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Abstract—Different from the object motion blur, the defocus
blur is caused by the limitation of the cameras’ depth of field.
The defocus amount can be characterized by the parameter of
point spread function and thus forms a defocus map. In this
paper, we propose a new network architecture called Defocus
Image Deblurring Auxiliary Learning Net (DID-ANet), which
is specifically designed for single image defocus deblurring by
using defocus map estimation as auxiliary task to improve the
deblurring result. To facilitate the training of the network, we
build a novel and large-scale dataset for single image defocus
deblurring, which contains the defocus images, the defocus maps
and the all-sharp images. To the best of our knowledge, the
new dataset is the first large-scale defocus deblurring dataset
for training deep networks. Moreover, the experimental results
demonstrate that the proposed DID-ANet outperforms the state-
of-the-art methods for both tasks of defocus image deblurring and
defocus map estimation, both quantitatively and qualitatively.
The dataset, code, and model is available on GitHub: https://
github.com/xytmhy/DID-ANet-Defocus-Deblurring.

Index Terms—Defocus, deblurring, anxiliary learning, CNNs.

I. INTRODUCTION

WHEN an image is captured, there are mainly two

reasons for image blur, i.e., motion and defocus. On

one hand, relative motion between the camera and the object,

no matter which one is the actual moving one, leads to motion

blur. On the other hand, when the depth range of the scene is

relatively large but the depth of field of the camera is limited,

the captured image can also be blurry due to defocus. An

example of defocus blur is shown in Figure 1(a). The defocus

amount is highly dependent on the depth between the object

and the focal plane of the camera, therefore, it is usually

spatially-varying. The defocus amount is usually modeled by

the parameter of point spread function (PSF), forming a pixel-

wise defocus map, as shown in Figure 1(b). Clear images

can benefit many computer vision tasks such as detection,

identification and segmentation [1], therefore, in this paper,
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we concentrate on defocus image deblurring from a single

image.

Defocus image deblurring from a single image (Figure 1(c))

is a challenging ill-posed problem [2], as the target all-sharp

image (Figure 1(d)) contains much more details than the input

defocus image (Figure 1(a)), especially in the highly defocused

areas such as the background including the people and chair

in Figure 1. Hence more attention should be paid to the

highly defocused areas by incorporating external information.

Fortunately, by using deep neural networks, rich real-world

information could be learned from the data from a wide

range of environments. Therefore, we propose a deep network

approach for defocus image deblurring. Our contributions are

four-fold.

1) We design a new network for defocus image deblur-

ring, with defocus map estimation as auxiliary learning task.

The proposed Defocus Image Deblurring Auxiliary Learning

Network (DID-ANet) is a novel deep learning (end-to-end)

architecture specifically designed for defocus deblurring.

2) We introduce a new defocus image deblurring dataset

for training and test of deep networks. This dataset contains

partial defocus images, all-sharp (i.e., all-in-focus) images, as

well as the corresponding defocus maps. The partial defocus

image and all-sharp image are generated from a single image

captured by a light-field camera. As far as we know, this is the

first large-scale defocus blurring dataset taken in real scenes

which could be used for the training of deep learning networks.

3) By using defocus map estimation as guidance for defocus

image deblurring, we alleviate the difficulty in network train-

ing. Furthermore, we improve the deblurring results by intro-

ducing effective loss functions and flexible training strategies.

4) Our experiments on several benchmarks show that DID-

ANet obtains the state-of-the-art performance on both the

defocus map estimation and defocus image deblurring, both

quantitatively and qualitatively.

II. RELATED WORK

A. Image Deblurring

For defocus image deblurring, a typical blur model can be

expressed as follows [3]:

IBlur = k ∗ IClear +NG, (1)

where IClear is the clear image, k is the blur kernel, NG is

the additive Gaussian noise, and IBlur is the blurry image [4].

