
Jacksonville State University Jacksonville State University

JSU Digital Commons JSU Digital Commons

Research, Publications & Creative Work Faculty Scholarship & Creative Work

2018

A Proposal for A High Availability Architecture for VoIP Telephone A Proposal for A High Availability Architecture for VoIP Telephone

Systems based on Open Source Software Systems based on Open Source Software

Alejandro Martin

Eric Gamess

Dedaniel Urribarri

Jesús Gómez

Follow this and additional works at: https://digitalcommons.jsu.edu/fac_res

 Part of the Computer Engineering Commons

https://digitalcommons.jsu.edu/
https://digitalcommons.jsu.edu/fac_res
https://digitalcommons.jsu.edu/fac_scholarship
https://digitalcommons.jsu.edu/fac_res?utm_source=digitalcommons.jsu.edu%2Ffac_res%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.jsu.edu%2Ffac_res%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

1 | P a g e

www.ijacsa.thesai.org

A Proposal for A High Availability Architecture for

VoIP Telephone Systems based on Open Source

Software

Alejandro Martin
1

School of Computing

Central University of Venezuela

Caracas, Venezuela

Eric Gamess
2

MCIS Department

Jacksonville State University

Jacksonville, AL, USA

Dedaniel Urribarri
3
, Jesús

Gómez
4

School of Computing

Central University of Venezuela

Caracas, Venezuela

Abstract—The inherent needs of organizations to improve

and amplify their technological platform entail large expenses

with the goal to enhance their performance. Hence, they have to

contemplate mechanisms of optimization and the improvement of

their operational infrastructure. In this direction arises the need

to guarantee the correct operation and non-degradation of the

services provided by the platform during the periods with a

significant load of work. This type of scenario is perfectly

applicable to the field of VoIP technologies, where users generate

elevated loads of work on critical points of the infrastructure,

during the process of interaction with their peers. In this

research work, we propose a solution for high availability, with

the goal of maintaining the continuity of the operation of

communication environments based on the SIP protocol in high

load. We validate our proposal through numerous experiments.

Also, we compare our solution with other classical VoIP

scenarios and show the advantages of a high availability and fault

tolerance architecture for organizations.

Keywords—Cluster; high availability; load balancer; VoIP;

SIP; kamailio; corosync; asterisk; SIPp

I. INTRODUCTION

The rise of new technologies in the field of
communications through the usage of computer networks has
driven the growth of organizations. Motivated by their interest
in an efficient application of resources, these organizations
invest on innovative communication mechanisms, to establish
connections between devices for the exchange of information,
allowing the communication of well-identified entities.
Usually, these communication technologies follow well-
regulated operating schemes, which clearly define intermediate
points, states, processes, and possible behaviors of
communication, also known as communication protocols.

Extrapolating these concepts, organizations interested in
optimally diversifying their communication capacities are
inclined to use these state-of-the-art technologies and protocols
of communication. However, there are cases in which the
magnitude of some organizations requires network
infrastructures that prioritize the performance and stability of
the communication platform, and it is at this point that the
following topics of interest arise:

1) Optimization of the network infrastructure at the level

of performance

2) Scalability and longevity of the network infrastructure

3) Adequate performance of the communication system in

stressful conditions

4) Backup plan to tackle faults and malfunction events.
In this work, we propose a Voice over IP (VoIP) solution

based on the Session Initiation Protocol [1][2][3] (SIP), and the
usage of tools that allow the establishment of a network
infrastructure of high availability and good performance, such
as Kamailio [4], Corosync [5], Asterisk [6][7], among others.
To validate our work, we test our suggested architecture under
high stress and report the obtained results.

The following document is organized as follows. Section II
presents the communication problems faced by large
organizations when it comes to scalability and fault tolerance.
Section III introduces some general solutions for high
availability. The related works are discussed in Section IV. In
Section V, we propose our high availability architecture for
VoIP based on open source software. The test scenarios and
definitions are presented in Section VI and Section VII,
respectively. In Section VIII, we analyze the results of our tests
to validate the proposed architecture. Finally, Section IX
concludes the paper and gives some directions for future work.

II. ORGANIZATIONAL PROBLEMS

From a technological perspective, there are some
limitations in existing IP telephony architectures aimed at the
provision of a high-quality telephony service, particularly in
high-volume conditions where a significant workload must be
supported, such as organizational environments, in which users
rely on services in a sustained and repetitive manner. These
limitations can lead to a point in which an organization, for the
sake of the improvement of the quality of service and non-
interruption of the business, opts for proprietary solutions that
in many cases represent a significant monetary investment. The
main problems faced by organizations that use open-source
software solutions for telephony are those that prevent the
continuity of the service in environments of high concurrency
and high demand.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

2 | P a g e

www.ijacsa.thesai.org

Many of these problems are due to the fact that some
organizations ignore the expected requirement parameters in
the environments in which the service is provided within their
networks. Therefore, these organizations do not evaluate
certain topological and architectural solutions with open-source
software tools to face their limitations, which could be solved
by offering proactive mechanisms of high availability and
contingency, in case of malfunction of their systems. In
addition, if the possible growth in the requirements of the
services managed by the organization is anticipated, a good
approach in the management and configuration of the services
to be offered within the architecture, plus load balancing
solutions, would allow greater scalability in the service.

The concept of high availability and continuity of the
operation in computer networks is a solution for environments
of high workload. However, the high cost associated with
implementing proprietary solutions to improve the quality of
the communication service makes them unfeasible for some
organizations. Therefore, our interest in proposing an
architecture of high availability through the usage of open-
source software tools. Our solution considers that the particular
limitations of each piece of software can be overcome by the
coupling of multiple tools synchronized with each other to
offer a standout service, that is, by using the famous saying
“Unity is Strength.”

