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Abstract (151 words) 

Amyotrophic lateral sclerosis (ALS) is a relentless neurodegenerative disease of the human motor 

neuron system, where variability in progression rate limits clinical-trial efficacy. Therefore, better 

prognostication will facilitate therapeutic progress. Here, we investigate the potential of plasma 

cell-free microRNAs as ALS prognostication biomarkers, in 252 patients with detailed clinical-

phenotyping. First, we identified in a longitudinal cohort miRNAs, whose plasma levels remain 

stable over the course of disease. Next, we demonstrated that high miR-181 levels, a miRNA 

enriched in neurons, predicts a >2-fold risk of death in independent discovery and replication 

cohorts (126 and 122 patients, respectively). miR-181 performance is comparable with 

neurofilament light chain (NfL) and when combined together, miR-181+NfL establish a novel 

RNA-protein biomarker-pair with superior prognostication capacity. Therefore, plasma miR-181 

alone and a novel miRNA-protein biomarker approach, based on miR-181+NfL, boost precision 

of patient stratification. miR-181-based ALS biomarkers encourage additional validation and may 

enhance the power of clinical trials. 

 

 

 

 



 

Introduction 1 

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder of the motor 2 

neuron system, for which no effective disease-modifying treatment exists. ALS is characterized 3 

by a significant variability in progression rates 1,2, posing a significant challenge for patient 4 

stratification in clinical trials. Thus, reliable predictors of disease progression would be invaluable 5 

for ALS patient stratification prior to enrolment in clinical trials. Ideal biomarkers should remain 6 

stable during the course of disease, be detectable in accessible tissue, and also be easily 7 

measurable. To date, intensive research has identified only a few potential blood-based ALS 8 

biomarkers 3-5, including cell-free neurofilaments 6-8, and pro-inflammatory cytokines 9-11. 9 

Neurofilament light chain (NfL) was the first blood biomarker to aid in predicting ALS progression 10 

rate, but further markers are needed to improve stratification and allow for more effective trials. 11 

microRNAs (miRNAs) are endogenous non-coding RNAs that are essential for motor neuron 12 

survival and have been shown to be globally downregulated in post mortem ALS motor neurons 13 

12-14. While circulating miRNA profiles have been previously characterized in ALS 15-19, the 14 

potential of miRNA biomarkers for ALS prognosis, and as readout of disease progression has not 15 

been fully explored.  16 

Here, we take a hypothesis-free approach by applying next generation sequencing (RNA-seq) to 17 

comprehensively study plasma miRNAs in a large cohort of 252 ALS cases. These studies focused 18 

our attention on the miR-181 family, which are expressed from two homologs, polycistronic genes, 19 

mir-181a-1/b-1 (human chromosome 9) and mir-181a-2/b-2 (human chromosome 1). The mature 20 

miR-181 species are functionally identical in silencing a single set of mRNA targets. We reveal 21 

that miR-181 levels predict disease progression in large discovery and a replication cohort, and 22 



 

demonstrate the effectiveness of combining miR-181 with established neurofilament light chain 23 

as a prognostic biomarker pair for ALS.24 



 

Results 

Longitudinal study of circulating miRNAs in ALS  

In this work, we sought to explore blood-borne miRNAs as potential prognostic biomarkers for 

ALS. We used unbiased next generation sequencing to investigate, without an a priori bias, the 

comprehensive landscape of plasma miRNAs in 252 ALS patients, for which documented clinical 

and demographic information is available (Table 1).  

A crucial feature for a prognostic biomarker is its stability across the disease course. We therefore 

initially investigated a longitudinal sample cohort of 22 patients (clinical data in Table 2), with 

four longitudinal blood samples taken (t1-t4) during the course of 30 months (2.5 years). 88 samples 

(corresponding to the first cohort of 22 patients), were prepared from total plasma RNA, as 

previously described 20, and profiled by RNA-seq for miRNA levels. Linear miRNA quantification 

was achieved via unique 12-nucleotide molecular identifiers (UMIs). miRNAs with ≥50 UMIs in 

at least 60% of the samples (>53 out of 88 samples) were considered above noise level. Thus, of 

2008 miRNAs aligned to the human genome (GRCh37/hg19), 187 passed the threshold we set (see 

supplementary table: Source_data_fig_1). To reduce noisy miRNAs, we next excluded from 

further analysis 58 miRNAs with high variability (t4/t1 standard error ratio ≥ 0.2, Figure 1A, y-

axis). For example, miR-181a-5p variability across individual patients is limited, relative to that 

of miR-1-3p (F test for variance = 20.9, p<0.0001, Figure 1B). We identified 125 miRNA 

candidate biomarkers, whose plasma levels were relatively stable during disease progression in the 

same sub-cohort of 22 longitudinal samples (Figure 1A) that could be tested as candidate 

prognostic biomarkers. In addition, four miRNAs, whose levels increased during the course of 

disease, were subjected validation in a separated replication longitudinal cohort (N=26 patients) 



 

and may serve measures of functional decline over the course of the disease (Extended Data Figure 

1). 

 

Discovery of miRNAs as potential ALS prognosis biomarkers  

For the main interest of the current study in prognosis analysis, we focused on the 125 miRNAs 

that displayed stable plasma levels over time. These 125 miRNAs were further investigated in a 

cohort of 252 patients, for which a single blood sample was collected at enrolment. We randomly 

split the cohort into two sub-cohorts of 126 patients each, with comparable demographic and 

clinical features (Extended Data Figure 2).  