Usually, the defocus procedure is modeled as a convolution of

the clear image with the PSF; therefore, conventional methods
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(a) Input defocus image (b) Estimated defocus map

(c) Deblurring result (d) All-sharp ground truth

Fig. 1. Example for the proposed DID-ANet. The input defocus image and
the ground truth all-sharp input come from the proposed dataset.

[5]–[7] first estimate defocus kernels and then deconvolve the

defocus image to produce the all-sharp image. This is a direct

way and can usually obtain satisfactory results for areas with

low or middle level defocus, but cannot produce sharp results

for areas with high level defocus since almost all the high

frequency information has been lost. Additional natural images

priors [8]–[10] can improve the deblurring results in several

particular scenes, but they are insufficient to fill in the rich real-

world information, either. Moreover, due to the scene change

in photos taken in different environments, it is usually difficult

to obtain the natural scene priors with conventional methods.
In recent years, with the development of deep learning

methods, many new approaches have been proposed. In the

early stage, Sun et al. [11] estimate the blur kernel with

CNN; Chakrabarti et al. [12], Anwar et al. [13], [14] and

Gong et al. [15] also use neural networks to replace several

parts of the deblurring process. Currently, end-to-end CNN

approaches are widely applied. Nah et al. [16] and Tao et al.
[4] use multi-scale structure [17] for dynamic scene deblurring

and get good visual results. Meanwhile, Ramakrishnan et al.
[18] and Kupyn et al. [3], [19] use the conditional adversarial

networks (GANs) [20] for the deblurring. Unfortunately, most

of these end-to-end methods pay no attention to different types

of blur, and some are specially designed for the motion blur

and therefore unsuitable for the defocus deblurring.
Recently, Abuolaim et al. [21] use CNN to deblur defocus

dual-pixel image pairs. But for single image defocus deblur-

ring, their results are unsatisfactory. Moreover, Lee et al. [22]

apply CNN for defocus image deblurring with the dual-pixel

image dataset [21]. In this paper, we want to introduce a novel

model and a new light-field camera dataset for single defocus

image deblurring.

B. Defocus Map Estimation
Existing defocus map estimation (DME) methods can be

roughly categorized into three classes, i.e., edge-based meth-

ods, region-based methods and learning-based methods.

In the edge-based methods, the defocus amount is usually

calculated at edge points and then propagated to the whole

image. Zhuo and Sim [23], Cao et al. [24], Zhang et al.
[25] and Karaali and Jung [26] reblur the input image with

Gaussian kernels and use the ratio of the gradients of the

reblurred images at edge points to calculate the defocus

amount. Liu et al. [27] propose a two-parameter defocus

model to better analyze the defocus process and produce more

accurate estimations at edge points. Park et al. [28] unify

handcrafted and deep features to estimate defocus amount at

edge points. After the defocus amounts are obtained at edge

points, propagation method such as Laplacian matting, KNN

matting or guided image filtering is employed to obtain the

final defocus map. In this procedure, the input image or a

smoothed version is used as the guidance. Therefore, the final

defocus map usually suffers from the textures of the input

image. Moreover, for areas that are far from edge points, the

propagated defocus amount estimations are usually not reliable

enough.

For region-based methods, the defocus amounts are often

directly calculated from local patches centered at the current

pixel. Trouvé [29] et al. deblur the input image patch with

a set of PSF candidate and take the one which produces the

sharpest deblurred result as the estimation of defocus amount.

Shi et al. [30] build a defocus patch dictionary on which they

decompose the input image patches and use the sparsity of the

decomposition coefficient as a feature. Zhu et al. [31] employ

localized 2D frequency analysis to generate the likelihood

of defocus amount and employ coherent labeling to refine

it. D’Andrès et al. [5] extract a feature from the likelihood

and refine it with a regression tree fields to ease the problem

of [31]. They also build a realistic dataset for DME in the

sense of image deblurring, using a light field camera. This

is the first spatially-varing DME dataset, however, there are

only 22 images. Usually, region-based method is free from

textures of the input image, while they often produce inaccu-

rate estimations for homogeneous areas and cannot catch the

defocus discontinuities very well. In our another work [32], we

extract a region-based feature based on improved likelihood

and incorporate it with edge-based basis to produce texture-

free defocus map while catching the defocus discontinuities

well.