III. HIGH AVAILABILITY SOLUTIONS

In any type of communication solution, faults are highly
probable. Therefore, contingency mechanisms are required to
resolve these faults automatically, with the smallest possible
response time, and when possible, in a transparent way for
users. To achieve this goal, a high availability solution must
have the following aspects:

 high availability mechanisms

 load balancing mechanisms

 division of services

 monitoring and management of services and load.

A. High Availability Mechanisms

From the computational point of view, the term
“availability” refers to the period of time a service is available.
When seen as an expression, “availability” can be either the
response time of the service or whether it is accessible to be
consumed by the users [8]. Hence, “high availability” refers to
“... a system that is continuously operational and available for
the use of the services provided to end-users” [9]. Providing
high availability to a system or service is not an easy task,
since not every service manages mechanisms to support it.
Therefore, offering high availability in a system requires a
specific design and implementation, mitigating all the points of
failure that a system may have.

Redundancy is important in a system that offers high
availability. Redundancy generally consists of backup
components that automatically “kick in” if one component
fails. It can be achieved at the level of the nodes that provide
the service, i.e., the servers that are managing the service. The
two most commonly used high availability cluster
configurations are active-passive and active-active.

1) Active-Passive: In an active-passive scheme, one of the

nodes is processing the requests received by the critical service

(thus considered as the active node), while the other node is

monitoring the active node and ready to take over as soon as

the active node gets disconnected or is unable to serve [10].

2) Active-Active: In an active-active scheme, both nodes

are actively providing critical services simultaneously. One of

the main purposes of an active-active cluster is to achieve load

balancing, that is, distribute the workload. In case of a failure

of either node, the other node will be responsible for the

provision of all the critical services [10].

B. Load Balancing Mechanisms

Let consider two servers or nodes with similar
characteristics that are setup as telephone exchanges, one
active and one passive. The basic idea is that the passive server
will take over when the active server faces a failure. Now, if
the active server were to fail due to very high service
requirements (numerous controls for calls managed
simultaneously: user registration, start of calls, end of calls,
etc), it is very likely that the same will happen to the other
server after the failover, since they are servers with similar
characteristics. To solve this kind of problems, it is advisable to
distribute the load among multiple servers (load balancing).

In the concept of load balancing, multiple servers are
offering the same service and do the same tasks. Usually, an
appliance (specialized physical device) or software solution is
in charge of the load balancing management. It receives all the
requests that are directed to the servers and is in charge of
redirecting the traffic to one of the servers that it considers
appropriate, through different techniques and mechanisms to
balance the workload.

Load balancers can be divided into stateless and stateful
load balancers:

 Stateless Load Balancer: Stateless load balancers
typically use hashing algorithms to transform part of the
data taken from the requests or packets into a low hash
value, for the selection of a server from the farm [11].
This method can permit a certain level of persistence;
For example, if the data to be hashed is the source IP
address of the client, all requests made by a single client
will be sent to a specific server. There are multiple
hashing methods: hash based on IP source, hash
buckets, etc.

 Stateful Load Balancer: Stateless load balancers have
certain limitations in a fair distribution of workloads.
Stateful load balancers maintain the state of the
sessions. To accomplish this, the balancer must be able
to determine when a session starts and when it ends.
When a session is started, the target server is
determined using load distribution mechanisms. Once
determined, all subsequent packets that belong to the
same session will be sent to the same destination server,
until the end of the session [11].

There are many methods for load distribution, such as:

 Round-Robin: The Round-Robin method is one of the
most popular and simple methods of load distribution.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

3 | P a g e

www.ijacsa.thesai.org

Its distribution is based on granting the incoming
requests to a different server, until all servers have
received one. After reaching this point, the process is
repeated with the subsequent requests. Some of the
advantages of Round-Robin are its simplicity and the
few resources needed by the balancer. Also, the method
is very fast, even in large architectures with numerous
servers in the farm. However, it has the disadvantage of
providing a rather poor mechanism of load distribution,
because it has no mechanisms to evaluate the load of
each element of the farm.

 Choice by Load: In this load balancing technique, each
server of the farm is monitored by a program known as
a server-side agent. The server-side agent provides real-
time information about the load of the server where it is
running, such as: CPU load, memory usage, disk I/O,
etc. Hence, the load balancer obtains information about
the load conditions of each server in the farm with a
very high level of detail [11], before it determines
which server is the most suitable to take the next
request.

Many parameters can be used to assess the load of the
servers in the farm. The parameters to choose will depend on
the application. Some of the most common load parameters
are: CPU utilization, RAM utilization, quantity of connections,
and quantity of transactions or active calls (very common in
solutions based on SIP). In many cases, parameters are
combined for a better load evaluation.

C. Division of Services

When there are multiple tools with the ability to offer the
same functionality, it is important to consider which one can
provide it in the best way. Throughout this paper, the
advantages of the division of functionalities of certain services
will be described, with the corresponding evidence to support
the decisions.

D. Monitoring and Management of Services and Load

The establishment of monitoring and management service
mechanisms within a high availability solution allows the
identification of failure points, as well as the efficient
determination and management of the components involved in
its operation. The monitoring mechanisms permit to have an
instant state of the situation, which facilitates the decision to be
taken on the exposed services.

IV. RELATED WORKS

Some studies and solutions related to providing
mechanisms of contingency and scalability in IP telephony
systems currently exist. Throughout this section, some related
researches will be described and analyzed, highlighting their
advantages and weaknesses.

A. High Availability for SIP: Solutions and Real-Time

Measurement Performance Evaluation

This research proposes the creation of a transparent and
practical failover solution for proxy servers, for both SIP and
RTP [12]. The objective is to increase the availability, stability,
and scalability of multimedia systems based on SIP by using

active-passive failover mechanisms with floating IP addresses,
for both SIP and RTP.

1) SIP redundancy architecture: In order to have

redundancy through SIP, it is essential to have two or more SIP

servers. Also, each SIP server must be aware of all the SIP

transaction made [12]. This is achieved by replicating all

messages received by the active server to all the backup

servers, even if these last ones are not available to the public.