 

We performed next generation sequencing on the first cohort of 126 patients termed “discovery 

cohort”, holding out an equally-sized “replication cohort” for validation. Out of the 125 candidate 

miRNAs, we excluded 19 miRNAs, which did not pass the minimal UMI threshold or QC 

(Extended Data Figure 3). Optimal cut-off values were determined for 106 miRNAs predictors, 

for dichotomizing continuous expression levels to binary (high/low), by iterative testing of the 

capacity to predict patient survival (time elapsed to death, using Evaluate Cutpoints algorithm 21). 

19 additional miRNA were excluded at the QC step (methods). Nine of the remaining 87 miRNAs 

predicted prognosis in a significant manner, when survival was calculated from either onset 

(defined as first documented symptoms) or enrollment (Figure 2A, B). We further tested the 

prediction capacity of combinations of miRNAs considering this way potential cooperative 

information in evaluation of all 36 miRNA pairs[(
9
2

) =
9! 

2!(9−2)!
= 36]. 20 out of 36 miRNA pairs 

predicted prognosis comparably or superior to individual miRNAs (logrank p value ≤0.01, Figure 

2A, B, Extended Data Figure 4). 



 

The monthly mortality hazard ratio (HR) was calculated for 9 miRNAs and 20 miRNA-pairs in a 

multivariate Cox regression analysis, stratified by the disease stage (at enrollment) and age at onset 

(methods). This analysis allows calculation of an independent hazard ratio for each covariate (i.e., 

single miRNA or miRNA pair), while holding the other covariates constant. We report a risk of 

dying that is almost five times higher with high plasma levels of miR-181 (featuring two sister 

miRNAs, miR-181a-5p and miR-181b-5p, Figure 2B; hazard ratio (HR) = 4.55, 95% CI: 1.33 - 

15.6, p = 0.016, Figure 2C). None of the other features reached a statistically significant signal. 

Noteworthy, assessment of miR-181 levels as a continuous variable, opposed to categorical one, 

did not contribute to prediction of mortality hazard. 

Stepwise feature selection using bootstrap resampling procedure 22 is a rigorous scheme for the 

selection of robust survival outcome predictors, that has been used in ALS biomarker research 23. 

We therefore orthogonally selected candidate predictors using backward feature elimination, 

according to Akaike's information criteria (AIC) across 100 bootstrap samples (Figure 2D). miR-

181 was the only feature satisfying bootstrap criteria (selected >70%, significant >85%). Taken 

together, these data identify miR-181 as the best miRNA predictor of survival in ALS patients by 

both traditional statistics (logrank analysis (Figure 2A,B), multivariate Cox proportional hazard 

(Figure 2C) and by bootstrap model selection (Figure 2D). 

 

Validation of miR-181 as biomarker for ALS prognosis  

We next tested the capacity of miR-181 to separate survival curves of patients. Kaplan Meier 

curves revealed clear separation of survival between with high vs low miR-181 subgroups, based 

on plasma miR-181 levels at enrolment (discovery cohort: logrank chi^2 = 13.6, p=0.0002, Figure 

3A). The median patient survival associated with low miR-181 was 18.6 months, compared to 9 



 

months associated with higher miR-181 levels. Thus, plasma miR-181 levels predict a substantial 

median survival difference of 9.6 months that is equivalent to a 207% increase in survival length 

for patients with lower plasma miR-181 levels. Comparable results were obtained when survival 

length was calculated from disease onset (Figure 3B).  

 

We next validated our results in an independent cohort of 122 patients, which was held-out until 

that point. Thus, we assessed discrimination between prognostic groups by miR-181, using the 

dichotomization miRNA threshold defined in the discovery cohort. Kaplan Meier curve analysis 

of plasma miR-181 levels in the replication cohort, also revealed clear survival curve separation 

between subgroups when survival was calculated from enrolment (logrank chi^2 =5.2, p=0.02, 

Figure 3C) or onset (logrank chi^2 =4.4, p=0.035, Figure 3D). Finally, we performed analysis on 

248 patients in the combined cohort, from enrolment and from disease onset. Kaplan Meier 

analysis of plasma miR-181 levels in the combined cohort revealed clear survival curve separation 

between subgroups (enrolment, logrank chi^2 =18.5, p<0.0001, Figure 3E; onset, logrank chi^2 = 

16.7, p<0.0001, Figure 3F). miR-181 levels were predictive of survival length, regardless of 

whether patients were treated with Riluzole or not (Extended Data Figure 5).  

Accordingly, Cox regression analysis revealed significant hazard ratios from enrolment for high 

vs. low levels of miR-181 in the discovery cohort (HR 2.17, 95% CI: 1.25 - 3.75, one-tailed 

p=0.003, Figure 3G), the replication cohort (HR 1.76, 95% CI: 0.97 - 3.18, one-tailed p=0.03), and 

the merged cohort (HR 2.09, 95% CI: 1.48 - 2.94, p<0.001). Likewise, hazard ratios, calculated 

from onset, were consistent for discovery (HR 2.83, 95% CI: 1.7 – 4.7, p<0.001), replication (HR 

1.83, 95% CI: 1.1-3.0, one-tailed p=0.0087) and merged (HR 2.21, 95% CI: 1.56 – 3.12, p<0.001) 

cohorts. 



 

In the discovery cohort, miR-181 displayed a 4-fold increase in patients with higher miR-181 

levels compared to patients with low miR-181 levels (p<0.001, Extended Data Figure 6A) while 

in the replication cohort, miR-181 levels increased by 8.5-fold in the high expression bin (p=0.009, 

Extended Data Figure 6B). In addition, a modest but statistically significant correlation was found 

between plasma miR-181 levels and survival length from enrolment or onset (Extended Data 

Figure 6C,D). 