Recently, there are several deep-learning-based trials. Yan

and Shao [33] build a general regression neural network to first

classify the blur type and then estimate the blur parameter. The

defocus amount of their training dataset is spatially invariant,

limiting the application of their method. Zhao et al. [34]

use a bottom-top-bottom fully convolutional network to detect

defocus blur, which can be viewed as a loose problem of DME.

Similarly, Zhang et al. [35] build a smart defocus dataset

with three defocus levels and train a deep neural network to

estimate the defocus of an input image. Lee et al. [36] build

a synthetic dataset based on which they develop an end-to-

end deep neural network (DME-Net) to generate defocus map.

Domain adaptation is used since there are not enough data with

ground truth defocus map. This is the first truly deep-learning

based DME method, while the lack of real scene data limits

its performance and applications.
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Fig. 2. The architecture of proposed DID-ANet. The network consists of two main parts: the defocus map estimation sub-net and the defocus image deblurring
sub-net. The image is deblurred with the guidance of the estimated defocus map.

C. Auxiliary Learning

Auxiliary learning is a method to complement the primary

task by training on additional auxiliary tasks alongside this

primary task [37]. A direct approach to auxiliary learning is to

use a related task as auxiliary. Intermediate representations are

used as auxiliary supervision at lower levels of deep networks

to combine the advantages of end-to-end training and more

traditional pipeline approaches [38], [39]. Liebel and Körner

[40] empirically demonstrate that auxiliary tasks can boost

network performance, in terms of both final results and training

time. Several different vision auxiliary tasks have been applied

for depth estimation in monocular or multiple images [41]–

[43]. Jaderberg et al. [44] use unsupervised learning tasks

to continue developing in the absence of extrinsic rewards in

reinforcement learning.

In this paper, we use defocus map estimation as the auxiliary

task due to its close relevance to the primary task: defocus

image deblurring. The network architecture is also designed

according to the relationship between these two tasks. In short,

defocus map estimation is used as a low-level guidance in front

of the defocus image deblurring.

III. DEFOCUS IMAGE DEBLURRING

A. Auxiliary Learning Network

As there are out-of-focus images and clear ground truth

in pair, it is a natural thought to train a single end-to-end

network solving the defocus image deblurring. However, our

experience with such a simple structure is that the network

output is very similar to the original input, and the end point

error (EPE) would not decrease to a desired small value. One

explanation for this phenomenon is: since the input and output

are very similar in large scale and there are clear areas in the

input images, the output similar to the input can be a trivial

local minimum, where the clear areas reach the smallest loss

and the out-of-focus areas gets a reasonable EPE, making it

hard to be further enhanced.

To avoid such a local minimum, we can group the input

pixels according to their defocus amount, and the pixels

with similar defocus amount can be deblurred with the same

network parameters. That is, the defocus map can be used

to guide the deblurring process. Hence, we propose in this

paper a defocus image deblurring network with defocus map

estimation as auxiliary task. As shown by the detailed archi-

tecture in Figure 2, the input defocus image is firstly processed

by a simple defocus map estimation sub-net, which contains

several convolution layers to estimate a defocus map 4 times

smaller than the input image; then the estimated defocus map

is upsampled to the original size and concatenated with the

input images as the input of the defocus deblurring sub-net,

which contains 12 res blocks and several convolution layers.

With the defocus map as the guidance for deblurring, the

defocus areas in the input image are deblurred nicely. The

final deblurring result is the deblurring residual added to the

original input image.