To accomplish this, the authors proposed the creation of a

daemon called High Availability Daemon (HAD), which is run

in each SIP server, including a SIP proxy.

2) RTP redundancy architecture: The approach of the RTP

architecture is very similar to the one for SIP. However, the

RTP proxy allocates two port numbers for each forwarding

relation. Data which are received on one port are forwarded to

the other peer through the other port number. This prior

knowledge by the RTP proxy is done through a mapping list

that is shared by HAD.

To begin the RTP message exchange of a SIP session, the
RTP proxy opens the ports and virtually interconnects with the
peer. At this point, it does not know what are the IP addresses
and ports of the peer and learns them when receiving the first
RTP message of the peer (the mapping list is updated) [12].
This mapping list must be exchanged with the other RTP
proxy. HAD is in charge for this, thus storing the mapping list
and replicating it with the other HAD of the other RTP server.
HAD receives mapping requests from the SIP proxy and
forwards them to the local RTP proxy. Additionally, HAD
intercepts the local RTP proxy responses and forwards the
chosen port to the backup system. Figure 1 and Figure 2 [12]
refer to the operation mechanism of the HAD daemon, for SIP
and RTP, respectively.

3) Load Balancing scheme: In this work, a DNS load

balancing mechanism based on SRV registers was used. The

load balancing module is responsible for requesting in static

time interval the number of SIP servers available to the DNS

server (DNS records) and resolves its Fully Qualified Domain

Name (FQDN). This means that for each SIP domain, the DNS

server has multiple DNS records for the DNS proxies added by

it.

Fig. 1. SIP Replication Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

4 | P a g e

www.ijacsa.thesai.org

Fig. 2. RTP Relay Replication.

The balancer is responsible for querying the DNS and
maintaining the DNS records. The SIP client, when making a
SIP request, will first reach the balancer and, based on the
information provided by the DNS and the weight of the
different services, forward the request to the SIP server with
more priority. This, however, is only required for certain SIP
messages. Once a SIP client has established the connection
(sending an INVITE and receiving an OK from the SIP server),
it is not required to pass through the balancer again.

4) Differences with our proposed architecture: In contrast

to our work, the authors wrote their own HAD daemon from

scratch, and did not use a well-known and debugged software

developed by the community. This solution is error-prone,

since their software has only been exposed to a very small

group of people. Finally, another clear difference is the use of a

DNS-oriented balancer, which is stateless oriented, resulting in

unfair balancing.

B. On The Reliability of Voice over IP (VoIP) Telephony

The architecture proposed by Pal, Gadde, and Latchman
[13] consists of:

 Two or more virtual servers with Kamailio.

 Two or more virtual servers with FreeSWITCH
[14][15].

Calls are routed from the clients to the Kamailio servers
using a distributed DNS-based ENUM (E.164 Number to URI
Mapping) system with priority settings [13]. If at any moment
a particular Kamailio virtual server is down or running at its
full capacity, the calls will be rerouted to another Kamailio
server. If none of these servers is active, the call will be
rerouted directly to any of the FreeSWITCH that are
responsible for the voice messaging, music on hold, and
automated attendant (see Figure 3 [13]).

To provide hardware redundancy, the authors propose Ultra
Monkey [16], that uses Linux Virtual Server (LVS), for the
creation of high availability in network services. Ultra Monkey
is a framework that uses the Heartbeat protocol to monitor if
two servers are operating properly or not (presence of periodic
messages). In this proposed architecture, there are two
balancers configured in an active-passive clustering scheme
with Ultra Monkey. At any moment, if the active balancer
stops responding requests, the balancer that was in passive
mode will pass to active mode and will process the requests.
Heartbeat uses a plugin called IPFail that helps determine, at
layer 3 (via ICMP messages), whether the balancers are
working properly or not.

Fig. 3. Operating Scheme.

1) Differences with our proposed architecture: The use of

Heartbeat as a communication and membership protocol

differentiates this work from our proposed architecture. It is

worth to remember that many developments in this field are

migrating from Heartbeat to Pacemaker/Corosync, that is,

Heartbeat can be considered as a project that is losing

popularity. Also, the selected balancer, Ultra Monkey, does not

maintain the state of SIP, resulting in a lower quality balancer

than Kamailio.

C. Design and Implementation of a System to Interconnect

VoIP Services and CERN’s Telephony Networks

The scope of this work [17] is broad and is intended to
provide an interface to the telephone networks of the European
Organization for Nuclear Research (CERN), specifically
services based on SIP. The implemented system serves as an
entry point for calls originated outside the CERN’s telephony
network, allowing users using this service to communicate with
the CERN telephone network (landline or mobile).

1) Logic topology and components: It consists of multiple

components based primarily on common existing SIP servers.

Among them are Media Servers and Proxy Servers,

interconnected as can be seen in Figure 4 [17]. The Media

Servers provide functionalities to SIP users. They tend to use

many hardware resources (since they process multimedia

information by software). Proxy Servers are used to protect

them from the signaling part [17]. For high availability

requirements, the topology consists of two Proxy Servers and

two Media Servers (active-passive and active-active,

respectively), thus preventing single fault points in the

topology.

Fig. 4. Logical Topology.

Client makes a call
Call approved

Call

approved

Call on Hold

End Call Voice Mail

Busy

or

dow n

Busy

or

dow n

Kamailio

virtual

Server 1

Kamailio

virtual

Server 2

FreeSWITCH

virtual

Server

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

5 | P a g e

www.ijacsa.thesai.org

The system has load balancing mechanisms served by
Kamailio, including health checks or keepalive mechanisms to
the different FreeSWITCH with failover capability, as well as
active-active clustering techniques through Pacemaker and
Corosync among Media Servers. Also, it makes use of active-
passive clustering techniques between Proxy Servers.

Each Media Server is configured to manage a limited
amount of channels while interrupting the others if the limit is
already set. The load balancing mechanism allows the
distribution of calls between the different Media Servers, thus
increasing the scalability and the call limit [17].

