Informe Planta Térmica

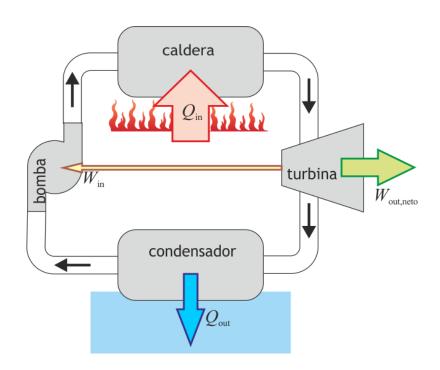
Presentado por

Grupo 3 Los Fuiciosos

Integrado por

Michael Steven Gonzales Calderón Juan Pablo Bustamante Torres Johant Stevent Pérez Garzón William Andrés Mendoza Galindo Wilmer Ramiro Castillo Parra

Presentado a


Ing. Jimmy Barco Burgos Ing. Hernán Mendoza

Seminario de Profundización
Eficiencia Energética en Planta Térmica y Motor Oxi-Hidrógeno
Coordinación Ingeniería Mecánica
Universidad ECCI
Bogotá
2016

INTRODUCCIÓN

La planta térmica es la instalación de varios sistemas que unidos son empleados para la generación de energía eléctrica a partir de la energía del calor [1] (normalmente es obtenida de la quema de combustibles fósiles como el carbón, productos del petróleo o gas natural), energía empleada y transmitida a un fluido para así generar movimiento mecánico que luego será transformado en energía eléctrica.

Su funcionamiento está regido por El Ciclo Rankine [2], que es un ciclo termodinámico que se basa en la conversión de calor en trabajo para generar potencia, éste ciclo utiliza un fluido que por lo general es agua, se conforma por cuatro sistemas básicos como una bomba de agua que aumenta la presión del fluido y un poco su temperatura, una caldera que transfiere el calor al agua convirtiendo un vapor a alta temperatura y alta presión, una turbina que consume la energía de presión y velocidad al vapor y por último un condensador que convierte nuevamente el vapor en agua.

OBJETIVOS

Descripción del funcionamiento de cada sistema y subsistema que componen la planta térmica.

Conocer los costos de operación de la planta térmica y determinar si es rentable o no su operación.

SISTEMAS DE LA PLATA TÉRMICA

SISTEMA

Ciclo Rankine Simple: Es un ciclo termodinámico que se basa en la conversión de calor en trabajo para generar potencia.

SUBSISTEMAS

ELEMENTO	IMAGEN	DESCRIPCIÓ	INF. TÉCNICA
BOMBA DE AGUA		Máquina que sirve para impulsar el agua a alta presión desde el tanque de llenado a la caldera.	Caudal Max: 6 GPM Caudal medio: 3 GPM Potencia: 1.5 HP Voltaje: 220/440 V Velocidad: 3500 RPM [3] Presión: 200 PSI
CALDERA		Es la encargada de la evaporación del agua, generando el calor a partir de la quema del combustible (ACPM), es de tipo piro tubular vertical de un paso, hecha de acero inoxidable.	Marca: Tecnik Capacidad: 15 BMP Presión de trabajo: 100 -125 PSI Presión Max: 150 PSI
TURBINA		Turbina de vapor de dos etapas que se acciona por la entrada del vapor a alta presión y temperatura haciéndola girar.	Marca: TV-01-2 Capacidad de generación: 2 KW A 6000 RPM Presión de trabajo: MÁX 10 BAR

		[5]
CONDENSADO R	Condensador tipo carcasatubos y es el encargado de condensar el vapor para volverlo agua.	Cantidad tubos 30, BWG 14 Long. 1000mm. Diámetro externo tubos 13,7 mm Diámetro interno tubos 9,19 mm

SUBSISTEMAS

Bomba de Agua: Máquina que sirve para impulsar el agua a alta presión de un lugar a otro.

