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Abstract 

Insights into the genetic basis of human disease are helping to address some of the 

key challenges in new drug development including the very high rates of failure. 

Here we review the recent history of an emerging, genomics-assisted approach to 

pharmaceutical research and development, and its relationship to Mendelian 

randomization (MR), a well-established analytical approach to causal inference. We 

demonstrate how human genomic data linked to pharmaceutically relevant 

phenotypes can be used for (a) drug target identification (mapping relevant drug 

targets to diseases), (b) drug target validation (inferring the likely effects of drug 

target perturbation), (c) evaluation of the effectiveness and specificity of compound-

target engagement (inferring the extent to which the effects of a compound are 

exclusive to the target and distinguishing between on-target and off-target compound 

effects), and (d) the selection of end points in clinical trials (the diseases or 

conditions to be evaluated as trial outcomes). We illustrate how genomics can help 

identify indication expansion opportunities for licensed drugs and repurposing of 

compounds developed to clinical phase that proved safe but ineffective for the 

original intended indication. We outline statistical and biological considerations in 

using MR for drug target validation (drug target MR) and discuss the obstacles and 

challenges for scaled applications of these genomics-based approaches. 

 

Genomics-led drug development in context  

The modern era of drug development can be traced back to observations that certain 

natural substances from plants or animals had beneficial effects on the human body, 

which could be harnessed to treat illness1. For example, willow bark extracts had 

been noted to reduce inflammation as early as the 5th century BC1.  With advances 

in organic chemistry came the ability to extract and modify active molecular entities 
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and use knowledge of their structure to synthesise related chemicals with similar 

properties2. For example, the active ingredient in willow bark extract was eventually 

shown to be salicylic acid, and it was the acetyl salt of salicylic acid that was 

developed as aspirin by Bayer. Indeed, much of the early expertise in organic 

chemistry emerged from German and Swiss companies that applied their knowledge 

to the development of compounds with medicinal properties.  

 

With the ability to synthesise large numbers of compounds and test them for 

biological activity in cell, tissue, and organ-based laboratory models of human 

disease, came the era of ‘phenotypic’ screens for drug development3. Phenotypic 

screening investigated the impact of compounds on cells, tissues or model 

organisms and selected efficacious compounds based on their ability to alter some 

aspect of biochemistry, physiology or pathological process in the model. In this 

approach a compound could be pursued as a drug despite incomplete knowledge of 

the molecular basis of its action. Many licensed drugs emerged from this approach 

and it continues to the present day, recently leading to the development of 

memantine for Alzheimer’s disease and levetiracetam and zonisamide for epilepsy3. 

However, if knowledge of mechanism of action and the therapeutic target remains 

elusive, it is difficult to anticipate the full repertoire of drug effects and the opportunity 

to develop improved compounds based on mechanistic knowledge is also 

constrained. 

 

With increased understanding of the molecular basis of disease, efforts have 

gradually shifted towards a more target-based approach to drug development 4,5.  By 

contrast with the phenotypic approach to drug development, a potential drug target is 

selected based on prior evidence that implicates it in the disease process. The 

target-based approach contrasts with the phenotypic approach by working from the 

potential mechanism towards the disease as opposed to starting with the disease 

and working back to a mechanism. The target-based approach to drug development 

was inspired by the receptor theory of drug action, growth of pharmacology as a 

scientific discipline, and an expanding knowledge base on the function of key protein 

classes, particularly receptors and their natural substrates and ligands. Many targets 

of this type formed the basis for what has also been referred to as rational drug 

development; with notable examples including beta-adrenoceptor blockers and 
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agonists and histamine H1- and H2-receptor blockers. With these advances came the 

growing recognition that proteins, encoded by the genome, are not only the major 

proximal effector molecules in biology, but also comprise the major category of drug 

targets 6.  

 

Target-based drug development and high rates of drug development failure 

In the target-based model, drug development starts by attempting to identify 

proteins, ‘drug targets’, causally linked to a disease and whose function is amenable 

to the therapeutic action of small molecule drugs or monoclonal antibodies7. Until 

recently, programmes based on this paradigm continued to be shaped by proof-of-

concept laboratory experiments in (cell, tissue, and animal) disease models 

focussing on a small set of targets prioritised based on prior knowledge, with the aim 

of building evidence of a causal relationship between the target and the disease. 

Successful drugs continue to be developed using this approach, but there is a 

growing recognition that the process has been inefficient. Numerous reviews of the 

field have concluded that success rates in target-based drug development remain 

extremely low. Fewer than 5 in 100 initiated drug development programmes yield a 

licenced drug; 90% of randomised clinical trials fail; and around a half to two thirds of 

such failures are due to lack of efficacy in the disease of interest 8–12. 

 

It has become apparent that the problem of late-stage failure in target-based drug 

development has its roots in the poor predictive utility of laboratory models and 

observational (nonrandomized) studies for human disease pathogenesis. Work in 

isolated systems (cells and tissues ex vivo) may not be representative of the 

situation in the whole organism; moreover, work in animal models may not be 

representative of human pathophysiology13. Human observational studies (though 

set in the right organism) can be affected by confounding and reverse causation. 

This leads to a high false discovery rate that permeates through (pre-) clinical 

science, resulting in pursuing drug targets and related compounds with a high 

probability of failure, increasing the overall cost of drug development if these failures 

occur at late-stage clinical phase testing13. Developing a solution to the problem of 

high rates of drug development failure has therefore become both a scientific 

challenge and an economic imperative. 
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Genome wide association studies for drug target identification 

The sequencing of the human genome and identification of all protein coding genes 

now provides both a comprehensive list of potential key effectors in disease biology 

as well as potential therapeutic targets. With the development of comprehensive 

maps of human genetic sequence variation has come the ability to undertake 

genome-wide association studies (GWAS) in patients and populations. GWAS test 

relationships between natural sequence variation (genotype) and biomarkers 

(quantitative biological traits e.g. blood pressure or circulating metabolite 

concentration) relevant to disease or to clinical end points (phenotype) 14–16. Proteins 

mediate the effect of both genetic variation (according to Crick’s Central Dogma)17 

and drug action, and independent variation in the genome is inherited at random 

(according to Mendel’s Laws), much like treatment allocation in a clinical trial. Thus, 

the concept has emerged that variants in a gene encoding a drug target, that alter its 

expression or function, might be used as a tool to anticipate the effect of drug action 

on the same target (Figure 1).  

 

This paradigm makes it feasible, for the first time, to match drug targets to disease 

end points (target identification) systematically and robustly through GWAS. For 

example, Finan, Gaulton and colleagues showed that GWAS frequently ‘rediscover’ 

genes encoding the targets of licensed drugs for the same disease6.  GWAS test 

common variation across all genes against a single phenotype, with stringent control 

over the false positive rate and a philosophy of replication of positive findings to 

reduce the risk of false discoveries. Phenome wide association analysis (PheWAS – 

in which associations from a single gene with many diseases and biomarkers are 

explored18) complement GWAS by helping to anticipate the mechanism-based 

adverse effects of drug action beyond the primary disease indication (target 

validation). Integrating evidence from GWAS of the proteome, metabolome, 

physiological and imaging data with disease GWAS can also help map the mediating 

pathways to disease (Figure 1) and identify biomarkers of target efficacy that can be 

used as a proxy to evaluate the effects of first-in-class compounds on target 

engagement and specificity (compound validation).  The principle used here is that, 

in the absence of horizontal pleiotropy, a specific compound with no off-target effects 

should share the same pattern of effects on biomarkers as variants in a gene 

encoding the corresponding drug target that affect its expression or activity. An 
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example of this consistency was demonstrated by Wurtz et al., in the comparison of 

the effect of variants in the HMGCR gene and the effect of taking a statin on 

circulating metabolites and lipoproteins19.  

 

As the number of GWAS on common diseases has grown since 2007, it has become 

apparent that human genetics can provide a rich resource for the identification of 

genes encoding potential drug targets matched to the diseases, with potential to 

increase the success rate of drug development6. At least four lines of evidence 

support this proposition: (1) human genetics has consistently ‘rediscovered’ known 

drug target-disease indication pairings across a wide range of disease areas6; (2) 

analysis of drug approvals have shown that approval rates were doubled among 

drug-indication pairs for which, in retrospect, there was prior genetic support; and (3) 

there are emerging examples of successful development programmes being seeded 

by human genetic information e.g. PCSK9 and ANGPLT3 for the treatment of 

coronary heart disease as well as maraviroc for the treatment of HIV disease20. 

 

The importance of human genetic evidence in informing numerous aspects of drug 

development is increasingly reflected in the emphasis given to human genetic target 

validation by the pharmaceutical industry21.  