We further tested the D50 model‐based descriptors, which is derivative of ALSFRS-R and 

addresses difficulties in characterizing aggression and the individual disease covered by traditional 

ALS clinical indices 24. Applying D50 to miR-181 stratification revealed association of high miR-

181 levels with aggressive disease (time taken to reach half functionality < 32 months), whereas 

low miR-181 levels are associated with moderate disease (time to half functionality > 57 months, 

p<0.001, Extended Data Figure 7A). Such a ~ 25-month gap to losing half functionality might be 

clinically important. miR-181 levels also increased by 70% between mean value of patients 

suffering from aggressive (D50 < 45 months), relative to moderate (D50 > 45 months) disease (t-

test: p=0.03, not shown).  

 miR-181 levels remain stable over time (Figure 1A, B), which is orthogonally supported by the 

lack of a difference in rD50, a measure of functional decline over the course of disease, between 

low and high miR-181 levels (p=0.07, Extended Data Figure 7B), as well as the lack of correlation 

between miR-181 levels and rD50 (Extended Data Figure 7C). Furthermore, miR-181 levels 

remained stable at early, progressive and late disease stages (0 ≤ rD50 < 0.25; 0.25 ≤ rD50 < 0.5; 

rD50≥0.5, respectively; ANOVA: p=0.15, Extended Data Figure 7D). Therefore, miRNA 

measurements are unlikely to be biased by sampling at different disease stages. Finally, miR-181 

levels were not correlated with progression rate, ALSFRS at enrolment or age at onset,  and these 



 

clinical parameters were comparable between low and high miR-181 levels (Extended Data Figure 

8). 

miR-181 is broadly expressed in neurons 

To elucidate the tissue source of miR-181 we revisited previously reported Nanostring data 25. 

miR-181a-5p is the ninth most abundant miRNA in laser capture micro-dissected human motor 

neurons of ALS patients and is also fairly abundant in the CNS in general 26. We further performed 

fluorescent in situ hybridization with a probe that hybridizes to miR-181a-5p in the mouse motor 

cortex and the lumbar spinal cord, two regions affected in ALS (Figure 4A, B). Punctate miR-

181a-5p signal was found in motor cortex soma and neurites (Figure 4C, E) and in ventral horn 

neurons (Figure 4D, F). Thus, a conceivable source for miR-181 in ALS patients may be motor 

neurons in the cortex and spinal cord. The presence of miR-181 in neurites suggests that it could 

be an RNA marker of axonal damage, resembling the suggested axonal origin of protein 

biomarkers, such as NfL 27. 

 

miR-181 & NfL cooperatively predict of ALS prognosis 

We have previously shown that neurofilament light chain (NfL) can stratify ALS patients by their 

survival length 28. In the current cohort, we assayed NfL in all plasma samples with by single 

molecule array (Simoa) immunoassay. 243 of the 248 SIMOA samples were technically 

successful. A Cox proportional hazard analysis revealed that high plasma NfL predicts higher risk 

of death (from enrollment HR 2.09, 95% 1.49 – 2.94, p<0.001, concordance index (C-index) 0.59, 

Akaike's information criteria (AIC) 2083, or from onset HR 2.26, 95% 1.73 – 2.96, p<0.001, C-

index 0.62, AIC 2060 Figure 5A, B), as previously reported 28-30. The performance of miR-181 in 

predicting risk of death is comparable with that of NfL (from enrollment HR 2.03, 95% CI: 1.45 



 

– 2.85, p<0.001, C-index 0.56, AIC 2096, or from onset HR 2.07, 95% CI: 1.6 – 2.7, p<0.001, C-

index 0.56, AIC 2081, Figure 5A, B).  

We then tested a combined predictor based on both NfL and miR-181, creating a binary protein-

miRNA feature “NfL+miR181”. An interaction variable based on both NfL and miR-181, yielded 

higher risk of death than each one of single markers on its own (from enrolment, HR 2.46, 95% 

CI: 1.87 – 3.24, p<0.001, C-index 0.61, AIC 2071, or from onset: HR 2.7, 95% CI: 2.05 – 3.56, 

p<0.001, C-index 0.63, AIC 2046, Figure 5A, B). Therefore, miR-181 and NfL display comparable 

capacities, as single estimators of death risk, in patients with ALS. However, together the miRNA-

protein pair displays a cooperative predictive value. Furthermore, we employed the continuous 

values of miR-181 and NfL, which were standardized with respect to reference values of healthy 

controls. In this analysis, miR-181 exhibited a higher risk of death than NfL, by Cox proportional 

hazard analysis. Moreover, a predictor that is based on the sum of NfL and miR-181 z-scores, 

predicted a higher risk of death and had better goodness of fit than NfL alone in the merged cohort 

(Extended Data Figure 9). 

We then stratified samples into tertiles, according to NfL levels, which exhibits different survival 

length 28, (Figure 5C, D). Interestingly, in the range of intermediate NfL levels, the additional 

stratification by miR-181 separated this sub-cohort in two, as revealed by KM analysis (from 

enrollment logrank chi^2 = 41.5, p<0.0001, from onset, logrank chi^2 = 51.1, p<0.0001, Figure 

5E, F). Cox regression analysis on miR-181 levels in the low, intermediate, and high NfL tertiles 

revealed a higher risk of dying with higher miR-181 plasma levels in the middle and high tertiles 

(from enrolment: HR 2.0, 95% CI, 1.1 - 3.6, p=0.03, Figure 5G), but not in the low tertile (HR 

0.96, 95% CI, 0.55 - 1.66, p=0.9). Similarly, when calculated from disease onset, higher miR-181 

levels predicted a higher risk of dying for patients within the range of intermediate NfL tertile (HR 



 

2.37, 95% CI, 1.4-4.02, p=0.001, Figure 5H) and a modest added risk in the high NfL tertile (HR 

1.66, 95% CI, 1.0-2.7, p=0.04). Therefore, miR-181 may be valuable in particular at the range of 

intermediate NfL values, where it can accurately call a 18 months difference in median prognosis 

that cannot be identified by measurements of NfL alone. 