The standard residual blocks in our network contain 2

convolutional layers, 2 batch normalization layers, and a ReLU

layer in the middle [45]. The kernel size is 128 in the defocus

deblurring sub-net. No pooling or sub-sampling is used in the

defocus deblurring sub-net as [46].

In addition, our network will pay more attention to the

areas with larger defocus, as to be introduced in detail in
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Fig. 3. Illustration for the estimation and re-evaluation of the defocus map, as well as the corresponding training losses employed in our DID-ANet. In the
first two training stages shown above, the two sub-nets are optimized jointly. In the last training stage, the defocus map estimation sub-net is frozen, focusing
on the improvement of deblurring sub-net.

Section III-C of loss functions.

B. Defocus Re-evaluation

The ultimate goal of the defocus image deblurring is to

generate an all-in-focus image. It is natural to propose that the

defocus map estimation sub-net can be reused to evaluate the

deblurring effect, as shown in Figure 3. Therefore, to further

enhance the deblurring result after the first round of training,

a re-evaluation loss is applied: the deblurring result and the

ground truth clear image are separately processed by the frozen

defocus map estimation sub-net, and then the average pixel

difference between these two new estimated defocus maps

is used as the re-evaluation loss. If the deblurring result is

similar to the ground truth, the defocus map estimations of

the deblurring result and the ground truth would be similar,

too.

C. Loss Functions

To train the proposed network, we elaborately adopt several

kinds of loss functions. The commonly used L1 norm and L2

norm are firstly applied. We use the defocus map estimation

loss (LossDME) to supervise the estimated defocus map

(DMEst) with the ground truth defocus map (DMGT ):

LossDME = ‖DMEst −DMGT ‖1. (2)

Then, we design a loss to supervise the deblurring result

with its paired clear ground truth. Because highly defocused

areas are much more difficult to deblur than lightly defocused

or non-defocused areas, with the estimated defocus map as the

reference, we increase the importance of the difficult areas

by using the weighted deblur loss (LossWD) with different

weights at different positions:

LossWD = ‖WDME × (Deblurred− ClearGT )‖2, (3)

where weight map WDME is the normalized defocus map with

an offset W0:

WDME =
DMEst

mean(DMEst)
+W0. (4)

Here we use W0 = 1/9.

As mentioned in Section III-B, we reuse the defocus map

estimation sub-net to evaluate the deblurring result of the

defocus image deblurring network to enhance it. That is, we

compare the defocus map estimations of the deblurring output

(DMDeblurred) and the all-sharp ground truth (DMClearGT
).

The difference is called the re-evalution loss LossRE :

LossRE = ‖DMDeblur −DMClearGT ‖1. (5)

Accordingly, we also design some training strategies to

optimize the whole network. Specifically, the training proce-

dure contains three stages (Figure 3). In stage 1 and stage 2,

the two sub-nets are jointly trained for 400 and 200 epochs,

respectively. For stage 1, we employ the ground truth defocus

map as the input of the defocus image deblurring sub-net to

avoid divergence caused by random output of the defocus map

estimation sub-net and speed up the training. While for stage

2, we use the output of the defocus map estimation sub-net

as the input of the defocus image deblurring sub-net to jointly

fine-tune the whole network. In stage 1 and stage 2, we employ

LossDME and LossWD for supervision:

Loss1 = λ1 × LossDME + λ2 × LossWD. (6)

In stage 3, we add the re-evaluation loss to further fine-tune

the defocus image deblurring sub-net for another 400 epochs,

with parameters of the defocus map estimation sub-net frozen.

Hence we use LossWD and LossRE for supervision:

Loss2 = λ2 × LossWD + λ3 × LossRE . (7)

In this paper, the weights of the loss functions are λ1 = 0.1,

λ2 = 0.9 and λ3 = 0.2.
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D. DED Real Scenes Dataset

To the best of our knowledge, in the sense of defocus map

estimation and defocus image deblurring, there is only a small

dataset called Realistic [5] consisting of 22 image pairs, which

are far from enough for training deep neural networks. To fill

this gap and facilitate the training of our model, we build the

first large-scale realistic dataset for defocus map estimation

and defocus image deblurring (termed as DED dataset) with

a light field camera.

