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Abstract 6 

The UK Government has recently committed to achieve net zero carbon status by year 2050. 7 

Schools are responsible for around 2% of the UK’s total energy consumption, and around 15% 8 

of the UK public sector’s carbon emissions. A detailed analysis of the English school building 9 

stock’s performance can help policymakers improve its energy efficiency and indoor 10 

environmental quality.  11 

Building stock modelling is a technique commonly used to quantify current and future energy 12 

demand or indoor environmental quality performance of large numbers of buildings at the 13 

neighbourhood, city, regional or national level. ‘Building-by-building’ stock modelling is a 14 

modelling technique whereby individual buildings within the stock are modelled and simulated, 15 

and performance results are aggregated and analysed at stock level 16 

This paper presents the development of the Modelling Platform for Schools (MPS) – an 17 

automated generation of one-by-one thermal models of schools in England through the 18 

analysis and integration of a range of data (geometry, size, number of buildings within a school 19 

premises etc.) from multiple databases and tools (Edubase/Get Information About Schools, 20 

Property Data Survey Programme, Ordanance Survey and others). The study then presents 21 

an initial assessment and evaluation of the modelling procedure of the proposed platform. 22 

The model evaluation has shown that out of 15,245 schools for which sufficient data were 23 

available, nearly 50% can be modelled in an automated manner having a high level of 24 

confidence of similarity with the actual buildings. Visual comparison between automatically-25 

generated models and actual buildings has shown that around 70% of the models were, 26 

indeed, geometrically accurate. 27 
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1. Introduction 1 

The UK Government has recently committed to achieving net zero carbon status by 2050 [1]. 2 

The built environment accounts for around 40% of the UK’s carbon emissions [2]. Buildings, 3 

therefore, will have an important role in achieving the government’s carbon emission reduction 4 

targets.  5 

Schools are responsible for around 2% of the UK’s total energy consumption [3], and 15% of 6 

the UK’s public sector’s carbon emissions [4]. Given that two-thirds of the total English school 7 

floor area was built before 1976 [5], there are great opportunities for significant improvements 8 

of the school stock’s energy performance.  9 

Children spend around 30% of their lives at school, around 70% of which is in classrooms [6]. 10 

As a building type, schools have a number of distinctive and unique features that impact on 11 

energy performance: Schools typically have high and intermittent occupancy densities, which 12 

can result in high and irregular internal heat gains and heating demand patterns [7]. 13 

Classrooms are used in irregular patterns throughout the day and over the year, reflecting 14 

academic use, but indoor conditions (e.g., lighting, environmental quality and thermal comfort) 15 

need to be kept at appropriate levels. For these reasons, maintaining performance at a high 16 

standard may be challenging in schools, especially in the context of climate change.  17 

It is estimated that the UK school building stock has the potential to save 625,000 tonnes of 18 

CO2 emissions annually [8]. A detailed analysis of the school stock’s performance could, 19 

therefore, help policymakers improve its energy efficiency and indoor environmental quality.  20 

Building stock modelling is a technique that enables an examination of a large number of 21 

buildings, which represent the entire building stock or a large proportion of it, aiming to 22 

evaluate a range of performance indicators (e.g., energy consumption, CO2 emissions, Indoor 23 

Air Quality and others). Stock modelling is often used to examine current and future 24 

performance across large numbers of buildings at neighbourhood, city, regional or even 25 

national levels.  26 

This paper aims to present the development of Modelling Platform for Schools (MPS) – a 27 

process of automatically generating and running one-by-one thermal models of the English 28 

school building stock.  The platform offers a detailed representation of almost every school 29 

building (depending on data availability), enabling the impact of different improvement options 30 

or climate change scenarios to be evaluated while accounting for the diversity of the stock.  31 

The objectives of this paper are to: 32 



• present the individual components and data sources behind the development of MPS, 1 

• describe the step-by-step procedure in the generation and simulation of the English 2 

school stock, 3 

• assess initial modelling results and evaluate the robustness and accuracy of MPS in 4 

describing the English school stock.  5 

 6 

2. Background 7 
 8 
2.1.  Building stock and environmental performance 9 

Schools have unique occupancy patterns: They often have high intermittent occupancy, 10 

resulting in high internal heat gain peaks, high carbon dioxide (CO2) levels, emissions of body 11 

odours and other indoor pollutants. As school buildings are expected to maintain high levels 12 

of performance under a wide range of environmental conditions, the design of schools can be 13 

more complex and challenging than other building types. 14 

Studies have explored a range of performance-related aspects in school buildings. These 15 

include the relationship between fresh air supply and mechanical ventilation [9], and indoor 16 

environmental quality and energy consumption [10, 11]. Other studies have investigated the 17 

impact of school environments on pupils’ health, comfort and performance [12-14]. Some 18 

studies have explored the retrofitting of existing school buildings while dealing with risks such 19 

as overheating [15, 16]. 20 

It is, therefore, widely recognised that understanding the physical characteristics of school 21 

indoor environments is essential for understanding their performance as places for learning 22 

and wellbeing. This issue has greater importance in light of uncertainties due to potential 23 

changes in future climate change, and the increasing risk of overheating.  24 

It is estimated that 75% of buildings that will be standing by the middle of the century have 25 

already been built [17]; as energy consumption and air control in existing buildings is typically 26 

higher than in new buildings, it is important to understand the conditions and performance of 27 

the current stock [18]. Evaluating the environmental performance of schools and exploring the 28 

impact of potential interventions at a stock level can help policy makers in taking informed 29 

actions for improving the stocks’ performance. 30 

It is acknowledged that previous work has been done in the area of estimating school 31 

performance prediction. While many have shown interesting approaches, their main focus was  32 

on establishing simulation platforms for non-professionals [19], or on urban-33 

scale performance [20]. Such methods do not necessarily rely on stock data and historic 34 



records for evaluating the performance of the current stock, and are mostly focused on 1 

individual buildings or blocks, rather than on a stock-level analysis. 2 

2.2. Building stock modelling approaches 3 

Building stock modelling can assist stakeholders and design teams to better understand the 4 

performance of a group of buildings. They have been widely used as an analysis technique 5 

and supporting tools for decision making and policymakers [21, 22]. Stock level modelling, 6 

unlike the modelling of individual buildings, requires a synthesis of the characteristics of a 7 

group of buildings [23]. 8 

 9 

Building stock modelling approaches are typically classified into two main categories:  10 