 

Limitations of using GWAS as a resource for identification of drug targets to 

treat disease 

Although there are huge opportunities from the use of GWAS as a resource for 

human drug target identification several challenges are also recognized, some of 

which have seeded new research initiatives and methodological developments. 

 

Breadth and depth of GWAS studies 

One key limitation is that GWAS have yet to be fully exploited as a resource for drug 

target identification. There are perhaps 10,000 complex diseases (those with both a 

polygenic and environmental contribution) but approximately only a few hundred 

have been studied in GWAS13. Moreover, although there are many large meta-

GWAS studies in common disease (e.g., AFgen, CardiogramplusC4D, or Diagram), 

sample sizes for many conditions remain modest, limiting the ability to robustly 

detect the full spectrum of genetic loci influencing a given disorder. This shortfall is 
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likely to be addressed by many growing initiatives around the globe to undertake 

GWAS in large prospective cohort studies and national biobanks linked to research-

based measures (e.g., biomarkers, proteomics and metabolomics, and imaging data 

acquisition) as well as through linkage to primary and secondary care health records. 

Successful examples include UK, Estonian and Japanese Biobanks, as well as the 

FinnGen study. Comparable genomics initiatives have also been set within 

healthcare systems including the Million Veterans Programme and Geisinger Health.  

 

GWAS identify genomic regions not causal genes 

Currently, most drug targets are proteins and for target identification the genes 

mediating the association need to be correctly identified (causal genes). Many 

variants identified through GWAS are located in the vicinity of coding sequences, 

presumably in regulatory regions.  Assignment of the causal gene in the region of a 

GWAS association can therefore be difficult, particularly when linkage disequilibrium 

(LD) between variants displaying disease associations in a region extend across 

several genes. Therefore, complementary approaches have been developed22 to 

help prioritise the likely causal gene in a region identified by a GWAS based on 1) 

fine mapping using dense genotyping arrays; 2) transancestry association studies 

exploiting smaller LD blocks in certain non-European populations; 3) statistical and 

pathway methods for gene prioritization (e.g. GoSHIFTER23,  Prix Fixe24, and 

FUMA25), 4) colocalisation of disease associated signals with mRNA or protein 

expression (e.g. Coloc26, Enloc27, Ecaviar28); and 5) incorporation of functional 

annotation methods (e.g. STOPGAP29).  

 

Orthogonal information for gene prioritization from GWAS can also come from 

comparisons with genes known to be responsible for monogenic disorders that 

display a similar phenotype to the complex condition being studied.  Sequence 

variation responsible for a monogenic disease more typically resides in the coding 

rather than the regulatory region of the responsible gene so there is less ambiguity 

about the location of the causal gene than for a GWAS of a common disorder30,31.   

Assignment of a causal gene may also be aided by comparison with information on 

sets of highly curated gene functions e.g., genes involved in metabolic processes; or 

from comparisons with genes encoding drug targets for compounds licensed for the 

same disease indication as the GWAS. Despite a widely perceived difficulty in 
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assigning a causal gene from a GWAS signal, a recent survey of different 

approaches for gene prioritisation from GWAS came to the conclusion that the 

proximity of a gene to the lead variant was the strongest predictor of the causal 

gene32.     

 

Not all genes encode druggable proteins 

After identifying a gene that is associated with a therapeutically relevant disease trait 

using GWAS, a subsequent challenge is understanding if the encoded protein might 

be amenable to drug development (i.e. “druggable”).  

 

The current Ensembl/Havana35 annotated human genome (GRCh38 v103) contains 

22,940 protein coding genes with UniProtKB (v2021_01) SwissProt (manually 

reviewed entries) containing 20,396 human proteins and TrEMBL (unreviewed) 

contains 174,126 proteins. Several attempts have been made to define the 

druggable portion of the human genome6: the subset of protein coding genes that 

encode drugged or potentially druggable proteins, so designated because they share 

sequence, structural or functional properties with previously drugged proteins. 

Progressive iterations have seen an expansion in the number of proteins that have 

been included within the druggable set as more targets yield to drug development. In 

the latest iteration of the druggable genome, Finan et al. included potential targets 

for monoclonal antibodies for the first time (based on proteins that are secreted or 

which are targeted to the cell membrane) and removed olfactory receptors and 

phosphatases based on known difficulties targeting them, taking the set up to 4479 

proteins. However, novel targeting modalities such as proteolysis targeting chimeras 

(ProTacs)33 which work by marking the target protein for degradation via E3 ligase 

and the development of antisense technologies to target mRNA species not just 

proteins, will eventually widen the druggable component of the genome even 

further34.   

 

Tractability of an identified drug target 

In addition to druggability, a further consideration of the tractability of a potential drug 

target relates to consideration of the tissues in which the target is expressed, the 

relevance or not of that tissue to the disease process and whether the therapeutic 

modality chosen renders the target accessible to the drug. For example, Mendelian 
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randomization (MR) analyses have suggested that targeting PCSK9 to reduce LDL-

cholesterol could lead to a mechanism-based increase in the risk of type 2 

diabetes35,36 and Alzheimer’s disease37,38. However, these effects might not be 

observed in practice if PCSK9 is targeted by a monoclonal antibody therapeutic, 

which may not gain access6,13,38,39 to the beta cell or the central nervous system, 

where these effects are possibly mediated.  

 

Therapeutic area  

While human genetics for drug development is generally applicable to many 

therapeutic areas, there are some important exceptions or limitations. Given that 

genetic target validation of the type described utilises germline genetic variation, it is 

likely to be more limited for cancer than for other diseases, since many cancers are 

driven by somatic and not germline mutations. Nevertheless, findings from GWAS of 

prostate and breast cancer have identified variants in the genes encoding the 

androgen and oestrogen receptors respectively, both of which are known to be 

effective therapeutic targets in these diseases, suggesting that GWAS can still play a 

part in cancer therapeutics where the mechanism of disease initiation is distinct from 

the treatment40,41. GWAS of human subjects is also not capable of identifying targets 

in an infectious disease pathogen, but may still find use in identifying host response 

genes that might make a substantial contribution to the infectious disease 

process42,43. Additionally, developmental diseases or those where the pathology is 

caused by irreversible damage prior to the presentation of disease, for example type 

1 diabetes, are less likely to be amenable to target identification through GWAS 

unless leveraging age-specific data of sufficient sample size. 

 

Mechanistic considerations 

Most drugs act by modifying the function of a protein target rather than its level44, but 

most variants identified by GWAS are intergenic, rather than protein coding45. 

Nevertheless, genetically validating clinically used drug target/disease mechanisms 

(positive control examples) have shown that even such variants associated with 

gene or protein expression (regulatory variants) can model the effects of licensed 

drugs (see Table13).  
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Surveys of GWAS rediscovery of clinically used drug target/disease parings have 

indicated such studies are capable of identifying the targets for a variety of drug 

mechanisms including inhibitors and antagonists, agonists and activators, as well as 

positive and negative allosteric modulators6,46. However, the majority (69%; ChEMBL 

v27) of drug target/mechanism pairs are the subject of inhibitory or blocking drugs 

because the effects of activators or agonists tend to be affected by down-regulation 

of the target44. Genetic variants that increase disease risk via reduced expression or 

function of the encoded protein would naturally point to development of an agonist or 

activator of the target protein to achieve the desired therapeutic effect, which might 

be less tractable pharmacologically. In such cases, if the target of interest is 

inactivated by a second protein and the inactivator is druggable, a therapeutic option 

might then be to develop an inhibitor of the inactivating protein.  

 

The failure to find significant genetic associations in or near a potential drug target 

for a disease also does not necessarily exclude the target from consideration47. One 

reason is that the effect of altering the expression or function of a target may only be 

seen beyond some threshold, such that a genetic variant of weak effect may not 

adequately model the effect of targeting the protein with a potent drug. The 

availability of common (weak effect) and rare (large effect) genetic variants in the 

same gene, that allows the construction of an allelic series (effectively a genetic 

dose-response curve39), may go some way toward mitigating this possibility in 

specific cases48. Another potential cause for not finding a genetic signal in or near a 

drug target encoding gene may be found in the fact that genetic influences on protein 

expression or activity are often present from early life. Such early and consistent 

effect may entrain developmental adaptive compensation (canalization49) through 

changes in other pathways that mitigate any biologically adverse effect on the 

system as a whole. Furthermore, by design, GWAS minimize the false positive rate 

(type 1 errors) ensuring that most finding are true positives.  At the same time, 

stringent control of the type 1 error rate increases the false negative (type 2 errors) 

rate many fold, making GWAS a very poor design to show the absence of an 

effect50. Thus, the lack of genome-wide significant findings of variants in a gene 

encoding a drug target of interest in a particular disease need not exclude it as a 

therapeutic target. Next, we discuss how “drug target Mendelian randomization” can 
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be used to provide a more focused analysis of the likely therapeutic consequence of 

on-target action of a drug.   

