Robert H. Collins,⁸ Gabriel N. Mannis,⁹ Daniel A. Pollyea,¹⁰ Will Donnellan,¹¹ Amir T. Fathi,¹² Arnaud Pigneux,¹³ Harry P. Erba,¹⁴ Gabrielle T. Prince,¹⁵ Anthony S. Stein,¹⁶ Geoffrey L. Uy,¹⁷ James M. Foran,¹⁸ Elie Traer,¹⁹ Robert K. Stuart,²⁰ Martha L. Arellano,²¹ James L. Slack,²² Mikkael A. Sekeres,²³ Christophe Willekens,³ Sung Choe,²⁴ Hongfang Wang,²⁴ Vickie Zhang,²⁴ Katharine E. Yen,²⁴ Stephanie M. Kapsalis,²⁴ Hua Yang,²⁴ David Dai,²⁴ Bin Fan,²⁴ Meredith Goldwasser,²⁴ Hua Liu,²⁴ Sam Agresta,²⁴ Bin Wu,²⁴ Eyal C. Attar,²⁴ Martin S. Tallman,² Richard M. Stone,²⁵ Hagop M. Kantarjian¹

¹University of Texas MD Anderson Cancer Center, Houston, Texas, United States; ²Memorial Sloan Kettering Cancer Center, New York, New York, United States; ³Institut Gustave Roussy, Villejuif, France; ⁴Weill Cornell Medical College, New York, New York, United States; ⁵Northwestern University, Chicago, Illinois, United States; ⁶Ohio State University Wexner Medical Center, Columbus, Ohio, United States; ⁷Sylvester Comprehensive Cancer Center, Miami, Florida, United States; ⁸UT Southwestern Medical Center, Dallas, Texas, United States: ⁹UCSF Helen Diller Family Comprehensive Cancer Center. San Francisco, California, United States; ¹⁰University of Colorado School of Medicine, Aurora, Colorado, United States; ¹¹Sarah Cannon Research Institute, Nashville, Tennessee, United States; ¹²Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States; ¹³CHU Bordeaux, Bordeaux, France; ¹⁴University of Alabama at Birmingham, Birmingham, Alabama, United States; ¹⁵Johns Hopkins University, Baltimore, Maryland, United States; ¹⁶City of Hope Medical Center, Duarte, California, United States; ¹⁷Washington University School of Medicine, St Louis, Missouri, United States; ¹⁸Mayo Clinic, Jacksonville, Florida, United States; ¹⁹OHSU Knight Cancer Institute, Portland, Oregon, United States; ²⁰Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States; ²¹Winship Cancer Institute of Emory University, Atlanta, Georgia, United States; ²²Mayo Clinic, Phoenix, Arizona, United States; ²³Cleveland Clinic, Cleveland, Ohio, United States; ²⁴Agios Pharmaceuticals, Inc., Cambridge, Massachusetts, United States; ²⁵Dana-Farber Cancer Institute, Boston, Massachusetts. United States

Context: Ivosidenib (IVO; AG-120) is an oral, targeted inhibitor of mutant isocitrate dehydrogenase 1 (mIDH1) that is being evaluated in a phase 1 dose escalation and expansion study of mIDH1 advanced hematologic malignancies (NCT02074839). **Objective:** To report updated efficacy and safety data from all patients with relapsed/refractory acute myeloid leukemia (R/R AML) receiving IVO 500 mg once daily (QD). **Methods:** The primary efficacy endpoint was the CR+CRh rate (complete remission [CR] according to modified IWG 2003 criteria plus CR with partial hematologic recovery [CRh]). CRh was defined as absolute neutrophil count >0.5 × 10⁹/L and platelet count >50 × 10⁹/L. The overall response rate (ORR) comprised CR, CR with incomplete hematologic or platelet recovery, partial response, and morphologic leukemia-free state. The data cutoff date for this analysis was Nov 10, 2017. **Results:** A total of 258 patients were treated with IVO.

-Abstracts

Among 179 R/R AML patients who received IVO 500 mg QD, 17 (9.5%) remained on treatment at data cutoff. In R/R AML patients, the CR+CRh rate was 31.8% (95% CI: 25.1%, 39.2%), including CR in 24.0% (95% CI: 18.0%, 31.0%). Median duration of CR+CRh was 8.2 months (95% CI: 5.6, 12.0), and median duration of CR was 10.1 months (95% CI: 6.5, 22.2). The ORR was 41.9% (95% CI: 34.6%, 49.5%). Treatment was well tolerated; the most common adverse events (AEs) of any grade, irrespective of causality and occurring in ≥25% of 179 R/R AML patients were diarrhea (33.5%), leukocytosis (31.3%), nausea (31.3%), febrile neutropenia (29.1%), fatigue (28.5%), and electrocardiogram QT prolonged (25.7%). The majority of these AEs were grade 1-2 and unrelated to treatment. IDH differentiation syndrome (IDH-DS) was reported in 19 of 179 (10.6%) patients, including grade \geq 3 IDH-DS in 9 (5.0%); study drug was held owing to IDH-DS in 6 patients (3.4%), and no instances of IDH-DS led to dose reduction, permanent treatment discontinuation, or death. Updated mutation clearance results will be provided. Conclusions: In a high-risk, molecularly defined R/R AML patient population, IVO induced durable remissions and was well tolerated. Studies in previously untreated AML populations are ongoing. Keywords: acute myeloid leukemia, AG-120, ivosidenib, clinical trial, relapsed AML

AML-232

Pre-Treatment Risk Assessment for Elderly Patients with Acute Myeloid Leukemia

Mónica Arévalo-Zambrano^{*},^{1,2} Virginia Abello-Polo,^{1,2} Olga-Paola Omaña-Orduz,³ Licet Villamizar-Gómez¹

¹ Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia; ²Servicio de Hematologí, Hospital de San José, Bogotá, Colombia; ³Servicio de Hematología, Hospital Universitario Clínica San Rafael, Bogotá, Colombia

Context: The treatment of AML in older adults is limited by the high mortality related with induction chemotherapy; however, those who tolerate an intensive treatment will have better outcomes; therefore, selecting this group of patients through the use of functionality scales is a fundamental part of the initial therapeutic approach. Risk assessment scales have been designed and validated by other authors; in our country they have not been routinely used until now. Objective: To describe 8-week treatment related and 1year mortality in AML patients, older than 60 years, after selecting treatment based on functionality risk scores (FRS), at two hospitals in Bogotá. Design: An observational study was performed, analyzing early mortality in two cohorts; a retrospective, including patients treated from 2010-2015 and a prospective one, from 2015 to 2018, in which the treatment was selected according FRS (SPPB, CCI and MD Anderson Predictive Score). Setting: Patients were treated in two university hospitals in Bogotá, Colombia. Patients: AML patients older than 60 years; acute promyelocytic leukemia patients were excluded. Interventions: FRS were assessed at diagnosis, high risk patients received supportive care, intermediate risk received 5-Azacitidine or low dose ARA-C, low risk patient were