(i) Top-down stock modelling – works at an aggregated level, whereby the relationships 11 

between stock-level energy use and macro-economic factors are analyses and a model 12 

is built.  13 

(ii) Bottom-up approach – where data of individual buildings is aggregated and analysed, 14 

and a stock model is built. The bottom-up approaches can be further divided into 15 

‘archetype approaches’ and ‘building-by-building’ sub-categories. 16 

- Archetype approach: where buildings are classified by a set of building properties 17 

(e.g., form, construction age, location etc.) to statistically represent buildings with 18 

similar features. The stock-level performance under the archetype approach can be 19 

estimated by simulating a relatively small number of models in a relatively short time, 20 

and then, by taking into account the frequency of occurrence of each archetype 21 

within the stock, aggregated at larger geographic units (neighbourhood, regional or 22 

national level). On the other hand, archetype models are generic and represent 23 

‘average’ buildings rather than specific ones, which means it cannot predict the 24 

performance of individual buildings. Stocks with a small sample size could also be 25 

challenging for archetype approach, as individual ‘outlier’ buildings within the small 26 

sample may have higher impact on the archetype than they should. 27 

- Building-by-building’ approach: where data on individual buildings is used. In this 28 

approach, data is gathered for each individual building in the stock. Based on these 29 

data, individual buildings are modelled and simulated, and performance results are 30 

aggregated and analysed at a stock level. While the building-by-building approach 31 

can reflect the heterogeneity of a building stock, it may also take significantly longer 32 

to model and simulate. 33 

While the archetype modelling approach has been used quite extensively in the literature [5-34 

9], recent years have seen the increasing availability of large datasets and advances in 35 



computational capability, which have contributed to the development of building-by-building 1 

stock modelling frameworks.  2 

 3 

2.3. Applications and Challenges in Building-by-building Stock Modelling 4 

Building-by-building school building stock modelling is highly reliant on the availability of 5 

accurate school building data. Obtaining and processing of the required input data, however, 6 

is a key challenge, as multiple layers of data may be required for the building-by-building stock 7 

model. These may include external environmental data (e.g., geography, external climate and 8 

pollution levels), or building level data (e.g., building construction materials, geometry and 9 

layout).  10 

Estimating building stock performance using the building-by-building approach may be a 11 

computer-intensive process [24]: As each thermal model requires one CPU thread to perform 12 

the simulation, the simulation of individual buildings may take a significant amount of time for 13 

large stocks. Cloud-based computing technologies (also called High Performance Computing 14 

- HPC) offer a solution for batch simulation in a relatively quick and efficient way. A study by 15 

Symonds et al. (2016)  [25] used HPC, which enabled simulations of a large set of models in 16 

parallel. Chen et al. (2017)  [26] described the development of City Building Energy Saver 17 

(CityBES) – a web-based tool that can model building stocks at an urban level and simulate 18 

their performance in parallel, using cloud computing. Batch simulations and cloud computing 19 

can, therefore, boost the building-by-building stock modelling approaches at large scales and 20 

significantly reduce the simulation time.   21 

The building-by-building approach has been in used primarily for estimating and assessing 22 

energy performance at the urban scale: Zucker et al.  (2016)  [27] proposed a dynamic co-23 

simulation of the residential building stock in a German neighbourhood at the city of 24 

Gothenburg. The model was used to assess peak energy demand and the local district heating 25 

plant. Romero Rodríguez et al., (2017) [28] used the building-by-building approach to explore 26 

the benefits of using photovoltaics for each building of the Ludwigsburg County in south-west 27 

Germany. Österbring et al. (2016) [29] used a building-by-building stock model to investigate 28 

the energy demand of heating for buildings in the city of Gothenburg, to support policy-making 29 

for estimating a set of environmental impacts of buildings in the city.  30 

One important limitation of thermal simulations – which is also reflected in the one-by-one 31 

building stock modelling – is the validity of simulated energy consumption results due to issues 32 

such as the performance gap. The validation of one-by-one stock models is often based on a 33 

comparison between modelled data and measured performance data, which can be retrieved 34 

from the stock [29]. Nageler et al. (2017) [30] compared modelled and measured energy 35 



consumption of 69 buildings in Gleisdorf (Austria) and showed a good approximation between 1 

the two, with a mean deviation of 0.98%.  2 

While these trends in building-by-building stock modelling seem to be promising, most 3 

reviewed studies have investigated residential buildings. To the knowledge of the authors, 4 

building-by-building stock modelling has not yet been applied to school building stocks in a 5 

systematic manner.  6 

3. Methodology 7 

In recognizing advancements and gaps in existing building stock modelling approaches, this 8 

paper presents Modelling Platform for Schools (MPS) – a platform that characterises the 9 

English school building stock performance and predicts the impact of improved building 10 

regulations, technology enhancements and refurbishment interventions on the stock’s energy 11 

efficiency, indoor environment and cognitive performance of students. The features of MPS 12 

and its structure are outlined below. 13 

3.1. Introducing Modelling Platform for Schools (MPS) 14 

The main characteristic of MPS is the use of individual dynamic building energy simulation 15 

models automatically generated for each building in the English school stock. In contrast to 16 

models that rely on building archetypes, this fully disaggregated approach accounts for the 17 

heterogeneity within the stock by explicitly modelling each individual school building. MPS 18 

considers key characteristics for each building, such as geometry, geolocation, surroundings, 19 

building fabric characteristics and occupancy patterns.  20 

Input data for MPS is drawn from various sources, in particular Edubase/Get Information About 21 

Schools [31], Property Data Survey Programme (PDSP) [5], Ordanance Survey (OS) [32] 22 