 

Mendelian randomization and drug target validation 

Having prioritized a protein as likely causal for a disease, and having confirmed the 

protein druggable, an essential next step is to gather evidence on the likely range of 

on-target effects of pharmacologically perturbing the target, a process we refer to as 

drug target validation. Drug target validation has been traditionally addressed in 

preclinical studies involving cell and tissue experiments, as well as animal models. 

Additionally, if a potential target can be measured directly in humans, or its activity or 

expression inferred by measurement of downstream biomarkers, another aspect of 

target validation might involve assessing the association of the protein or related 

biomarkers with disease incidence in non-randomized (i.e., observational) studies.  

 

However, the same issues that compromise target identification in cell, tissue and 

animal models also affect target validation. Moreover, while non-randomized human 

observational studies on a biomarker association with disease (e.g HDL-C with 

coronary disease) may provide a start point for a therapeutic hypothesis, most drug 

targets (e.g., cholesteryl ester transfer protein or lipoprotein lipase) rarely affect a 

single biomarker. Therefore, a one-to-one assignment of biomarkers to drug targets 

may lead to oversimplistic, and overoptimistic, models of the potential relevance of a 

specific drug target to a disease. Furthermore, non-randomized studies are also 

often affected by reverse causation, residual and unmeasured confounding51, and/or 

selection bias52, potentially compromising the inferences that can be drawn from 

such studies for drug development. Next, we discuss how Mendelian randomization 

(MR) can address some of the key limitations of preclinical science for drug target 

validation, and how performing MR analyses where a drug target is the exposure of 

interest, can strengthen the existing (cumulative) evidence base necessary to make 

robust choices on which target to pursue for further development.  

 

MR was developed as a novel research design for investigating causal relationships 

between risk factors and health outcomes using non-randomized data; outside of 

genetics this is often referred to as instrumental variable analysis53 or as a quasi-

randomized experiment, for example in pharamacoepidemiology54. The premise is to 
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identify one or multiple “instrumental variables” (e.g. genetic variants) that are 

strongly related to an exposure of interest (e.g., LDL-C), that affect the outcome (e.g. 

coronary heart disease; CHD) exclusively through the exposure of interest (the 

exclusion restriction assumption), and that do not share a common cause with the 

outcome of interest, which would otherwise lead to confounding49. This is illustrated 

in Figure 2, where the risk factor is depicted simply as , the outcome as , with their 

relationship confounded by  (which may represent multiple common causes), and  

(representing a genetic variant or variants) may act as an instrument if .  

 

By defining confounding as a common cause between an exposure and an outcome, 

it becomes clear that most genetic associations with traits are relatively protected 

against this source of bias. While there will be many factors that influence a disease 

or quantitative trait, hardly any of these factors will, in turn, influence the assignment 

of one’s genotype. Nevertheless, confounding bias may still occur by for example, 

inadvertently mixing ethnicities with distinct genotypes within the same study. 

Because, through shared environment, ethnicities may also differ in disease risk or 

quantitative trait levels, admixed populations may result in confounding or 

“population stratification” bias. By reducing the number of potential confounding 

factors from up to infinity to a much smaller number of ethnic (and familial) variables, 

genetic analyses can focus on accounting for these specific sources of bias, either 

analytically, or by design (for example leveraging within-family designs55) and 

produce a result that is often robust to any remaining – that is residual – 

confounding. Similarly, unlike the directly observed associations between the risk 

factor and disease, the genetic associations are protected from reverse causation, 

since the presence of the disease does not alter the sequence of the germline. 

Whether the presence of disease modifies the genetic association with another 

outcome is, of course, more plausible and the topic of ongoing research 56.   

 

Thus, these relatively robust genetic associations can be used to obtain inference on 

the effects protein perturbation might have on disease by collecting (aggregated) 

data on the genetic association with: 1) a relevant drug target related exposure (e.g 

concentration of the protein forming the drug target, expression of mRNA encoding 

the target, or a downstream complex biomarker known to be affected by the protein 
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of interest), and 2) an outcome of interest (e.g., disease incidence or a quantitative 

trait such as cholesterol) . As an example, PCSK9 was first considered as a drug 

target after finding that mutations in PCSK9 were associated with a lower LDL-C 

concentration (15% reduction), as well as a decreased risk of CHD; hazard ratio 0.50 

(95%CI: 0.32 to 0.79)57.   

 

In the following section, we define “drug target MR” more formally and introduce 

important inferential considerations, in part based on reference58. 

 

Genetic weights and the inferential target in drug target MR 

To emphasize, the cited PCSK9 estimates for LDL-C and CHD pertain to the effect 

of a hypothetical change in one’s genotype, which may be (partially) mediated by the 

encoded protein. For genetic associations to inform drug target validation, we need 

to be willing to assume that the effect of a variant in a gene (e.g., PCSK9) only acts 

on a disease end-point (e.g. CHD) through its effect on the encoded protein, PCSK9; 

i.e., assume the absence of horizontal pleiotropy (the exclusion restriction 

assumption). 

 

Before discussing the PCSK9 example further, we will first formally define our 

inferential target. Let us denote a single, or multiple, genetic variants (e.g., in 

PCSK9) as , the encoded protein  as the drug target we aim to validate (e.g., 

PCSK9), an outcome  such as CHD, and an intermediate biomarker  (e.g. LDL-C) 

potentially affected by  (left diagram of Figure 2). Here the arrows indicate the 

direction of effect, and the edge labels the effect magnitude in a relevant unit (e.g., 

as mmol/L for LDL-C or hazard for CHD); we note that effect magnitudes may 

include zero for no effect. Furthermore, as we discuss below, genetic variants are 

typically preferentially selected from within or near a protein coding gene of interest 

acting in cis. 

 

Using this diagram, we can formally define the inferential target as “the effect a unit 

change in protein concentration or activity has on an outcome”, and label this as: 

, which itself consists of the following biologically relevant estimates:  
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• Any direct effect the protein has on the outcome, sidestepping biomarker : . 

• The protein effect on the biomarker: . 

• The biomarker effect on the outcome: .  

 

 The genetic effect on an outcome such as CHD: , is 

distinct from . In the absence of any horizontal pleiotropy via pathways that might 

occur proximal to protein-translation (e.g., , referred to as pre-translational 

pleiotropy58) this expression simplifies to  which still does not equal . 

Nevertheless, under this no-pre-translational pleiotropy assumption, the genetic 

association with an outcome such as CHD (e.g., from a GWAS), that is  provides 

clear evidence that the protein likely affects CHD. For example, if , but  

this implies that , and hence under the same MR assumptions genetic 

analyses may provide indirect evidence on a drug targets effect on disease.  

 

In this same setting, drug target MR can be used to additional determine the effect 

direction of Further, if we are willing to assume complete linearity of the drug 

target effect(s) on disease, as well as strict homogeneity in drug target effect(s) 

among current and future subjects, we can also obtain an estimate of . Specifically, 

we take the genetic effect on the outcome and the genetic effect on the protein drug 

target: 

 

 

 

 

In the absence of linearity and homogeneity, which often may be unlikely,  

represents an average effect, and (as we discuss below) might provide robust 

evidence on the presence of an effect and its direction.  

 

As discussed below, estimates of associations between genetic variants and protein 

concentration are becoming more widely available. However, in the absence of a 

direct (and sufficiently strong) genetic association with of  (e.g., PCSK9), drug 

target MR can utilize the genetic association with  (e.g., LDL-C) as a proxy for 
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protein concentration and activity. In such a case the denominator in equation 1 

includes and we are left with:  

 

 

 

 

Hence a biomarker weighted drug target MR analysis does not directly estimate  

but instead provides an estimate on ; with “bw” for biomarker weighted. Notice, 

that in a drug target MR context, we denote a biomarker as a metabolite level or 

other quantitative measure such as blood pressure distal in the causal pathway to 

the encoded protein. 