Usually, it is extremely hard to directly capture an RGB-

Defocus dataset using conventional cameras. To build such a

dataset, typically two images captured with different camera

settings are needed. However, the contents and intensities of

these two images would be different more or less. Conse-

quently, geometric and photometric alignments are needed.

Unfortunately, precise alignments are also difficult. Alterna-

tively, one can estimate defocus maps based on stereo/RGB-

Depth datasets and then reblur the all-in-focus images man-

ually to synthetically generate the partially defocus images.

However, the employed kernels might be different from real

ones and consequently the produced defocused images are

different from real scenes. To bypass these problems, we use

a Lytro Illum light field camera [47], which can generate two

differently focused images at one shot, to generate the dataset.

The Lytro company provides a software along with their

camera to process the captured images that record the 4

dimensional light field. With the help of this software, the

all-sharp image Is, a partially-defocus image Ib and the

corresponding depth map Id
1 can be easily generated. In

principle, Is and Ib are generated by filtering the 4 dimensional

light field with specific 4 dimensional band-pass filters [48].

They can be viewed as if they were captured by a camera twice

with different settings, based on the Fourier Slice Photography

Theorem [49] for light field camera. Id is generated using the

stereo information extracted from the 4 dimensional light field.

Then, inspired by [5], we calculate the mean squared error

(MSE) between Ib and a reblurred version of Is in a patch-

wise way as follows:

d(r)[i] =

∑
j∈Ni

(Ib[j]− (Is ⊗ k(r))[j])
2

L2
, (8)

where i is a pixel, Ni is a small window of size L×L centered

at pixel i, and r is the radius of the candidate PSF k(r). Then

the defocus amount at pixel i is obtained by minimizing this

MSE:

b[i] = r∗ = min
r

d(r)[i]. (9)

Next, we detect the high confidence values as [5] did and

propagate them to the non-confident pixels via Laplacian

matting with the depth map Id as the guidance.

In the end, we generate in total 1,112 image pairs in

the proposed DED dataset and Figure 4 illustrates several

examples. Some of the images are from the multi-view dataset

1Please note that for a Lytro Illum, the maximum spatial resolution is 625×
433 [48] while the resolution of the Lytro software output is 2450 × 1634.
Therefore, we down-scale the output of the Lytro software with a factor of
0.25, i.e., the resolution of Is, Ib and Id is 613 × 409. The down-scaling
also helps keep Is sharp enough to serve as the all-sharp ground truth.

(a) Defocus image (b) All-sharp image (c) Defocus map

Fig. 4. Examples of the proposed DED dataset.

[50] and the others (over a half) are captured by ourselves.

Among the image pairs, 100 pairs are randomly selected as

the test set, and the rest 1,012 pairs are for the training. The

selection is also conducted to ensure that the test set has

different scenes from the training set. Both the training set

(including the defocus images, the defocus maps and the clear

ground truth) and the test sets (only the defocus images) of

DED are open source.

IV. EXPERIMENTS

A. Implementation Details

For the training process, the Adam solver is used with

parameters β1 = 0.9, β2 = 0.999 and ε = 10−8 with the

numbers of epochs detailed above. The input images and the

corresponding all-sharp ground truths, as well as the defocus

maps are randomly cropped to the size of 256 × 256. Other

data augmentation strategies, such as random flipping, rotation

and color change, are also applied to make the dataset more

variable [51]. The batch size is set to 16 when using 4 ×
Nvidia 1080Ti GPU for training, and the testing is conducted

with a single GPU. The testing time for a single image of size

600 × 400 is 0.27 seconds on average, with about 570 billion

FLOPs and 19.2 million parameters.