Display Energy Certificates (DEC) [1]  and National Modelling Methodology (NCM) [33]. MPS 23 

checks, validates, and then matches datapoints across the different datasets and generates 24 

a thermal model in an EnergyPlus format – a thermal modelling and simulation tool. Models 25 

are generated for each school, independently. This approach enables a detailed investigation 26 

of a range of environmental performance indicators at the individual school level, but also 27 

allows the results to be aggregated to assess the impact on a stock level.  28 

3.2. Input Databases  29 

MPS has been developed by combining data from multiple sources, described below. Each 30 

database holds valuable information that can feed into a thermal model, however, none of the 31 

databases are complete:  32 



• Edubase/Get Information About Schools – Edubase is a centralised database on the 1 

school stock for school workers and parents/guardians. This includes information on 2 

several key variables, including the phase of education (primary, secondary, etc.), the 3 

capacity (number of pupils), and the use characteristics (boarding facilities, 4 

establishment type, etc.). Edubase was used as the ‘spine’ of school data for MPS, 5 

onto which each of the other datasets was matched. 6 

• PDSP (Property Data Survey Programme) – The PDSP database includes information 7 

gathered between 2012 and 2014 in a large-scale survey of the English school building 8 

stock [34]. Covering 85% of the total school estate of England, this database includes 9 

a number of important parameters for building thermal simulation models, including 10 

construction age, and glazing ratio. Detailed information on building geometry is not 11 

covered within PDSP. However, it does include summary data on building geometry, 12 

such as floor area and building height (in m2 and storeys respectively).  13 

• OS (Ordnance Survey) – OS provides several GIS-based datasets on the geometric 14 

description of the building stock of Britain. This covers not only buildings, but also other 15 

physical structures, such as sheds, parking garages, and shading surfaces. 2D 16 

polygons of these entities are included in the OS MasterMap ‘Topography’ dataset [35] 17 

which also includes the average height of each entity. Since OS data covers all building 18 

types, not just schools, the OS MasterMap ‘Sites’ layer [35] has been used to identify 19 

those structures within school sites, and for matching the OS data to Edubase. The 20 

OS ‘Code-Point with Polygons’ dataset [36] which shows the shape of every postcode 21 

unit in Great Britain, was also used for OS matching purposes.  22 

 23 

Figure 1 shows an example of the OS 2D data: The dark-grey polygon shows the 24 

school site. Blue lines are the postcode boundaries. Physical entities, as defined by 25 

OS, which lay within the school site, are presented with light-grey filled polygons. 26 

Enumerated elements in the figure represent ‘Built Islands’ – which are either a single 27 

structure or a group of joined structures.  28 

 29 
 30 



 1 

Figure 1: An example of the OS 2D data inputs. Schools site (Dark-grey polygon), Postcode 2 

boundaries (Blue lines) and Physical entities (Light-grey-filled polygons). 3 

• DEC (Display Energy Certificates) – Since 2008, large public buildings in the UK 4 

frequently visited by the public are required to produce a DEC [1].  While DEC include 5 

normalised benchmarks of performance ('Operational Ratings'), crucially unlike Energy 6 

Performance Certificates (EPC), they also include raw annual energy consumption 7 

data. These are presented as 'electricity' and 'fossil-thermal' use. In addition to 8 

performance data, DEC also include information on building systems (the main indoor 9 

HVAC (Heating, Ventilation and Air Conditioning) type, main heating fuel and any 10 

renewable technologies). As a source of disaggregate empirical data on building 11 

performance, several studies have analysed DECs, to understand the performance of 12 

the non-domestic building stock [37-39].  13 

In addition to the four sources of detailed data on the school stock listed above, several further 14 

data sources were used in MPS. These provide information on typical building characteristics 15 

and occupancy behaviour for the energy models and are described below.  16 

• NCM (National Modelling Methodology) – NCM [33] is a modelling guide for buildings 17 

other than dwellings in England, for demonstrating compliance with UK Building 18 

Regulations, and calculating operational performance as part of the production of Non 19 

Domestic Energy Performance Certificates (NDEPC). The NCM provides a set of 20 

standardised energy-use-related variables and internal gains patterns for typical 21 

building uses (e.g., typical light loads in classrooms, typical occupancy in school 22 

gymnasiums, etc.). In MPS, these are used as input parameters for the school 23 

modelling.  24 

• Thermal Properties – Where available, information on the building envelope 25 

characteristics of the schools have been extracted from the PDSP database. This 26 

includes a mix of quantitative and qualitative data (e.g. window-to-wall ratios) as well 27 

as data that could work as a proxy for building fabric characteristics (e.g. building 28 



construction age). These variables have been converted into thermal properties for 1 

modelling (e.g. U-values), using the assumptions based on previous studies [38], as 2 

shown in Table 1. 3 

• Table 1: Build-ups and U-values (W/m²/k) 4 

Building surface Pre-1919 Inter war 1945 1965 1976 

External Wall 1.80 1.80 1.70 1.70 0.83 

Roof (Flat) 1.87 1.87 1.87 1.13 0.57 

Roof (Pitched) 2.90 2.90 1.85 1.25 0.54 

Ground floor 1.50 1.50 1.40 1.40 0.94 

Windows 5.70 5.70 5.70 5.70 5.70 

 5 

• Weather files – Test Reference Year (TRY) weather files from the Chartered Institution 6 

of Building Services Engineers (CIBSE) were used in this study [41]. TRY files are 7 

used for plant sizing (based on conditions of a typical year) and represent typical 8 

weather conditions based on 30-year measurements (1984 – 2013) in 13 cities around 9 

the UK and are used for assessing compliance with Building Regulations. These files 10 

have been applied to the school stock using the degree-day regions defined in the 11 

CIBSE methodology [42]. Table 2 shows the list of climate regions and the associated 12 

CIBSE TRY weather files that were used. Note that the reference to ‘Wales’ 13 

corresponds with schools that have been matched to the Wales climate region but are 14 

still physically located within England. 15 

Table 2: Climate regions and their weather files [41]  16 

 Climate 
region 

CIBSE weather file 
(TRY) 