 

It is important here, and in general, to note that neither  nor  provide 

any evidence on the causal effect of  on  (e.g., ). To see this, set , in 

which case the results from equations 1 and 2 remain unaffected with 

. As such, and contrary to the PCSK9 example, we could even 

consider weighting the genetic effect on an outcome by the genetic effect on a 

biomarker that does not necessarily reside on the causal pathway but is merely 

affected by the drug target; see for an empirical example38. Finally, we also 

emphasize that the necessary no-horizontal pleiotropy assumption only pertains to 

pre-translational effects, such as , and that post-translational effects58 such as  

are part of the drug target effect and hence do not cause bias. This, of course, will 

change if our inferential target shifts from  to , in that case the horizontal pleiotropy 

assumption requires both  and  to be zero. Hence drug target MRs, by 

focussing on exposures more proximal to the effect of genetic variation, are more 

robust to horizontal pleiotropy than MR studies focussing on the causal effect of 

more distal biomarkers such as . This also reflects drug targets often affecting 

multiple downstream biomarkers and disease, which does not violate the horizontal 

pleiotropy assumption required in drug target MR, which is exclusively concerned 

with pre-translational pathways58
.  
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As we discuss below, the impact of horizontal pleiotropy can be further limited by 

considering the genomic position of variants associated with the exposure of interest 

which in the case of a protein as the inferential target resolves to variants within or in 

the proximity of the encoding gene acting in cis vs variants located elsewhere (i.e, 

cis vs trans acting). 

 

While  can represent any variable that is affected by a protein drug target, and as 

such is positioned post-translationally with respect to P, we can also think of a 

variable which is instead positioned pre-translationally: mRNA expression of the 

encoding gene. The right diagram of Figure 2 depicts such a situation where, as an 

example of a pre-translational variable, mRNA expression is represented as . 

Furthermore, we decomposed the pre-translational horizontal pleiotropy term , 

into  𝜙𝑮 and 𝜙𝑬, where the former might occur through LD and the latter representing 

a direct effect of mRNA expression one the outcome, side stepping its effect on 

protein translation. If we follow the same derivations as above, it is clear we need to 

assume that 𝜙𝑮 and 𝜙𝑬 are both zero. Then we find that weighting a drug target MR 

by the genetic association with mRNA expression we obtain the effect:  

 

 

 

 

This simply reflects the mRNA effect on the outcome. Critically for this effect to 

provide robust inference on the protein to outcome effect, we need to assume 𝜙𝑬 =

0. That is, we need to be willing to assume that all of the mRNA effect on the 

outcome acts through its effect on protein expression. As such, drug target MR using 

pre-translational weights, where the inferential target remains protein , need to 

make stronger assumptions (which may be very reasonable) than if we had simply 

been interested in the mRNA effect on the outcome itself. This further illustrates that 

the no-horizontal pleiotropy becomes more stringent the further the inferential target 

is positioned from the genetic variants themselves, and that the inferential target 

does not necessarily match the genetic information used.  
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In the preceding section we have generally assumed the inferential drug target was a 

protein, reflecting the majority case. However, it is more accurate to think of the gene 

product as the inferential target. That is, any mediator from the gene to the protein. 

For example, if one wanted to assess the potential effects for an antisense drug, 

altering mRNA expression, the drug-target MR paradigm could be used to assess 

the effect of modulating transcript level on the outcome, even if the effect is 

eventually mediated by the effect of transcript modulation on the encoded protein. 

This conceptualization utilizes Crick’s Central Dogma of a unilateral flow of 

information from DNA to mRNA to protein. 

 

Interpreting drug target MR effect estimates 

As detailed in the previous section, if we are willing to assume complete linearity of 

the drug target effect(s) on disease, as well as strict homogeneity of drug target 

effect(s) in all patients, the effect magnitude can sometimes provide actionable 

insights, allowing drug target MR to inform drug development beyond a statistical 

test of the null hypothesis.  

 

There are some potential caveats that suggest that drug target MR analysis in 

general (irrespective of the sourced data), may be more useful as a test of effect 

direction rather than effect magnitude. This is because drugs that inhibit a target do 

so usually by modifying its function not its concentration, whereas genetic variants 

used in MR analysis usually affect protein expression and therefore concentration 

Given the typically non-linear drug dose-response, the often modest explained 

variance genetic variants have on the level or function of a protein may misrepresent 

the potential treatment effect of a drug. MR analyses assess the effect of target 

modulation in any tissue, whereas certain tissues may be inaccessible to a drug 

either because of its chemistry or anatomical or physiological barriers. Furthermore, 

randomized controlled trials (RCTs) are closely monitored, and followed for a fixed 

period, allowing for exploration of induction-times. MR estimates are considered to 

reflect a life-long exposure, but in the absence of serial assessment, possible 

changes across age are difficult to explore, as are disease induction-times. For these 

reasons we suggest that drug target MR offers a robust indication of effect direction 
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but may not directly anticipate the effect magnitude of pharmacologically interfering 

with a protein. 

 

Empirical evidence has shown that effect estimates from drug target MRs often differ 

from effects from drug compounds affecting the same target59,60. While various 

reasons have been proposed to explain this (e.g., life-time exposure by a genetic 

variant versus a fraction of this in a drug trial60), none have actually considered if a 

drug target MR effect and drug compound effect should be equal. In the following we 

provide straightforward mathematical derivations to show that these effects should in 

fact be expected to differ.  

 

A drug compound (much like a genetic variant) elicits its effect on an outcome 

through its effect on a drug target, as such we can replace node  in Figure 2, by  

representing the drug compounds. The effect of  on a drug target can be indicated 

by , and any potential off-target effect on outcome  as  (Figure 3). In this case 

the effect of a drug compound on the outcome is ; which 

is distinct from , the effect the drug target has on the outcome. It becomes 

straightforward to see that even when the drug compound affects the outcome 

exclusively through the drug target (e.g., the compound has no off-target effects 

) its effect is . Now  will only equal  in the very specific setting when 

; that is when the drug compound effect on its drug target is one and the drug 

compound has no off-target effects. Given that there is little reason for   to equate 

to one, we can conclude the effects from drug compound and drug target effects are 

distinct and need not agree. Separating a drug compound effect (which may fully or 

partially act through a drug target) from the drug target effect itself of course does 

not invalidate the (causal) relevance of either. 

 

While the above derivations clearly show that the difference between a compound 

effect and drug target effect (assuming the latter has no off-target effects) is 

determined by 𝛿𝒄, MR analyses are typically -reweighted by the drug target effect on 

a biomarker such as LDL-C (𝜃), or use some kind of version of 𝜔𝑏𝑤, in an attempt to 

compare trial estimates to MR estimates. We show however, that if it is desirable for 

the drug target and drug compound effect to equate one another, either the drug 
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compound effect should be divided by its effect on the drug target , or the drug 

target effect should be multiplied by the same constant. The former scaling of course 

is similar to instrumental variable analyses adjusting compound estimates to account 

for any non-adherence61. To reiterate however, such scaling (either by a genetic 

biomarker effect or by  is only feasibly when the drug compound has no off-target 

effect(s); which is unlikely to generally hold.   

 

 

Using proteomics data as an exposure in drug target MR 

Given that the majority of current drug targets are proteins, it seems reasonable to 

assume have that loci identified from genetic associations with protein concentration 

(protein quantitative trait loci; pQTLs) will offer an important category of exposures 

for drug target MR38.  

 

Current examples of MRs using protein exposures assess the effect of a change in 

protein level against a disease outcome. However, since most drugs act by altering 

the function of a protein, using MR of protein level changes implicitly assumes that 

an effect of variation in protein concentration is directly proportional to variation in 

protein function. Limited examples of available genetic associations with 

concentration and activity of the same protein suggest a high correlation between the 

two, although evidence is mainly for enzymes and the situation could, in theory, be 

different for other types of protein. The promise of ProTac therapeutics also indirectly 

supports protein level variation being able to model disease33. 

 

The main downsides of currently available pQTL data are that these are largely 

focused on circulating proteins. Among these, secreted proteins that have their 

action in the circulation could be an important category of drug targets and many are 

already the targets of monoclonal antibody therapeutics62. However, other proteins 

are present in the circulation due to cell damage or turnover.  Although this is not 

their physiological site of action, it might be assumed that concentration in the blood 

reflects tissue-specific expression. If so, the utility of blood pQTLs will depend on 

relative contributions from the disease relevant vs disease irrelevant tissues to the 

blood pool. Consequently, the relevance of blood pQTLs will vary considerably 
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between disease areas. In future, comparison of tissue-specific eQTL and blood 

pQTL data at scale may provide insights into the tissue of origin of proteins 

detectable in the blood. Additionally, as technologies improve, more tissue-specific 

pQTL data may become available and be incorporated in MR analyses. Assay 

heterogeneity is also a potential issue in the use of pQTL data from MR analysis. For 

example, more research is needed on the agreement between different assays of 

the same protein based on new proteomics technologies that measure many 

thousands of proteins in the circulation in a single sample e.g. the Somalogic 

aptamer based proteomics platform and the O-link antibody based proximity 

extension assays, as well as with mass-spectrometry and ELISA -based 

techniques63. 