2) Functions of Immersed components:

a) Proxy Server:

The Proxy Server must accept connections from both TCP
and UDP. It must only accept calls destined for the CERN
PBX; i.e., it should not act as Proxy Server among SIP users
[17]. The call setup process keeps track of the progress of the
call once answered. This is achieved by storing the dialog
information using the Dialog module provided by Kamailio in
a database [17].

b) Media Server:

The Media Server must reserve one channel for each
incoming call and then proceed to authenticate the user of the
incoming call. Users are not authenticated by using
“Mod_directory” module, making it a Registrar Server, but by
configuring an access list that only accepts incoming calls
originated by the Proxy Server and, in addition, a custom
mechanism that will be explained in the following paragraph.
The SIP profiles were completely eliminated except for the
internal profile in which incoming calls from Kamailio were
assigned to this profile.

In addition, a method is used to perform an extra layer of
users’ authentication. This functionality varies depending on
how the call flow is performed. This mechanism is created by
scripts written in Lua where a PIN is offered to the user who is
calling through an IVR. The user must set the PIN correctly,
using DTMF tones, for the authentication to be complete.

3) Differences with our Proposed Architecture: This

architecture was designed with the purpose of allowing

external entities to communicate through VoIP (using the SIP

protocol for session establishment) with the CERN private

segments, which are legacy telephone networks. In our

proposed solution, the architecture is totally based on the SIP

protocol.

V. PROPOSED ARCHITECTURE AND SOLUTION

Figure 5 depicts the conceptual architecture of the proposed
solution. The subsystem that supports high availability
telephony is in network A, on the left side (inside the green
box), which the following elements:

 Proxy/Registrar: This is the main component in charge
of the services provided by the SIP signaling protocol.
It acts as a stateful SIP proxy to allow load balancing
mechanisms towards the PBX entities. In addition, it
functions as an RTP proxy to solve problems related to
NAT Traversal.

 PBX: These components act as multimedia servers.
They are used as secondary SIP traffic receivers (in
case of call establishment requirements) and these
servers are being balanced by the Proxy/Registrar
servers.

 DB/SAN: This component acts as a shared storage for
the two components defined above and maintains the
information centralized.

Each instance of the different components, in Figure 5,
indicates whether it is active (working perfectly and providing
services), passive (working perfectly but not providing
services), or failed (out of order). This information refers to the
implementation of the clustering schemes that are used as
contingency mechanisms within the architecture, consisting of
multiple instances of the same component.

Fig. 5. General Architecture of the Proposed Solution.

The rest of the components that are part of the solution are
the following:

 Firewall/NAT: These components act as delimiters
between the internal networks and the public networks.
Their main purpose is to achieve the simulation of the
NAT Traversal phenomenon by having SIP users
outside of network A, where the telephony architecture
is implemented.

 IP Phones: These components act as the endpoints that
require communication services using the implemented
telephony architecture.

A. Open Source Components Used in our Architecture

As mentioned previously, our solution is based on open
source software such as:

1) Kamailio: Component previously mentioned as Proxy/

Registrar provides:

Proxy/Registrar Proxy/Registrar

PBX1 PBX2
Active

Active Passive

Active

DB/SAN
IP Phones

Firewall/NATNetwork A

Firewall/NAT

IP Phones

Network B

Public Network

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

6 | P a g e

www.ijacsa.thesai.org

 Kamailio v4.3: Tool that turns this component into a
stateful SIP proxy, offering SIP transaction failover
mechanisms and load balancing mechanisms. It also
acts as a Registrar Server and a Location Server.

 RTPProxy v2.0.0: Tool used to convert the component
into an RTP proxy if necessary (against NAT Traversal
phenomenon).

2) Asterisk: The component mentioned as PBX is running

Asterisk v13.1. It acts as a multimedia server with the ability to

offer multiple functionalities such as: transcoding, voicemail

service, IVR, call transfer, etc.

3) MySQL/SAN: Component mentioned as DB/SAN, that

acts as a shared storage for the Proxy/Registrar and PBX

servers. Since some information is stored in the database and

other at the file system level, there are two tools to support

these services:

 MySQL Community Edition v5.7: MySQL is used as
a database management system to maintain shared
information between the different instances of the
different components that are part of the architecture.

 Linux-IO Target (targetcli v2.1): This tool is used to
convert the SAN server into a server from which an
iSCSI Target is configured to allow to different
instances of the Asterisk servers to create iSCSI
sessions against that Target and be able to manage this
storage in a shared way. This is necessary because
certain Asterisk information (some configuration files,
multimedia files such as voicemail, music on hold, etc.)
must be shared by both instances for the proper
operation of the architecture.

B. Design of the Clustering Schemes

In this architecture, there are two clustering schemes of two
nodes each, one for the different instances of the components
that run Kamailio and RTPProxy, and another for the different
instances of the components that execute Asterisk. As
explained earlier, the reason behind these schemes is to provide
contingency mechanisms in case of errors, manage shared
storage, and monitor the status of the various relevant services
that are part of the different schemes. These clustering schemes
are formed by Pacemaker v1.1.13 [18] for the resources
management and Corosync v2.3.4 [5] for the communication
layer and the creation of the cluster infrastructure.

Fig. 6. Logical Organization for the Proxy/Registrar Clustering Scheme.

1) Clustering Scheme for the Proxy/Registrar

Components: This is an active-passive clustering scheme,

which means that one of the instances is the one that will be in

charge of providing all the services, while the other instance

will be monitoring and taking over when some error or

problem occurs in the active instance. Figure 6 shows the

logical organization of the components within the

Proxy/Registrar cluster.

2) Clustering Scheme for the PBX Components: This is an

active-active clustering scheme, which means that both

instances are responsible for having all services active and for

providing them. This scheme has the primary function of

preventing data corruption of shared storage between both

instances of the PBX. That is, the monitoring system is made

such as that when a PBX fails while providing a service, the

other PBX must terminate this service, to avoid inconsistencies

in the data and a malfunction of the architecture. Figure 7

depicts the logical organization of the components within the

PBX cluster.