1 Thames 
Valley 

London  

2 South-
eastern 

London 

3 Southern Southampton 

4 South-
western 

Plymouth 

5 Severn Valley Swindon Brize Norton 

6 Midland Birmingham 

7 West 
Pennines 

Manchester 

8 North-
western 

Newcastle 

9 Borders Newcastle 



10 North-
eastern 

Leeds 

11 East 
Pennines 

Nottingham 

12 East Anglia Norwich 

13 Wales Cardiff 

 1 

3.3. MPS Structure  2 

The successful application of one-by-one dynamic building energy simulation depends largely 3 

on the available data used for the automatic generation of individual school models. A 4 

summary of the MPS method is provided below and can be read in conjunction with Figure 2, 5 

which illustrates the main components of the platform, the input data, and the processes 6 

undertaken by each component. 7 

 8 

Figure 2: The main components of Modelling Platform for Schools (Input data in grey). 9 

MPS is comprised of a number of processes. Input data processing and school geometrical 10 

analysis, generation of full thermal model and a stock-level simulation.  11 

3.3.1 Step A: Data processing and geometrical representation 12 

Step A of MPS involved producing a unified database of the school stock with sufficient 13 

building, system, and building form data for step B (the generation of thermal models for each 14 

school). Input data describing the building stock comes from a range of sources, as shown in 15 

Figure 2. These include building geometry data (OS), databases that provide building-level 16 



inputs (e.g., construction year and systems) on specific school estates (PDSP), measured 1 

energy consumption (DEC) and assumptions on internal conditions and occupancy behaviour 2 

(NCM). Reflecting the overall data requirements of MPS, schools included in the analysis were 3 

selected on the basis of having data available from a number of sources: Building age and 4 

form, for instance, are required for producing thermal models so schools without reliable data 5 

from PDSP and OS could not be included. Similarly, those without actual electricity and fossil-6 

thermal use data from DECs could not have their modelling results compared, so were 7 

similarly excluded. Thus, schools without reliable data from any of the sources previously listed 8 

- due to gaps in the original files (e.g. not all schools have lodged DECs), or reflecting the 9 

processing (e.g. incomplete address-matching, or spurious data while processing) - were 10 

excluded from the analysis.  11 

The OS, Edubase, DEC and PDSP datasets were processed and address-matched to 12 

produce a unified set of inputs for each individual school building. As the main database of the 13 

national school stock, Edubase (currently called ‘Get Information About Schools’) was used 14 

as the central spine onto which each other dataset was matched. Edubase includes a 15 

referencing system (the Unique Reference Number, URN) for each building, which is also 16 

used in PDSP, hence these datasets were matched directly. The DEC database does not 17 

include URNs, so these entries were address-matched using the available school's name and 18 

address fields. Considerable processing was carried out on the PDSP and DEC files. This 19 

included checking for invalid and unlikely datapoints (e.g. DECs with default values, or 20 

unusually small floor area), scaling variables originally collected at an element level to school 21 

blocks (e.g. the overall HVAC system for each school was aggregated from floor area 22 

breakdowns from the PDSP data), and identifying schools with incomplete or ‘unknown’ data. 23 

Following these steps, the processed schools data covered approximately 80% of all open 24 

primary schools and 50% of all open secondary schools in England. Comparison of the 25 

schools with and without energy data found very similar characteristics between the samples, 26 

although the sample does not include any schools built since 2004 since these were excluded 27 

from the PDSP survey. Full information on this process is provided elsewhere [43]. However, 28 

the use of individual school OS form data is new for this study, and is, therefore, presented in 29 

detail below. 30 

a. Matching PDSP school entries with OS school sites 31 

Each school record in Edubase holds, among others, the following information: school name, 32 

phase of education (primary, secondary, etc.), street address with postcode and geographic 33 

Cartesian coordinates of northing and easting. Similarly, for education facilities, the OS 34 

MasterMap Sites Layer provides for each site; function (primary, secondary, etc.), distinctive 35 



name and a polygon representing the school site. Unfortunately, the Edubase school names 1 

and OS education site distinctive names do not always match directly. As a result, 4 phases 2 

of matching were applied, each associated with a different match quality between Edubase 3 

and OS:  4 

- Phase 1: In the first phase, schools for which the Edubase coordinates are within one 5 
(or more) OS site boundaries were identified. This matching was ranked as ‘Excellent’. 6 

In a few cases, the coordinates were within multiple OS site boundaries. That was 7 

usually the case when there were multiple overlapping sites, such as primary and 8 

secondary school under the same establishment. There were also instances where 9 

multiple school records had the same coordinates. For schools where an OS match 10 

could not be found following phase 1, these were then passed to phase 2.  11 

- Phase 2: The second phase identified schools for which the postcode polygon (based 12 
on the postcode in PDSP data) intersected only one OS site boundary. In these cases, 13 

the matching was ranked as ‘Good’. 14 

- Phase 3: The third phase identified school sites for schools in which the postcode 15 

polygon intersected several OS site boundaries. In these cases, the matching was 16 

assumed to be to the site closest to the school coordinates. Matching outputs from the 17 

third phase was also ranked as ‘Good’.  18 

- Phase 4: Last, the next matching rank of ‘Poor’ matches was based on identifying the 19 

nearest OS school site (distance from school coordinates) for schools which had no 20 

postcode polygon in the database, or those of which the postcode polygon did not 21 

intersect any OS school site. 22 

A summary of the matching process can be found in Table 3, including the match quality and 23 

overview of any matching issues. Over 85% of schools achieved an ‘Excellent’ match, 24 

although a total of 4.5% of the stock had some matching issues (i.e., multiple schools sharing 25 

the same site or schools in overlapping sites). Less than 13% of the schools had a ‘Good’ 26 

match, while around 1.5% of the schools had matching issues (such as postcode polygon and 27 

school sites intersections, or multiple schools that share the same site). Only around 2% of 28 

the schools were ranked as ‘Poor’ matches. 29 

Table 3: Summary of schools’ database matching.  30 

Matching ranking Number of Schools (%) 
Excellent 14,892 (85.3%) 

