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Einstein described the damping and thermalization of the center-of-mass motion of a mirror placed
inside a blackbody cavity by collisions with thermal photons. While the time for damping even a
microscale or nanoscale object is so long that it is not experimentally viable, we show that this damping is
feasible using the high-intensity light from an amplified thermal light source with a well-defined chemical
potential. We predict this damping of the center-of-mass motion will occur on timescales of tens of seconds
for small optomechanical systems.
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In 1909 Einstein described how an object’s motion
would be damped by the recoil of photons when placed
inside a blackbody (BB) cavity [1]. Here, in analogy with
Brownian motion, a dynamic equilibrium between the
momentum fluctuations of the BB light and the object
would bring the motional temperature of the object to
that of the BB. Importantly, this was used by Einstein to
understand the Planck description of BB sources [1]. This
process was further explored as a potential mechanism for
damping on astronomical scales [2,3] by thermal radiation
from the cosmic microwave background at 3K. However, it
was found that the damping time for any object was
significantly longer than the lifetime of the Universe [2].
This damping process is weak, because as the temperature
of a BB decreases, the number of photons also decreases
since a BB has a chemical potential of zero.
Thermal sources of light with a well-defined chemical

potential have only recently been realized [4,5]. These
sources allow control over the chemical potential and there-
fore the number of photons for a fixed temperature. They are
in a dynamic equilibrium such that the photons come into
thermal equilibrium with an active medium via absorption
and emission. Here, we show that when illuminated by these
sources the motion of microscopic optomechanical objects
are damped,while their center-of-massmotion thermalizes to
the source temperature. This occurs on timescales of tens of
seconds, making an experimental demonstration feasible.
Einstein initially considered the motional damping of an

object byBB radiationwhen placed inside theBB cavity [1].
To illustrate this process we consider a mirror placed outside
the cavity and illuminated by the light emanating from the
BB. The mirror is a disk of area A and mass M with a
frequency dependent reflectivity RðωÞ. The spectral distri-
bution of the BB photons is described by the Bose-Einstein
(BE) distribution. We consider the disk in motion with
velocity vz along the z axis. Incoming photons make an
angle θ with the surface normal of the disk along the z axis.
The number density and variance of the BB photons per

unit angular frequency, solid angle, and volume are given
by ρn ¼ ðω2=4π3c3Þf1=½exp ðℏω=kBTÞ − 1�g and ΔN2 ¼
ðω2=4π3c3Þf( exp ðℏω=kBTÞ)=(½exp ðℏω=kBTÞ − 1�2)g,
respectively [6], where ω is the angular frequency of the
photons, kB is the Boltzmann constant, ℏ is the reduced
Planck constant, c is the speed of light in vacuum, and T is
the bulk temperature of the blackbody source. In the moving
frame of the disk, the BB source appears at an effective
temperature Tð1þ βz cos θÞ−1 due to the Doppler effect
[2,7]. The number density of photons is now given by
ρnðvzÞ¼ðω2=4π3c3Þf1=(exp½ℏωð1þβzcosθÞ=kBT�−1)g,
where βz ¼ vz=c and vz ≪ c. The total force [2,7] deliv-
ered by all photons incident on the moving disk from a
blackbody is
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Z
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where the solid angle dΩ is sin θdϕdθ and we have set
RðωÞ ¼ 1 as considered by Einstein. The first term in Eq. (1)
is the radiation pressure force, while the velocity dependent
second term is the radiation damping due to recoil of photons
at rate Γz ¼ ðAπ2k4BT4=15Mc4ℏ3Þ. The energy that the disk
loses per second [6] is MΓzv2z , where v2z ¼ kBTc:m:=M and
Tc:m: is the center-of-mass (c.m.) temperature of the disk. In
addition, due to the fluctuations in photon number [1,6], the
energy that the disk gains per second is
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At equilibrium, the loss and the gain rate in energy are
equal so that MΓzv2z ¼ Δ _E, and the c.m. temperature is
equal to the BB temperature, Tc:m: ¼ T. This is the result
calculated by Einstein [1] and also later calculations for
objects within the 3K cosmic microwave background of the
Universe [2,3].
We now consider the BB damping of a silica disk which

has a radius r ¼ 5 μm, thickness 50 nm, and mass density
2200 kgm−3. The disk is placed within an ultrahigh
vacuum environment (≤10−9 mbar) where the damping
due to collisions with the residual gas molecules is
negligible. The damping time τz ¼ 2π=Γz of the mirror
as a function of the BB temperature is shown in Fig. 1. The
equilibration time of the mirror increases rapidly as the
temperature decreases. This is due to the decrease in photon
flux (∝T4) with a decrease in the BB temperature [8]. At a
BB temperature of 300K, the damping time for the disk is
approximately 1000 years. At a temperature of 5000 K the
damping time reduces to ≈4.63 days. While this time is
significantly less than that at room temperature, it is still at
the limit of experimental verification [9], and producing
such a high temperature BB source would be challenging.
Damping of a mirror by a 2D thermal photon gas.—New