Fig. 7. Logical Organization for the PBX Clustering Scheme.

VI. TEST SCENARIOS

In order to validate our architecture, we developed two
kinds of test scenarios: (1) scenarios to assess the contingency
mechanisms and (2) scenarios to study the behavior of the
proposed architecture under strong stress. It is worth
mentioning that a PBX server has two possible states: (1)
active when it is working properly and providing services and
(2) failed/passive when it is out of order. A Proxy/Registrar
component has three possible states: (1) active when it is
working properly and providing services, (2) passive when it is
working properly and not providing services, and (3) failed
when it is out of order.

A. Scenarios to Assess the Contingency Mechanisms

1) Scenario 1 - Recovery from the Failure of a PBX

Component:
Figure 8 depicts the situation when one of the Asterisk

servers fails. In this case, all the load of the services must pass
to the other Asterisk server.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

7 | P a g e

www.ijacsa.thesai.org

Fig. 8. Recovery from the Failure of a PBX Component.

2) Scenario 2 - Recovery from the Failure of a Proxy/

Registrar Component:
Figure 9 illustrates this scenario. Before the failure,

Kamailio 1 was active and Kamailio 2 was passive. As soon as
Kamailio 2 notices the failure of the other server, it switches
from passive to active mode.

Fig. 9. Recovery from the Failure of a Proxy/Registrar Component.

3) Scenario 3 - Recovery from the Failure of a

Proxy/Registrar Component and a PBX Component:
Figure 10 depicts this test scenario, where there are two

failures: (1) failure of an instance that is providing the service
of Kamailio and RTPProxy, and (2) failure of an instance that
is offering the service of Asterisk.

Fig. 10. Recovery from the Failure of a Proxy/Registrar Component and a

PBX Component.

B. Scenarios to Assess the Architecture under Stress

To assess the behavior of our proposed architecture in
scenarios of high concurrency of SIP services (INVITE and
REGISTER transactions) and RTP traffic flows, the following
scenarios were proposed:

1) Scenario 1 - System under Stress in a Conventional

VoIP Implementation:
In this scenario, there is a single PBX component, as shown

in Figure 11. This is a classical VoIP system, without
redundancy. The idea is to study the scalability of a
conventional VoIP implementation, by exposing it to a high
volume of requests.

Fig. 11. Conventional VoIP Implementation.

2) Scenario 2 - System under Stress with the Proposed

Architecture:
Figure 12 depicts our proposed architecture with

redundancy at the level of the Proxy/Registrar servers, and load
balancing at the level of the PBXs. The idea is to submit the
proposed architecture under a high volume of requests, and
compare its behavior with the one shown in Figure 11
(conventional VoIP implementation).

Fig. 12. Proposed Architecture when all the Components are Operating

Properly.

VII. DEFINITIONS OF TESTS AND PARTICULAR SITUATIONS

In this section, we define the performed assessments for the
proposed scenarios.

A. Assessment of the Contingency Mechanisms

To assess the contingency mechanism, we defined three
tests, that can be applied to any of the three scenarios, as
specified below:

 Test 1: Send an INVITE transaction just after a failure
and before the application of contingency mechanisms.

 Test 2: Send an INVITE transaction before a failure
and the application of contingency mechanisms,

Kamailio 1 Kamailio 2

Asterisk 1 Asterisk 2
Active

Active Passive

Before: Active
After: Failed

MySQL/SAN

Kamailio 1 Kamailio 2

Asterisk 1 Asterisk 2
Active

Before: Active
After: Failed

Before: Passive
After: Active

Active

MySQL/SAN

Kamailio 1 Kamailio 2

Asterisk 1 Asterisk 2
Active

Before: Active
After: Failed

Before: Passive
After: Active

Before: Active
After: Failed

MySQL/SAN

Kamailio Asterisk

MySQL/SAN

Kamailio 1 Kamailio 2

Asterisk 1 Asterisk 2
Active

Active Passive

Active

MySQL/SAN

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

8 | P a g e

www.ijacsa.thesai.org

without the completion of the INVITE session (i.e.,
without multimedia flows).

 Test 3: Send an INVITE transaction before a failure
and the application of contingency mechanisms, with
the completion of the INVITE session (i.e., with
multimedia flows).

Due to the ability of Kamailio to maintain the state of SIP
transactions and make decisions based on the lack of response
or error messages by the Asterisk nodes, we also defined the
following two situations:

 Situation 1: Generation of an INVITE request that
attempts to be transmitted to an asterisk node that has
just failed, as explained in Test 1. If there is no response
within 4 seconds, Kamailio will retransmit the INVITE
request to the other active Asterisk node.

TABLE I. EXPECTED RESULTS OF TRANSACTIONAL FAILOVER

MECHANISMS

Scenario Behavior Response Time

1

User Interaction: The IP phone does not

participate in the contingency

Contingency: The active Kamailio
retransmit the INVITE message after a

timeout of the response

Situation 1: 4
seconds

Situation 2: 60

seconds

TABLE II. EXPECTED RESULTS OF THE PROXY/REGISTRAR

CONTINGENCY MECHANISMS

Scenario Behavior Response Time

2

User Interaction: The IP phone replicates

the initial request in case of being in the
establishment of a session

Contingency: Service Reestablishment

Fencing

Application: A

few seconds

Services or Nodes

Errors: A few

seconds

3

User Interaction: The IP phone replicates

the initial request in case of being in the
establishment of a session

Contingency: Service Reestablishment

Fencing

Application: A

few seconds

Services or Nodes

Errors: A few

seconds

TABLE III. EXPECTED RESULTS OF THE PBX CONTINGENCY

MECHANISMS

Scenario Behavior Response Time

1

User Interaction: The IP phone replicates

the initial request in case of being in the

establishment of a session

Contingency 1: In case of a first failure

when monitoring the resources of an
Asterisk node, Pacemaker restarts the

service.