Raised warnings: 
2 schools share the same site: 600 (3.4%) 
2 schools share 2 overlapping sites: 128 (0.7%) 
school in 2 overlapping sites: 44 (0.2%) 
3 schools share the same site: 15 (0.1) 



Good 2,194 (12.5%) 
Raised warnings: 
postcode polygon intersects 2 multiple sites: 108 (0.6%) 
selected site is not the nearest one: 93 (0.5%) 
2 schools share the same site: 36 (0.21%) 
postcode polygon intersects 3 multiple sites: 11 (0.1%) 
postcode polygon intersects 4 multiple sites: 1 (0.01%) 

Poor 377 (2.2%) 
Total 17,463 (100%) 

 1 

b. Matching PDSP and OS school buildings 2 

A key task for MPS was to automatically detect the ‘true’ buildings in the OS database and 3 

match them with the appropriate entries from the PDSP data: While PDSP, OS and DEC 4 

databases hold some information at building level, the number of entries in each database, in 5 

many cases, can differ. E.g., a particular school might have 2 buildings (entries) in PDSP data, 6 

while showing 5 geometrical entities (polygons) on the OS database. This is because OS 7 

database holds each and every detectable physical entity within the school premise (i.e., 8 

buildings, but also sheds, storage spaces etc.), whereas PDSP only holds information about 9 

habitable space blocks. 10 

The reversed phenomenon can be observed too – i.e., when schools may have a higher 11 

number of buildings (entries) in the PDSP data, compared to the OS data. This may occur 12 

when polygons on OS – which are in fact independent but adjacent buildings - are aggregated 13 

into a single built entity, or a ‘built island’.  14 

Since for both polygons in OS and entries in DEC, the ‘area’ entry can be obtained, the 15 

matching procedure searches for a combination of polygons and DEC entries that can match. 16 

The buildings matching procedure is described below: 17 

- Step 1: ‘Unrealistic entities’ in the OS data (polygons with a footprint smaller than 30 18 

m² or head-height lower than 2.5 m) were filtered out. 19 

- Step 2: In OS data, per each build island, all possible buildings combinations based 20 

on building footprint area were found. 21 

- Step 3: In the PDSP data, per each school, all possible buildings combinations based 22 

on building footprint area were found. 23 

- Step 4: The OS area combinations were compared to those of PDSP area 24 
combinations.  25 

- Step 5: A ‘combination matching score’ was calculated by evaluating the similarities 26 

of each area combination, per school, and each combination was ranked accordingly. 27 

3.3.2. Step B: SimStock – Thermal models generation  28 



Once all buildings in a school site were identified, the relevant use patterns and thermal 1 

attributes were assigned to them and a dynamic thermal simulation file, in the form of 2 

EnergyPlus idf, was generated by SimStock – a platform that automates the generation of 3 

dynamic thermal simulation models. Generated models are formatted to align with the 4 

EnergyPlus [44] simulation programme requirements. 5 

Each thermal model contains a geometrical description of the school, but also details on the 6 

building’s fabric, internal loads, use patterns and other thermal-related properties. Following 7 

the matching procedure, each school building is modelled: the number of storeys is taken from 8 

the PDSP and OS databases, where each floor is modelled as an individual thermal zone.  9 

Window dimensions are determined by the synthesis of PDSP and OS data and is represented 10 

as window-to-wall-ratio (WWR). In the modelling procedure, windows are placed at the centre 11 

of an external wall and are sized as a percentage of the wall’s surface area. It is acknowledged 12 

that placing a window in the centre of a wall might not be an accurate representation of the 13 

wall’s position in the actual building, and that this might impact on the accuracy in simulating 14 

buildings with off-centred windows.  15 

In conjunction with school building thermal properties data (which were collected through an 16 

analysis of PDSP and DEC), information about the local climate (i.e., CIBSE weather files [42], 17 

and building use schedules and loads (based on NCM [33]), the pre-processed inputs were 18 

passed to SimStock, 19 

3.3.3. Step C: Stock-level simulation 20 

Once all thermal models were set up and a stock was defined – the models were subsequently 21 

simulated. Since EnergyPlus is designed to analyse a single building or a limited, small, 22 

number of buildings at a time, which can be computing-intensive process, MPS makes use of 23 

a High-Performance Computing (HPC) [45] platform, which enables simulations of multiple 24 

models simultaneously. This has been found to be a quicker method for simulating the stock 25 

when the number of schools and scenarios being assessed is large. 26 

3.4. MPS – innovative approach  27 

MPS includes advanced features for the analysis of the performance of school buildings. 28 

These include: 29 

Automated process – School building geometry is often very complex, composed of large 30 

exterior surfaces. Features such as courtyards (i.e., a hole inside a building polygon) and 31 

modifications, such as extensions, might contribute to a building’s complexity. The modelling 32 



platform automatically represents the three-dimensional geometry of selected buildings, 1 

based on data drawn from multiple sources. 2 

Height detection – Height of the 3D structures is obtained by crossing and matching data 3 

between PDSP and OS databases. These data further increase the accuracy of school models 4 

by differentiating multiple and aggregated buildings (such as extensions or demolitions - 5 

rebuilt) which often share a single footprint in the digital map data. It is not an uncommon 6 

condition in schools where part of the school is rebuilt, for example with a different height, or 7 

an additional floor is built on top of a small part of the original structure. Crossing these 8 

independent databases enables MPS to detect built additions and increases the overall 9 

accuracy of the thermal model. 10 

Building and model attributes detection – The generation of dynamic thermal simulation 11 

models requires the identification of various building attributes. Variables that are related to a 12 

building’s thermal properties, its services and system are particularly important. Many of these 13 

crucial input parameters are associated with the school construction age. Therefore, to 14 

increase modelling accuracy, construction age is used to estimate thermal performance when 15 

generating the thermal model. Where schools have multiple buildings constructed at different 16 

periods, the age of each individual buildings is used. 17 

Surrounding context – Considering the surrounding context when conducting an analysis at 18 

an individual school level is of particular importance in highly dense urban areas, where nearby 19 

buildings can create overshadowing. This can potentially reduce daylight access and benefits 20 

from solar gains during the heating season. In addition, although rarely, school buildings are 21 

adjacent to other buildings, in which case the model makes possible the identification of party 22 

walls. 23 

4. Results Analysis  24 

An analysis of MPS outputs is presented below. This section mainly focuses on the evaluation 25 

of the capability of the automated processes behind MPS in generating robust thermal models 26 

that accurately represents the English school building stock. 27 

4.1. Initial full stock-model assessment 28 

MPS was first tested for its full-stock generation capabilities. The study carried out an analysis 29 

of all the schools that MPS currently has data for and is capable of generating a model of. 30 