We tested the potential correlation of miR-181 with other molecular biomarkers that are under 

investigation, neurofilaments, TNF, creatinine and creatine kinase in the same cohort. Notably, 

miR-181 levels did not correlate with the levels of other plasma biomarkers, (Extended Data Figure 

10), suggesting it works via an alternative mechanism. 

Finally, we were interested in the relationship of bimolecular blood predictors and established 

clinical features of the disease. Thus, we performed multivariate Cox analysis using the combined 

predictor NfL+miR181 along with eight other clinical features that were previously shown to be 

informative  (age of onset, forced vital capacity, diagnostic delay, enrolment progression rate, site 

of onset, El Escorial’s definite ALS, cognitive dysfunction and C9orf72 genetics)23. High 

NfL+miR181 predicted a risk of dying that was 3-4.6 times higher (from enrolment HR 3.06, 95% 

CI: 1.5 - 6.24, p = 0.002; from onset HR 4.63, 95% CI: 1.98 - 10.82, p < 0.001, Figure 5I, J).  

We have also performed a digital PCR study to quantify miR-181 RNA molecule concentration in 

human plasma. Unique molecular identifiers (UMIs) in sequencing correlated to absolute miRNA 

copies by digital PCR with Pearson R2 0.97 (327, 389, 523, 688 UMIs corresponding to 4020, 

5760, 6960, 9540 miR-181 RNA molecules /microliter of human plasma). This analysis further 

suggests that the threshold of miR-181, when utilized with NfL as biomarker pair, is at 

approximately 5340 RNA molecules /microliter of human plasma). 

Finally, the predicted survival curve, with the miRNA-protein predictor NfL+miR181, is closer to 

the observed (real) survival curve, than survival curve approximated by the multivariate Cox 



 

model with eight established clinical features. Together, miR-181 stands on its own as a powerful 

prognostic marker for ALS. Furthermore, utilization of miR-181 in concert with an established 

protein biomarker, NfL, is more accurate than either alone.  



 

Discussion 

In this study, we report the results of one of the most elaborated small RNA-seq studies, undertaken 

to date in neurodegeneration research. We show that in ALS, miRNAs appear to be mostly 

unchanged longitudinally during disease (Figure 1), whereas increase in miR-423/484/92a/b levels 

during disease course could contribute to monitoring of disease progression (Extended Data Figure 

1).  

Importantly, high miR-181 levels predicted shortened survival in two ALS cohorts. miR-181 is 

encoded from a human gene that has seen local duplication to a bi-cistronic miR-181a and miR-

181b within the same transcriptional unit and additional genomic duplications that results in three 

homologs across the human genome. miR-181a and miR-181b are functionally identical, silence 

the same target set, and are co-expressed from the same gene. Although equivalent, the 

simultaneous consideration of both RNAs provides superior sensitivity as a predictor of ALS 

prognosis and progression (Figure 2). miR-181 ability to predict prognosis of patients with ALS 

was validated in a replication cohort (Figure 3). The fact that miR-181 levels stay stable during 

the course of disease, suggests a constant process underlying their generation and clearance rates. 

miR-181 species are expressed in the brain and spinal cord, including in cortical and spinal motor 

axons and soma (Figure 4) and their transport and biogenesis is regulated in neuronal axons 31. 

Therefore, it may be that the utility of miR-181 as a prognostic biomarker in ALS is linked to being 

spilled off dying axons, somewhat reminiscent of NfL, which is a neuronal cytoskeletal protein.  

Accordingly, we demonstrate that miR-181 and NfL serve separately as predictors of ALS 

prognosis, with comparable predictive capacity (Figure 5). Furthermore, miR-181 measurement 

can enhance the prognostic value of NfL and a joint miRNA-protein measure may compute 

prognosis more precisely than any of the circulating biomolecules on their own. Specifically, we 



 

show that miR-181 levels were of predictive value particularly when NfL values are intermediate, 

and the combination of miR-181 and NfL is able to discriminate fast and slow progressors in this 

group. Stratification based on progression rate is important in clinical trials to balance treatment 

and placebo groups. Indeed, certain trials have focused on ALS fast progressors in order to obtain 

outcomes that are more reliable. Therefore, the development of a miR-181-based biomarker opens 

a new horizon for a combinatorial protein-RNA biomarker system for ALS prognostication and 

encourages further validation in larger cohorts  and testing the value of orthogonal multi-omic 

platforms for additional biomarker endpoints.  

We also found miR-181 expressed in the brain and the spinal cord, and suggest that plasma miR-

181 originates in part from the central nervous system, reminiscent of NfL. While miR-181 was 

reported in the cerebrospinal fluid of ALS patients, and might contribute to ALS diagnosis 19, it is 

also abundant in hematopoietic tissues 32, which also contribute to its presence in the plasma. That 

miR-181 levels do not correlate with clinical features or several other circulating biomolecules 

may perhaps reflect different facets of the medical condition or disparate underlying mechanisms. 

 

Several additional factors contribute to the potential clinical impact of miR-181 quantification. 

When neurofilaments are released into the circulation, endogenous antibodies with variable 

degrees of affinity and avidity are formed against them. These endogenous antibodies limit 

neurofilament detection twofold: by initiating antigen-clearing effect and by interfering with 

immunoassays 28,30,33-35. In such cases, the value of miR-181 may be even more pronounced, since 

miRNA feature negligible immunogenicity, compared to proteins and miRNA detection is not 

dependent on antibody-based immune-detection assays. In addition, real-world patient profiles 



 

indicate that most ALS patients are in the middle tertile neurofilament level 30 the region of the 

NfL spectrum, where enhanced sensitivity provided by miR-181 will be particularly useful.  