Contingency 2: In any other cases,
Pacemaker stops the service on the node

where it fails.

Fencing

Application: A

few seconds

Service or Nodes

Errors: A few

seconds

3

User Interaction: The IP phone replicates

the initial request in case of being in the
establishment of a session.

Contingency 1: In case of a first failure
when monitoring the resources of an

Asterisk node, Pacemaker restarts the

service.
Contingency 2: In any other cases,

Pacemaker stops the service on the node

where it fails.

Fencing

Application: A
few seconds

Services or Nodes

Errors: A few
seconds

 Situation 2: It occurs after receiving the message “100
Trying”. If Kamailio does not receive any further
message (“180 Ringing”) after 60 seconds (usually due
to a crash of the Asterisk server), Kamailio will
retransmit the INVITE transaction to the other active
Asterisk node.

Tables I, II, and III represent the expected results (behavior
and response time) for the different failover mechanisms.

B. Assessment of the Architecture under Stress

To assess the behavior of the proposed architecture when
suffering stress, we defined the tests shown in Table IV and
Table V, which were performed with SIPp [19], a free open
source traffic generator for the SIP protocol. The idea was to
flood the proposed architecture with SIP requests (INVITE and
REGISTER) and study how well it can manage the stress and
the load balancing among the Asterisk servers. Table IV is
focused on INVITE messages, while the emphasis of Table V
is on REGISTER messages. From the first to the last column,
Table IV contains (1) the test that we are defining, (2) the
scenario used for this test, (3) the desired calling rates (number
of calls made by SIPp per second), (4) the total limit of active
calls at any time, (5) the duration of each call, and (6) the
duration of the test, respectively. The last four parameters are
set through SIPp. It is worth to clarify that the total limit of
active calls is the maximum number of calls that can be active
at any time during the experiment. If SIPp reaches this limit,
then it will not initiate another new call until one of the active
calls is completed.

From the first to the last column, Table V contains (1) the
test that we are defining, (2) the scenario used for this test, (3)
the desired transaction rates (number of REGISTER messages
sent by SIPp per second), (4) the total number of SIP users in
the system, and (5) the duration of the test, respectively. The
last three parameters are set through SIPp. Note that we did not
define tests for Scenario 1, since the registration of users is
done by the Proxy/Registrar servers (Kamailio), and just
having one of them instead of an active-passive cluster will not
change the observed behavior.

TABLE IV. PARAMETERS USED IN SIPP FOR INVITE MESSAGES

Test Scenario
Calling

Rate

Limit of

Active Calls

Duration

of Calls

Duration

of Test

Test 1

1

175 cps 1000 calls 6 seconds 1 hour

Test 2 200 cps 1000 calls 5 seconds 1 hour

Test 3 200 cps 1200 calls 5 seconds 1 hour

Test 4 200 cps 1200 calls 6 seconds 1 hour

Test 1

2

300 cps 2000 calls 6 seconds 1 hour

Test 2 300 cps 2000 calls 7 seconds 1 hour

Test 3 350 cps 2000 calls 5 seconds 1 hour

Test 4 350 cps 2000 calls 6 seconds 1 hour

TABLE V. PARAMETERS USED IN SIPP FOR REGISTER MESSAGES

Test Scenario
Transaction

Rate

Number of SIP

Users

Duration

of Test

Test 1

2

500 tps 10000 users 1 hour

Test 2 750 tps 10000 users 1 hour

Test 3 1000 tps 10000 users 1 hour

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

9 | P a g e

www.ijacsa.thesai.org

VIII. RESULTS AND ANALYSIS

To do the validation experiments, we used a server with
Xen Project [20][21] for the management of virtualized
environments. All elements that are part of the architecture, as
well as the network topology of the architecture, were
virtualized in this server.

Since the elements that are running in the proposed
architecture have different requirements at the level of CPU
resources, we did not use the default configuration provided by
the Xen hypervisor with a single vCPU per device. We did
multiple attempts of different hardware resource distributions,
and selected the one shown in Table VI.

TABLE VI. RESOURCE ASSIGNED TO EACH DEVICE OF THE

ARCHITECTURE THROUGH THE XEN HYPERVISOR

Machines vCPUs Management

Weight

Management

(Schedule-Credit)

Domain-0 4 vCPUs, No affinity 256

DB/SAN 1 vCPU, No affinity 512

Asterisk 1 2 vCPUs, No affinity 1000

Asterisk 2 2 vCPUs, No affinity 1000

Kamailio 1 2 vCPUs, No affinity 1000

Kamailio 2 2 vCPUs, No affinity 1000

A. Tests for Contingency Mechanisms

For this case, the tests are divided according to the types of
failover mechanisms, which are:

1) Tests for the Transactional Failover Mechanisms:
Table VII represents the results obtained by our tests in

Situation 1 and Situation 2, of Scenario 1. We repeated the
experiments 200 times and the response time presented is an
average. Our experiments showed an adequate response of the
transactional failover mechanisms, with an average response
time of 4.174 seconds in Situation 1 (as shown in Table I, it
should be greater than 4 seconds) and 63.049 seconds in
Situation 2 (as shown in Table I, it should be greater than 60
seconds).

TABLE VII. RESULTS OF THE TRANSACTIONAL FAILOVER MECHANISMS

TESTS

Scenario Test Situation
User

Interaction
Contingency

Response

Time

1

1 1 None

Retransmission of the

INVITE message

after a timeout of the

response

4.17 sec

2 2 None

INVITE session

retransmission after

meeting

response times

63.04 sec

2) Tests for the Failover Mechanisms at Services and

Nodes Levels:
Table VIII shows the results obtained by our tests in the

case of failover mechanisms at the levels of services and nodes.
It shows the average response time at the level of users and
services (we repeated the experiments 200 times and the
response time presented is an average). Our experiments
showed that our architecture is working well with an adequate

reaction of the failover mechanisms at the level of services and
nodes, confirmed the expected results of Table II and Table III.