B. Experimental Results

We evaluate the proposed method on the Realistic dataset

[5] and the test set of the proposed DED dataset (DED-test).

Both the results of defocus map estimation and defocus image

deblurring are compared with the state-of-the-art methods.
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(a) Input images (b) Ground truth (c) D’Andrès [5] (d) Park [28] (e) Karaali [26] (f) DME-Net [36] (g) Ours

Fig. 5. Visual comparison of defocus map estimation on Realistic.

(a) Input image (b) Ground truth (c) D’Andrès [5] (d) Park [28] (e) Karaali [26] (f) DME-Net [36] (g) Ours

Fig. 6. Visual comparison of defocus map estimation on DED-test.

TABLE I
QUANTITATIVE COMPARISON FOR DEFOCUS MAP ESTIMATION, WHERE THE BEST RESULTS ARE IN BOLD.

Method D’Andrès et al. [5] Park et al. [28] Karaali et al. [26] DME-Net [36] Ours
MAE, Realistic 0.1968 0.2881 0.3547 0.3105 0.2392
MSE, Realistic 0.0941 0.1728 0.2200 0.1727 0.0985
MAE, DED-test 0.3321 0.3423 0.3931 0.3863 0.2443
MSE, DED-test 0.1198 0.1216 0.1627 0.1538 0.0644

The results for defocus map estimation are compared with

the methods of Zhou et al. [23], D’Andrès et al. [5], Park

et al. [28], Karaali et al. [26] and the recent deep-learning-

based DME-Net [36]. The evaluation metrics are the mean

absolute error (MAE) and mean squared error (MSE) to the

defocus map ground truth. The quantitative comparison can

be found in Table I, where the best results are in bold. We

can see that: for Realistic, the proposed method is comparable

with D’Andrès [5] and outperforms the rest three methods;

for DED-test, the proposed method performs the best, with

the lowest MAE and MSE.

Several visual examples of defocus map estimation are also

shown in Figure 5 (Realistic) and Figure 6 (DED-test). Our

results are much closer to the ground truth and the error area

beyond the boundary is less than those of other four methods.

The results for defocus deblurring are compared with the

conventional method of D’Andrès et al. [5]; the deep learning

methods of SRN-Deblur [4], DeblurGAN [3], [19], IFAN [22];

and the DME-Net [36] which applies CNN for defocus map

estimation and conventional deconvolution [52] for deblurring.

The deep learning methods are fine-tuned2 on the training set

2The learning rates are set separately according to the original papers,
and the training processes take 200 epochs, to make sure the models are
convergent.
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(a) Input image (b) Ground truth (c) D’Andrès [5] (d) DME-Net [36]

(e) SRN-Deblur [4] (f) DeblurGANv2 [19] (g) IFAN [22] (h) Ours

Fig. 7. Visual comparison of defocus image deblurring on Realistic.
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(a) Input image (b) Ground truth (c) D’Andrès [5] (d) DME-Net [36]

(e) SRN-Deblur [4] (f) DeblurGANv2 [19] (g) IFAN [22] (h) Ours

Fig. 8. Visual comparison of defocus image deblurring on DED-test. As the images in DED dataset are too large, we crop them and zoom in for better view.
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TABLE II
QUANTITATIVE COMPARISON FOR DEFOCUS IMAGE DEBLURRING, WHERE THE BEST RESULTS ARE IN BOLD.

Method D’Andrès et al. [5] DMENet [36] SRN-Deblur [4] DeblurGANv2 [19] IFAN [22] Ours
PSNR, Realistic 25.4268 24.0397 24.2156 24.3922 24.5410 26.0803
SSIM, Realistic 0.8504 0.7615 0.7948 0.7942 0.8234 0.8559
PSNR, DED-test 27.7139 26.0376 28.1028 28.6837 27.9823 31.0091
SSIM, DED-test 0.9146 0.8719 0.9261 0.9305 0.9311 0.9533

TABLE III
ABLATION STUDY ON REALISTIC AND DED TEST SETS., WHERE THE BEST RESULTS ARE IN BOLD. THE DEBLURRING RESULTS CAN BENEFIT FROM THE

AUXILIARY DEFOCUS MAP ESTIMATION TASK, THE LOSS FUNCTIONS AND FLEXIBLE TRAINING STRATEGIES.

