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ABSTRACT

Real time Underwater sensor networks (UWSNs) suffer from localisation issues due to a dearth of incorporation 
of different geometric scenarios in UWSN scenarios. To address these issues, this paper visualises three specific 
scenarios of perturbation. First, small sized and large numbered particles of perturbance moving in a tangential 
motion to the sensor nodes; second, a single numbered and large-sized particle moving in a rectilinear motion by 
displacing the sensor nodes into sideward and forward direction, and third, a radially outward propagating perturbance 
to observe the influenced sensor nodes as the perturbance moves outwards. A novel target localisation and tracking 
is facilitated by including marine vehicle navigation as a source of perturbation. Using semidefinite programming, 
the proposed perturbation models minimise localisation errors, thereby enhancing physical security of underwater 
sensor nodes. By leveraging the spin, cleaving motion and radial cast-away behaviour of underwater sensor nodes, 
the results confirm that the proposed propagation models can be conveniently applied to real time target detection 
and estimation of underwater target nodes.
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NOMENCLATURE
a Anchor nodes
FIM Fisher Information Matrix
s Sensor nodes
Fpr Footprint of perturbation
l Turbulence
Dl Tangential perturbation effect on node turbulence
v Water density
aij Absolute node dispersion 
di Displacement of anchor node
P Number of anchor nodes
bij Relative node dispersion
Q Number of perturbed anchor node pairs
gi Anchor node separation
D (t, f ) Displacement as a function of iteration count and 

perturbation particles
f Perturbation particles

( ),F
vr B A Radial outwards propagation parameter

t Iteration count
Emeas Measured error matrix
W Displacement measurement weight vector
H Underwater acoustic propagation matrix
z Observed perturbation
p3n Perturbation on nth sensor node due to 3rd scenario

m Mean of the observations
iter Number of iterations
C Covariance matrix
bdiag Block diagonal matrix
diag Diagonal matrix
Iall_nodes FIM for target nodes
ISPM FIM for nodes under SPM
SPM Spin propagation model
rPM Radially outwards perturbation model
rDM Rectilinear dispersion model
sDP Semidefinite programming
gMM Gaussian mixture modelling

1.  INTRODUCTION
Underwater sensor networks (UWSNs) are a big asset 

to any Research Organisation simply because humans cannot 
naturally survive underwater, requiring specialised hardware 
to explore the depths of the seas and oceans. Since wireless 
sensor nodes are self-configuring and can suitably operate 
using acoustic, optical and magnetic propagation underwater, 
there is keen interest to achieve a robust and accurate UWSN 
that would survive the harsh environment of deep as well as 
shallow depth. In literature, a recent survey on the issues faced 
by UWSNs showed that underwater nodes are susceptible to 
drift and high delay1. As a result, localisation is not able to 
keep up when anchor nodes do not operate cooperatively2.  Received : 05 February 2021, Revised : 05 July 2021 
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The problem with localisation in UWSNs is that traditional 
terrestrial methods such as Global Positioning System (GPS) 
do not work underwater. Therefore, several techniques are 
being developed to determine accurate location of underwater 
target, or to position the underwater sensors immaculately. 
This enables researchers and explorers to monitor underwater 
environment remotely, for purposes of national as well as 
international importance such as subsea natural resource 
exploration, oil rigs maintenance, maritime border surveillance, 
tsunami and other disaster management, enemy target tracking 
etc. There is tremendous scope of improvement for a fast, 
efficient and reliable technique for underwater localisation. 
The following subsections shall discuss the importance of the 
problem at hand, and a background of the approaches taken in 
existing literature.

1.1 Related Work
By taking a variety of scenarios, the localisation performance 

is dealt with on a one-to-one basis. For example, by increasing 
the sample sequence length, the error in estimating the shift 
in doppler spread is minimised quadratically3. Doppler shift 
is combined with genetic algorithm to improve localisation4. 
A probabilistic data approach, which is computationally 
expensive yet sufficiently accurate, is proposed5. 

1.1.1 Semidefinite Programming
Semidefinite programming (SDP) is popular means of 

convex formulation6 to arrive at iterative solution to numerical 
problems, both constrained as well as unconstrained. It is used 
for convex optimisation of linear objective functions over the 
intersection of the cone of positive semidefinite matrices with 
an affine space. It has been used in terrestrial7 scenarios to 
achieve localisation of sensor nodes in WSN. However, to the 
best of the authors’ knowledge, SDP has not been documented 
in UWSN localisation. Authors in8 have presented a frame-by-
frame cluster configuration to effectively localise the target 
using acoustic emission. Although they have used sparse sensor 
array for this purpose and approached acoustic localisation 
through Doppler shift, however they have not compared their 
result with semidefinite programming for acoustic spatial 
localisation.

