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Abstract— Deep Reinforcement Learning (DRL) has proven to be 

a very strong technique with results in various applications in 

recent years. Especially the achievements in the studies in the field 

of robotics show that much more progress will be made in this 

field. Undoubtedly, policy choices and parameter settings play an 

active role in the success of DRL. In this study, an analysis has 

been made on the policies used by examining the DRL studies 

conducted in recent years. Policies used in the literature are 

grouped under three different headings: value-based, policy-based 

and actor-critic. However, the problem of moving a common 

target using Newton's law of motion of collaborative agents is 

presented. Trainings are carried out in a frictionless environment 

with two agents and one object using four different policies. Agents 

try to force an object in the environment by colliding it and try to 

move it out of the area it is in. Two-dimensional surface is used 

during the training phase. As a result of the training, each policy 

is reported separately and its success is observed. Test results are 

discussed in section 5. Thus, policies are tested together with an 

application by providing information about the policies used in 

deep reinforcement learning approaches.  

Keywords-Deep Reinforcement Learning; Deep Learning; Multi 

Agent 

I.  INTRODUCTION 

Artificial intelligence helps us in many areas of our lives. It 
will be at the forefront in the future, especially with the 
developments in industry and health. Reinforcement 
learning(RL) is one of the popular algorithms in the field of 
artificial intelligence. With the combination of RL and deep 
learning(DL), a deep reinforcement learning approach has 
emerged. Due to the unsuccessful results of reinforcement 
learning in continuous environments, it has led researchers to a 
deep reinforcement learning approach. The policies used 
undoubtedly have an effect on the success of deep reinforcement 
learning approaches. Training will be successful with the policy 
used, taking into account factors such as the training 
environment, the problem presented, the qualifications of the 
agents, and the complexity of the target. We can group policies 
into three main categories as shown Fig.1. These are value-
based, actor-critic and policy-based policies.  
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In Policy-Based RL, the policy is randomly selected at the 
beginning and the value function of that policy is in the 
evaluation step. Then the new policy is found from the value 
function calculated in the optimization step. The process repeats 
until you find the most suitable policy. In this method, the policy 
is updated directly. 

In value-based policies, the random value function is initially 
selected and then the new value function is calculated. This 
process is repeated until you find the optimum value function. 
The aim here is that the policy that follows the optimal value 
function is the optimal policy. This policy is updated indirectly 
through the value function. 

Actor-critic policies are the approach that combines iterative 
learning methods used in value-based and policy-based 
methods. Also, actor-critic is accepted as the intersection of 
these two methods. 

We present an application to compare the policies used in the 
deep reinforcement learning approach. In this application, the 
two agents try to get another object out of the circle it is in in a 
frictionless environment. Agents strike the object and apply a 
force. This force occurs according to Newton's laws of motion. 
Using four different policy algorithms (PPO, AC, DQN, PG), 
the training of two homogeneous agents was carried out in the 
same environment. 

Deep reinforcement learning is a synthesis of deep learning 
and reinforcement learning methods. The policies chosen for use 
in the DRL directly affect the success of the system. An 
incorrectly chosen policy will cause the success rate to drop 
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Fig. 1. Categories of policy in Deep Reinforcement Learning 
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significantly. From this point of view, the success of the policies 
used in different studies has been examined and the artificial 
neural networks used together are presented in a table. Fig. 2 
shows the architecture of the DRL algorithm. 

Some studies related to deep reinforcement learning; The 

DRL approach presented for the autonomous driving problem 
[1], the CNN-based data enhancement technique [2], the study 
investigating biological swarm behavior techniques [3], and the 
study that regulates the most accurate broadcast band to establish 
communication between vehicles using DRL are presented [4]. 
An end-to-end policy has been developed for navigating in a 
crowded environment using Proximal Policy Optimization 
(PPO) [5]. The comparative training results of LSTM, RNN and 
CNN algorithms with DQN in an environment with fixed 
obstacles are presented [6]. One of the most impressive results 
in reinforcement learning is DeepMind [7], where an agent 
performs superhuman by observing only screen pixels. They 
also developed an algorithm that succeeded in Go [8] 
competition for the first time. more specifically, it has been used 
to learn policies in problems such as object detection [9], 
captioning [10] or activity recognition [11] and image 
classification [12]. 