Following data processing, a database of around 15,000 schools was created with the 31 

necessary data to feed into MPS, as detailed in [43]. 32 



This analysis holds information about each school – based on their URN (Unique Reference 1 

Number linked to the PDSP database) and the school’s name. A 5-grade ‘traffic-light’ system 2 

was then developed, to express the predicted ‘matching robustness’ (i.e., the likelihood that 3 

the automated data merging procedures were accurate), for each school. In the traffic-light 4 

grading-scale, each label represents a certain matching percentage range, which is based on 5 

a comparison between the inputs of school buildings polygons’ area in the different databases. 6 

As seen in Table 4, of the 15,245 schools, 48.2% achieved ‘excellent’ or ‘very good’ 7 

robustness levels. 28,3% achieved medium robustness and 13.7% had low confidence levels 8 

in results. 9.8% of the schools had missing data (e.g., unrealistic ‘height’ parameter) or issues 9 

of miss-matched data (e.g., significant differences in number of entities in a school site). 10 

In addition, as schools can vary in shape, size, floor area and number of buildings, large 11 

numbers of buildings within a school site can significantly increase the complexity of the model 12 

generation procedure. As a result, the likelihood of the data merging and matching procedure 13 

being accurate is significantly reduced. Overall, the analysis has shown that around 6% of the 14 

examined schools had more than 8 buildings within the school premise. These schools would 15 

be classified under the ‘Red’ (very low) category in Table 4. Figure 3 shows an example of 16 

such school. 17 

Table 4: Stock-level model generation evaluation 18 

 

 High - An accurate match is highly likely. Very 

good match between the OS and PDSP buildings. 

 

 Moderate - Matching is likely, but there might be 

small discrepancies between OS and PDSP floor 

area.  

 Medium - Some buildings might mismatch, or, 
there might be some discrepancies between the 

OS and PDSP buildings’ floor area.  

 Low – Big differences between the matched data, 

due to significant discrepancies between the 

databases, missing or incomplete data. 

 Very low – Data is missing or too detailed at the 

source databases. Unable to generate a model. 

 

 19 



  1 

Figure 3: A school containing a large number of buildings, which contributes to the uncertainty 2 

of the model generation procedure. 3 

4.2. Visual model matching 4 

Following the automated model-assessment procedure, a visual inspection of a sample of 5 

models was carried, to ensure the models were generated accurately. This was done in order 6 

to visually assess the resemblance between the geometries of the EnergyPlus models and 7 

the corresponding actual buildings they represent. 8 

A sample of 200 school models across England were randomly selected. 9 

Their models’ geometry was imported to Sketchup [46] using the Legacy Open Studio plug-in 10 

[47] and compared with the schools’ 3D images as viewed in Google Maps and Google Street 11 

View [48]. Google Maps provides satellite or high-resolution aerial imagery of areas in the UK, 12 

with top-down and ‘bird’s eye’ views. Google Street View is a component of Google Maps that 13 

offers interactive panorama views from eye-level perspective. Fast locating places featured in 14 

Google Maps allows the actual school buildings to be easily found simply by typing their 15 

postcodes or addresses. However, not all schools have records in Google Maps or Google 16 

Street view. Therefore, different evaluation strategies were applied as follows:  17 

(1) Most schools had records in 3D Google Maps (Figure 4), and the entire schools could 18 

be viewed using 45-degree aerial imagery. In these cases, the inspection of the 19 

schools’ configuration, numbers of floors and buildings layouts was straightforward. 20 

(2) Some schools (e.g., Figure 5), only had top-down satellite images on Google Maps. In 21 

these cases, Google Street View was used for the photos of the schools’ elevation, to 22 

record the number of floors and their configurations.  23 

(3) For a small number of schools (Figure 6), only the top-down satellite images were 24 

recorded on Google Maps. In these cases, only the schools’ layouts could be viewed.    25 

 26 



Figure 4: Screen grab of a school’s 3D view via Google Maps [48]  

Figure 5: Screen grab of a school’s elevation and top views via Google Maps and 

Street view [48] 

Figure 6: Screen grab of a school’s top views via Google Maps [48]   
  1 

Similarly to the building stock model matching evaluation system, a traffic-light evaluation 2 

criterion was developed to rank school models based on their quality of building geometry 3 

representation:  4 

- High quality – Excellent match between modelled and simulated buildings 5 

- Medium quality – There are minor mismatches in the school layout, the number of floors, 6 

or building heights.   7 



- Low quality – Both school layout and the number of floors or their heights are poorly 1 

matched. 2 

 3 
Figure 7: The quality of EnergyPlus school models, based on a visual comparison to 4 
actual schools 5 

 6 
As Figure 7 shows, 64% of the examined models achieved excellent geometrical similarity, 7 

and 28% had minor mismatching. Only around 8% models were poorly matched, where the 8 

models had differed in number of floors and layouts, compared to the actual buildings.  9 

4.3. IDF Model generations – complex model testing and simulation 10 

To examine the potential limitations of MPS under worst case scenarios, the platform was 11 

tested by producing potential energy consumption to be compared with measured energy 12 

demand found in complex, atypical school campuses. The aim of this exercise was not exact 13 

replication but to demonstrate a basis could be provided for quantifying the performance gap, 14 

and discussing its attribution to different sources (such as design, construction and operational 15 

factors) [49]. 16 

For this purpose, three schools in Camden area in London were selected for the automated 17 

generation of models. These schools were selected for the following reasons: 18 

- All three schools had high levels of complexity in modelling, in terms of multiple 19 

construction era buildings and new extensions. 20 

- All three schools are local authority run and hence have had requirements to submit 21 