Method DME+Deconv [52] Backbone Without AL Stage 1, L2 Stage 1, LWD Stage 2 Stage 3
PSNR, Realistic 23.2219 25.6590 25.6680 25.9074 25.9158 25.9288 26.0803
SSIM, Realistic 0.7448 0.8431 0.8403 0.8474 0.8507 0.8514 0.8559
PSNR, DED-test 27.6792 30.5059 30.6080 30.6590 30.6867 31.0008 31.0091
SSIM, DED-test 0.9158 0.9466 0.9469 0.9475 0.9478 0.9503 0.9533

of the proposed DED dataset. The evaluation metrics are the

Peak Signal to Noise Ratio (PSNR) and Structural Similarity

(SSIM) to the clear ground truth. The quantitative comparison

can be found in Table II, where the best results are in bold.

For both Realistic dataset and the proposed DED test set, the

proposed method outperforms all the other methods; with the

best PSNR and SSIM.

Several visual examples of defocus image deblurring are

shown in Figure 7 (Realistic) and Figure 8 (DED-test). As

images from the DED dataset are larger, we crop them and

zoom in for a better view. Results of the proposed DID-ANet

are more clear and vivid in our results than those of all other

methods. In Figure 7 (top), the texture in the rock and the

people with a black bag are clearer in our result; in Figure 7

(bottom), our result has a much more colorful number ‘2’, and

more vivid boundaries of the locks. In Figure 8, the human

faces (top), the pedestrians and the background trees (middle),

and the cars and the bicycle (bottom) are all more realistic and

clearer in our result. Besides, the visually fuzzy phenomenon

is greatly decreased in our deblurring results.

In contrast, there is block effect in results of [5], and the

methods cannot deal with the defocus blur very well. Specif-

ically, for the DME-Net [22] with deconvolution deblurring

[52], the results are not as clear as ours; for the motion

deblurring methods [4], [19], they cannot deal with the defocus

blur very well; and for the IFAN [22], although it is specially

designed for defocus blur removal and the model is refined

with the proposed DED dataset, the results are still not as

clear as those of the proposed method. Moreover, there are

noticeable artifacts in the deblurring results of [22], which

also lead to lower PSNR and SSIM scores than our method,

as shown in Table II.

Moreover, to verify the generalization ability of the DID-

ANet besides the light field camera generated datasets, we

select a small collection of pictures with obvious defocus areas

from the COCO dataset (some examples in Figure 9). The

higher value in the defocus map, the higher defocus amount.

After deblurring, defocused areas (the face of the girl and the

wall in the first example, the man sitting behind the desk in

the second example, as well as the above part in the third

example) become clear.

(a) Input image (b) Defocus map (c) Deblurring results

Fig. 9. Examples of the defocus map estimation and defocus deblurring by
DID-ANet on the COCO dataset.

C. Ablation Studies

Several ablation studies are conducted on both the Realistic

dataset and the test set of the DED dataset. The results can be

found in Table III.

Firstly, to demonstrate the necessity of auxiliary learning,

two experiments are conducted. One is termed “Backbone”,

the simple structure without the defocus map estimation mod-

ule. The other is termed “Without AL”, the complete network

as DID-ANet but trained with no supervision for defocus map
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TABLE IV
FIVE-FOLD CROSS VALIDATION OF DID-ANET ON THE PROPOSED DED DATASET. THE MODEL IS TRAINED ON FOUR FOLDS AND TESTED ON THE

REMAINING FOLD AS WELL AS THE REALISTIC DATASET. IT SHOULD BE NOTED THAT THE PERFORMANCE DOES NOT CHANGE VERY MUCH FOR THE

REALISTIC DATASET, MEANING THAT THE MODEL IS INSENSITIVE TO THE TRAINING SET PARTITION.