 

cis and trans instruments in drug target MR 

MR analysis of risk factor or biomarker exposures typically incorporate multiple 

variants selected from throughout the genome and can provide valuable insight on 

prioritising generic therapeutic strategies e.g., lowering LDL-cholesterol to prevent 

CHD. Traditionally, drug target MR has preferentially selected instruments from 

within a small cis region known to encode the (protein) drug target, in an attempt to 

guard against the influence of pre-translational horizontal pleiotropy. One of the 

advantages of using cis-acting variants in a drug target MR, is that there is a more 

robust hypothesis that these variants act through the target of interest, which can 

guard against the influence of pre-translational horizontal pleiotropy, although an 

exception arises if there is LD with a flanking gene that is the true causal gene. 

With the increase in the more highly powered GWAS of circulating proteins it has 

become apparent that the circulating concentration of many proteins is influenced by 

variants outside of the encoding gene region i.e., acting in trans. If one assumes that 

the majority of trans associations reflect real biology (not assay artefacts), then the 

natural question is: could variants acting in trans be used as a source of genetic 

instruments for MR? Whilst a seemingly attractive proposition, we sound some notes 

of caution. Variants associated in trans with the gene encoding the protein of 

interest, are likely acting in cis- for a second gene in their immediate vicinity and 

through the gene product encoded by that gene. If the gene product from the second 

gene has a pathway to disease independent of the protein of interest, horizontal 

pleiotropy occurs and a critical MR assumption is violated58. Only in the absence of 
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such horizontal pleiotropy would the trans variants be valid instruments for the 

protein of interest. However, with trans variants, there is no guarantee that the target 

of interest is on the causal pathway between the trans- acting instrument and the 

disease (Figure 4).   

 

Interpreting the utility of biomarker-weighted drug target MR analyses 

Whilst transcript and protein levels can themselves be regarded as biomarkers, in a 

drug target MR context, we denote a biomarker as a metabolite level or other 

quantitative measure such as blood pressure distal in the causal pathway to the 

encoded protein. It is worth contrasting a drug target MR analyses using biomarker 

exposures, with those using pQTLs and eQTLs. Whereas for eQTLs and pQTLs 

there is a natural dichotomy into genetic variants acting in cis-(in the vicinity of the 

encoding gene and the gene product) and those acting in trans (distant from the 

encoding gene), no such natural dichotomy exists for variants influencing 

downstream traits such as circulating metabolites. However, the lack of a defined 

cis- does not preclude the study of cis-variants and cis-MR analysis at a metabolite 

associated gene with an outcome, where the inference is on the effect of perturbing 

a protein that has an effect on a downstream metabolite58,60. Within the bounds of 

the MR assumptions, the inference that the gene product is causally associated with 

the outcome is valid, however, any inference that it is mediated by the biomarker 

exposure is not (see above). With a biomarker MR, the biomarker acts as a 

mechanism to indirectly measure the gene product only and associations between 

the biomarker level and the outcome status can, and probably are in many cases, 

bystander effects. As discussed above (Figure 2), a biomarker weighted drug target 

MR does not estimate , the effect of the drug target on disease, and instead 

estimates , where  represent the drug target effect on the biomarker. While 

this leads to a valid null-hypothesis test, it is clear that the sign of  may differ from 

that of , and to appropriately interpret the effect direction one needs robust 

information on the effect direction of .  

 

Despite the more challenging inference, there are some good reasons to conduct a 

biomarker weighted drug target MR, even in the presence of available pQTL data. 

Chiefly, many non-protein biomarker GWAS are larger than most GWAS of 
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proteomics to date, and thus are very highly powered with hundreds or thousands of 

participants using established assays. Additionally, whilst there are no studies 

directly assessing this, it is likely that biomarker MR estimates will indirectly 

incorporate the effect of coding sequence variation in a way that eQTLs and pQTLs 

may not. The reason is that both e/pQTLs influence transcript/protein level and not 

protein activity, whereas coding sequence variation is more likely to have an impact 

on protein activity (and not level), an effect which is then captured in the effect on the 

downstream biomarker (e.g., a metabolite level). That said, coding sequences may, 

in some cases, also contribute to protein concentration, e.g., where they lead to a 

large impact on structure that leads to nonsense mediated decay.  

 

Biological relevance of pre-translational pleiotropy for drug target validation 

As we addressed before, horizontal pleiotropy in the context of drug target validation, 

involves an assumption on the absence of pre-translational horizontal pleiotropy; i.e, 

, in Figure 2. Since the seminal contribution by Bowden et al introduced the 

MR-Egger method64 which is appropriate when all instruments are affected by 

horizontal pleiotropy, there has been a growing body of methods that, under various 

assumptions, can provide valid MR estimates in the presence of horizontal 

pleiotropy49. Typically, these methods have not considered drug target MRs 

specifically, cis settings, nor pre-translational pleiotropy. For example, a biomarker 

weighted drug target MR may be highly heterogenous (e.g., a large Q-statistic). 

Which could either signal the presence of horizontal pleiotropy65, or may simply be 

caused by the drug target effecting disease through multiple pathways (i.e., post-

translation pleiotropy).. We showed before that such post-translational pleiotropy is 

in fact part of the drug target effect and therefore does not invalidate drug target MR 

estimates58.  

 

Previously, we discussed the concept of horizontal pleiotropy in the context of trans-

pQTL associations in a drug-target MR. It is worth also considering the mechanisms 

and implications of pre-translational pleiotropy in the cis-setting. This is particularly 

relevant when performing drug target scans where there may not be a specific 

understanding of the genomic locus, or a prior hypothesis for the likely effect. LD 

between cis-variants and variants within other genes surrounding the target locus, 
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provide an obvious source of pre-translation pleiotropy. However, the presence of 

such LD, while complicating attributing any disease-causing effect to the selected the 

cis-protein under consideration, does provide potentially valuable information for 

drug development. Further exploration of the LD region might identify the appropriate 

gene – protein pair, which if druggable, could lead to further target leads.  

 

Pleiotropy is usually inferred by heterogeneity of the MR estimate, but this needs to 

be considered in the biological context. (Figure 5). For example, if a coding 

sequence variant is used as an instrument, that influences protein function but not 

level, and an effect on a disease outcome might be observed when using a 

downstream biomarker as the exposure but not when using protein or transcript 

expression as the exposure. Therefore, coding variation that effects the outcome but 

not the transcript or protein expression will introduce heterogeneity in the analysis. 

Protein or transcript isoform-level variation is another theoretical mechanism through 

which heterogeneity can manifest in an MR estimate. For example, genes that have 

multiple transcripts or multiple protein isoforms, of which only a subset impacts the 

outcome. Many eQTLs represent associations with an entire transcript pool of the 

gene and the isoform binding characteristics of protein assays are usually unknown. 

Given that variants used as instruments might be drawn from the entire genic region, 

there remains a possibility that a subset of these variants might operate on the 

outcome, but their impact might not be completely captured via the exposure assay, 

manifesting in increased heterogeneity of the MR estimate which in this case could 

be inappropriately interpreted as horizontal pleiotropy (Figure 5).  

 

Scaling drug target validation approaches 

Whilst a hypothesis-driven approach investigating a small subset of targets is 

relatively easy to perform, it is often desirable to investigate the broad landscape of 

targets against a disease. Scaling up drug target MR involves computational, 

statistical and methodological coordination. The following sections explore some of 

the difficulties involved in performing large-scale analysis, with a particular focus on 

drug target MR. 

 

Publicly available GWAS data 
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The vast majority of MR studies employ a two-sample MR approach, irrespective of 

the precise analytical method. The two-sample paradigm uses exposure and 

outcome datasets derived in different samples and can operate on summary level 

genetic associations, and ensures any weak instrument bias acts towards a 

conservative, neutral effect estimate66. By accessing data from two (or more) 

independent sources, many of the obstacles encountered with sharing individual 

level data are avoided, and will often allow for large, scaled analyses. Researchers, 

often encouraged by journals, are now frequently sharing summary-level data upon 

publication, further increasing the potential for two-sample MR. This greater 

availability of aggregated data, however, also introduces the problem of data 

handling, where file format and information detail often differ between publications 

and research laboratories.  

 

In order to efficiently and reliably conduct large-scale scans across multiple targets, 

GWAS summary datasets require a homogenous structure and a normalisation of 

genome assembly, effect alleles and genomic coordinate representation (e.g., the 

difference between Ensembl and VCF representation INDELs) as well as 

normalisation of variant identifiers. Several projects have attempted to do this67,68, 

with some making normalised datasets available68. However, the lack of a common 

data sharing standard for GWAS data can only be viewed as a missed opportunity 

that has slowed down the pace of large-scale research. Worse, in some cases 

results are available but they appear to be deliberately obfuscated to limit their use. 

For example, the AMD consortium69 has released summary information where the 

effect size has been dichotomised to ±1, which prohibits MR analyses.  