DECs. 22 

- All three are located within 400 m of each other, which made it easier to verify their 23 
actual building construction characteristics through physical visit and inspection, and 24 

any discrepancies due to weather dependency (i.e., the climate conditions are the 25 

same, therefore the impact of other variables can be isolated). 26 

High 
Quality

64%

Medium 
Quality

28%

Low 
Quality

8%



 1 

Figure 8 shows the automatically generated EnergyPlus models of the three selected schools. 2 

  3 

(a)  (b)  (c)  

Figure 8: Dynamic building energy simulation models of three Camden schools generated by 4 

MPS: (a) La Sainte Catholic school, (b) Parliament Hill school and (c) William Ellis school 5 

To examine the quality of the predicted energy consumption, annual simulation was carried 6 

out for each model, and then compared to measured energy consumption data. The models 7 

were simulated using the following methodology: 8 

1. The NCM was used to define Lighting, Equipment and heating loads and schedules, 9 

as well as percentage areas for various activities within each model for classrooms, 10 

offices, catering, etc. The NCM assumed values for classrooms only (constituting 28% 11 

of the school site by area) are shown in Table 4. Note also that occupancy level has 12 

been derived from reported pupil numbers from DfE reported figures [50] divided by 13 

model floorspace. 14 

2. Ideal loads HVAC systems were used in each model to represent the optimum sizing 15 

of equipment required to provide heating and air flow in volumes required. Necessarily 16 

this means that there is a significant underprediction in required heating 17 

3. The Gatwick test reference year (TRY) weather file [51] was used to simulate an 18 

average year for all four models since the selected schools lie within 25 miles of this 19 

site. 20 

Table 4: Assumptions used in model simulation of Camden schools (classrooms only) 21 

Parameter Setpoint School day (Classroom – D1 Edu Class Room from NCM) 
Occupancy 0.08- 0.12 / 

m2 
100% (10am-noon, 2-4pm), 0% (6pm-7am) with  

50% (noon-2pm, 4-6pm) and 10%-25%-75%  (7-10am) 
Lighting 280 lux 100% (7am to 6pm), 5% (6pm-7am) 

Equipment 4.7 W/m2 100% (7am to 9pm), 5% (9pm-7am) 
Infiltration 0.35 ac/h Constant throughout 
Fresh air 10/l/s/student Dependent on occupancy 

Heat setpoint 18° C 5am to 6pm – heat to heat setpoint if required 
Setback temperature 12° C 6pm-5am - heat to setback temperature if required 

Cooling setpoint 23° C 5am to 6pm - cool to cooling setpoint if required 
 22 



Annual thermal and electrical energy use intensity was collected from each school’s available 1 

DECs and plotted against the simulated data. For the La Sainte Catholic school, DECs were 2 

created for the individual buildings described in the DECs as the “Main Block” and “Upper 3 

School” separately. Models were, therefore, generated and run as separate EnergyPlus files 4 

for these two entities.  5 

It is also important to acknowledge that in one case (Parliament Hill school) there was a large 6 

discrepancy in the floorspace recorded in the DEC and the actual footprint of the site derived 7 

from checking the site on Google Maps. 8 

Having considered these factors, calculated heating and electrical demand, derived by the 9 

simulation are compared against measured data, as seen in Figure 9 below: 10 

 11 

Figure 9: Simulated and Measured electrical and thermal fuel usage. 12 

It is worth noting the following: 13 

1) As mentioned above, Figure 9 does not represent a like for like comparison, since the 14 

models’ use of generic data on occupancy, heating and other electrical systems is based on 15 

NCM default assumptions rather than actual use in practice. Services, such as domestic hot 16 

water, for which there is no specific data on operation within the study schools, were fixed at 17 

a low and constant rate. As such the modelled results represent asset performance, which 18 

could be seen as the potential operation of the school given idealised conditions. This is 19 

reflected in the DEC data, which represents the operational performance of the school, in 20 

terms of both annual electrical and heating demand, generally being higher than the calculated 21 

annual electrical and heating demand, respectively. While within the NCM there is a domestic 22 

hot water requirement for classrooms of 1.35 l/day/m2 floorspace (classroom), data about the 23 



percentage of class areas within a school area is lacking. For this reason, hot water was set 1 

at a nominally low value, until data about classroom area as a percentage of the school site is 2 

available. 3 

2) Discrepancies were identified between the DECs and PDSP for two of the case studies. 4 

Specifically, the floorspace reported for the entire Parliament Hill Site was reported as 7,940 5 

m2, whereas an inspection of the site revealed a floorspace in the order of the model’s 6 

floorspace of 15,015 m2. Both Parliament Hill and La Sainte schools had a few smaller 7 

buildings contained within their polygons, and it was unclear which of those, if any, were 8 

included in the DECs. This highlights the challenges generating models using MPS faces, 9 

when there are discrepancies between the input data sources. 10 

5. Summary  11 

5.1. Discussion & Conclusions 12 

This paper presents the principles underlying the development of a new Modelling Platform 13 

for Schools – the MPS – a stock model that can represent the school stock more accurately 14 

than traditional approaches. Other methods for estimating the school stock performance (e.g., 15 

archetype modelling or energy audits) are either overly simplified or time consuming and 16 

complex. Furthermore, while archetype models are limited in terms of accurate representation 17 

of the stock, audits only reflect the state of the current-stock performance, and do not provide 18 

the opportunity to estimate stock-level performance under certain interventions or climate-19 

change scenarios. It is hoped that MPS – which has the capability to generate individual 20 

schools within the English school building stock – will enable analysis and evaluation of the 21 

future impact of a range of school-performance issues (e.g., assessing refurbishment 22 

packages, stock-resilience under changing climate, integration of renewables and more). 23 