TABLE VIII. RESULTS OF THE FAILOVER MECHANISM TESTS AT SERVICES

AND NODES LEVELS

Scena

rio
Test

User

Interaction
Contingency

Fen

cing
Response Time

2

1 None

Services are

migrated from one

node that is part of

the clustering

scheme to the

other.

No
User - 4.50 sec

Service – 3.49 sec

Yes
User - 7.51 sec

Service - 7.38 sec

2 None

Services are

migrated from one

node that is part of

the clustering

scheme to the

other.

No
User - 4.21 sec

Service - 3.44 sec

Yes
User - 7.51 sec

Service - 7.41 sec

3
Replicate call

establishment

Services are

migrated from one

node that is part of

the clustering

scheme to the

other.

No

User – Interaction

Required

Service - 3.48 sec

Yes

User - It may or may

not affect the service

Service - 7.39 sec

3

1 None

Services are

migrated from one

node that is part of

the clustering

scheme to the

other.

No
User – 7.47 sec

Service - 3.43 sec

Yes
User - 11.49 sec

Service - 7.34 sec

2
Replicate call

establishment

Services are

migrated from one

node that is part of

the clustering

scheme to the

other.

No

User - Interaction

Required

Service - 3.38 sec

Yes

User - Interaction

Required

Service - 7.45 sec

3
Replicate call

establishment

Services are

migrated from one

node that is part of

the clustering

scheme to the

other.

No

User - Interaction

Required

Service - 3.44 sec

Yes

User - Interaction

Required

Service - 7.39 sec

B. Tests of Stress

Unlike the previous tests, the results of the tests of this
section are highly dependent on the hardware resources and the
topology. It is worth to mention that the SIPp tool has tests for
both the SIP and RTP protocols. In the case of the RTP tests,
SIPp sends media (RTP) traffic through RTP echo and
RTP/pcap replay. We faced some difficulties with these RTP
tests. The problem is based on the fact that SIPp has a single
threaded architecture, where events are repeated through a loop
with the same thread, which causes the .pcap files to be
managed by a single core on the SIPp machine. Thus, in our
case, when reaching a maximum of 800 active calls
approximately, the core reached 100% of its capacity, resulting
in a malfunction of SIPp for the RTP tests. Hence, we did not
use the RTP tests to assess our architecture.

The objective of these tests is to study the ability of the
proposed architecture to manage a big number of calls or
registrations through multiple Asterisk servers, by doing load
balancing.

1) Tests of Stress Performed with INVITE Messages: The

results are shown in Table IX (conventional VoIP

implementation) and Table X (our proposed architecture). For

each test, we run the experiment twice. From the first to the last

column of Table IX and Table X, we have (1) the test

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

10 | P a g e

www.ijacsa.thesai.org

performed, (2) the actual duration of the test, (3) the average

call rate performed by SIPp in one second, (4) the total number

of calls during the experiment, (5) the average number of

actives calls in the system at any moment, (6) the total number

of successful calls during the experiment, (7) the total number

of failed calls during the experiment, and (8) the total number

of retransmissions made by SIP during the experiment,

respectively.

TABLE IX. RESULTS OF STRESS TESTS PERFORMED BY INVITE

MESSAGES IN SCENARIO 1 (CONVENTIONAL VOIP IMPLEMENTATION)

Test
Dura

tion

Avg

Call

Rate

Generated

Calls

Avg

Active

Calls

Successful

Calls

Failed

Calls

Retrans

missions

1
1

hour

142.42 512733 998.33 512730 3 0

142.42 512731 998.37 512726 5 0

2
1

hour

166.00 597613 997.79 512730 3 0

165.97 597530 997.79 597522 8 0

3
1

hour

197.70 307064 509.27 98073 207796 23530

199.10 717763 1197.62 717658 105 104

4
1

hour

170.86 615960 1199.04 615859 101 0

170.85 615953 1198.83 615830 123 2

As we can see from Table IX and Table X, the proposed
architecture significantly improves the VoIP system. The
number of successful calls processed by our solution is almost
the double of the one handled by a conventional VoIP
architecture.

TABLE X. RESULTS OF STRESS TESTS PERFORMED BY INVITE

MESSAGES IN SCENARIO 2 (OUR PROPOSED ARCHITECTURE)

Test
Dura

tion

Avg

Call

Rate

Generated

Calls

Avg

Active

Calls

Successful

Calls

Failed

Calls

Retrans

missions

1
1

hour

284.75 1025107 1997.58 1025091 16 0

284.80 1025314 1997.66 1024246 1068 34

2
1

hour

249.34 897640 1997.66 897626 14 13

248.77 897573 1997.75 897562 11 58

3
20

min

345.76 418292 344.20 53614 364574 29308

346.87 420175 268.00 59533 360638 33832

4
1

hour

284.87 1025566 1998.33 1025001 565 0

284.76 1025162 1998.79 1025143 19 4

In Figure 13, we have more details on the evolution of the
experiment that is highlighted in Table X. The x-axis shows the
time during the realization of the experiment (0, 600, 1200,
1800, 2400, 3000, 3600, and 3607 seconds). For each sample,
there are four bars representing (1) the number of active calls
in PBX1, (2) the number of active calls in PBX2, (3) the total
number of processed calls by PBX1, and (4) the total number
of processed calls by PBX2. This experiment confirmed the
correct operation done by Kamailio 1 (the active Proxy/
Registrar server), when doing load balancing between the two
PBXs.

2) Tests of Stress Performed with REGISTER Messages:

The results are shown in Table XI. For each test, we run the

experiment twice. From the first to the last column of Table XI,

we have (1) the test performed, (2) the actual duration of the

test, (3) the average number of transactions/registrations

performed by SIPp in one second, (4) the total number of

transactions during the experiment, (5) the total number of

successful transactions during the experiment, (6) the total

number of failed transactions during the experiment, and (7)

the total number of retransmissions made by SIP during the

experiment, respectively.