As a result of the articles examined, comparative results of 
the methods preferred in the problems discussed in these articles 
are presented. The policies used in different environments and 
problems have been examined. In addition, it is discussed why 
these policies are chosen. Whether the observation space is 
continuous or discrete is an important factor in policy choices. It 
is clear that it will contribute to DRL and policies, since there 
are few similar studies in the literature. 

In section 2 provides information on deep reinforcement 
learning and policies. Section 3 discusses policy analysis and 
results. In chapter 4, the application environment in which 
collaborative agents are trained and the algorithms used are 
presented. Finally, in section 5, the result is given. Here, we 
summarize our major contributions as follows. 

- To the best of our knowledge, this study examined recent 
studies of deep reinforcement learning in the literature. In 
addition, it offers a collaborative deep RL solution for the multi-
agent problem. 

- For the proposed problem, 4 different policies were trained 
separately and the results were reported. 

-The use of deep reinforcement learning algorithms in which 
problems was explained with the analysis made. Also, the 
policies used with DRL are explained in detail. 

II. DEEP REINFORCEMENT LEARNING ALGORITHMS 

COUPLED WITH POLICIES 

Neural networks play a major role in approximating the 

optimal value functions of reinforcement learning algorithms. 

For this reason, in many problems, especially in the field of 

robotics, artificial neural networks are used with reinforcement 

learning algorithms. In this section, DRL algorithms and 

policies used are presented in detail. In this context, there is a 

terminology used to describe the components of a DRL 

environment: 

Agent: The decision-maker to train. 

Environment: The general setting where the agents learn and 

decide what action to take. 

Action (𝑎) : One among the set of possible actions the agent can 

perform 

State (𝑠): Condition that the agent is in 

Reward (𝑟): The gain or loss the agent receives from the 

environment because of its own action 

Policy (𝜋): The strategy that the agent chooses to pursue. It 

represents a mapping between the set of situations and the set 

of possible actions. 

Off-policy: Policy have an experience replay memory, so the 

agent can learn from previous data. 

On-policy: The agents only learn about new data or 

observations. 

Model free:  It means that the agent receives data directly from 

the environment rather than making its own guess about the 

environment. 

Machine learning is an area of artificial intelligence that has 

been developed since the 1960s. In machine learning, 

experience is gained from previous actions to increase success 

in solving a problem. Machine learning is examined under three 

main headings. These; supervised learning, unsupervised 

learning and reinforcement learning. The main goal in 

supervised learning is to make an inference from labeled data, 

in unsupervised learning, results are obtained from techniques 

such as prediction or clustering using unlabeled data. 

Reinforcement learning learns to improve his performance by 

interacting with his environment and using the reward-penalty 

system [13]. The agent chooses an action for each possible 

situation and completes its action. An agent maximizes the 

rewards he receives by repeating highly rewarding actions. In 

this process, it should not choose for new actions to discover 

the right actions. One of the most basic examples of strategies 

used to manage this decision is the ɛ-greedy [14] approach. The 

main goal in this strategy is for the agent to investigate the 

environment as much as possible in the first episodes, and 

Fig. 2. Deep Reinforcement Learning architecture 
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prefer exploitation to more than gradual exploration in the next 

steps. Q-function’ defined as:(1) 

Q
π
(s,a)=Eπ{∑ γkH-1

k=0 rk+1|s0=s,a0=a}               (1) 

In the RL problems, an agent interacts with  environment 

represented as a series of sϵS states. The agent selects an action 

(at) from the action space (A) at each step (st) and receives a 

reward (rt) for this action, repeating this action continuously in 

next states (st + 1). The agent's goal is to maximize future 

cumulative rewards. Accordingly, the agent tries to improve its 

policy (π (a | s)) in which he chooses his actions to find out the 

most appropriate policy (π). One of the differential feature of 

reinforcement learning is the use of the reward signal to 

formulate a goal. With the reward it receives, the agent is not 

informed about what its next action will be, the ultimate goal is 

to maximize the total amount of reward in the long time. That 

is, the reward represents the signal that will lead to the final 

goal. 