The paper discussed the different steps in the stock-modelling procedure and presented the 24 

databases MPS relies on. The study presented outputs of the MPS modelling procedure and 25 

evaluated both the generation of individual schools and that of the entire stock through a series 26 

of tests.  27 

An automated ‘traffic light’ matching evaluation mechanism was developed to evaluate the 28 

accuracy and robustness of individual school buildings models. Based on this evaluation 29 

procedure, nearly 50% of the examined English school building models that were generated 30 

by MPS achieved ‘excellent’ or ‘very good’ score. This means that for almost half the schools 31 

in the stock, there is an excellent match between building characteristics, as recorded in the 32 

different databases that were used for generating the models. It is highly likely, therefore, that 33 



those schools’ models will accurately describe the actual buildings they represent. In practical 1 

terms, this means that half of the school stock – thousands of schools - could be generated 2 

accurately in an automated manner in a matter of hours, saving many hours of work. The 3 

matching evaluation mechanism was tested and validated through a visual inspection of 200 4 

schools in London and achieved satisfactory results.  5 

Nonetheless, nearly 25% of the examined schools had achieved ‘low’ or ‘very low’ matching 6 

scores (13.7 and 9.8%, respectively). The main reasons for these discrepancies are 7 

inaccuracies in the initial input databases, significant discrepancies between the input 8 

databases, or entirely missing data. The promising results of MPS in generating schools with 9 

accurate data implies that once input data quality is improved – the stock model’s accuracy 10 

will be improved too. 11 

MPS could potentially be used for: 12 

• Analysing policy makers and other stake holders (school communities, local authorities 13 

etc.) on the efficacy of a wide range of retrofit measures applied to an individual school, 14 

such as improved insulation, replacing existing lighting with more efficient LED lighting, 15 

glazing replacement, or improved HVAC (heating, ventilating and air-conditioning) 16 

systems’ control strategies. 17 

• Testing the potential for integrating renewable technologies on an individual school 18 

building level. 19 

• Assessing daylight availability and quality, by taking into account the surrounding 20 

context. This would enable the identification of schools, or zones within schools, which 21 

are likely to experience poor daylighting quality. 22 

• Estimating the overheating risk of individual schools. This is of particular interest in 23 

schools with no air-conditioning which, due to applied refurbishment measures or 24 

climate change, might be more predisposed to experience severe overheating. 25 

• Identifying schools, mainly in dense urban areas, which are under a risk of decreased 26 

Indoor Air Quality (IAQ). MPS can evaluate possible scenarios, such as reduced 27 

potential for passive cooling through natural ventilation due to higher ambient 28 

temperatures as a result of the Urban Heat Island (UHI) effect, increased particulate 29 

pollution due to poor ventilation or external air pollution, and exposure to nitrogen 30 

oxides (NOx) from traffic due to proximity to major roads.   31 

 32 

5.2. Future work 33 



Further examination of the schools that received ‘medium’, ‘low’ and ‘very low’ assessments 1 

found that a main contributor to that low score were significant discrepancies between school 2 

buildings’ height between the databases, or unrealistic height figures. Furthermore, some 3 

schools were excluded from the analysis at the initial stage – primarily due to missing height 4 

data.  5 

As the main limitation of MPS is inaccurate data inputs, the next steps in developing MPS will 6 

be focused on collecting accurate and meaningful data that describes the stock in a more 7 

comprehensive manner. These include: 8 

CDC Data – Between 2017 and 2019, the Condition Data Collection (CDC) survey was 9 

undertaken, the successor to PDSP [52]. This survey included some school types excluded 10 

from the former programme (e.g. modern schools), and included more detailed information 11 

covering a larger number of variables. Work is currently underway to incorporate the improved 12 

data available within CDC into the MPS platform. 13 

LiDAR - It is noted that while the overall models’ resemblance is satisfactory, even models 14 

that achieved a ‘high-quality’ rating are not always an identical replica of the actual buildings. 15 

This is especially true for schools with pitched roofs, as the shape of the roof had not been 16 

considered at this stage of MPS. This may have an impact on the simulation results, while this 17 

is still a current limitation of MPS and the automated model generation procedure. Light 18 

Detection and Ranging (LiDAR) data publicly available through the Department for 19 

Environment, Food & Rural Affairs (DEFRA) can hugely improve the buildings height 20 

assumption. LiDAR technique accurately measures both the terrain and objects on the surface 21 

heights. Overlapping the OS polygon data with the LiDAR point cloud, where each cloud point 22 

holds X, Y and Z (height) location coordinates among other attributes, makes possible the 23 

identification of portion of structures with different height sharing the same footprint polygon 24 

as well as the creation of models with actual roof geometry replacing the flat roofs. 25 

Crowdsourcing-based data collection - A data crowdsourcing exercise is being carried out in 26 

the Greater London Authority (GLA) school stock to investigate supplementing the fabric and 27 

geometry inputs. Two types of questionnaire have been sent, to evaluate building users’ 28 

willingness to participate: 29 

- Generic questionnaire:  schools have been emailed access to a generic questionnaire 30 

confirming fabric and refurbishments, and requesting data on basic school layout, 31 

heating schedules and setpoints (2,512 schools). 32 



- Bespoke questionnaire: In addition to the generic questionnaire, 685 schools have 1 

been emailed access to a bespoke questionnaire, which included autogenerated 2 

models from MPS. This questionnaire contains more specific questions on buildings 3 

use (for teaching, office, catering etc.). 4 

It is hoped that such data could allow parts of the stock to be updated from NCM assumptions 5 

to more realistic occupancy and building service usage.  6 

The proposed method is based on data which does not record any interventions and 7 

refurbishments in the existing school stock. While it is acknowledged that this is a data and 8 

modelling limitation, MPS has been built in a flexible manner, so that more detailed, granulatar 9 

data can be integrated in the modelling generation procedure in the future. It is hoped that 10 

with more accurate description of the stock, the MPS framework could better represent the 11 

school stock. 12 

Lastly, while the majority of ‘poor’ models were the result of poor input data, the study has also 13 

showed that one important limitation of MPS is analysing and generating schools that have 14 

more than 8 buildings. While an analysis has shown that only 6% of the English schools’ stock 15 

fall within this category, future work will factor in such complex cases too.  16 
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