Use of semidefinite relaxation has enabled9 to derive 
localisation for both non-cooperative as well as cooperative 
case. However, the implementation in this work is limited to 
radio frequency (RF) based subsystems10, and does not cater to 
underwater acoustic systems11. The authors12 have considered 
classifying moving vehicles as the intended target by using 
a correlation-based dependence graph and wireless acoustic 
sensor network. However, the work does not illuminate on the 
lower bound of the variance for calculating Fisher’s Information 
Matrix, which would be critical to compute Cramer Rao’s 
lower Bound on the localisation error.  Some recent works 
related to perturbation analysis in underwater sensor networks 
are mentioned in Table 1.

1.1.2 Underwater Localisation
Wireless Sensor networks capture the essence of 

parameters in their surroundings. Therefore, the location 

information associated with every sensed data must be accurate, 
hence the need for localisation. Underwater localisation enables 
the user to pinpoint the coordinates of the underwater nodes. 
Some of the prior works in underwater localisation have been 
discussed here. Authors13 have considered three perturbations: 
asynchronous clock, stratification effect and mobility due to 
current which affects underwater acoustic sensor network 
localisation. Using a method of iterative least square estimator, 
they have been able to compensate for the disturbances 
and consequently achieve underwater localisation with the 
assistance of an autonomous underwater vehicle (AUV). 
However, we know that iterative least square method suffers 
from estimation errors if the number of samples available are 
not sufficiently large, for example, in case of sparsely deployed 
sensor networks. To overcome this issue, the work done by 
Sun et al.14 go for the method of 2nd order Time Difference 
of Arrival (TDOA). They are able to address the issue of 
drifted signal period under sea where pressure is high and 
temperature is low. However, multi path environment which 
is created by heavy clutter, poses a grave issue to underwater 
localisation. Therefore, the work done by liu5, et al. attempts 
to overcome this issue by employing maximum likelihood 
probabilistic data association with Grid search and PSO to find 
the optimal target estimate. However, even Ml PDA suffers 
from requirement of a large dataset to work upon. Therefore, a  
suitable alternate method to achieve commendable performance 
in terms of underwater localisation would be to derive 
semidefinite equations subject to appropriate constraints, 
which is one of the prime contributions of our work.

1.2 Major Contributions
This paper attempts to contribute to the profession in the 

following ways:
1. Semidefinite formulation for Underwater sensor networks 

has been attempted for the first time to achieve localisation. 
So far most of the existing works have been limited to 
terrestrial or sensor networks, in general.

2. Convex modelling of vorticity equation in terms of tumble 
or spin propagation of perturbation is new and has not 
been attempted so far. The closest work related to this  
finding15 does not focus on localisation in aquatic scenario.

3. The paper explores the impact of footprint of perturbance 
in terms of Cramer Rao lower Bound (CRlB)16, which is 

Table 1. Types of perturbations addressed in recent literature 
of underwater sensor network localisation.

Localisation 
algorithm

Type of perturbation 
addressed Method used

Yan13, et al. Motion & ray 
compensation 
strategies: Current 
mobility

Iterative least square 
estimator

Sun14, et al. Drifted signal period 2nd Order TDOA

liu5, et al. Multipath 
environment with 
heavy clutter

Maximum likelihood 
probabilistic data 
association with grid 
search & PSO
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a genuine concern in terms of event propagation, on the 
localisation aspect of UWSN.
In this paper, standard notation for scalar and vector have 

been used. If A denotes a scalar, then bold representation A 
represents a vector. The rest of the paper is organised as  
follows: a detailed description, followed by mathematical 
representation of three different perturbation scenarios is 
discussed in section 2. Section 3 describes the semidefinite 
formulation of the proposed localisation scenario, followed 
by derivation of Cramer Rao lower Bound. Numerical 
computations and results are discussed in Section 4. Some 
concluding remarks are mentioned in Section 5. 

2.  METHODS
Underwater sensor nodes are subject to various adversities. 

These adversities, or perturbations, as we shall refer to in 
this paper, may be physically large sized or small sized. The 
physical dimension influences how the perturbations interact 
with the anchor nodes. To carry on, let us define the term 
“footprint” in terms of our paper:

Definition 1: In an underwater sensor network (UWSN), 
if a denotes anchor nodes and s denotes sensor nodes, then the 
Footprint of a source of perturbance is represented by prF , 
and is given by

( ){ }, 1 , 2
# : 0, , , 1pr i t i t p pF a a a i a t t t t+= − > ∀ ∈ < + >          (1)

If #a represents the number of nodes affected by the 
perturbation event, then the time ( )1t +  is the time after the 
impact of the perturbation pt , whereas t is the time before the 
impact of perturbation. The range of nodes under the influence 
of perturbation is a broad indication of the footprint of the 
source of perturbation.

In order to determine the extent of footprint on the 
localisation performance of the UWSN nodes, it is essential 
to pinpoint some common types of perturbation propagation 
styles. In current work, we enumerate three such propagation, 
and represent their mathematical model which shall be used to 
localise the anchor nodes subsequently.

