a scientist trained in terrestrial geomorphology can contribute significantly to 52 

planetary geomorphology. Baker gives some more contemporary examples (e.g., Mutch, 1979; 53 

Sharp 1980) discussing the relevance of analogy-based planetary exploration using remote 54 

sensing images. Starting from the best available spatial resolution of ~10 m/pixel for the Viking 55 

images to as high as ~25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) 56 

camera resolution for Mars today, over these past decades, we have seen numerous similar 57 

analogous interpretations (e.g., Edgett et al., 2003; Irwin et al., 2004; Tsibulskaya et al., 2020; 58 

Wood, 2006) advancing our knowledge of Martian landforms. Interestingly, while mentioning 59 

the ~10 m/pixel resolution Viking images, Baker (1981) writes, “this is better resolution than 60 

is available for portions of Earth”. Coming to the present scenario, the ~25 cm/pixel resolution 61 

provided by the HiRISE camera for Mars is in public domain and we cannot expect such freely 62 

available dataset for parts of Earth. Although the advent of unmanned aerial vehicles (UAVs) 63 

(Bhardwaj et al., 2016; Gaffey and Bhardwaj, 2020) has led to an option of acquiring images, 64 

comparable to HiRISE-resolutions, for Mars analogue research on Earth (e.g., Bhardwaj et al., 65 

2019b; Sam et al., 2020a; Sam et al., 2020b), the applications of this technique are still limited, 66 

owing to the generally inaccessible nature of the analogue sites. In the subsequent sections, 67 

various relevant references are provided which can be taken as examples of some remarkable 68 

approaches where the knowledge of terrestrial geomorphology was comprehensively 69 

extrapolated to Mars.  70 

III. Geomorphic map of Mars 71 

As an important contribution, Baker’s (1981) Figure 1 provides a holistic geomorphic map of 72 

Mars, representing global distribution of various physiographic features. This map was 73 
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modified from the geological map by Scott and Carr (1978), issued as a US Geological Survey 74 

publication. Baker (1981) classified the heavily cratered equatorial and southern highlands as 75 

cratered uplands, and ejecta and uplifted blocks of ancient terrain caused by large impacts as 76 

mountainous terrain. He further characterised the fretted uplands and isolated mesas along the 77 

boundary between heavily cratered uplands and northern plains as knobby terrain. He also 78 

highlighted three chronological volcanic plains, with Tharsis being the younger lava flows, the 79 

rolling plains constituting the majority of Elysium Planitia as the intermediate age lava flows, 80 

and ridged plains as the older lava plains. Baker (1981) further classified the northern plains as 81 

a “complex lowland showing extensive evidence of ice-contact volcanism, permafrost features, 82 

and aeolian modification”. Chaotic terrain or fractured terrain and valleys were also key 83 

components of Baker’s (1981) Martian geomorphic map. Although with volumes of new 84 

multisensory and higher resolution datasets, the mapping scale has improved severalfold, 85 

undoubtedly, all the major geomorphic units, as presented by Baker (1981), are equally relevant 86 

even today. 87 
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Figure 1. Global geomorphic map of Mars. This map is modified from the geological map by Tanaka et al. (2014). Data Source: http://pubs.usgs.gov/sim/3292.89 
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As an interesting exercise, we adopted the similar approach as Baker’s (1981) and compiled a 90 

geomorphic map of major physiographic regions on Mars (Figure 1) using the data modified 91 

from the most recent and complete geological map of Mars (Tanaka et al., 2014), available 92 

from the US Geological Survey. This global dataset is a derived product of unprecedented 93 

diversity (spectral, topographic, thermophysical, and subsurface), quality (high spatial and 94 

spectral resolutions), and volume of remotely sensed data acquired since the Viking Orbiters. 95 

In particular, the inclusion of precise topographic data such as Mars Global Surveyor (MGS) 96 

Mars Orbiter Laser Altimeter (MOLA) digital elevation model (DEM) (463 m/pixel resolution 97 

at lower latitudes to 115 m/pixel near the poles) (Smith and others, 2001) and the Mars Odyssey 98 