ELEMENTO	IMAGEN	DESCRIPCIÓN	INF. TÉCNICA
TANQUE DE ALMACENAMIENT O		Su función es almacenar el agua para la bomba.	Capacidad: 30 Gal Presión: 5-09-045 Contenido: Agua Fabricado: Acero carbono.
SUAVIZADOR DE AGUA		Suavizador marca Disin y su función es tratar el agua para reducir el contenido de sales, minerales y metales. Esto gracias a medios mecánicos, químicos y/o electrónicos.	Altura: 60 in Diámetro de tuberías: ¾ in Presión diseño: 75 PSI Presión
TUBERÍA		Su función es transportar el agua a alta presión de la bomba hasta la caldera.	Tubería de 1 pulgada.

LLAVE REGISTRO PASO A CALDERA	Su función es dejar abierto o cerrar el paso de agua a la caldera.	Registro tubería pulgada.	para de 1
CHEQUE	Su función es que el agua tenga un caudal recto, evitando torbellinos.	Cheque tubería pulgada.	para de 1

Caldera: Es la encargada de la evaporación del agua, generando el calor a partir de la quema del combustible (ACPM).

ELEMENTO	IMAGEN	DESCRIPCIÓN	INF. TÉCNICA
Tanque de ACPM		Su función es conservar herméticamente el combustible y alimentar el tanque pre-dosificador y quemador de la caldera.	Volumen: 90 gal Capacidad: 340 L Diámetro: 300 mm Material: Lámina de acero HR de calibre 1/8. Mirilla de vidrio para verificar nivel.

Tanque Pre- dosificador de ACPM	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	Su función es dar a conocer la medida exacta de combustible que consume la caldera.	Capacidad: 28 L Tara que permite medición en rangos de 100 cm3. Material: Acrílico de espesor 1cm. [8]
Filtro de ACPM		Su función es limpiar las impurezas del combustible como contaminación en la producción, almacenamiento, contaminación con las impurezas y la oxidación presentes en el depósito o conductos y condensación de agua en el depósito. [9]	GPH (galones por hora): 17 Capacidad de filtrado. Presión: 52 PSI
Quemador de ACPM		Su función es succionar combustible del tanque para dosificar el quemador.	Presión: 200 PSI Frecuencia: 80HZ RPM: 3440 HP: 15 AMB: 40 °C
Tablero Electrónico 2	Conti,	Su función es controlar la caldera y cuenta con todos los elementos necesarios para la operación segura.	Dentro de este se encuentra el contactor y el guarda motor que son protecciones eléctricas.
Manómetro de Presión		Su función es dar a conocer la presión que está contenida en la caldera.	Marca: Honeywell Presión Max: 150 PSI Resolución: Bar: de 1 en 1 hasta llegar a 13.7 bar, Psi: de 2 en 2 hasta llegar a 200 Psi.

Válvula Mcdonnell	Su función es	Voltios Ac	y Dc
	censar el nivel de	Servici	Carga
	agua para así abrir	o motor	complet
	o cerrar el paso de		a
	esta y presión de	115	7.4
	vapor en la caldera	VAC	
	para evitar sobre	230	3.7
	cargas.	VAC	
		115	2.4
		CDC	
		230	1.2
		VDC	
Válvula de bola	Su función es	Marca:	Apollo
para paso de	permitir el paso de	Internation	nal .
vapor	vapor de la caldera	Flujo: 2,26	6 Lbs
·	al distribuidor una	Temp. Ma	x: 366 °F
	vez que la caldera	-	
	esté dentro de su		
	presión de		
	funcionamiento.		