TABLE XI. RESULTS OF STRESS TESTS PERFORMED BY REGISTER

MESSAGES IN SCENARIO 2

Test
Dura

tion

Avg

Transac

tion

Rate

Generated

Transactions

Successful

Transactions

Failed

Transac

tions

Retrans

missions

1
1

hour

498.81 1795733 1795733 0 72855

498.86 1795932 1795932 0 71952

2
1

hour

748.15 2693403 2693385 18 232129

748.29 2693882 2693882 0 174833

3
1

hour

996.05 3585832 3585831 1 301450

995.23 3582895 3582887 8 275637

Fig. 13. Active and Processed Calls as the Time Passes - Confirmation of

Load Balancing.

IX. CONCLUSIONS AND FUTURE WORK

VoIP is a technology that has achieved a great impact on
the communication of digital networks. It takes advantage of
existing networks and different standard protocols such as SIP,
Inter-Asterisk eXchange [22] (IAX), RTP, and RTCP. On the
one hand, many institutions have implemented VoIP solutions
based on proprietary software, which tends to increase the
implementation cost. On the other hand, other organizations

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

11 | P a g e

www.ijacsa.thesai.org

have decided to go for open source solutions like Asterisk.
Asterisk is focused on the inclusion and development of
multiple services and the support of multiple signaling
protocols. Hence, per see, it provides a high-quality service for
telephony, but has weak aspects such as scalability and
contingency mechanisms in case of failures.

In this work, we proposed a telephony architecture based
on Asterisk and the SIP signaling protocol that covers those
aspects not well supported by Asterisk per see, such as
scalability and fault tolerance. Our solution is totally focused
on open source software. In our architecture, we inserted
different tools that allow high availability, and clustering
concepts to offer contingency mechanisms, as well as load
balancing technics to add greater scalability to the provided
telephony service.

As future work, we are interested in developing other high
availability VoIP telephony architectures based on the SIP
protocol, using SIP servers such as OpenSIPS [23], in
conjunction with clustering technology tools such as
Pacemaker, Corosync, CMAN, etc. Another direction of
research that we are planning to investigate is to construct
cluster solutions based on different software, that is, instead of
having several copies of the same server for redundancy, we
are interested in using different implementations of software
servers so that the system can be tolerant to bugs.

REFERENCES

[1] A. Johnston, SIP - Understanding the Session Initiation Protocol, Fourth
Edition, Artech House, October 2015.

[2] R. Ranjan Roy, Handbook on Session Initiation Protocol: Networked
Multimedia Communications for IP Telephony, First Edition, CRC
Press, March 2016.

[3] N. Leonard, Understood SIP and IP Telephony in 3 Days: For the
Beginner, Independently published, August 2017.

[4] Kamailio, https://www.kamailio.org.

[5] S. Dake, The Corosync High Performance Shared Memory IPC
Reusable C Library, in Proceedings of the Linux Symposium, Montreal,
Canada, July 2009.

[6] V. Stanislovaitis, How to Start a VoIP Business: A Six-Stage Guide to
Becoming a VoIP Service Provider, February 2016.

[7] R. Bryant, Asterisk: The Definitive Guide: The Future of Telephony Is
Now, O’Reilly, Fourth Edition, June 2013.

[8] P. Weygant, Cluster for High Availability: A Primer HP Solution,
Second Edition, Prentice Hall, 2001.

[9] M. Resman, CentOS High Availability, Packt Publishing, April 2015.

[10] E. Marcus, Blueprints for High Availability, Second Edition, Wiley
Publishing, September 2003.

[11] C. Kopparapu, Load Balancing, Servers, Firewalls and Caches, Wiley
Computer Publishing, January 2002.

[12] G. Kambourakis, D. Geneiatakis, S. Gritzalis, C. Lambrinoudakis, T.
Dagiuklas, S. Ehlert, and J. Fiedler, “High Availability for SIP:
Solutions and Real-Time Measurement Performance Evaluation,”
International Journal of Disaster Recovery and Business Continuity, vol.
1, no. 1, pp. 11-29, February 2010.

[13] S. Pal, R. Gadde, and H. Latchman, On the Reliability of Voice Over IP
(VoIP) Telephony, University of Florida, 2011.

[14] A. Minessale and G. Maruzzelli, FreeSWITCH 1.8 - VoIP and WebRTC
with FreeSWITCH: The Definitive Source, Packt Publishing, July 2017.

[15] A. Minessale and G. Maruzzelli, Mastering FreeSWITCH, Packt
Publishing, July 2016.

[16] Ultra Monkey, Load Balancing and Highly Available Solutions,
http://www.ultramonkey.org.

[17] M. Pohančeník, “Design and Implementation of a System to
Interconnect VoIP Services and CERN’s Telephony Network,”
University of Žilina, Ginebra, 2013.

[18] Pacemaker, http://clusterlabs.org/pacemaker.

[19] R. Gayraud, O. Jacques, R. Day, C. P. Wright, et al., SIPp Reference
Documentation, http://sipp.sourceforge.net/doc/reference.pdf.

[20] T. Mackey and J. K. Benedict, XenServer Administration Handbook:
Practical Recipes for Successful Deployments, First Edition, O’Reilly
Media, April 2016.

[21] M. Reed, Mastering Citrix XenServer, Packt Publishing, December
2014.

[22] M. Spencer, B. Capouch, E. Guy, F. Miller, and K. Shumard, IAX:
Inter-Asterisk eXchange Version 2, RFC 5456, February 2010.

[23] F. Goncalves and B.-A. Iancu, Building Telephony Systems with
OpenSIPS - Second Edition, Packt Publishing, January 2016.

	A Proposal for A High Availability Architecture for VoIP Telephone Systems based on Open Source Software
	A Proposal for A High Availability Architecture for VoIP Telephone Systems based on Open Source Software