Formally, Markov Decision Processes (MDP) are sequential 

decision-making processes in which actions affect not only the 

next reward but also the next states. MDP is a discrete stochastic 

control process. Each problem that the agent aims to solve can 

be thought as a sequence of states (S1, S2, S3…) as shown 

eq.(2). Current state means transition s for the next state, it can 

occur only with a certain possibility. 

ℙ[𝑆𝑡+1|𝑆𝑡] = ℙ[𝑆𝑡+1|𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑡] (2) 

The actions of reinforcement learning algorithms are based 

on probability distributions of Q values. Real world problems 

have continuous or very large discrete state areas. In this case, 

it seems that every possible state is not taken into account. In 

DRL, neural networks are used as a nonlinear function 

approximation to overcome this problem. Especially in recent 

years, outstanding works have been achieved in studies in the 

field of deep learning (language processing, image processing, 

etc.). These developments have led to an increased interest in 

combining RL with neural networks. In DRL, neural networks 

take situations as input and output the possible action. Neural 

network architecture in DRL consists of at least two 

components. These; different number of hidden layers and 

action layers (pooling layer, fully connected layer, etc.) as 

shown Fig.3. 

Model-free algorithms learn a policy or value function 

without making a prediction for the next state or reward. In 

model-based algorithms, the agent learns a model to select an 

action. These algorithms have been particularly successful in 

robotics. 

Correct use of policies is very important for reinforcement 

learning. Therefore, it is necessary to pay attention to the nature 

of the problem in policy selection. Choosing the right neural 

network with policy will increase the success of training. In this 

section, information is given about the policies used in 

reinforcement learning. Table 1 shows the main characteristics 

of the policy types used in the DRL. 

TABLE 1. MAIN CHARACTERISTIC OF THE POLICY IN DRL 

Policy Method Type Action Space 
Q-Learning Off-policy Value-Based Discrete 

DQN Off-policy Value-Based Discrete 

Sarsa On-policy Value-Based Discrete 

PG(Monte 

Carlo) 

On-policy Policy-Based Discrete or Continuous 

AC On-policy Actor-Critic Discrete or Continuous 

PPO On-policy Policy-Based Discrete or Continuous 

DDPG Off-policy Policy-Based Continuous 

TD3 Off-policy Policy-Based Continuous 

Soft AC Off-policy Actor-Critic Continuous 

 

We can examine the policy algorithms used in 

reinforcement learning studies in the literature in three different 

methods. The training algorithms of the policies presented in 

this article are presented in the appendix. 

A.  Value-Based Methods 

In this method, the value function is used to show the success 
of the state and by learning the optimal value function, the 
optimal policy is learned. Deep-Q learning, Q-learning and 
Sarsa algorithms can be given as examples of value-based 
method. 

1) The Q-Learning algorithm 
Q-Learning [13] is a model free and off policy RL algorithm. 

Also, the observation space can be continuous or discrete. The 
action space is discrete. During the training phase, the agent 
explores the field of action using ϵ -greedy exploration. At each 
step it chooses a random action based on the ϵ value, otherwise 
it performs a greedy action according to the 1-ϵ function. To 
predict the value function, a Q-learning agent uses neural 
network Q (S, A), which is a table or function approximation. 
This network takes S (observation) and A (action) as input and 
returns long-term expectation of rewards as output. Once the 
training is complete, the trained value-function approximation Q 
(S, A) is also stored.  