thermal light sources with nonzero chemical potentials have
recently been realized [4,5]. These have been produced by
optical pumping of cavities containing dyes in solvents or
rare earth ions within fibers. They are operated below the
lasing threshold and the photons come into thermal equi-
librium with the bulk temperature of the cavity. An impor-
tant property of these sources is that unlike a BB source, the
chemical potential and therefore the photon flux, can be
controlled or even maintained when the temperature is
changed [4,10]. This opens up the possibility of producing
more intense thermal sources when compared to a BB. We
show that these sources will allow the experimental reali-
zation of the optical damping of microscopic optomechan-
ical objects [9,11–14] as envisioned by Einstein.
As a concrete example, we consider a 2D microcavity

filled with dye molecules in solution [see Fig. 2(a)] [4].

The cavity traps photons emitted by the dye molecules
when optically pumped. The dye molecules are a thermal
bath for the photons providing the necessary chemical
potential for conserving photon number when the temper-
ature is varied [4]. The chemical potential can be adjusted
by changing the number of dye molecules or the pump
power [10]. The photon statistics of these sources are still
given by the Bose-Einstein distribution, with the inclusion
of a chemical potential μc determined by the ratio of
molecules in the excited state to those in the ground state
[4,10,15]. The energy density inside the cavity is given by

ū¼ 1

Vr

X∞
nx¼0

X∞
ny¼0

2ðnxþnyþ1Þ

×
ℏ½ωcþðnxþnyþ1Þω�

exp ½ðℏ½ωcþðnxþnyþ1Þω�−μcÞ=kBT�−1
; ð3Þ

where nx and ny are the transverse mode numbers of the

cavity, ω ¼ 2πc=n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0R=2

p
is the difference in frequency

between two consecutive transverse modes, ωc ¼ qπc=nD0

is the angular frequency of the longitudinal cavity mode

FIG. 1. The radiation damping time 2π=Γz due to blackbody
radiation calculated as a function of temperature, for a circular
silica disk of radius 5 μm, thickness 50 nm, and mass density
2200 kgm−3.
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FIG. 2. A schematic diagram illustrating the damping of a mirror
by thermal light. (a) A microcavity containing dye molecules in
solution produces a thermal photon gaswith an adjustable chemical
potential. Multiple absorption-emission cycles provide the neces-
sary thermalization of photons while the cavity traps photons
facilitating thermalization and provides a well-defined set of
transverse modes. Thermalization occurs in the transverse modes.
The number of dye molecules and the pump power determine the
chemical potential. Thermalized photons transmitted through one
of the cavity mirrors are collected by a lens and focused onto a
reflecting disk of reflectivity Rðωc þ ωÞ ¼ R0 þ sðωc þ ωÞ,
where s is a constant. Light exiting from the cavity propagates
along the z axis while the disk is in the x–y plane. (b) A graphical
demonstration of different longitudinal modes identified by
…q − 5; q − 4…q…qþ 4; qþ 5…. that a cavity can support.
Lines within each longitudinal mode represent transverse modes.
The emission spectrum of the dye molecules determines which of
the longitudinal cavity modes is occupied. (c) The Bose-Einstein
spectral density of a single longitudinal mode q, where we have
assumed 2πc=ωc ¼ 588.24 nm and μc ¼ 1.93 eV [4].
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number q, and n is the refractive index of the cavity
filler material. The cavity mirrors have a radius of curvature
R, with cavity volume Vr. In the limit where ℏω ≪ kBT
[10,16], the average number of photons transmitted
through one of the cavity mirrors, per angular frequency

and solid angle is _̄N ¼ ðVrTr=nqD0Þðωcω=4π3c2Þ×
f1=( exp ½ℏðωc þ ωÞ − μcÞ=kBT� − 1)g, where Tr is
the transmission coefficient of the cavity mirror
(see Supplemental Material [17], Sec. iii for details).