Taken together, miR-181 emerges as an ALS prognostication biomarker that can be developed in 

combination with NfL, tested in larger cohorts and may improve the accuracy of patient 

stratification in clinical trials.  
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Tables  

 

Characteristic  Value  

Number of subjects (% males) 252 (58.2%) 

Age at enrolment 65.0 ± 0.7 yr. 

Age of onset (1st reported symptoms) 62.6 ± 0.7 yr. 

Disease duration at enrolment 28.8 ± 2.1 yr. 

ALSFRS-R at enrolment  35.9 ± 0.5 

El-Escorial (Definite/probable/lab-supported/possible/suspected/other) 67/102/26/38/2/17 

Bulbar onset / total 83/252 

Riluzole treated / total 167/252 

ALS family history / total 9/252 

C9ORF72 genetics / total 15/252 

 

Table 1. Summary of demographic and clinical characteristics of ALS samples used for the 

survival study. ALSFRS-R: ALS functional rating scale. Data are presented as mean ± SEM.  

  



 

Characteristic  Value 

Cohort I  

Value 

Cohort II 

Number of subjects (% males) 22 (81.8%) 26 (53.8%) 

Age at enrolment 65.0 ± 1.5 yr. 63.5 ± 2.4 yr. 

Age of onset (1st reported symptoms) 62.0 ± 1.7 yr. 60.4 ± 2.4 yr. 

Disease duration at enrolment 37.2 ± 8.2 yr. 37.0 ± 8.5 yr. 

ALSFRS-R at enrolment  41.0 ± 1.2 36.6 ± 1.4 

El-Escorial (Definite/probable/lab-

supported/possible/suspected/other) 

4/7/6/5/0 3/14/3/3/3 

Bulbar onset / total 8/22 6/26 

Riluzole treated / total 13/22 15/26 

ALS family history / total 1/22 1/26 

C9ORF72 genetics / total 0/22 3/26 

 

 

Table 2. Summary of demographic and clinical characteristics of ALS samples used for the 

longitudinal study. ALSFRS-R: ALS functional rating scale. Data are presented as mean ± SEM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure Legends 

 

Figure 1. Assessment of plasma miRNA stability during ALS course. (A) The x-axis denotes 

the standardized change in miRNA levels between the first and last measurements (number of 

standard deviations (SD) for log 2-transformed t4/t1 ratios), relative to the average change of all 

187 sequenced miRNAs. The y-axis denotes the variability in measurements, per-miRNA for 187 

sequenced species between the 22 individuals (- log 2-transformed values of the standard error of 

t4/t1 ratios). Features above (blue) or below (red) the stability threshold set at -0.2 units. (B) 

Variability of miR-181a-5p and miR-1-3p between fourth and first phlebotomy (t4/t1) in 22 ALS 

patients. Box plots are presented as median bound between minimum and maximum values. Two-

sided F test: F21=18.44, p<0.0001. n=88 biologically independent human samples.  

 

Figure 2. Identification of candidate miRNAs that predict ALS patient survival. (A) Scatter 

plot, assessing separation of survival by high and low (dichotomized) levels of 123 miRNA 

features (i.e., single miRNAs and miRNA pairs). Logrank test from study enrollment (y-axis) or 

first symptoms (onset, x-axis). Log 10 transformed p-values of logrank chi^2 values. The optimal 

threshold was calculated per miRNA in a discovery cohort of 126 patients by Evaluate Cutpoints 

algorithm 21. Single miRNA (black, namely, miR-103b-3p, miR-134-5p, miR-151-5p, miR-155-

5p, miR-181a-5p, miR-181b-5p, miR-339-3p, miR-370-3p, miR-99b-5p) or miRNA pairs (green), 

displaying a p-value ≤0.01 (log 10 transformed values ≥ 2), and grey: insignificant. The paired 

feature composed of miR-181a-5p with miR-181b-5p is called for simplicity miR-181 throughout 

the manuscript. (B) Scatter plot of effect (logrank chi^2 values, x-axis), against confidence (p-

value, y-axis). Color code as in panel A. (C) Forest plot of mortality hazard ratios calculated by 

multivariate Cox study from enrolment for all significant miRNAs and miRNA pairs in Figure 2A 

(colored black and green). Blue features - displaying a p-value ≤0.05, black: insignificant by Wald 

test. Data are presented as median ± 95% CI (D) Bootstrap-based model selection according to 

Akaike's information criteria (AIC). Backwards feature elimination for 29 features (miRNA or 

miRNA pairs) passing p-value ≤0.01 filtering in the logrank test (Figure 2A). Plot of the percentage 

of times each feature was selected (x-axis), against the percentage of times the Cox regression 

coefficient of this feature was significant in repeated measurements (y-axis). All statistical tests 

were two-sided. n=126 biologically independent human samples.  

 

Figure 3. miR-181 is a prognostic biomarker of ALS. Cumulative survival (Kaplan-Meier) 

curves for miR-181 (104 patients with subthreshold (blue) vs. 22 patients with suprathreshold (red) 

miR-181 levels) in discovery cohort from enrolment (A) and onset (B). Kaplan-Meier curves for 

miR-181 (100 patients with subthreshold (blue) vs. 22 patients with suprathreshold (red) miR-181 

levels) in replication cohort from enrolment (C) and onset (D). Kaplan-Meier curves on the two 

cohorts merged (204 patients with subthreshold (blue) vs. 44 patients with suprathreshold (red) 

miR-181 levels) from (E) enrolment or (F) onset. Forest plot showing results of multivariate Cox 

proportional hazard analysis of miR-181 corresponding to KM curves in panels A-F. *p<0.05, 

**p<0.01, ***p<0.001, Wald test, Median ± 95% CIs. (G). All statistical tests were two-sided, 

except for panel G.  