2.1 Perturbance Propagation with Trajectory and 
Footprint Variation

2.1.1 Spin Propagation Model
Due to tangential motion of perturbance along the sensor 

and anchor nodes, the underwater nodes may physically remain 
at the same coordinates. However, they may experience a spin 
or a tumble by certain angle ( 0 rad to 2 radπ ) along any 
plane in the three-dimensional space. This tumbling is akin to 
yaw, pitch and roll action, and the uncertainty in positioning 
of the anchor nodes must be mathematically modelled to 
incorporate spin perturbation. In practical scenarios, tumbling 
may occur when the source of perturbation has a large number 
of particles which are physically similar in dimensions to the 
anchor nodes. The best visualisation is seen when a shoal of 
fish passes through the sensor network, their perturbation leads 
to tumbling of sensor nodes underwater. This is illustrated 
in Fig. 1. The blue objects denote perturbation particles. 
Brown objects denote underwater sensor nodes, subject to  
tumble/ spin.

2.1.2  Rectilinear Model with Angular Spreading
The scenario where inverted v shaped ripples are created, 

the nodes may get displaced perpendicular to the direction of 
perturbation propagation. This kind of separation occurs when 
the physical dimension of perturbation particles is much larger 
than the nodes themselves, and the motion of perturbation is 
in a straight-forward fashion. A practical example would be 
a ship or a submarine or a whale passing through the network 
of underwater nodes, which would split the water volume 
into two halves, right and left, as shown in Fig. 2. The brown 
objects denote perturbation particle, blue curves denote the 
effect on water, black objects denote underwater sensor nodes, 
subject to dispersion forward and sideward. The big arrow 
denotes forward propagation of rectilinear perturbation. Once 
this scenario is mathematically modelled, the uncertainty  
associated with the position of anchor nodes may be 
compensated for, and appropriate localisation techniques shall 
enhance the updated position of the displaced anchor nodes.

Figure 1.  Illustration of spin propagation model.

Figure 2. Illustration of rectilinear dispersion model (RDM).

2.1.3 Radially Outwards Propagation Model
In the third scenario, the perturbation propagates in a 

radially outward manner. The number of nodes affected by this 
perturbation depends on the radius of perturbation. A sound 
manner to depict the affected nodes would be to devise an 
‘engulf factor’ to accurately denote the percentage of nodes 
under the influence of perturbation. A mathematical model 
should follow the explained scenario. A practical example 
would be the scene of an oil spill on the surface of the ocean, or 
the radial outward spreading of crash debris of an aircraft on the 
surface of water. This is illustrated in Fig. 3. The brown object 
denotes perturbation source, the blue shapes represent spread 
of perturbation radially outwards. The small shapes represent 
underwater nodes subject to engulfment by perturbation.
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3.  MATHEMATICAL FORMULATION
3.1 Semidefinite Programming Formulation

let us be given a set of Anchor nodes  A,  a set of sensor 
nodes S and a set of perturbing particles F in ℝ3. Due to 
tangential motion of the perturbance along the sensor nodes 
and anchor nodes, the nodes may experience a turbulence, 
causing dislocation from their usual position. let us denote the 
turbulence l  faced by the nodes underwater with a constant 
water density 0v∇ ⋅ = . The effect of perturbation tangential 
motion on the nature of turbulence of the anchor nodes is 
denoted by Dl . The rate of change of turbulence of the anchor 
nodes is defined as the curl of velocity equation 

( ) ( )v v D
t l

∂l
+ ⋅∇ l − l ⋅∇ =

∂
           (2)

 Equation  is governed by the vorticity transport equation17. 
Then, the cost function to be minimised is given by

( ) ( )minimise D
t l

∂l + ν ⋅∇ l − l ⋅∇ ν − ∂ 
          (3)

 
Subject to 

0∇ ⋅ν =                            (4)
Due to the rectilinear motion of a large single perturbance 

(such as a ship or a whale or a submarine), the plane containing 
the sensor nodes and the perturbance, is cleaved into two halves. 
The distance between previous node position and current node 
position is quantified by the absolute and relative dispersion. 
If id  is the anchor node displacement from its initial position 
in the x-sideward ( , 1i j = ), and y-forward ( , 2i j = ) and P  
is the number of anchor nodes, then the absolute dispersion is 
formulated as 

2

1

1 P

ij i j
m

d d
P =

a = ∑                                                            (5)

The relative dispersion of the anchor nodes due to cleaving 
of water into two halves is defined as

2

1

1 Q

ij i j
n

g g
Q =

b = ∑                                                            (6)

where, g  is the sideward ( , 1i j = ) and forward ( , 2i j = ) 
separations of the anchor node positions, and Q  is the number 
of anchor node pairs affected by the perturbance.