2) Deep Q-Network (DQN) 

DQN is a model free and off policy DRL algorithm. The 

observation space can be discrete or continuous, while the 

action space is discrete. DQN trains a network to predict future 

rewards. During the training, neural network parameters are 

updated at each step, the training area is explored using ϵ-

greedy, this action is repeated according to the determined 

Fig. 3. The interaction of the environment with the Deep Reinforcement 
Learning 
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discount factor ratio, previous experiences are stored in the 

experience buffer, the neural network is updated according to 

the mini-batch experience randomly sampled from the buffer. 

Calculates the two function approximations to estimate the 

DQN value function.  

Q (S, A): Observation (S) and action (A) are taken as input, and 

the value corresponding to long-term reward is output. 

Target Q '(S, A): The neural network is periodically updated 

according to the parameter settings to stabilize the best result. 

Both functions have the same structure and parameters.  

3) SARSA 

Sarsa is a model free and on policy RL algorithm [15]. The 

Sarsa can be trained as an observation space in discrete or 

continuous environments. It can be trained in discrete 

environments as an action space. During the training, the agent 

does the explore process using ϵ-greedy. To estimate the value 

function, a Q- table or function approximation Q (S, A) is 

calculated. After the training is completed, the trained value 

function is save in the network approximation Q (S, A).  

B. Policy-based Methods 

One of the main differences between value-based and policy-

based methods is the methods they use during decision-making 

[11]. However, while value-based methods evaluate the best 

overall reward, policy-based methods focus on finding the most 

appropriate policy for training. Algorithms that implement a 

policy that decides which action to choose in each training step 

are called policy-based algorithms. Policy-based algorithms are 

more appropriate to be applied in stochastic environments or 

environments with high-dimensional actions, as they can 

represent continuous actions. 

1) Policy Gradient (PG) 

PG is a on policy and model free RL algorithm. It is also a 

policy-based algorithm that directly calculates the optimal 

policy that maximizes long-term reward. Agents trained with 

the PG algorithm can be trained in environments with discrete 

or continuous observations and actions space. During the 

training, it predicts the probabilities of realization of each action 

in the action environment and randomly chooses the actions 

according to the possibility distribution. It completes the first 

training episode without gaining any experience and updating 

policy parameters.  

2) Proximal Policy Optimization (PPO) 
PPO [5] is a model free and on policy RL algorithm. This 

algorithm is a type of PG training that uses stochastic gradient 
descent to sample data through environmental interaction. 
Agents trained with the PPO algorithm can be trained in 
environments with a discrete or continuous observation space 
and action space. During the training of the PPO agent, the 
possibilities of each action in the action space are estimated and 
randomly selects actions based on their possibility distribution. 
Also, many episode interact with the environment using the 
current policy before using mini-batch to update the parameters 

of neural networks. It uses two function approximations to 
predict the policy and value function: 

Actor μ(S): The first network (actor) takes the S 
(observation) and returns the rates at which each action is 
performed in the action field. 

Critic V(S): The second network(critic) takes, the S 
(observation), and returns its expectation corresponding to 
discounted long-term reward. 

After the training is completed, the optimal policy 
parameters trained are stored in μ (S).  

3) Deep Deterministic PG (DDPG)  

The DDPG [16] is a model free and off policy RL algorithm. 

A DDPG algorithm uses an actor-critic framework that 

calculates the optimal policy, making the long-term reward the 

greatest. DDPG can be trained in continuous or discrete 

observation space. It can also be trained in the continuous action 

space. During the training phase, the actor-critic properties are 

updated in each learning step. 

Past experiences are stored by the experience buffer. The 

algorithm updates the actor-critic, using experience as much as 

the mini-batch that it randomly selects from the buffer. DDPG 

uses 4 different function approximations to calculate the policy 

and value function [17]. 

Actor μ(S): The actor takes the S (observation) and performs an 

action to maximize the long-term reward. 

Target Actor μ'(S): Periodically updates the target actor to 

improve the optimization stability of the agent. 