(ODY) Thermal Emission Imaging System (THEMIS) daytime infrared (IR) image mosaic 99 

(100 m/pixel) (Christensen and others, 2004) aided the visual interpretations greatly by 100 

providing 3D terrain and infrared multispectral information (Tanaka et al., 2014). As 101 

mentioned above, the map in Figure 1 is more detailed, understandably owing to the vastness 102 

of the input data, but the close resemblance of the major physiographic classes with the ones 103 

presented in Figure 1 of Baker (1981) are undeniable. 104 

IV. Involvement of geomorphologists in planetary sciences 105 

Baker’s (1981) paper was the first review that discussed a very vital contemporary issue (on 106 

Page 476 of Baker, 1981); “Why then have so few geomorphologists become involved in the 107 

study of the fascinating landscapes of Mars?” With inclusion of the first two tables in his article, 108 

Baker (1981) provided two main reasons for this: (1) the limited distribution of journals and 109 

government documents publishing the planetary science papers, and (2) the lack of access to 110 

the planetary surface images which could enable geomorphic interpretations. Baker (1981) 111 

argued how increased involvement of geomorphologists could be great in promoting planetary 112 

sciences as a discipline. There is no denying that in the past four decades, comparative 113 

planetology has advanced as a science and the role of the geomorphological approaches in this 114 
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advancement has been undisputed. Not only the important themes mentioned by Baker (1981), 115 

such as catastrophic flooding (e.g., Rodríguez et al., 2014), volcanism (e.g., Brož et al., 2020), 116 

impact cratering (e.g., Palumbo and Head, 2018), aeolian erosion (e.g., Williams et al., 2020), 117 

sapping (e.g., Goldspiel and Squyres, 2000), thermokarst (e.g., Dundas et al., 2015), and large-118 

scale landslides (e.g., Magnarini et al., 2019), have been greatly explored, but also, our 119 

understanding of the effects of reduced gravity (e.g., Jacobsen and Burr, 2016), catastrophism 120 

(Pacifici et al., 2009), and atmospheric processes (e.g., Matsubara et al., 2018) on Martian 121 

landscape evolution has considerably improved. Nevertheless, the internet revolution leading 122 

to digital information dissemination (Feldman, 2002) played a significant role in solving the 123 

two aforementioned issues highlighted by Baker (1981). The online platform not only led to 124 

the increase in the number of planetary journals, but also to the distribution of articles to an 125 

interested reader. Moreover, the World Wide Web and the evolution in computing systems and 126 

geographic information system software enabled easy and efficient data transfers, processing, 127 

and interpretations.  128 

V. Major geomorphic features on Mars and conceptual advances 129 

Baker (1981) compiled the information on the geomorphic features on Mars and in the 130 

following sub-sections, we revisit each of them briefly, providing some recent references to 131 

assess the major conceptual advances. 132 

1. Impact craters 133 

Baker (1981) highlights how active resurfacing processes on Earth have erased the majority of 134 

the ancient impact craters, making them relatively rare terrestrial landforms to perform 135 

comparative planetology. Nevertheless, in past decades, several terrestrial craters have been 136 

proposed and explored as Mars analogue sites around the globe. For example, Australia's arid 137 

climate, coupled with the low-relief and tectonically stable terrain, has ensured best 138 
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preservation of several of the craters (West et al., 2010). Undeniably, the majority of these 139 

craters have been identified on constantly improving mid-to-high resolution satellite images; 140 

for example, the 260 m diameter Hickman Crater in Western Australia (Glikson et al., 2008). 141 

Moving further, Baker (1981) provides perspectives on crater densities and ways to enable 142 

relative and absolute dating of Martian surface. He further mentions the morphological 143 

uniqueness of several of the Martian craters, in terms of being surrounded by layered debris 144 

instead of ejecta of ballistic origin, and cites Mouginis-Mark (1979) to imply that the layered 145 

debris might be a consequence of the entrainment of permafrost-melt water into the ejecta. 146 