Metric, tested on
Model trained on

Folds #2-5 Folds #1,3-5 Folds #1,2,4,5 Folds #1-3,5 Folds #1-4

PSNR, Defocus Map Realistic 25.9831 26.0803 26.0467 26.0056 26.0389
SSIM, Realistic 0.8556 0.8559 0.8540 0.8549 0.8523

PSNR, DED remaining fold 30.2642 28.4579 29.6008 28.5884 26.7559
SSIM, DED remaining fold 0.9384 0.9139 0.9308 0.9165 0.8966

estimation. As expected, these two variations produce much

lower PSNR and SSIM for defocus image deblurring. Further-

more, more training epochs are required for both “Backbone”

and “Without AL” to convergence, meaning that it is hard

to train a network for defocus image deblurring without the

auxiliary learning. Besides, we also use the deconvolution

method [52] to deblur the input image with the defocus map

generated by our DME module. However, the PSNR and

SSIM of the results are much lower than even the ”Backbone”

network. This implies that the network methods are indeed

important for defocus image deblurring.
Then, another ablation experiment is conducted to verify the

effectiveness of each training strategy. Specifically, we test

the deblurring result after each training stage. As shown in

Table III, the performance is already better than those of all

other methods after the first training stage (compared with

Table II). Moreover, after each training stage, both PSNR and

SSIM get increased. We also study the effectiveness of each

loss function in the proposed DID-ANet. The performance

with a simple L2 loss is worse than that with the weight

loss (LWD), meaning that LWD is useful. Training stage 3

can improve the performance compared with training stage 2,

showing the effectiveness of LRE .

Fig. 10. EPE loss curve on validation set for ablation studies. The proposed
DID-ANet with the weighted deblur loss function LWD achieves the lowest
EPE and can converge more quickly than all other variations.

We also show the loss curves for the training processes of

the different network structures or loss functions aforemen-

tioned in Figure 10. Only the first 200 training epochs are

plotted in the figure. We use the mean end point error (EPE)

on the validation set (about 10% of the training set that are

kept out for validation in the training process) to show the

performance of all the variations. As shown in Figure 10, the

proposed DID-ANet with the weighted deblur loss function

LWD achieves the lowest EPE and can converge more quickly

than all other variations.

D. Cross Validation on the DED Dataset

A five-fold cross validation experiment is conducted on the

proposed DED dataset to demonstrate the robustness of the

proposed DID-ANet. The DED dataset is partitioned to 5 folds

randomly. Specifically, we first divide apart all the images

according to the different scenes, where each scene contains

2 to 6 images. Then, the scenes are randomly assigned to a

fold. Finally, the 5 folds are adjusted appropriately to make

sure that each fold has about 20% images.

The DID-ANet is trained on 4 folds and tested on the

remaining fold. Furthermore, the models are also tested on the

Realistic dataset. The results are shown in Table IV. It should

be noted that the performance for these models are quite

similar to each other for the Realistic dataset, meaning that

the proposed model is insensitive to the training/test partition.

V. CONCLUSION

In this paper, we propose a novel deep auxiliary learning

approach called DID-ANet, with defocus map estimation as

the auxiliary task for defocus image deblurring. The guidance

provided by the defocus map estimation makes the network

easier to train end-to-end, and helps to improve deblurring

results. Several novel loss functions and flexible training

strategies are also introduced. Furthermore, a new large-scale

defocus dataset termed DED is built, which is also the first

large-scale defocus deblurring dataset taken in real scenes and

suitable for training deep networks. Experiments show that

our DID-ANet obtain the state-of-the-art performance for both

defocus map estimation and defocus image deblurring tasks,

both quantitatively and qualitatively.
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