Critic Q(S, A): Critic takes the S (observation) and A (action) 

as input and returns its value corresponding to the long-term 

reward. 

Target Critic Q'(S, A): The agent updates target critic 

periodically to optimize its stability. 

At the end of the training, the trained optimum policy actor is 

stored as μ (S). 

4) Twin-Delayed DDPG (TD3) 
TD3 is a model free and off policy RL algorithm. This 

learning algorithm adopts a method for reduce the 
overestimation in function approximation. This method is 
similar to the one implemented in the DDPG algorithm. It learns 
two different Q-value functions. Also TD3 prefer the minimum 
value function guess during policy updates [18]. 

The TD3 algorithm can be trained in environments with 
continuous or discrete observation space and continuous action 
space. A TD3 algorithm during the training, Updates the actor 
and critic parameters at each time step during learning. The 
agent use mini-batch of experience for updates the actor-critic.  

C. Actor-Critic Based Methods 

This methods are mixed methods that combine the benefits 

of policy based and value based approaches. The actor is 

responsible for choosing actions [19]. This evaluation 
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determines whether the expected situation is worse or better than 

the chosen action. Makes gradient-based learning in both 

networks. If J(θ):=Eπθ[r] equation represents a policy then θ is 

a DNN parameter. Since improvement can be costly and slow in 

continuous action environments, the DPG (Deterministic Policy 

Gradient) algorithm represents actions by parameterizing them 

as in the equation μ(s|θ
μ) [17]. 

1) Actor-Critic (AC) 
AC is a model free and on policy RL algorithm [20]. The 

purpose of agents using the AC algorithm is to train the actor to 
directly optimize and calculate critic future rewards. In addition, 
AC agents can be trained in environments that have an 
observation and action space that are continuous and discrete. 

During training, an AC agent predicts their probability of 
performing every action in the action area. It then randomly 
chooses actions based on their probability distribution. The AC 
agents interact with the environment for multiple steps using the 
existing policy before updating the actor and critic parameters. 

To prediction the policy function and value function, an AC 
agent uses two function approximators: 

Actor μ(S): First one is actor algorithm. It takes S 
(observation) and returns the probabilities of taking each action 
in the action space when in state S. 

Critic V(S): Second one is critic algorithm. It takes S 
(observation) and returns the corresponding anticipation of the 
discounted long-term reward. 

The trained optimal policy is stored in μ(S) after the training. 

III. POLICY ANALYSIS STUDY  

In the previous section, the policies frequently used in the 
literature are explained. In this section, methods used in articles 
on deep reinforcement learning published in recent years are 
analyzed. In these article, artificial neural networks and policies 
used especially in the applications are examined. Table 2 shows 
the types of problems of the studied article, which policy they 
prefer and which neural network they use. 

When Table 2 is examined, it is seen that policy-based 
algorithms are generally preferred for image processing-based 
problems, and value-based algorithms are preferred for signal 
processing-based problems. Actor-Critic based policies are 
preferred in more complex continues environments.  

Furthermore, preferred policies differ in problems where 
discrete and continuous environments are used. It has been 
observed that more value-based policies are used in discrete 
environments and actor-critic based policies are used in 
continuous environments.  

In summary, LSTM has been successful as an artificial 
neural network in areas such as trading, speech recognition and 
autonomous driving. The memory usage strategy of the LSTM 
architecture has increased its success in these areas. In addition, 
the use of Q-learning algorithms with LSTM is preferred in such 
problems. The success of the DDPG policy algorithm in multi-
agent environments is clear. 