 

Absence of genetic variation 

As discussed, cis-MR analyses may be preferred due to the natural robustness 

against some sources of horizontal pleiotropy, clearly these MR analyses can only 

be applied in settings when there is variation in the drug target encoding gene. It is 

theoretically possible to use variation at other loci that also impacts the protein level 

(trans-associations). However, the use of these variants in MR analyses increases 

the risk of horizontal pleiotropy. Fortunately, GWAS of mRNA and protein expression 

provide hundreds of empirical examples of genetic variants influencing the 

expression of nearby genes (acting in cis).  Recently, the GTEX project and large 
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pQTL analysis70 have catalogued cis-variants with functional effects for many 

thousands of genes suggesting that the absence of cis-acting regulatory variants 

should not generally be a limiting factor for conducting a drug-target MR70–72. 

However, the presence or absence of coding genetic variation in known drug target 

encoding loci has rarely been systematically explored47. Possibly the absence, or 

presence, of coding genetic variation itself may provide valuable insight on the 

viability of a drug target for downstream development 47. If a potential target cannot 

tolerate natural variation, does that make it a better drug target? i.e., will it elicit a 

greater effect for a smaller concentration of drug? or will the effect of targeting it be 

detrimental to the patient? Clearly in absence of genetic variation, drug target MR 

will simply overlook these targets, and this further illustrates why MR can only be one 

(likely important) source of evidence in preclinical drug development.  

 

Evidence prioritization 

Multiple testing is a particular concern when considering scans of multiple drug 

target/disease combinations. As described above GWAS are designed to  minimize 

the false positive rate (type 1 errors) at the cost of an increased false negative rate 

(type 2 errors). As such, GWAS can robustly show that a genetic association is 

present but are inadequate  to rule out the presence of an association.  

 

One could consider a false positive minimization approach for drug target validation. 

This clearly makes sense if one wants to focus on efficacy, ensuring target 

perturbation affects the intended trait(s). Especially in pre-clinical settings, however, 

drug target analyses using human genetics offer the chance to consider safety as 

well. Unlike validating intended effect, where the aim is to minimize false claims of 

efficacy, safety is more concerned with not-overlooking potential signals, which 

requires an optimization of power (and minimization of false negatives). Given that 

sample size in most drug target MR analyses is fixed (unless, in the rare case where 

a de novo study is designed to genetically validate a drug target), stringent control of 

false positives will decrease power and often greatly limit the potential to detect 

safety signals. Hence, depending on the aim of drug target validation, researchers 

may wish to find a balance between stringent multiple testing control and sufficient 

power to offer an appropriate level of sensitively to detect important (safety) signals; 
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with similar considerations for the identification of repurposing opportunities, for 

which there might be many.   

 

It may also be beneficial to position genetic drug target validation within a 

programme of pre-existing preclinical experiments on cell, tissue and animal models. 

Alignment of human genomic and standard preclinical evidence can be used to 

attempt to replicate or falsify findings and offer an efficient solution to building 

confidence in a target and disease. When scanning multiple drug targets, further 

gains might be made by looking for internal consistency and considering that 

proteins may be grouped by shared pathways, which might be anticipated to result in 

consistent MR estimates on a disease.  

 

Due to the growing amount of available GWAS data, we are now able to 

independently replicate MR findings. For a type 1 error rate , and  independent 

replications the false positive rate becomes ; for example, for , and , 

type 1 error rate is . Of course, alternatively, one may decide to forgo 

replication and optimize power instead by meta-analysing independent GWAS. Due 

to the often, cumulative nature of GWAS, where newer publications typically meta-

analyse previous GWAS findings, completely independent data is rarely available. 

An ideal scenario would be a study repository that would enable users to de-

convolute the cohorts used in a study and identify truly independent cohorts. Building 

such a resource would be time consuming unless studies were required to register 

their cohort specific data prior to publication.  

 

Finally, a shift in inferential perspective maybe required when considering results 

from drug target scans. As suggested before, a drug target scan should be viewed 

as one component in a body of evidence. With this in mind, under the null 

distribution, the distribution of p-values is expected to follow a uniform distribution73, 

rather than attempting to differentiate true and false positive association based on a 

p-value cut off (.e.g., 0.05), testing the whole set of p-values for a significant 

deviation from the uniform distribution gives an indication of how different the results 

in the set are from the null distribution (Figure 6). For example, in a pre-clinical 

setting one may wish to identify targets with a strong cardiometabolic fingerprint, 
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where 30+ traits (including lipid and glucose measurements) might be relevant. In 

such a setting the above detailed procedure may be employed to prioritize targets for 

general cardiometabolic enrichment, before considering individual disease 

associations.  

 

Examples of how drug target MR can increase drug development yield 

In the previous sections we have discussed the rationale, and the biological and 

methodological underpinnings of utilizing human genetics for drug target 

identification and validation, with specific focus on drug target MR. Next, we present 

specific cases where human genetics has supported clinical trial findings.  

 

Pre-clinical drug target prioritization on anticipated in-human effects 

For those first-in-class drug molecules in early clinical phase, MR studies could 

inform “stop or go” decisions (e.g., whether to proceed to human phase I-III clinical 

trial evaluations).   

 

Two prior examples illustrate the concept. In the first study, Holmes and colleagues 

evaluated whether secretory phospholipase A2 (PLA2) is a valid therapeutic target 

for CVD management74. This MR study was conducted because a first in-class 

sPLA2 inhibitor (varespladib) was already in advanced clinical development based 

on observational association between sPLA2-IIA mass and/or activity and incident 

CVD events in observational studies. For the MR study, Holmes and colleagues 

used variants in the gene (PLA2G2A) that encodes secretory sPLA2-IIA and showed 

that these variants did not meaningfully affect CVD, despite a large effect on sPLA2-

IIA levels. Consistent with this, the VISTA-16 randomised trial evaluating the effect of 

a sPLA2 inhibitor (varespladib) on CVD outcomes was stopped prematurely for lack 

of efficacy. In a second example of an MR study in this category, Casas and 

colleagues showed that variants in the PLA2G7 gene which encodes the distinct 

drug target lipoprotein-associated PLA2 (Lp-PLA2), that were associated with 

differences in the circulating concentration of this marker, were not associated with 

altered risk of CVD75. In agreement with these findings, a subsequent study that 

used variants in the PLA2G7 gene that associated with Lp-PLA2 levels, which again 

did not show a convincing CHD effect76. These MR analyses implied that reverse 

causation, confounding, or both affect the non-randomized (observational) studies 
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that before reported a risk increasing association of Lp-PLA2 mass or activity with 

CVD. Consistent with the MR analysis, an Lp-PLA2 inhibitor, darapladib, also failed 

to demonstrate efficacy in two phase III randomised controlled trials, one in patients 

with stable coronary artery disease, the other in patients who had recently suffered 

an acute coronary syndrome77,78. 

 

Identification of safety and efficacy phenotypes for evaluation clinical trials 

The ability to undertake drug target MR analysis for many disease outcomes makes 

it feasible to anticipate the effect of perturbing a drug target on a wide range of traits. 

Theoretical arguments detailing the number of diseases likely to be influenced by 

any gene or protein, suggest that perturbation of any given drug target is likely to 

influence the risk of several diseases, and that the profile of effects is target specific. 

This is backed up by empirical observations of genetic pleiotropy (variants in the 

same gene being associated with several diseases79,80) and the  parallel observation 

that same drug class can be effective in different diseases (therapeutic pleiotropy80 

81). 

 

Using genomics to pre-specify the outcomes in clinical trials (see ref82) that are 

anticipated to be affected by pharmacological action on a particular target (target-

specific outcomes of both efficacy) would represent a departure from the current 

norm where end points in a particular therapeutic area tend to be uniform regardless 

of the target being evaluated83. For example, genetic information led to the discovery 

of atrial fibrillation as a mechanism based adverse effect of ivabradine, licensed for 

angina and heart failure83. This information could also help reduce the risk of an 

effective drug and target failing to demonstrate efficacy in a clinical trial because a 

clinical end-point unaffected by target perturbation has been included in a composite 

outcome, thereby diluting the observed treatment effect. Furthermore, early 

information on a target’s potential adverse effects, can ensure clinical trials are 

specifically designed to rule out such an adverse effect (e.g., through non-inferiority 

designs84). 