Now, with years of observational data, numerical modelling, and laboratory experiments, we 147 

know that in addition to the subsurface volatiles, particle size and density, and atmospheric 148 

density and pressure also contribute to the morphology of ejecta blankets (Barlow, 2005). 149 

Moreover, we have further learnt about the astrobiological potential of the numerous small-to-150 

medium sized impact craters on Mars with clearly defined flat floors containing a possible 151 

sedimentary record (Cockell and Lee, 2002; Lindsay and Brasier, 2006). 152 

2. Volcanic landforms 153 

Baker (1981) starts the discussion on volcanic structures by providing dimensional and 154 

contextual information about the highest, i.e., Olympus Mons, and the widest, i.e., Alba Patera, 155 

volcanoes on Mars. He further mentions the possible phreatic (explosive) phases in the early 156 

eruptive history of large Martian volcanoes, owing to the eruptions through water-saturated (or 157 

ice-rich) megaregolith materials (Greeley and Spudis, 1981). These explosive eruptions 158 

probably changed to effusive lava production, constructing prominent shields and domes once 159 

the megaregolith was depleted in water (Baker, 1981). Baker (1981) also cites Reimers and 160 

Komar’s (1979) hypothesis on the pyroclastic activity to be a result of volcanic interaction with 161 

an ice-rich permafrost. However, the most recent and comprehensive review on this topic (Brož 162 

et al., 2020) concludes several major points in this discussion of explosive volcanism on Mars. 163 
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Brož et al. (2020) concur that although, the indications of explosive volcanism have been 164 

identified at various locations on Mars, the evidence is still less common than for effusive 165 

activity. Brož et al. (2020) also infer that the possible explosive eruptions on Mars would have 166 

behaved differently from those on Earth, since the observed edifices are often different in 167 

shapes from their terrestrial counterparts. Baker (1981) mentions the presence of pseudocraters 168 

and pedestal craters in the northern plains of Mars. There still is an uncertainty on the exact 169 

formation mechanism of these landforms. The pseudocraters are now categorised as rootless 170 

cones and both igneous and mud volcano hypotheses are proposed as their formation 171 

mechanism (Czechowski et al., 2020; Dapremont and Wray, 2021). Similarly, the pedestal 172 

craters, even today, are believed to be a result of presence of ice-rich layers during their 173 

formation, when the ejecta formed an erosion-resistant layer shielding the surroundings 174 

(Kenkmann and Wulf, 2018). Baker (1981) cites Hodges and Moore (1979) in proposing the 175 

table mountains of Iceland as a possible analogue for the Martian pedestal craters. 176 

3. Aeolian landforms 177 

Aeolian landforms are one of those surficial features on Mars which highlight the effect of 178 

improvement in spatial resolution of the imaging camera on advancing our geomorphic 179 

knowledge. During the 1970s, available coarser resolution images, captured by Mariner 9 180 

(McCauley et al., 1972) and Viking Orbiters (Cutts et al., 1976), revealed large, low albedo 181 

dune masses, now known as large dark dunes (LDDs). Baker (1981) mentions these huge dark-182 

coloured dunes surrounding the northern polar cap of Mars. With the advent of high-resolution 183 

imagers, such as the Mars Orbiter Camera (MOC) (Malin and Edgett, 2001), High Resolution 184 

Stereo Camera (Neukum and Jaumann, 2004), Context (CTX) camera (Malin et al., 2007), and 185 

HiRISE (McEwen et al., 2007), during the 1990s and 2000s, the captured m-to-cm resolution 186 

images made it possible to observe and study smaller aeolian landforms such as wind ripples, 187 

granule ripples, yardangs, dust devils, ventifacts, and transverse aeolian ridges (TARs) 188 
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(Bhardwaj et al., 2019c). An updated account of aeolian landforms on Mars can be read in 189 