Turbina: Turbina de vapor de dos etapas que se acciona por la entrada del vapor a alta presión y temperatura haciéndola girar

ELEMENTO	IMAGEN	DESCRIPCIÓN	INF. TÉCNICA
Generador	CHILD.	Su función es	RPM: 3600
		transformar la	Voltaje
		energía mecánica	AC: 120/240
	BREAKER 120V	de la turbina en	Voltaje DC:12V
		energía eléctrica,	Potencia Max: 2,9
		esto se genera	KW
		gracias a un	Corriente:
		fenómeno de	Monofásica
		inducción	
		electromagnética,	
		donde un conductor	[11]
		gira en el campo	
		magnético y así	
		inducir el voltaje en	
		el mismo conductor	
		llevándolo al lugar	
		deseado. [10]	

Correa de repartición		Su función es transmitir el movimiento de la turbina al generador.	Marca: Optibelt Serie: ZR 450 L N° Dientes: 120 Paso de Hilo: 9,525mm Ancho del cinturón: 12,70 mm [12]
Sensores RPM		Su función es informar las rpm a las cuales trabaja la turbina y generador.	Tipo: Sensor Inductivo Ref.: NBB2- 8GM30-E2-V1 Instalación: Enrasado Distancia de Conmutación: 2 mm Frecuencia de Conmutación: 0- 3000 Hz Corriente Trabajo: 0-100 mA [13]
Sobre calentador		Su función es elevar aún más la temperatura del vapor para que no haya partículas de agua.	V 220 trifásico Material acero carbón Resistencia 1000W y 220V, potencia 6 Kw (en 6 resistencia) Temperatura: 270 °C
Tablero Electrónico 5	ANGEO PARENTE ANGEO	Su función es permitir el encendido o apagado del sobrecalentador.	Dentro de este se encuentra un termostato que toma la señal de temperatura, el contactor que alimenta de energía las resistencias y pulsadores de encendido y apagado. [14]

Válvula PID		Es un mecanismo de control por realimentación ampliamente usado en sistemas de control industrial. Este calcula la desviación o error entre un valor medio y un valor deseado. [15]	Material hierro A 126 B Recorrido 15mm Señal de mando 4- 20 mA
Bombillos		Su función es recibir la energía eléctrica del generador para generar luz y calor.	Forma: Estándar Casquillo: E27 Voltaje: 230 V Vataje: 70 W Equivalencia en vatios: 92 W Consumo de energía por 1000 horas: 70 kW·h
Sensor de Presión	REE: S2015 RANGE: S-40000 DOTPUT: 4-2000A ACURACY: 0.5545 ACURACY: 0.5545 SEPIAL NO. 10110303	Su función es dar a conocer la presión a la cual está el vapor.	Referencia: 92015 Rango: 0-4 Bar Salida: 4-20mA Presión: 0.5% F.S Potencia: 24Vdc

Condensador: Es el encargado de condensar el vapor para volverlo agua.

ELEMENTO	IMAGEN	DESCRIPCIÓN	INF. TÉCNICA
Torre de		Su función es bajar	Peso 115 kg
Enfriamiento		la temperatura al	Peso Operación
		agua que llega con	250 kg
		alta temperatura ya	Caudal 41,4
		que es un	gal/min
		intercambiador de	Temperatura
		calor que utiliza un	Entrada 70°c
		aire frío y seco que	Temperatura
		está circulando por	Salida 40°c
		la torre, el agua	
		cae en forma de	
		lluvia a un e	
		intercambia calor	
		con el aire frío.	

		[17]	
Bomba de la Torre De Enfriamiento	ORRE DE ENFRIAMIENTO	Su función es arrastrar el agua a la torre para ser enfriada.	
Tablero Electrónico 3		Su función es permitir el encendido o apagado de la torre de enfriamiento.	arrancadores

COSTOS ASOCIADOS A LA OPERACIÓN DE LA PLANTA

Costo en combustible para llevarla a su punto de funcionamiento.