TABLE 2. TYPE OF PROBLEMS IN ARTICLES 

Type of Problem Used Policy Used NN 

Autonomous Driving [1] [21] 

[6] [22] 

Sarsa, Q-Learning, 

DDPG 

CNN, 

LSTM, RNN 

Data Augmentation. [2] [23] AC,PPO CNN 

Chip Placement [5] PPO CNN 

Action Controller for 

Multiplayer Games [24] 

Dual PPO LSTM 

Learning for Trading [25] [26] DQN,PG,AC LSTM, CNN 

Energy Consumption 
Forecasting [27] 

A3C,DDPG,RDPG LSTM 

Wind Speed Short Term 

Forecasting [28] 

Q-Learning LSTM 

İmage Segmentation [29] [30] Q-Learning, DDPG CNN 

Policies for Multi-Agent 
Control [31] [32] [33] [34] [35] 

PG,DDPG,DQN CNN 

Intelligent System [36] [37] Q-Learning, DDPG LSTM,CNN 

Minimalistic Attacks [38] [39] 

[40] 

DQN,PPO,AC, 

DDPG,PG 

CNN 

New Policy Method [41] [42] PPO CNN 

Learning of Speech [43] [44] 

[45] 

Q-Learning, PPO CNN,LSTM 

Moving Obstacle Avoidance 
[46], [3] 

PG, AC, PPO CNN 

Learning with Robust and 

Smooth Policy [47] 

TRPO, DDPG CNN 

Object Detection in Large 
Images [48] [49] [50] [51] [52] 

PG,DQN CNN 

Automatic Landing Control 

[53] [54] [55] 

DDPG,AC,DQN CNN 

Cooperative Internet of UAVs 
[56] 

AC CNN 

 

IV. COLLABORATIVE MULTI-AGENT SIMULATION 

A. Simulation Environment  

By using deep reinforcement learning, successful studies 

have been carried out in multi-agent problems as well as in 

single agent problems. In this study, the interaction of two 

collaborative agents with a common goal is presented. The 

purpose of agents is to get an object out of its location as quickly 

as possible. Accordingly, agents move by applying force to the 

object in cooperation.  

Fig. 4. Training and test environment 
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The results were observed by training the agents with 4 

different algorithms. The 4 algorithms used (PPO, AC, DQN, 

PG) are explained in detail in Chapter 2. Fig. 4 shows the 

training area. The red circle represents agent A, the green circle 

represents agent B, and the blue circle represents the target 

object. 
For this environment: 

The 2-dimensional space is bounded from –12 m to 12 m in 
both the X and Y directions. 

The contact spring stiffness and damping values are 100 N/m 
and 0.1 N/m/s, respectively. 

The agents share the same observations for positions, 
velocities of A, B, and C and the action values from the last time 
step. 

The simulation terminates when target object moves outside 
the circular ring. 

At each time step, the agents receive the following reward: 

𝑟𝐴 = 𝑟𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑟𝑙𝑜𝑐𝑎𝑙,𝐴 

𝑟𝐵 = 𝑟𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑟𝑙𝑜𝑐𝑎𝑙,𝐵 

𝑟𝑔𝑙𝑜𝑏𝑎𝑙 = 0.001𝑑𝑐 

𝑟𝑙𝑜𝑐𝑎𝑙,𝐴 = −0.005𝑑𝐴𝐶 − 0.008𝑢2𝐴 

𝑟𝑙𝑜𝑐𝑎𝑙,𝐵 = −0.005𝑑𝐵𝐶 − 0.008𝑢2𝐵 

Here: 

𝑟𝐴 and 𝑟𝐵 are the rewards received by agents A and B, 

respectively. 

𝑟𝑔𝑙𝑜𝑏𝑎𝑙  is a team reward that is received by both agents as object 

C moves closer towards the boundary of the ring. 

𝑟𝑙𝑜𝑐𝑎𝑙,𝐴 and 𝑟𝑙𝑜𝑐𝑎𝑙,𝐵 are local penalties received by agents A and 

B based on their distances from object C and the magnitude of 

the action from the last time step. 

 𝑑𝐶  is the distance of object C from the center of the ring. 

 𝑑𝐴𝐶  and  𝑑𝐵𝐶are the distances between agent A and object C 

and agent B and object C, respectively. 