  



 

Figure 4. miR-181a-5p localizes to neuronal soma and neurites in mouse brain and spinal 

cord. Nissl images of mouse brain (A, 10X  lens, scale bar 500μm) and lumbar spinal cord (B, 

10X lens, scale bar 200μm), and corresponding brain (C, 63X lens, scale bar 500μm, inset enlarged 

in panel E) and ventral horn (D, 63X lens, scale bar 200μm, inset enlarged in panel F) miR-181a-

5p in situ hybridization micrographs. miR-181 is detected in critical motor neuron soma and 

neurites of the motor cortex (E, 63X lens, scale bar 15μm), and in motor neurons of the spinal cord 

ventral horn (F, 63X lens, scale bar 20μm). MC: motor cortex; VH: ventral horn. n=5 biologically 

independent animals. Micrographs shown are from a representative experiment in one animal.  

 

Figure 5. Superior accuracy for combination of miRNA and NfL biomarkers in prognosis 

analysis. Cox proportional hazard analysis for miR-181, NfL and a combinatorial predictor 

NfL+miR181 in 243 patients with both miR-181 and NfL measurements (threshold values: miR-

181 71,000 UMIs, NfL 82.2 pg/ml, NfL+miR181 upper 118 vs lower 125), from enrolment (A) or 

onset (B). CIDX- concordance index. AIC -Akaike's information criteria. Kaplan Meier curves 

calculated from enrolment (C) or onset (D) based on tertile stratification of plasma NfL levels. 

(NfL threshold values by Simoa assay: < 59 pg/ml (low) ;59 -109.8 pg/ml (intermediate); >109.8 

pg/ml (high). Kaplan Meier curves calculated from enrolment (E) or onset (F), whereby the middle 

tertile of samples with intermediate NfL levels is further subdivided by miR-181 levels. Forest 

plots of mortality hazard ratio, calculated by survival length from enrolment (G) or onset (H) for 

high vs low miR-181 levels in the three NfL tertiles. Forest plots of mortality hazard ratio, 

calculated by survival length from enrolment (I) or onset (J) for combined miRNA-protein 

predictor, NfL+miR181 and 8 clinical covariates 23 on a subset of 75 patients. (K) Observed 

survival curve (black) vs. prediction based on NfL + miR181 (green) or by 8 clinical covariates 

(blue), in a subset of 75 patients. Data in panels A,B and G-J are presented as median ± 95% CI, 

*p<0.05, **p<0.01, ***p<0.001, Wald test. All statistical tests were two-sided.  
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Methods 

Standard protocol approvals, registrations, and patient consents 

The study included a cohort with 252 patients with ALS from the ALS biomarker study. Patients 

were diagnosed with ALS according to standard criteria by experienced ALS neurologists 36. Two 

additional control cohorts were of 103 adult individuals and of 73 adult individuals. All 

participants provided written consent (or gave verbal permission for a carer to sign on their behalf) 

to be enrolled in the ALS biomarkers study if they met inclusion criteria until the desired sample 

size was reached (consecutive series). Ethical approval was obtained from East London and the 

City Research Ethics Committee 1 (09/H0703/27). 

Study design 

We determined the sample size by doubling this number calculated by the following power 

analysis: 120 ALS patients are needed to obtain a hazard ratio of 3 with a power of 99% and a p-

value of 0.01. A full cohort of 252 patients was randomly split into a discovery and replication 

cohorts with comparable clinical characteristics, each with 126 patients. Phenotypic data on de-

identified patients was separated and blinded during steps of the molecular analysis. Disease 

severity was assessed with the revised ALS Functional Rating Scale (ALSFRS-R)37, and 

progression rate at enrolment (i.e. first blood draw) was calculated as follows: (48 - enrolment 

ALSFRS-R)/time (in months) from symptom onset to enrolment. Progression was also modeled 

using the D50 model which fits a sigmoid decay across all available ALSFRS-R scores 38,39. Use 

of Riluzole (or not) at the time of sampling was recorded. Blood was collected by venipuncture in 

EDTA tubes, and plasma was recovered from the whole blood sample by centrifugation and stored 

at −80°C until performing downstream assays (RNA-seq and SIMOA for NfL). 

 

 



 

Longitudinal cohort analysis 

Serial plasma samples and clinical information were obtained, on average, every 2 to 4 months 

from 48 patients with ALS. No selection criteria were applied to individuals with ALS sampled 

longitudinally, other than their willingness to donate further samples. Longitudinal analysis of 

miRNAs was first performed on samples from 22 patients, in an unbiased manner by next 

generation RNA sequencing. Results were tested on a replication longitudinal cohort of 26 patients 

by an orthogonal method of quantitative real time PCR. Symptom onset was defined as first 

patient-reported weakness.  

 

Small RNA next generation sequencing  

Total RNA was extracted from plasma using the miRNeasy micro kit (Qiagen, Hilden, Germany) 

and quantified with Qubit fluorometer using RNA broad range (BR) assay kit (Thermo Fisher 

Scientific, Waltham, MA). For small RNA next generation sequencing (RNA-seq), libraries were 

prepared from 7.5 ng of total RNA using the QIAseq miRNA Library Kit and QIAseq miRNA 

NGS 48 Index IL (Qiagen), by an experimenter who was blinded to the identity of samples. 