Given that exp ½ℏðωc þ ωÞ − μcÞ=kBT� ≫ 1 [4], _̄N
can be approximated as ðVrTr=qnD0Þðωcω=4π3c2Þ×
f1=( exp ½ℏðωc þ ωÞ − μcÞ=kBT�)g. Output powers of tens
of nanowatts have been demonstrated [4,10]. Because of
the relatively narrow bandwidth (≈60 nm [4]) of the light
compared to a blackbody source, it can be amplified using
optical amplifiers with gain G. We assume that the photon
statistics are not significantly modified by the amplification
process by noting that an optical amplifier, in addition to
replicating the photon statistics of the input, adds a small
thermal field typically via amplified spontaneous emission
[18,19]. The addition of a thermal component to an already
thermal source will not change the input statistics. This has
more recently been shown to hold for broadband ampli-
fication of the thermal light produced by amplified sponta-
neous emission [20]. Amplifiers do not, however, have a
flat spectral profile. This can be ameliorated by using a
spectral filter on the input to compensate for this variation
[11,21,22]. When illuminated with this amplified light, the
force on the mirror in the moving frame is

Fz¼
GVrTrexp½μc=kBT�

qnD0

×
Z π
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where P ¼ exp½ðμc − ℏωcÞ=kBT �ðVrTrk2BT
2ω2

c =
2qnD0π

2ℏc2Þ is the cavity output power before amplifi-
cation. The diameter of the incident light beam [see
Fig. 2(a)] is equal to or smaller than that of the disk.
Since the 2D thermal light source is spectrally narrow
compared to a BB source, disks can have 100% reflectiv-
ities in this spectral range such that RðωÞ ¼ 1. The damp-
ing rate of the disk is Γz ¼ ðG=2Mc2Þðℏωc=kBTÞP.
The rate of energy gain due to the fluctuation in photon
number is now Δ _Ez ≈ ðGℏωc=2Mc2ÞP. The equilibrium
center-of-mass temperature of the mirror is Tc:m: ¼
Δ _Ez=kBΓz ¼ T which is the same as that obtained for
the BB source. In this case, however, both Γz and Δ _Ez are
adjustable through the chemical potential μc and the optical
gain G. Figure 3 shows the damping time 2π=Γz at
T ¼ 300 K as a function of the normalized chemical

potential μc=ℏωc. The parameters used in our calculation
are typical of 2D experimental microcavities [4]. For a
chemical potential μc=ℏωc ¼ 0.92, and an optical amplifier
gain of 80 dB, we calculate a damping time of
2π=Γz ≈ 80 sec. This is eight orders of magnitude less
than a BB source at the same temperature. If the mirror is
not perfectly reflecting, the damping time will increase but
importantly the equilibrium CM temperature remains the
same and has been shown to hold for a linear change in the
reflectivity (see Supplemental Material [17]).
A levitated dielectric sphere damped by a thermal

photon gas.—We consider a levitated dielectric sphere of
radius r ≪ 2πc=ωc with a scattering cross section
of σs ¼ ðα2ω4

in=6πϵ
2
0c

4Þ illuminated by amplified 2D ther-
mal light from a microcavity. The frequency of the incident
light is ωin ¼ ωc þ ω and α is the polarizability of the
particle [23]. Furthermore, we assume that the amplified
light is tightly focused using a lens to a spot size of area Aw.
The particle could be levitated in a Paul trap [9], or by the
thermal light itself [11]. In the laboratory frame, the wave
vector of an incident photon is given by kin ¼ ½kx ky kz�,
where kin ¼ ωin=c. In the particle frame, the incident
and scattered photon frequency is ωinð1þ βÞ, where
β ¼ ðv · kin=ckinÞ, and v ¼ ½vx vy vz� is the velocity
of the particle along the three axes. The unpolarized
incident photons means that the scattered photons are
isotropically distributed over 4π steradians. After a
scattering event, each photon delivers momentum to
the particle equivalent to p ¼ ℏkinð1þ βÞðΘin −ΘsÞ,
where Θin ¼ ½sin θin cos ϕin sin θin sin ϕin cos θin� and
Θs ¼ ½sin θs cos ϕs sin θs sin ϕs cos θs�. Here, θin and
ϕin represents the polar and the azimuthal angles that the
wave vector of an incoming photon makes with the −z axis
and the þx axis respectively. θs and ϕs are the correspond-
ing angles that the wave vector of a scattered photon makes
with the same reference axes. With the appropriate Lorentz
transformation, the total force exerted by all photons is

FIG. 3. The relaxation time, 2π=Γz, of a 5 μm radius and 50 nm
thick silica disk due to a thermal light source as a function of the
normalized chemical potential. The cavity parameters [4] are:
Tr ¼ 1.5 × 10−5, q ¼ 7, D0 ¼ 1.46 μm, n ¼ 1.43 (ethylene
glycol), and R ¼ 1 m. The thermal source is at T ¼ 300 K with
an optical gain G ¼ 80 dB.
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where σc ¼ ðα2ω4
c=6πϵ20c