In case of radial perturbation of particles, the distance of 
displacement of anchor nodes shall be governed by equation  
mentioned at the bottom of the page for clarity.
where, f F∈ . f  denotes each particle of the set F . F  

is the set of all perturbance elements which propagate in a 
radially outward manner and t  is the iteration count for every 
node displaced by the particle set F . The radial outwards 
propagation is then modelled as in equation 

( )
( )

[ ] ( )max

, | ,
,

1, , 1,1
F

v

w D f f F
r B A

w rand

 ⋅ t ∀ ∈  =  
t ∈ t ∈  

        (7)

where, r is the radius of outward propagation of perturbation 
particle and w  is the weight coefficient associated with every 
displacement D . 

The relaxed Semidefinite formulation for Maximum 
likelihood estimation of the displaced anchor nodes is given 
by

( )( )min . measimise Tr W E                                                (8)

Subject to 

. .
0

. .

T T
meas

T T
meas meas meas

H H H D
W

D H D D
 −

=  − 
                                  (9)

( ) 1measdiag D ==                                                          (10)

0measD 
                                                                       (11)

where, W  is the weight vector associated with every 
displacement measurement measD , H  is the underwater 
acoustic propagation matrix. The objective function of equation  
represents the weighted error in measurement of displacement 
of anchor node.  This error is formulated as

, 1 , 1
,

t t t t
i j meas actualE D D+ += −           (12)

E  is a symmetric matrix with dimensions n n×  where 
#n a= , that is, the number of affected anchor nodes.

( )
( )

( ) ( ) ( ) ( ) ( )
22

2 1 12 1 2 2 3 2
, 2 2 2

2 3 2 3

f f f f
D f f f f

f f

t
t− t t−+ + + + +

t = ⋅ + + + − ⋅ +
+ +

(13)( )
( )

( ) ( ) ( ) ( ) ( )
22

2 1 12 1 2 2 3 2
, 2 2 2

2 3 2 3

f f f f
D f f f f

f f

t
t− t t−+ + + + +

t = ⋅ + + + − ⋅ +
+ +  

Cramer Rao Lower Bound (CRLB)
The combined perturbations of three scenarios is to 

be estimated. let [ ]11 12 1 21 22 2 31 32 3n n nz p p p p p p p p p=    

[ ]11 12 1 21 22 2 31 32 3n n nz p p p p p p p p p=     be the observed perturbation due 

to three scenarios on each of the sensor nodes. For example, 
12p  is the perturbation on the second sensor node due to the 

scenario of the first kind. Since three scenarios exist, 12p ,
22p  and 12p denote respectively the effect of first, second  

and third scenario on sensor node 2. Since perturbance of 
unaffected nodes is zero, such ijp  elements are zero in the 
z  vector. Since observed/ measured vector is corrupted by 
additive white Gaussian noise, z  is also Gaussian distributed 
with mean m  and covariance matrix C , that is, ( ),z N C∼ m , 
as shown in equation  mentioned at the bottom of this page for 
clarity.

Figure  3. Illustration of radially outward propagation model.
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The covariance matrix C  consists of 

( )11 22 33, ,C bdiag C C C=                                         (14)
where, 

( )2 2 2
11 11 12 1, , , NC diag= σ σ σ                                         (15)

( )2 2 2
22 21 22 2, , , NC diag= σ σ σ                                       (16)

( )2 2 2
33 31 32 3, , , NC diag= σ σ σ                                       (17)

and bdiag represents block diagonal matrix, whereas 
diag  represents diagonal matrix. The Fisher Information 
Matrix (FIM) for target nodes, that is, ( ),i ix y  for sensor nodes 
and ( ),i i

x ya a  for anchor nodes is given as
1

_
T

all nodesI HC H−=                                                       (18)

where, H  is given by equation ,
or, 

11 12

21 0
H H

H
h

 
=  

 
,                                                   (19)

11H  is given by equation ,

( )12 2 2 2 20
T

M M MH I × −
 =                                              (20)

( )21 1,2 1,3 1 ,M Mh r r r −
 =                                        (21)

Taking inverse of FIM gives us Cramer Rao lower Bound 
CRlB for the lower bound on estimation error of location 
due to perturbation. When there is only one perturbation, our 
observation vector remains the same as before, but now two of 
the three classes of perturbations are known. The corresponding 
FIM for [ ]11 12 1

T
np p p , denoted by ISPM , is modified 

as
1 1

11 11 11 12 22 12
T T

SPMI H C H H C H− −= +          (22)

4.  LOCALISATION PERFORMANCE AND 
DISCUSSION
Simulations has been carried out using semidefinite 

program solver CVX in MATlAB. The default solver SDPT3 
has been used. Computations have been run for different node 
densities, (anchor nodes and sensor nodes). The anchor node 
positions are fixed at corners and symmetric locations while 
the sensor node positions are randomly deployed. Anchor node 
counts are varied in the range of 5 to 16. Non anchor node 
count is set to 15 and 30, respectively. Different transmission 
power of the anchor and sensor nodes is represented by setting 
different signal to noise ratio per scenario. Anchor perturbation 
is varied between 0 and 2, whereas noise variance is set to 2 
to 7. low perturbation scenario is simulated by keeping 3 to 7 
number of perturbation objects, whereas moderate perturbation 
scenario is simulated with the help of 9 to 10 perturbation 
objects.  A fixed area of 2100 100m×  has been used to deploy 
these nodes, as summarised in Table 2.