Bridges et al. (2013). 190 

4. Hillslopes and mass movement 191 

In his comprehensive and interesting review, Brunsden (1993) appropriately highlighted the 192 

complexity involved in discussing mass movement as an isolated discipline. Studying mass 193 

movements mandatorily needs an interdisciplinary approach involving geomorphology, 194 

geology, hydrology, geophysics, and soil mechanics (Brunsden, 1993). This makes 195 

understanding the nature of mass movements even more complex for the places (e.g., Mars) 196 

where sufficient multidisciplinary data are unavailable. Nevertheless, Baker (1981) relatively 197 

effectively uses published contemporary examples of the Valles Marineris system (e.g., 198 

Lucchitta, 1979; Sharp, 1973) to highlight the typical “spur-and-gully topography” (Lucchitta, 199 

1978) defining numerous steep escarpments and hillslopes on Mars. Such complex topography 200 

is prone to produce an immense array of mass movement features (Baker, 1981), some of which 201 

are difficult to interpret and characterise even today (e.g., Bhardwaj et al., 2019a; Bhardwaj et 202 

al., 2019d). Undeniably, the unavailability of high-resolution multisource datasets for the 203 

majority of the Martian terrain makes the interpretations even more speculative. Baker (1981) 204 

also compiled published examples to emphasise the relatively massive dimensions of mass 205 

movements on Mars, undetected on Earth. 206 

Interestingly, one of the possible mass movement features, which Baker (1981) refers to as 207 

lobate debris deposits and discusses towards the end of this section, are extensively investigated 208 

in the past two decades. These lobate debris deposits resemble terrestrial glaciers, with valleys 209 

filled with debris, in some instances originating from cirque-like heads, and locally marked by 210 

prominent longitudinal ridges. Squyres (1978; 1979) correlated the lobate debris deposits with 211 

regions of probable high frost deposition and proposed their possible analogy with terrestrial 212 
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rock glaciers (Baker, 1981). All these glacial-type formations on Mars, displaying evidence of 213 

viscous flow, are now characterised within an umbrella term called Viscous flow feature (VFF) 214 

(Souness et al., 2012). Four major types of VFFs are identified and studied (Hubbard et al., 215 

2011; Souness et al., 2012; Squyres, 1978, Squyres, 1979; Squyres and Carr, 1986): (1) lobate 216 

debris aprons (LDA), (2) lineated valley fill (LVF), (3) concentric crater fill (CCF), and (4) 217 

glacier-like forms (GLF). Interested reader can find an updated account of VFFs in Berman et 218 

al. (2021). Koutnik and Pathare (2021) recently presented an informative and updated account 219 

of LDA and GLF in terms of their analogy with terrestrial debris-covered glaciers. Their review 220 

can be helpful in providing a holistic account of analogy between debris-covered glaciers on 221 

Earth and dust and debris-covered ice on Mars. 222 

5. Periglacial and permafrost features 223 

Although morphologically, VFFs qualify to be characterised as permafrost landforms often 224 

observed in periglacial landscape on Earth, Baker (1981) at the very onset of this section, 225 

defines “periglacial” as a geomorphic environment categorised by very low annual 226 

temperatures, freeze-thaw episodes, and strong wind action. Baker (1981) further defines the 227 

term “permafrost” as used in comparative planetology. Although “permafrost” refers to frozen 228 

ground, irrespective of its water content, in planetology, the term is often used as a synonym 229 

for “ground ice” (Baker, 1981). Baker (1981) starts by discussing polygonal fracture patterns 230 

which are typical of permafrost terrain. For the initially observed fractures in Martian northern 231 

plains, the two most probable proposed mechanisms were permafrost ice wedging, and cooling-232 

contraction cracking in lava flows. However, the massive dimensions of these cracks (hundreds 233 

of metres wide with average spacings of 5-10 km) put constraint on both these hypotheses. 234 