 

Indication expansion and repurposing opportunities 

Large-scale use of a new drug post-licensing sometimes provokes debate on 

possible unexpected benefits in different disease areas or unexpected harms. 
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However, this evidence is often insufficient to draw firm conclusions. This is either 

because it comes from non-randomized (phase IV) pharmacoepidemiological studies 

(that are prone to biases by for example immortal time bias85, and severe 

confounding by indication51) or from trials where the outcome of concern was not a 

primary end-point, which increases false positive (e.g., for efficacy) and negative 

(e.g., for safety) rates. An example of how drug target MR can provide additional  

evidence comes from evaluations of whether interleukin-6 receptor (IL-6R) is a valid 

drug target for prevention of coronary events86,87. IL-6R is currently the target for the 

therapeutic monoclonal antibody tocilizumab, licensed for rheumatoid arthritis. 

Demonstration of a role for this target in coronary disease would provide an 

opportunity to expand the indications for this already licensed medication. ’Swerdlow 

and colleagues  showed that variants in the IL6R gene exhibited effects on a wide 

range of inflammation and other markers that were consistent in profile with that 

seen during tocilizumab treatment of patients with rheumatoid arthritis. The same 

genetic variants were also associated with a reduced risk of CHD, a finding that has 

received independent corroboration86. These findings implicate IL-6R as a valid 

target for coronary disease prevention and suggest that tocilizumab might be 

repositioned perhaps initially as an adjunctive infusional therapy in acute coronary 

syndrome. This question is currently being addressed in ongoing clinical trials88,89. 

More recent genetic studies have also implicated IL6R in abdominal aortic 

aneurysm90, atrial fibrillation and inflammatory bowel diseases91, flagging additional 

indication expansion opportunities. The same principle could be applied to develop 

genetically supported repurposing hypotheses for many first-in-class compounds and 

targets that proved safe in humans but which failed in their originally intended 

indication. A series of compounds and related targets have been the subject of asset 

sharing initiatives developed by the US National Institutes of Health and UK Medical 

Research Council92.   

 

Delineating compound specificity 

Proving that a drug engages its therapeutic target in humans and with no off-target 

actions has been a major challenge in clinical phase drug development. When a first-

in-class molecule causes an adverse effect in clinical phase trials, or post-marketing, 

it can be difficult to decide if this is mechanism-based or “off-target” (specific to the 

drug molecule and unlikely to be shared by other class members). In the past, 
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clarification has been provided by undertaking a randomized trial of other (chemically 

dissimilar) agents from the same class, but this risks further harm if the adverse 

effect is mechanism-based rather than agent specific. Variants in a gene that encode 

a drug target and that affect its expression or activity should lead to metabolic and 

physiological changes that profile the effects of a clean drug with no off-target 

actions93. Hence comparison of the effects of variants in a gene encoding a drug 

target in population studies, and a drug targeting the same protein in a trial could 

help distinguish on- from off-target effects. For example when torcetrapib, a first-in-

class cholesteryl-ester transfer protein (CETP) inhibitor, was developed to raise 

HDL-cholesterol with the aim of preventing cardiovascular events, an unexpected 

blood-pressure-elevating effect was detected during a large phase-III randomised 

trial. To disentangle whether this effect was an on or off-target effect, variants in the 

CETP gene were used to reproduce the effect of CETP inhibition on the major blood 

lipid fractions (on-target actions) as well as reduce the risk of CHD, which showed a 

blood pressure decreasing effect38. These results argued that the blood pressure 

elevating effect of torcetrapib, and subsequent compounds evacetrapib and 

anacetrapib, are off-target and should not be shared by CETP inhibitors that are 

sufficiently different38. Indeed the chemically distinct CETP inhibitor Dalcetrapib 

showed the same blood pressure decreasing effect as reported by the CETP MR38.    

 

The same principle was used to demonstrate that variants in the HMGCR gene that 

encode HMG-coA reductase, the target for statins, reproduce the effects of statin 

treatment on multiple metabolites and lipoprotein lipid subclasses measured by NMR 

spectroscopy19. The same genetic variants were used to show that the modestly 

increased risk of type 2 diabetes among statin users in clinical trials (which does not 

offset their clinical benefit in reducing coronary heart disease events, even among 

patients with diabetes) is an on-target action, potentially mediated in part by 

increases in body weight and waist circumference 94.   

 

With the ability to undertake GWAS of numerous proteomics and metabolomics 

blood biomarkers, as well as physiological and imaging measures in large cohort 

studies, comes the ability to infer the effects of drug target perturbation not only on 

disease end-points but also a vast range of variables that could serve as readouts 

for adequate and specific target engagement in early phase I-II clinical trials.  
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Concluding remarks 

The approaches we have described necessitate linking genotype to phenotype at 

scale. This is exposing the need for greater partnership between academia, 

healthcare systems, technology developers and providers, as well as the 

pharmaceutical industry. This is because large population and patient cohorts (and 

associated phenotypic and disease outcome data) reside mainly in the public sector, 

while new technologies, compound development expertise and financial resources 

reside mainly in the commercial sector. Developing governance frameworks that 

allow equitable partnership among these players, and which recognize the 

contribution made by different stakeholders to value creation, is challenging.   

 

Different models are emerging. Primarily publicly funded, academia-led initiatives 

include UK Biobank, the EMERGE Consortium, All Of Us and the Million Veteran 

Program, as well as the recently completed UK 100,000 genomes project. Some 

studies (e.g. UK Biobank) have subsequently secured additional industry investment 

for sequencing or proteomics analysis. In other cases, a commercial vehicle has 

emerged from an academic one (e.g. Nashville Biosciences from Vanderbilt 

University BioVU). Initiatives with a major pharmaceutical industry component 

include Amgen purchase of Decode Genetics, the Regeneron partnership with 

Geisinger Health, and the recent GSK investment in the consumer genetic testing 

company with a huge client database, 23andMe. The origin, funding, generation, and 

control of, and access to, the linked genotype and phenotype data differ among 

these initiatives. Should such resources result in new drugs, it remains unclear if, 

and how, the contribution of the public sector or private citizens will be recognized. 

For instance, in the direct-to-consumer genomics arena, an opaque relationship 

exists between citizens (who pay consumer genomics providers for personal 

genome analysis for ancestry and disease risk information), and the pharmaceutical 

industry (who pay the same providers for access to aggregated personal genetic 

data linked to self-reported health outcomes). In this scenario, citizens risk paying 

twice: once for a genetic profile provided by the personal genomics company and 

then again later for any drug developed by its Pharma partners through insights 

generated from the aggregated genetic and health data to which citizens have 

already contributed at their own cost. In addition, in some healthcare settings, many 
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of the citizens that contributed their data to the development might not be able to 

benefit from any developed therapeutics due to their cost. These emerging 

requirements for genomic and healthcare data for new drug development are likely 

to force a rethink of the social contract and economic model for drug development.  

 

Finally, throughout this contribution we have discussed how human genetics and 

drug target Mendelian randomization can complement existing sources of (pre-) 

clinical evidence on anticipating the likely effect of drug target perturbation in 

humans to increase the yield of drug development. We see this as an adjunct in the 

drug development process but not as a substitute for randomised trials. These will 

continue to be required because (1) as we explained here drug compound and drug 

target are distinct exposures, (2) any new compound could have off-target actions 

that cannot be modelled genetically; (3) drug target effects modelled through MR, 

even tissue specific analyses, reflect biological consequences of target perturbation, 

which does not guarantee (irrespective of absence or presence of off-target effects) 

that a drug compounds will affect the target in the same manner in the same tissues 

(some of which are notorious difficult to access using a drug); (4) by starting follow-

up immediately after randomization drug trials are protected against many of the 

biases that may still affect genetic studies49 which often only enroll subjects decades 

after gamete forming. Nevertheless, by providing early, in-human, evidence on the 

anticipated on-target effects of drug target perturbation against an array of clinically 

relevant traits, drug target MR is likely to provide additional accurate information on 

which target to pursue for clinical phase development. As such integration of human 

genetics in (preclinical) drug development is expected to decrease cost and increase 

yield. 
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Figure legends  

 

Figure 1 Human genomics and drug development 

 

Right hand panel. Relationship between human genomics and drug target 

identification and validation. Proteins mediate the effect of drugs and natural genetic 

variation on metabolism, physiology, organs structure and disease pathogenesis.  

Left hand panel. Scalable approaches to interrogate all potential targets and 

diseases. Mapping the effect of genetic variation (genotype) on gene and protein 

expression (transcriptome and proteome) in different tissues, on metabolism 

(metabolome) and disease risk (diseasome) and applying drug target  Mendelian 

randomization can help anticipate the effect of drug action on a target protein. This 

principle can help support drug target identification, validation, separation of ‘on-’ 

from ‘off-target’ effects, end-point selection for clinical trials and indication expansion 

and repurposing priorities. Information contributing to the different data layers can be 

summary-level and obtained in independent datasets. 