Table 2.  Localisation parameters

Parameter Symbol Range
Dimension of sensor deployment area 2100 100m×

Anchor node count 5 to 16
Non- anchor node count 15,30
Standard deviation of anchor perturbation aσ 0 to 2
Transmitted SNR (dB) 20, 30, 40, 50
Noise variance 2 to 7
Number of Perturbation objects 3, 5, 7, 9, 10

A broad representation of the geometric arrangement of 
deployed nodes is shown in Fig. 4. Anchor nodes are denoted 
by large circles whereas sensor nodes are shown as small 
squares. Fig. 4(a). is a regular 3 by 3 arrangement of anchor 
nodes. Pentagonal anchor node geometry is shown in Fig. 4(b). 
Hexagonal geometry follows next, in part (c), and octagonal 
geometry in (d). 

,1,1, ,1,2, ,1, , 2,1, 2,2, 2, , 1,1, 1,2, 1, ,
1 1 1 1 1 1 1 1 1

Titer iter iter iter iter iter iter iter iter

i i N i i i N i i i N i
i i i i i i i i i

D D D r r r

iter iter iter iter iter iter iter iter iter

l l l
= = = = = = = = =

 a a a 
 m =
 
  

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
     (23)

1 1 2 2 1 1 2 2

T

M M M M
x y x y x y x y x y x y

H
s s s s s s a a a a a a

 ∂m ∂m ∂m ∂m ∂m ∂m ∂m ∂m ∂m ∂m ∂m ∂m
=  

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
                                  (24)

 

( ) ( ) ( )

( ) ( )

( ) ( )

1,1 2,1 1,1 3,1 1,1 ,1

1,2 1,3 1,

1,2 2,1 1,2 3,1

11 2,1 2,2

,1 1,1 ,1 1,1

1, , 1

0 0 0

0 0 0 0

0 0 0 0 0

M

M

M M M

M M M

p p p p p p
r r r

p p p p
H r r

p p p p
r r

−

−

 − − −
 
 
 

− − 
 =
 
 
 

− − 
 
 

 

 

       



                         (25)
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(b)

(a)

Results of Spin Propagation Model (denoted by SPM 
in figures), Radially outwards Perturbation Model (RPM), 
Rectilinear Dispersion Model (RDM) are compared to a 
Gaussian Mixture Model18 based on Semidefinite programming 
model (denoted by SDP GMM). The Bit error rate vs. signal to 
noise ratio of different localisation models are depicted in Fig. 
5. The best performance in terms of minimum BER is achieved 
by RDM at the cost of high transmission power. A closely 
trailing performance is observed by SPM, owing to its nature 
of getting displaced only in terms of orientation but negligibly 
displaced in terms of physical coordinates, especially for 
intermediate signal strength. The radial propagation model 
fared up to four times higher bit error rates than RDM or SPM, 
nearing the performance of Gaussian mixture model for most 
of the cases.

In terms of RMS errors, the localisation performance 
comparison is shown in Fig. 6. for different numbers of 
anchor nodes. Here, SPM performs the best when a total of 
8 anchor nodes are deployed. The linear Dispersion model 
fares the best at the cost of requiring the maximum number 

of anchor nodes, and hence the higher SNR requirement. The 
semidefinite programming method based on Gaussian Mixture 
Model is also shown for comparison. The dip in RMS error 
for 8 and 16 number of anchor nodes is because such anchor 
nodes have lower node uncertainty than the rest, leading to a 
more efficient triangulation of target. For further insights, one 
may go through the concept of triangulation uncertainty for 
optimal node positioning23. localisation error performance is 
dependent highly on the node geometry. Since anchor nodes 
geometry has been kept symmetric, hence the closeness of 
all the methods To distinguish further, Fig. 7(a) is important 
because it describes error performance with respect to noise 

Figure  4. Vacuolation of node geometric arrangements used in 
evaluation of the proposed localisation. (a) rectangular, 
(b) pentagonal, (c) hexagonal, and (d) octagonal anchor 
node arrangement.

Figure  5. BER to SNR performance of different perturbation 
models.

Figure 6. Localisation error performance of different perturbation 
models.

Figure 7. (a) Effect of noise variance on the localisation of target 
in presence of perturbations and (b) Dependence of 
various localisation algorithms on the number of 
perturbation objects.
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variance. The disparities may be observed more clearly. 
Moreover, for a given perturbing agent, the three types of 
perturbations, namely radial, rectilinear and Spin have partial 
contribution to the overall perturbation in water. This can be 
concurred since motion in water rarely comprises of single 
perturbation alone, and usually it is a linear combination all 
the three. That is why further RMS error performance has been 
demonstrated in Fig. 7(b) to distinguish performance of various 
methods with respect to perturbation count also.”