Samples were randomly allocated to library preparation and sequencing in batches. The 

longitudinal ALS study samples were sequenced in one batch to avoid batch-induced biases in 

interpretation of longitudinal changes (analyzed in Figure 1). Precise linear quantification of 

miRNA is achieved by using unique molecular identifiers (UMIs), of random 12-nucleotide after 

3’ and 5’ adapter ligation, within the reverse transcription primers 20. cDNA libraries were 

amplified by PCR for 22 cycles, with a 3’ primer that includes a 6-nucleotide unique index, 

followed by on-bead size selection and cleaning. Library concentration was determined with Qubit 

fluorometer (dsDNA high sensitivity assay kit ; Thermo Fisher Scientific, Waltham, MA) and 



 

library size with Tapestation D1000 (Agilent). Libraries with different indices were multiplexed 

and sequenced on NextSeq 500/550 v2 flow cell or Novaseq SP100 (Illumina), with 75bp single 

read and 6bp index read. Fastq files were de-multiplexed using the user-friendly transcriptome 

analysis pipeline (UTAP) 40. Human miRNAs, as defined by miRBase 41, were mapped using 

Geneglobe (Qiagen). Sequencing data normalized with DESeq2 package 42 under the assumption 

that miRNA counts followed negative binomial distribution and data were corrected for the library 

preparation batch in order to reduce its potential bias. 103 individuals without sign of neurological 

disease, were enrolled in a control cohort for miR-181 levels.  

 

Selecting candidate miRNA and miRNA pairs for prognostic analysis 

The pipeline is succinctly described in Extended Data Figure 3. 2008 miRNAs were aligned to the 

genome in the longitudinal study and out of them, 187 miRNAs that exhibited >50 UMI counts in 

60% of the samples and non-zero counts in all samples, were included in further analysis. 125 out 

of these 187 miRNAs were longitudinally stable with low inter-individual variability (blue features 

in Figure 1A). In the discovery cohort, 106 out of these 125 miRNAs passed a filtering criterion 

of average UMI counts >100 across all samples and non-zero counts, and were analyzed for 

prognosis differences between low and high level in the discovery cohort. Then, the miRNAs 

predictors were transformed from a continuous expression level to binary predictors (high/low), 

when the optimal dichotomization cut-off values were determined by iterative logrank analysis on 

all possible sample distributions for the remaining 106 miRNAs 21. 19 miRNAs were further 

excluded after additional QC if different miRNAs of the same family provided conflicting 

prognosis predictions, e.g. miR-27a predicted beneficial prognosis and miR-27b a detrimental 

prognosis). A logrank test, to compare survival distributions was performed for the remaining 87 



 

miRNAs and null hypothesis significance testing (p values) for prognosis differences as 

demonstrated in Figure 2. Nine out of 87 miRNAs displayed logrank p ≤0.01. All 36 combinatorial 

pairs of these 9 miRNAs (9*8/2=36), were also subjected to logrank test to test cooperative 

prediction, via multiplication of the levels of two single miRNAs and then transforming them to a 

binary (high/low) predictors, as done for single miRNA predictors. 20 (out of 36) miRNA pairs 

displayed logrank p ≤0.01. A total of 29 candidate prognostic biomarkers (9 miRNAs and 20 

miRNA pairs) were then examined under bootstrap feature selection.  

AIC-based backward feature selection by bootstrap resampling 

Feature selection by bootstrap resampling was performed on a full Cox model of 29 features (9 

single candidate miRNAs and 20 miRNA pairs) using stepwise backward elimination based on 

Akaike information criterion (AIC) 22. The Cox regression coefficients and standard errors are 

estimated in the full model (null model), including all variables under consideration, and at each 

step a single feature is eliminated until no significant improvement in AIC is obtained. The 

procedure is repeated for 100 bootstrap samples, that were randomly drawn from the original 

cohort (n=126). Within each bootstrap sample, a Cox model is developed and a list of selected 

features that optimize AIC is obtained. Candidate biomarkers are then ranked according to the 

proportion of bootstrap samples in which they were selected as best predictors, and the   proportion 

of bootstrap samples where their Cox coefficient was significant (at significance level 0.05). We 

considered the following criteria for selecting the final prognostic biomarkers from the bootstrap 

resampling procedure: features that were selected >70% of bootstrap samples and were statistical 

significance in >85% of the bootstrap samples in which they were selected.  

Only a single predictor fulfilled these criteria, miR-181. A univariate Cox model of miR-181, 

stratified by ALSFRS slop and age of onset is then assessed on discovery and replication cohort. 



 

A numerical threshold of 71,000 UMIs, which was found as optimal by Evaluate Cutpoints 21 in 

the discovery cohort (N=126), separated between sub-threshold patients (N=104) and supra-

threshold patients (N=22). Same threshold was used in an independent replication cohort, whereby 

4 out of 126 samples, with borderline miR-181 levels, were excluded. Joint analysis with the same 

threshold was further conducted on the combined cohort of 248 patients.  

Polymerase chain reaction assays 

Quantitative real time PCR (qPCR) of miR-423/484/92a/92b, performed with Taqman advanced 

miRNA assay probes (Thermo Fisher) with the following probes: hsa-miR-423-5p (Assay ID: 

478090_mir); hsa-miR-484 (Assay ID: 478308); hsa-miR-92a-3p (Assay ID: 477827); hsa-miR-

92b-3p (Assay ID: 477823). hsa-miR-140-3p (Assay ID: 477908) and hsa-miR-185-5p (Assay ID: 

477939) were selected as normalizers, based on stable plasma levels in the longitudinal cohort, 

described in Figure 1: (1) basemean expression between 500-3,000; (2) coefficient of variation ≤ 

0.35.cDNA Synthesis Kit (Applied Biosystems) was used for cDNA reverse transcription (10 ng 

input) and run on a StepOnePlus (Applied Biosystems). Data compared between samples at 

enrolment (t1) and corresponding follow-up sample (t2) by one-tailed paired t-test. Digital droplet 