𝑢𝐴 and 𝑢𝐵   are the action values of agents A and B from the 
last time step. 

Fig. 5 shows the working principle of the training simulation. 
Simulations were run on an Intel(R) Core(TM) i5-7200U CPU 
with 2.70 GHz clock rate and 8 GB of RAM. 

 

 

 

 

 

 

B. Experiment Results 

The parameters used in the experiments are determined the 

same. The training options specified in Table 3 are set to train 

the agents. The training is ran a maximum of 800 episodes with 

a maximum of 5000 time steps for each segment. Training is 

stopped when the average reward for 100 consecutive episodes 

is -10 or more. These experiments uses different policy agents 

with discrete action spaces. 

TABLE 3. PARAMETERS OF TRAINING ENVIRONMENT 

Parameter Value 

Max Episodes 800 

Time  Steps Per Episode 5000 

Score Averaging Window Length 100 

Stop Training Value -10 

 

1) Experiment I 
The PPO algorithm is used in the first experiment. PPO 

algorithms support actor and critic that use recurrent DNN as 
functions approximators. The training results of the two 
different agents are given in Fig.6 and 7. 

 

 

 

 

 

 

 

Fig.5. The working principle of training simulation 

Fig. 6. Episode reward for PPO with agent A 
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Examining the training results, it is seen that the agents 
reached the ideal success point during the 800-episode training. 
The training lasted approximately 4 hours and 50 minutes. At 
the end of the training, agent A's average reward was -10.68, and 
agent B's average reward was -11.18. 

2) Experiment II 

The PG algorithm is used in the second experiment. PG 

algorithms use the REINFORCE algorithm either with or 

without a baseline. The training results of the two different 

agents are given in Fig.8 and 9. When the figures in Experiment 

2 were examined, it is seen that PG agents could not learn 

regularly. One of the reasons for this may be that the maximum 

training episode is not sufficient. Experiments can be done to 

solve this problem in the next study. The training lasted 

approximately 9 hours . At the end of the training, agent A's 

average reward was -228.57, and agent B's average reward was 

-193.47. 

 

3) Experiment III 

The DQN algorithm is used in the third experiment. DQN 

algorithms support critic that use recurrent DNN as functions 

approximators. In the DQN algorithm, unlike the others, the 

average reward value was changed from -10 to +10 in order to 

terminate the training. This is because DQN trains a single 

network and the reward average may be higher in the first 

episodes than others. The training results of the two different 

agents are given in Fig.10 and 11. When the figures were 

examined, it is seen that the DQN algorithm has successfully 

completed the 800-part training. Continues as soon as possible 

and with maximum reward, especially after the 400th episode. 

The training lasted approximately 2 hours. At the end of the 

training, agent A's average reward was -3.65, and agent B's 

average reward was -1.7. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4) Experiment IV 
The AC algorithm is used in the third experiment. Agents 

trained with AC soon reached the ideal average reward line. The 
training lasted 2 hours and 20 minutes in total. In the AC 
algorithm, unlike the others, the average reward value was 
changed from -10 to +10 in order to terminate the training. The 
reason for this is to ensure that the training lasts 800 episodes. 
At the end of the training, agent A's average reward was -7.2, 
and agent B's average reward was -7.3. The training results of 
the two different agents are given in Fig.12 and 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Episode reward for PPO with agent B 

Fig.8. Episode reward for PG with agent A 

Fig.9. Episode reward for PG with agent B 

Fig. 11. Episode reward for DQN with agent B 

Fig. 10. Episode reward for DQN with agent A 

Fig.12. Episode reward for AC  with agent A 

Fig.13. Episode reward for AC  with agent B 
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C. Test Results of Collaborative Task problem 

According to the test results indicated in the Fig.14 the DQN 

agent was able to remove the blue object from the circle it was 

in as quickly as possible. In addition, DQN completed its 

training in a shorter time compared to other algorithms during 

the training phase. PG algorithm was not successful at the end 

of 800 episodes of training and could not complete its task in 

50 seconds test period. PPO and AC algorithms have completed 

their tasks in about a period of time. The biggest feature that 

distinguishes DQN algorithm from others is that it is value 

based. 