Further analysis of the proposed technique may be 
carried out using noise variance and number of perturbation 
objects as the key parameters. For the case of different noise 
variance, the transmissions from the target node are assumed 
to attenuate a maximum of 10dB before declaring localisation 
failure. For uniformity, the perturbation is allowed to disturb 
the surrounding node deployments for a duration of 500 
seconds. Anchor nodes get displaced or tumbled from their 
initial states due to the perturbations and instantaneously 
transmit beacon signals in order to update their new position. 
The return transmission regarding the new position is 
exchanged with the nearby sensor nodes. Based on the 

constraints offered by the respective semidefinite formulations, 
the sensor nodes attempt to nullify the error between current 
location and the predicted location. A lower positioning error 
closer to zero indicates a higher localisation accuracy. Under 
high perturbation loads the rectilinear dispersion model 
(RDM) is observed to perform better than the competing 
models. From the noise variance plots of Fig. 7(a), it is 
evident that RDM locates the user more accurately at larger 
noise variances while being comparable to the RPM & SPM 
methods proposed in this paper at smaller noise variances. 
It has been clear that the various kinds of perturbation sizes 
and counts have a profound effect on the type of localisation 
on offer. Although the Doppler Estimation Algorithm 
discussed in3 is computationally simple and tries to overcome 
localisation errors based on calculation of Doppler Shift 
between the target node and the anchor node, it falls behind 
the perturbation models when dealing with the issue of three 
perturbations discussed in the current work. The dip in error 
for noise variance 3 may be attributed to the compensation of 
perturbation effects that overcomes positioning disparity, in 
accordance with sensor node topology24.

Table 3.  Comparison of proposed technique with existing works on underwater localisation

Localisation algorithm Reference Characteristic parameter Improvement
• Second Order TDOA
• Target tracking algorithm based 

on particle filter

Sun20, et al. Analysis of
• Horizontal dilution of precision 

(HDOP)
• Precision of localisation based on
o Depth of AUV
o Depth of Black box
o Sound Speed
o RMSE of arrival direction

localisation with
• Circular path
• linear path
Tracking with
• Circular path
• linear path

• Elimination of unknown signal period
• Higher precision than DoA-based 

methods.

• Multilateration
• Hidden Markov model with 

forward-backward algorithm

Alexandri21, 
et al.

Analysis of 
• Resolved ambiguities
• Unresolved ambiguities

• Extrapolation of positions in data series for 
superior tracking

• Rigorous localisation of marine animals

Detection, direction of arrival and 
clustering

Stinko22, et al. Analysis of 
• Acoustic pressure 
• Components of particle velocity 

vector
Estimation of DoA of noise sources

• Detection of low frequency noise sources
• Accurate bearing estimates of target due to 

AUV
• Feasibility of acoustic modem and USBl 

positioning system on a glider

• Two asynchronous localisation 
algorithms to localise active and 
passive sensor nodes

• Iterative least squares technique 
to estimate unknown water current 
parameters

Yan13, et al. Incorporation of 
• motion and ray compensation 

strategies into localisation
• Current field estimation technique

Elimination of 
• Asynchronous
• Stratification clock effect
• Node Mobility

Proposed method (SDP formulation 
for sensor node localisation 
subject to three major underwater 
perturbations)

Analysis of
• Degradation in localisation 

accuracy due to three different 
underwater perturbations

• Superior localisation despite onset of 
realistic perturbation effects

• Effective perturbation compensation with 
the help of semidefinite programming

• Comparable positioning error across 
various scenarios, similar to Gong et al.3



DEF. SCI. J., VOl. 71, NO. 6, NOVEMBER 2021

814

Further, the proposed model is compared to the technique 
of single-path Maximum likelihood Probabilistic Data 
Association19. For a low perturbation scenario of 3 and 5 
objects, respectively, as shown in Fig. 7(b), the single path 
Ml-PDA technique spikes to an error beyond 3m, whereas the 
SDP-GMM method could handle error around 3.5m, which 
demonstrates superior localisation ability of the proposed 
methods. In comparison, the Doppler Estimation Algorithm 
carries a lower penalty than Ml-PDA and SDP-GMM18 method, 
while still being inferior to the proposed RDM method.

looking at Figs. 7(a) and 7(b), it may be observed that 
under different scenarios, at least one of the three proposed 
perturbation models (SPM, RDM, RPM) performs suitably to 
give accurate target localisation results. A comparison of the 
proposed technique with the existing methods is tabulated in 
Table 3.