PCR (ddPCR) was performed using the hsa-miR-181a and hsa-miR-181b probes (Taqman assay 

ID: 000480, 001098, respectively, Thermo Fisher Scientific). Mix (5 μL of cDNA 11 μL ddPCR 

supermix (Bio-Rad), 1 μL ×20 TaqMan Assay, 5 μL H2O) was gently vortexed, droplets were 

generated in QX100/QX200 with DG8 cartridges (Bio-Rad) and put into 96-well in C1000 

thermocycler (Bio-Rad) for a  protocol: 95°C, 10 minutes (1 cycle), 60°C annealing/extension step, 

1 minute followed by 94°C melting step, 30 seconds (39 cycles), and a final stage of 98°C, 10 

minutes followed by holding at 12°C. Plates read on the QX200 droplet and analyzed by 



 

QuantaSoft software (Bio-rad) after setting a FAM threshold based on the ‘no template’ negative 

control fluorescence histogram.  

Neurofilament light chain (NfL) assay 

The quantitative determination of NfL in human plasma was undertaken by Single Molecule Array 

technology using a digital immunoassay Simoa HD-1 Analyzer (Quanterix, Lexington, MA). 

Standards, primary and secondary antibodies, detection range including lower and upper limits of 

detection were specified by manufacturer (Simoa Nf-L Advantage Kit-102258, Quanterix). An 

equal volume was loaded for all samples in study. NfL threshold concentrations were defined by 

cohort tertiles: NfL <59 pg/ml for the lower tertile (81 patients), 59-109.8 pg/ml for the middle 

tertile (81 patients), or >109.8 pg/ml for the higher tertile (81 patients). 73 individuals without 

sign of neurological disease (50 from the National Hospital for Neurology in London, UK, and 23 

from the University Hospital in Padova, Italy)43 were defined as NfL control cohort.   

 

RNA in situ hybridization 

Mouse studies, performed in accordance with institutional guidelines and IACUC. Adult mice 

were deeply anesthetized (10% ketamine, 2% xylazine in PBS, 0.01 ml / gram body weight) and 

intracardially perfused with 10ml of PBS, followed by 40ml of 4% Paraformaldehyde. Brains and 

spinal cords were dissected, fixed in fresh 4% PFA at room temperature for 24 hrs., dehydrated in 

graded ethanol series, cleared with ethanol / histoclear (1:1 vol. / vol.) and then in histoclear 

(National Diagnostics) and embedded in paraffin. 4 µm microtome sections were mounted onto 

Superfrost plus slides and deparaffinized. miRNA in-situ hybridization performed with hsa-miR-

181a-5p probe (VM1-10255-VCP, ViewRNA Tissue Assay, Thermo-Fisher Scientific), 

counterstained with DAPI and mounted with ProLong Gold (Molecular Probes, P36934). Adjacent 



 

sections were taken for cresyl violet (Nissl) staining. Micrograph acquisition performed on 

Dragonfly Spinning disc confocal system (Andor Technology PLC) with Leica Dmi8 Inverted 

microscope (Leica GMBH) with 10X (air) and 63X (glycerol) objectives equipped with sCMOS 

Zyla (Andor) 2048X2048 Camera. DAPI (Excitation 405nm, emission 450/50nm, 100ms); 

ViewRNA probe (excitation 561nm emission 620/60nm, 200ms). Background and Shading 

Correction was performed using BaSIC 44. 

Combination of NfL and miR-181 as prognostic factors  

Logical operators developed to define a combined miRNA-protein predictor for ALS prognosis: 

If (NfL < 59 pg/ml) or (NfL 59-109.8 pg/ml AND miR-181 < 39,300 UMIs) = NfL+miR181 = 0 

If (NfL >109.8 pg/ml) or (NfL 59-109.8 pg/ml AND miR-181 > 39,300 UMIs) = NfL+miR181 = 

1 

Analysis of clinical features as prognostic factors  

A subset of 75 patients out of the all 252 participates of the study, held the complete clinical 

information sufficient to perform multivariate Cox analysis with NfL+miR181eight clinical 

covariates (diagnostic delay, forced vital capacity, C9ORF72 genetics, progression rate at 

enrolment, cognitive dysfunction, age at onset, bulbar onset and definite ALS by El-Escorial 

criteria) that were described in 23. 

Statistical analysis 

In longitudinal cohort, p values for all expressed miRNAs were calculated by Wald test 42,45 and 

adjusted for multiple testing according to Benjamini and Hochberg 46. Longitudinal miRNA 

expression changes in the most differentially expressed miRNAs was further tested by two-tailed 

paired t-test. In the replication cohort assayed by qPCR, one-tailed paired t-test was used. Data 



 

distribution was assumed to be normal, but this was not formally tested. Welch’s correction was 

performed in unpaired t-tests whenever the compared groups showed different variances.  

Logrank Mantel-Cox test was used for Kaplan-Meier survival estimators and a fixed date was used 

to censor data for survival analysis. Optimal dichotomization cut-off values of miRNA levels 

determined using Evaluate Cutpoints 21. Multivariate or univariate Cox proportional hazard 

analyses were used to calculate mortality hazard ratios, with molecular and phenotypic features as 

covariates. Cox model goodness of fit was determined by C-index47. Outliers were detected by 

Grubbs test 48 and excluded from analysis. Tests were run in R Project for Statistical Computing 

environment 49 and graphs were generated with Prism 5 (GraphPad Software, San Diego, 

California, USA).  

Data availability 

Source data for figures are provided in supplementary tables. Fastq.gz files with raw sequencing 

data, text files with raw read counts, excel files with processed read counts and R codes are 

available as GSE 168714 in gene expression omnibus (GEO).  
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