4Þ, dΩin ¼ sin θindϕin dθin, and
dΩs ¼ sin θsdϕsdθs. We have only shown the velocity
dependent term (see Supplemental Material [17], Sec. v).
The damping rate along the three axes is given by
Γx;y;z¼ðG=3Mc2Þðℏωc=kBTÞðPσc=AwÞ. Figure 4(a) shows
the time required by a 200 nm radius silica sphere to reach
equilibrium. Because of the isotropic nature of scattering,
the particle requires the same time to reach the equilibrium
along all three axes. For μc=ℏωc ¼ 0.92, the required time
for the particle to reach equilibrium is 2π=Γx;y;z ≈ 60 sec.
Figure 4(b) shows the effect of the cavity bulk temperature
on the thermalization time. For a fixed chemical potential,
the damping time increases rapidly as the temperature
decreases. However, this can be counteracted by increasing
the chemical potential [4,10].
The increase in the kinetic energy of the particle due to

the fluctuation in the photon number [1,24,25] is
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where Λ ¼ ½1 1 1�. The equilibrium center-of-mass temper-
ature of the particle along all three axes is equal to the bulk
temperature T of the dye molecules, i.e., Tc:m: ¼ T. This is
strikingly different to the value calculated for a laser trapped
spherical particle in high-vacuum [26] where Tc:m: ¼
ℏωl=4kB ¼ 6115 K for a λl ¼ 2πc=ωl ¼ 588 nm laser.
For a 200 nm radius sphere in UHV, it takes ≈7.90 ×

106 sec to reach equilibrium via the collisions with residual
gas molecules. This is 5 orders of magnitude larger than
when the sphere is illuminated with the thermalized photon
gas. For an actual measurement of the radiation damping
encountered by a levitated object, the object can be heated
(cooled) to a higher (lower) energy state, for example, by
rapidly manipulating the trapping potential [14,27], fol-
lowed by a ring-down (reheating) measurement for
determining Γ.
Finally, as the mirror and the levitated dielectric sphere

are harmonically bound and oscillate at frequency ωq,
their motion in UHV can be described by a Langevin
equation ðd2q=dt2ÞþΓqðdq=dtÞþω2

qq¼ fqðtÞ=M, where
q ¼ x, y, z and fqðtÞ is the random force due to the
thermal photons with an autocorrelation magnitude of
2MΓqkBT. Experimentally, the damping rate Γq can be
determined from the power spectral density [28] calculated
from a record of the displacement as a function of time. The
c.m. temperature can be found from

R∞
0 Sqqðdω=2πÞ ¼

ðkBTc:m:=2Mω2
qÞ. The damping rates calculated for both the

mirror and the levitated nanosphere above have linewidths
in the 10 mHz range which are well within experimental
reach [9].
We have shown that small, well isolated optomechanical

systems can be damped and thermalized by a thermal
photon gas as originally envisioned by Einstein. Such an
experiment is feasible using thermal light sources [4,5] and
recent advances in optomechanics [11,13,14]. An exper-
imental demonstration using a levitated optomechanical
object, such as a charged nanoparticle in a Paul trap [9] or a
neutral nanoparticle in an optical trap [12,13,29,30], in
ultrahigh vacuum seems ideal. Although we have calcu-
lated the damping from a 2D source, a 1D source [5] could
potentially be focused more tightly, leading to a higher
damping. Amplified LEDs and superluminescent diodes,
which produce thermal light [8,31] and have been
used to trap dielectric spheres [11], could also be consid-
ered for investigating thermal radiation damping. Our
results raise the possibility that by increasing or decreasing
the bulk temperature of a thermalized light source one

(a)

(b)

FIG. 4. (a) The damping time 2π=Γx;y;z of a 200 nm radius silica
sphere along the x, y, and z axes when the particle is illuminated
with a thermal photon gas focused to a spot size of w ¼ 1 μm.
The relaxation time is calculated for the light produced by a 2D
cavity and amplified by G ¼ 70 dB [4]. At μc=ℏωc ¼ 0.92, the
equivalent optical power after amplification is ≈200 mW. For
comparison, we have also included the equilibration time through
the collisions with the residual gas molecules. In this case, the
background gas pressure is 1 × 10−9 mBar. (b) The relaxation
time of the sphere from part (a) along the z axis as a function of
temperature for three different chemical potentials.
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can heat or cool the center-of-mass temperature of a
levitated nanoparticle without requiring feedback cooling
[11,13,27,29,30]. Lastly, although we have considered
damping by a thermal light source with an adjustable
chemical potential, it would also be interesting to study the
interaction of an optomechanical object with a photon BEC
[10,32,33], where μc ¼ 1.
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