5. CONCLUSION
A novel technique of perturbation footprint for underwater 

sensor node localisation was proposed using Semidefinite 
Programming. Using scenarios consisting of three different 
types of perturbations, mathematical models were constructed 
to be incorporated into the semidefinite programming model to 
yield enhanced physical security of the underwater scenario. 
Smart surveillance and underwater target tracking analysis 
exhibited the strengths and limitations of the proposed models 
in this paper. Based on numerical computations, we concluded 
that the Rectilinear programming model fares appreciably 
at high node densities. We also concluded that the effect of 
tumbling of anchor nodes under SPM incurs minimum harm 
to localisation, whereas the most difficult scenario is when 
perturbation particles disperse radially outwards because 
the search space increases exponentially with increase in 
the radius of spread. To mitigate these issues, the proposed 
semidefinite model based on perturbation scenario was found 
to be able to localise underwater nodes effectively in two 
of the total four anchor node configurations. Moreover, the 
proposed formulation achieved lower bit error rate in all the 
three scenarios as compared to existing techniques such as 
Gaussian Mixture Model. In terms of low noise variance, the 
proposed methods were equally good or superior, whereas in 
noise cluttered environment, the rectilinear dispersion model 
(RDM) exhibited strong localisation accuracy. Extensive 
analysis was also carried out by considering different counts 
of perturbation objects. The proposed models are able to 
demonstrate positioning error comparable to the state-of-the-
art techniques especially at different number of perturbation 
objects.

REFERENCES
1.  Awan, k. M.; Shah, P. A.; Iqbal k.; Gillani S.; Ahmad, 

W. & Nam, y. Underwater wireless sensor networks: a 
review of recent issues and challenges. Wirel. Commun. 
Mob. Comput. 2019, 2019, 1–20. 

 doi: 10.1155/2019/6470359
2.  Gong, Z.; li, C. & Jiang, F. AUV-aided joint localization 

and time synchronization for underwater acoustic sensor 
networks. IEEE Signal Process. Lett., 2018, 25(4), 477–81. 

 doi: 10.1109/lSP.2018.2799699.
3.  Gong, Z.; li, C. & Jiang, F. Analysis of the underwater 

multi-path reflections on Doppler shift estimation. IEEE 
Wirel. Commun. Lett., 2020, 9(10), 1758–62. 

 doi: 10.1109/lWC.2020.3003743
4.  Datta, A. & Dasgupta, M. On accurate localization of 

sensor nodes in underwater sensor networks: a Doppler 
shift and modified genetic algorithm based localization 
technique. Evol. Intell., 2020. 

 doi: 10.1007/s12065-019-00343-1
5.  liu, B.; Tang, X.; Tharmarasa, R.; kirubarajan, T.; 

Jassemi, R. & Halle, S. Underwater target tracking in 
uncertain multipath ocean environments. IEEE Trans. 
Aerosp. Electron. Syst., 2020, 56(6), 4899–915. 

 doi: 10.1109/TAES.2020.3003703
6.  Zheng, y.; & yamane, k. Generalized Distance Between 

Compact Convex Sets: Algorithms and Applications. 
IEEE Trans. Robot., 2015, 31(4), 988–1003. 

 doi: 10.1109/TRO.2015.2451411
7.  Zou, y.; & liu, H. TDOA localization with unknown 

signal propagation speed and sensor position errors. IEEE 
Commun. Lett., 2020, 24(5), 1024–7. 

 doi: 10.1109/lCOMM.2020.2968434
8.  Drioli, C.; Giordano, G.; Salvati, D.; Blanchini, F. & 

Foresti, G. l. Acoustic Target Tracking Through a Cluster 
of Mobile Agents. IEEE Trans. Cybern., 2019, 1–14. 

 doi: 10.1109/tcyb.2019.2908697
9.  Wang, Z.; Zhang, H.; lu, T. & Gulliver, T. A. Cooperative 

RSS-based localization in wireless sensor networks using 
relative error estimation and semidefinite programming. 
IEEE Trans. Veh. Technol., 2019, 68(1), 483–97. 

 doi: 10.1109/TVT.2018.2880991
10.  kumar, B.; Sharma, P. & Singh, D. Development of scale 

and rotation invariant neural network based technique 
for detection of dielectric contrast concealed targets with 
millimeter wave system. Def. Sci. J., 2017, 67(6), 674. 

 doi: 10.14429/dsj.67.11452
11.  Saini, T. k. & Sharma, S. C. Context aware routing to 

assist routing decisions for quality improvement in multi 
hop ad hoc networks. Def. Sci. J., 2021, 71(1), 46–54. 

 doi: 10.14429/dsj.71.16067
12.  Ntalampiras, S. Moving vehicle classification using 

wireless acoustic sensor networks. IEEE Trans. Emerg. 
Top. Comput. Intell., 2018, 2(2), 129–38. 

 doi: 10.1109/TETCI.2017.2783340
13.  yan, J.; Guo, D.; luo, X. & Guan, X. AUV-aided 

localization for underwater acoustic sensor networks with 
current field estimation. IEEE Trans. Veh. Technol., 2020, 
69(8), 8855–70. 

 doi: 10.1109/TVT.2020.2996513
14.  Sun, S.; Zhao, C.; Zheng, C.; Zhao, C. & Wang, y. High-

precision underwater acoustical localization of the black 
box based on an improved TDOA algorithm. IEEE Geosci. 
Remote Sens. Lett., 2020, 1–5. 

 doi: 10.1109/lGRS.2020.3002169
15.  Ramírez-Mendoza, R.; Murdoch, l.; Jordan, l. B.; 

Amoudry, l.O.; Mclelland, S. & Cooke, R.D.  Asymmetric 
effects of a modelled tidal turbine on the flow and seabed. 