Volumen al iniciar la práctica

V=6.0 L

Volumen después de realizar la práctica

V= 5.0 L

Tipos de costos	Valor unitario	Cantidad consumo	Total consumo
Combustible	\$7.709 galón	1 litro = 0,264 G	\$2,035

0,264g *\$7,709 / 1 g

Nos da un resultado de consumo de la planta en tiempo de funcionamiento =\$2,035

Consumo de electricidad producida

Costo de electricidad para el funcionamiento de sistemas eléctricos y electrónicos.

Tipo consumo	Valor unitario	Total consumo	Valor total
electricidad	\$345,06 kwh	1300 watts=1.3 kwh	\$448,578

Si tenemos un 1 kwh que cuesta \$345,06 realizamos una regla de tres para obtener el costo consumo que fue de 1,3 kwh en el tiempo de funcionamiento.

Nos da un valor de producción de =\$448,578

Consumos de componentes

Tipo costo	Valor unitario	consumo	Valor consumo
Bomba caldera	\$ 345,06	1,11 kwh	\$383.01
Bomba torre enfriamiento	\$ 345,06	0.74 kwh	\$255,344
tablero	\$ 345,06	0,185kwh	\$63,83
Quemador	\$ 345,06	0,185 kwh	\$63,83
sobrecalentador	\$ 345,06	6 kwh	\$2070,36
		Total consumo	\$ 2.836

El consumo se realizó con un regla de tres:

Caldera

Esto nos da un resultado en pesos = \$ 383,01

Torre de enfriamiento

Para obtener un resultado en pesos

=\$ 255,344

Tablero de control y quemador

1 hp ----->0,74 kwh ½ hp ----->X

1/4 hp*0.74 kwh / 1 hp = (0.185 kwh * 345.06)*2

Para obtener un resultado en pesos de

= \$127,66

Sobrecalentador 6 kwh

Conclusiones

Llegamos a la conclusión según la práctica realizada en la planta y los datos obtenidos que no es rentable en producción de energía ya que la planta tiene mayor consumo a la producción obtenida como un ejemplo los datos obtenidos anteriormente.

Ejemplo:

Consumo
Combustible-----> \$2035
Electricidad -----> \$ 2836

\$4871

Producción obtenida en las 7 bombillas

\$ 418,518

WEB-GRAFÍA

- [1] https://mx.answers.yahoo.com/question/index?gid=20061203150930AAdEDcv
- [2] https://es.wikipedia.org/wiki/Ciclo_de_Rankine
- [3] http://www.igihm.com/index2.php?id=6&cod=3&item=A6&idTipo=A6a&est1=1&est2=1
- [4] Documento planta térmica ubicado en drive y suministrado por el docente Jimmy Barco.
- [5] Documento planta térmica ubicado en drive y suministrado por el docente Jimmy Barco.
- [6] Documento planta térmica ubicado en drive y suministrado por el docente Jimmy Barco.
- [7] Documento planta térmica ubicado en drive y suministrado por el docente Jimmy Barco.
- [8] Documento planta térmica ubicado en drive y suministrado por el docente Jimmy Barco.
- [9] http://www.fram-europe.com/es/productos/filtros-de-diesel.html
- [10] http://generadoreselectricos.info/funcionamiento/
- [11]http://www.energiaypotencia.com/tienda/divisiones-de-
- producto/energia/alternadores/alternadores-de-polea-883.html
- [12].http://www.imperiodascorreias.com.br/catalogos/correias-optibelt.pdf
- http://hud.powerbelt.eu/coll_timing_belt_technical_catalogus.pdf
- [13] http://files.pepperl-fuchs.com/selector_files/navi/productInfo/edb/052028_spa.pdf
- [14] Documento planta térmica ubicado en drive y suministrado por el docente Jimmy Barco.
- [15] https://makrodidactica.files.wordpress.com/2014/08/cap8-neumatica-proporcional.pdf
- [16]. https://www.download.p4c.philips.com/files/8/8727900951516/8727900951516_pss_e spes.pdf
- [17] http://www.epsem.upc.edu/intercanviadorsdecalor/castella/torres refredament.html