 

All DRL algorithms proposed in Table 4 include model-free. 
So, none of the above are trying to estimate the objective 
function. Alternatively, these algorithms update their knowledge 
based on heuristic approach. The difference of DQN algorithm 
from other algorithms is that it is off-policy. Due to this 
difference, it has been more successful than other algorithms. 
PPO has improved its performance by changing the target 
function to reduce the complexity of implementation and 
computing. PPO agents get rid of the computation created by 
forced optimization as it suggests a clipped surrogate objective 
function. 

 

 

 

 

 

 

TABLE 4.COMPARATIVE PROPERTIES OF THE ALGORITHMS USED IN THE 

EXPERIMENTS 

 

 

V. CONCLUSION 

 
Artificial intelligence is a field of study that aims to 

understand intelligence and create intelligent entities. The fastest 
progress in this area has been provided by the studies in the field 
of machine learning. In the studies conducted in the field of 
machine learning, reinforcement learning has been maintaining 
its popularity in recent years. With the technological 
developments in robotic and industry, artificial intelligence will 
be in our lives for many years. 

Two different studies are presented in this article. Both 
studies emphasize the importance of policy choices in deep 
reinforced learning problems. First, DRL studies published in 
recent years have been examined. In these studies, what kind of 
problems are used and which policies are preferred for these 
problems have been investigated. According to researches, 
policy choices are directly related to the training environment 
and the problem. The importance of choosing the right policy 
for a successful outcome has emerged. It is seen that DDPG 
algorithms are used and successful, especially in the robotic 
field. Although policy choice is important, the choice of artificial 
neural networks used in deep reinforced learning is also 
important. It has been determined that LSTM architecture is 
used in language processing problems and CNN architecture is 
used in image processing problems. In future studies, especially 
the development of hybrid systems will increase the success in 
solving many problems. 

In the second study, two different agents acting with a 
collaborative approach were trained with four different policy 
algorithms and their results were compared. As seen in the test 
results, the agent trained with the DQN algorithm successfully 
completed its task in 39 seconds, the agent trained with the ppo 
algorithm in 915 seconds, and the agent trained with the Ac 
algorithm in 111 seconds. However, the agent trained with the 
PG algorithm could not complete the task in the specified time. 
The fact that this problem is in discrete action space has been 
effective in the chosen policies. Accordingly, the DQN 
algorithm has been more successful than the others. Since he 
only needed to train one network, the training time was shorter 
than the others. 

 

 

Policy Method Type Model Action 

Space 

Observation 

Space 

DQN Off-
policy 

Value-
Based 

Model-
free 

Discrete Continuous 

PG(Monte 

Carlo) 

On-

policy 

Policy-

Based 

Model-

free 

Discrete or 

Continuous 

Continuous 

AC On-
policy 

Actor-
Critic 

Model-
free 

Discrete or 
Continuous 

Continuous 

PPO On-

policy 

Policy-

Based 

Model-

free 

Discrete or 

Continuous 

Continuous 

(a) 

 (c) 

(b) 

(d) 

Fig.14.  Test result of algorithms after training 

 ( a- PPO, b- PG, c- AC, d-DQN ) 
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APPENDIX 

 

The training algorithms of the policies presented in this 

article are given in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Training algorithm of Q-Learning 

Fig. 16. Training algorithm of Deep Q- Learning 
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Fig.17. Training algorithm of  SARSA 

Fig.18. Training algorithm of PG 

http://www.ijcit.com/


International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 10 – Issue 3, May 2021 
 

www.ijcit.com    137 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.19. Training algorithm of  PPO 
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Fig. 20. Training algorithm of DDPG 

Fig.21. Training algorithm of TD3 
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Fig. 22. Training algorithm of AC 
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