PRATEEk & ARyA : PERTURBATION PROPAGATION MODElS FOR UNDERWATER SENSOR lOCAlISATION USING SEMIDEFINITE

815

Renew. Energy, 2020, 159, 238–49. 
 doi: 10.1016/j.renene.2020.05.133
16.  lui, k. W. k.; Ma, W. k.; So, H. C. & Chan, F. k. W. Semi-

definite programming algorithms for sensor network node 
localization with uncertainties in anchor positions and/or 
propagation speed. IEEE Trans. Signal. Process., 2009, 
57(2), 752–63. 

 doi: 10.1109/TSP.2008.2007916
17.  Vybulkova, l.; Vezza, M. & Brown, R. Simulating the 

wake downstream of a horizontal axis tidal turbine using 
a modified vorticity transport model. IEEE J. Ocean. 
Eng., 2016, 41(2), 296–301. 

 doi: 10.1109/JOE.2015.2429231
18.  Zhang, y.; Xing, S.; Zhu, y.; yan, F. & Shen, l. RSS-

based localization in WSNs using Gaussian mixture 
model via semidefinite relaxation. IEEE Commun. Lett., 
2017, 21(6), 1329–32. 

 doi: 10.1109/lCOMM.2017.2666157
19.  Cheng, l.; li, y.; Xue, M. & Wang, y. An indoor 

localization algorithm based on modified joint 
probabilistic data association for wireless sensor network. 
IEEE Trans. Ind. Informatics, 2021, 17(1), 63-72. 

 doi: 10.1109/TII.2020.2979690
20.  Sun, S.; Zhang, X.; Zheng, C.; Fu, J. & Zhao, C. 

Underwater acoustical localization of the black box 
utilizing single autonomous underwater vehicle based 
on the second-order time difference of arrival. IEEE J. 
Ocean. Eng., 2020, 45(4), 1268–79. 

 doi: 10.1109/JOE.2019.2950954
21.  Alexandri, T.; Shamir, Z. Z.; Bigal, E.; Scheinin, A.; 

Tchernov, D. & Diamant, R. localization of acoustically 
tagged marine animals in under-ranked conditions. IEEE 
Trans. Mob. Comput., 2021, 20(3), 1126–37. 

 doi: 10.1109/TMC.2019.2959765
22.  Stinco, P.; Tesei, A.; Ferri, G.; Biagini, S.; Micheli, M. 

& Garau, B. Passive Acoustic Signal Processing at low 
Frequency With a 3-D acoustic vector sensor hosted on a 
buoyancy glider. IEEE J. Ocean. Eng., 2021, 46(1), 283–93. 

 doi: 10.1109/JOE.2020.2968806
23. Prateek & Arya, R. C-TOl: Convex triangulation for 

optimal node localization with weighted uncertainties. 
Phys. Commun., 2021, 46, 101300.

 doi: 10.1016/j.phycom.2021.101300
24. Prateek; Arya, R. & Verma, A. k. Non-coherent 

localization with geometric topology of wireless sensor 
network under target and anchor node perturbations. 
Wirel. Networks, 2021, 5(3), 2271-2286. 

 doi: 10.1007/s11276-021-02575-5

CONTRIBUTORS 

Mr Prateek received his BTech in ECE from SPSU Udaipur 
India in 2014 and MTech in Communication System 
Engineering from kIIT Bhubaneswar, India in 2017. He is 
currently pursuing PhD in the Department of Electronics and  
Communication Engineering at National Institute of Technology 
Patna, Bihar India. His research interests include Wireless 
Communication and Soft Computing Techniques.
Contribution in the current study, he did conceptualisation, 
simulation and computation as well as analysis of result.

Dr Rajeev Arya received PhD in Communication Engineering 
from Indian Institute of Technology (IIT Roorkee), Roorkee, 
India in 2016. He has received Ministry of Human Resource 
Development Scholarship (MHRD India) during M.Tech and 
PhD. He is currently working as an Assistant Professor with 
the Department of Electronics & Communication Engineering 
at National Institute of Technology, Patna, India. His current 
research interests are Communication Systems & Wireless 
Communication. 
Contribution in the current study, he did problem formulation, 
and supervise the overall research.