Terrestrial ice-wedge polygons generally vary from 1-100 m in diameter (Baker, 1981), and 235 

with HiRISE images, today many regions on Mars have been identified with polygons 236 

comparable in dimensions to their terrestrial counterparts (Soare et al., 2021). Baker (1981) 237 
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further discusses thermokarst landforms and scalloped terrain on Mars and highlights the 238 

contemporary views of thermokarst landforms being a result of melting ground ice. However, 239 

in the past couple of decades, both sublimation (e.g., Dundas et al., 2015) and melting (e.g., 240 

Soare et al., 2008), have been investigated as the formation mechanisms for these thermokarst 241 

landforms on Mars.  242 

6. Polar terrains 243 

Baker (1981) starts this section with describing Mariner and Viking observations of Martian 244 

polar caps. Based on the temperatures observed by the infrared radiometers of the Viking 245 

orbiters, Baker (1981) asserts that the “northern cap must be water ice”. Subsequent 246 

multisensory observations have validated the residual ice caps to be primarily consisting of 247 

water ice. A recent paper (Ojha et al., 2019) placed compositional constraint on the polar 248 

silicate‐rich basal unit below the ice‐rich north polar layered deposit, by modelling its gravity 249 

signature in both spatial and spectral domains. These estimates suggest that even the silicate‐250 

rich basal unit below the polar layered deposits may contain 55±25% water ice, corresponding 251 

to ~1.5 m global water equivalent, making it one of the largest reservoirs of water‐ice on Mars 252 

(Ojha et al., 2019). 253 

7. Channels and valleys 254 

Baker (1981) starts this section by highlighting the excitement that was linked with the 255 

discovery of channels, valleys, and related features of possible aqueous origin on Mars. 256 

However, like any other hypothesis of possible liquid water on Mars, this discovery was also 257 

not without controversies, and soon, in addition to water, lava flow, wind, glacial ice, 258 

liquefaction of crustal materials, debris flows, liquid carbon dioxide, and liquid alkanes were 259 

suggested as other possible channel-carving agents (Baker, 1981). To characterise the widely 260 

variable channel morphologies, Masursky (1973) adopted a broader context and proposed four 261 



14 
 

classes: (1) broad large-sized channels originating from chaotic terrain, (2) narrow 262 

intermediate-sized channels, (3) small valleys across the heavily cratered terrain, and (4) 263 

volcanic channels (Baker, 1981). Sharp and Malin (1975) proposed an additional category 264 

called fretted channels, in addition to Masursky’s categories (Baker, 1981). Using high-265 

resolution MOC images of channels and valleys, Malin and Edgett (2003) provided 266 

geomorphic evidence for aqueous sedimentation on early Mars. Mangold et al. (2004) 267 

interpreted the geomorphic characteristics, especially the high degree of branching, of the 268 

valleys in Valles Marineris region, to propose atmospheric precipitation during 2.9 to 3.4 269 

billion years as their formation mechanism. However, a recent paper (Galofre et al., 2020), puts 270 

a constraint on entirely precipitation and surface water runoff-based hypotheses for valley 271 

formations on Mars and proposes subglacial and fluvial erosion as the predominant 272 

mechanisms. 273 

VI. Summary 274 

As evident from revisiting Baker’s (1981) paper, the relevance and impact of geomorphology 275 

as a discipline in progressing comparative planetology in general, and Mars landscape research 276 

in particular, are indisputable. The timely compilation and survey of contemporary literature 277 

following Viking Missions, and raising the awareness of geomorphology community on Mars 278 

exploration, are the highpoints of this first holistic review of Martian geomorphology presented 279 

by Baker (1981). With nearly the entire Martian terrain covered at ~6 m/pixel CTX resolution, 280 

and continuously increasing volume of submeter HiRISE data, undoubtedly, the prospects for 281 

performing comprehensive local-scale geomorphic analyses have considerably improved. 282 

Moreover, the operational rovers on Mars are also providing stereoscopic and multispectral 283 

images. In fact, the perceived success of the first unmanned aerial vehicle on Mars, in the form 284 

of a mini-helicopter named Ingenuity onboard the recently landed Perseverance Rover, as an 285 
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image capture platform can really transform the next stage of exploring Martian 286 

geomorphology.  287 
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