 

Figure 2 A graph representation of two possible Mendelian randomization 

scenarios. 
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N.b., the left hand side of the graph represent a scenario were a single (or multiple) 

genetic variant is represented by node , which has an effect (indicated by an arrow) 

on a protein , where the protein affects a downstream biomarker , and all 

previously defined nodes affect the outcome . Here the effect magnitudes are 

indicated by arrow labels and may include a null effect (when there is no causal 

effect between two nodes). The right hand side diagram adds a node , between  

and , reflecting the effect of mRNA expression on  and . Finally in both scenarios 

all nodes, except  may be affect by confounding, encoded by common cause ; 

where of course this node most often reflect multiple distinct causes.  

 

Figure 3 A graph representation of a randomized controlled trial of a drug 

compound.  
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N.b., Node  represent a drug compound which has an effect (indicated by an arrow) 

on a protein , where the protein affects a downstream biomarker , and all 

previously defined nodes affect the outcome . Here the effect magnitudes are 

indicated by arrow labels and may include a null effect (when there is no causal 

effect between two nodes). Finally, all nodes, except  (which we assume has been 

allocated at random) may be affect by confounding, encoded by common cause ; 

where of course this node most often reflect multiple distinct causes. 

 

Figure 4 Comparison between cis- vs. trans-Mendelian randomization (MR) for 

drug target validation. 

 

(a) cis-MR A variant in cis- SNP1 in the proximity of gene G1 is used as an 

instrument for the protein of interest (P1) which is causally linked to a disease. SNP1 

is also associated with P2 (a mediator of the effect of P1 on a disease) and with P3 

(a bystander protein residing off the causal pathway from P1 to disease. SNP1 is 

associated with P1, P2, P3 and the disease outcome and is a valid instrument for 

P1. (b) trans-MR with no horizontal pleiotropy A variant in another gene (SNP4) 

which influences expression of P4, upstream in the causal pathway, is used as a 

trans- instrument for P1. SNP4 associates with P4, P1, P2 and P3 and is a valid 

instrument for P1 because there is no direct causal pathway from P4 to disease. (b) 

trans-MR with horizontal pleiotropy In this scenario, P1 is not causal for disease 

but is a bystander protein. SNP4 is upstream of P1 and associates with disease 
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because of a direct pathway through P4 (which may not have been measured). As in 

scenario (b) SNP 4 associates with P1, P2 and P3 and disease, but it is not a valid 

instrument for P1 because there is a direct causal pathway from P4 to disease. 

 

Figure 5 Cis-acting variants with respect to different exposures and perceived 

heterogeneity 

 

Multiple scenarios where cis-acting variants can impact the outcome but not via the 

exposure. (a) A conventional MR graph whereby instrumental variants in gene Gare 
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acting via biomarker exposure X on disease outcome D. (b) Mechanistically the 

same as part (a)but with greater resolution depicting potential (but unused) 

exposures of transcript level, T and protein level P and with the instrumental genetic 

variants partitioned into non-coding (NC), regulatory (R) and coding (C) variants. 

Regulatory variants are more likely to impact the transcript level, where as non-

coding variants are more likely to impact protein level via translational efficiency and 

not the transcript level, where as coding variants are more likely to impact on protein 

function/activity which will alter downstream biomarker level but this effect will not be 

mediated via transcript or protein level. An exception to these assumptions is 

nonsense mediated decay where aberrant insertion stop codons will lead to 

destruction of mRNA. Part (c) the exposure is changed from the biomarker to the 

protein encoded by gene G, and part (d) the exposure is changed from the level of 

protein to transcript level T. In parts (c) and (d), pathways whereby instrumental 

genetic variants are impacting the outcome but not via the exposure are highlighted 

in red. 

 

Figure 6 P-value distributions when the null-hypothesis is false (“alternative 

hypothesis”) an  true. 

 

N.b., p-values under the null-hypothesis were generated by sampled from a standard 

normal distribution, whereas p-values under the alternative distribution were sampled 

from a normal distribution with mean of 2 and standard deviation of 1.
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Table 1 Comparison of the findings from randomised controlled trials and Mendelian randomization trials of the 
corresponding therapeutic target. 
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 Orthodox drug development Mendelian randomization trials (MRT) 

Drug target Compound(s) 
evaluated 

Developmental 
stage 

Therapeutic 
area 

Outcomes 
assessed in 
preclinical 
studies or RCTs of 
selective drug 
interventions 

Findings from 
preclinical 
studies or RCTs 
of selective drug 
interventions 

Encoding gene Outcomes 
evaluated in 
MRTs 

Findings from 
MRTs 

Inferences drawn 
from 
comparison of 
the 
findings from 
preclinical 
studies or RCTs 
and MRT 

Cholesteryl ester transfer 
protein[1] 

Torcetrapib Phase III Cardiovascular 
disease 

Blood lipids (total-
, LDL-, and HDL 
cholesterol, 
triglycerides); 
blood pressure; 
CVD events 

HDL-elevation, 
triglyceride and 
LDL- reduction. 
Unintended BP 
elevation. 
Unintended 
increase in CVD 
events 

CETP[2] Blood lipids (total-
, LDL-, and HDL 
cholesterol, 
triglycerides); 
blood pressure 

Associations with 
blood lipids 
consistent with 
effects in RCTs. 
No genetic 
association with 
BP. 

Blood pressure 
elevating effect 
of torcetrapib is 
offtarget 

Hydroxy 
methyl (HMG)-coA reductase[3] 

Statins Phase IV 
(post- 
marketing) 

Cardiovascular 
disease 

Blood lipid 
fractions, weight, 
type 2 diabetes 
risk 

Statin treatment 
in RCTs linked to 
increased weight 
and risk of type 2 
diabetes. 

HMGCR[3] Blood lipid 
fractions, 
anthropometric 
measures, 
glucose and 
insulin, type 2 
diabetes risk 

HMGCR SNPs 
associated with 
lower LDL-C, 
higher weight, 
fasting glucose 
and insulin, and 
type 2 diabetes 
risk 

Increased risk of 
type 2 diabetes is 
an unintended 
on-target effect 
of statins 
mediated in part 
through weight 
gain 

Niemann-Pick C1-like 1 [4] Ezetimibe Phase III Cardiovascular 
disease 

LDL-cholesterol, 
cardiovascular 
death, non-fata 
myocardial 
infarction, 
unstable angina 
requiring 
hospitalisation 
and 
revascularisatio
n 

Ezetimibe added 
to statins 
produces 
modest 
additional 
benefit in 
cardiovascular 
outcomes in 
patients 
following an 
acute coronary 
syndrome 

NPC1L1 
[5] 

Plasma lipid 
levels and risk of 
coronary heart 
disease. 

Inactivating 
mutations in 
NPC1L1 are 
associated with 
lower LDL-
cholesterol and 
protection from 
myocardial 
infarction risk. 

Niemann-Pick 
C1-like 1 is a 
validated target 
for LDL-
cholesterol 
lowering and 
coronary heart 
disease 
prevention. 

Proprotein convertase 
subtilisin/kexin type 9 serine 
protease [6] 

Alirocumab, 
evolocumab 

Phase II Lipid lowering 
and 
cardiovascular 
disease 

LDL-cholesterol Alirocumab and  
evolocumab 
reduce LDL-
cholesterol 
among patients 
with 
heterozygous 
familial or 

PCSK9 
[7] 

LDL-cholesterol 
and rosk of 
coronary heart 
disease 

Inactivating 
mutations in 
PCSK9 
associated with 
reduced LDL-
cholesterol and 
CHD risk 

Proprotein 
convertase 
subtilisin/kexin 
type 9 serine 
protease is a 
validated target 
for LDL-
cholesterol 



47 
 

polygenic 
hypercholestero
laemiaand 
reduce 
cardiovascular 
events in 
patients with or 
at high risk of 
cardiovascular 
disease 

lowering and 
reduction in 
cardiovascular 
risk 

Glucagon-like peptide-1 receptor 
[8] 

Liraglutide Phase III Diabetes and 
cardiovascular 
disease 

Death from 
cardiovascular 
causes, non-fata 
myocardial 
infarction, or 
non-fata stroke. 

Liraglutide 
reduced risk of  
death from 
cardiovascular 
causes, nonfatal 
myocardial 
infarction, or 
nonfatal stroke 
among patients 
with type 2 
diabetes 
mellitus 

GLP1R 
[9] 

Body weight, 
glycaemic traits, 
lipids, blood 
pressure, risk of 
type 2 diabetes 
and coronary 
heart disease 

A low 
frequency, 
coding region 
missense variant 
in GLP1R is 
associated with 
lower fasting 
glucose, 
diabetes risk 
and risk of 
coronary heart 
disease. 

GLP1R is a 
validated target 
for treatment of 
diabetes and 
reducing 
coronary heart 
disease risk 

Lipoprotein- associated 
phospholipase A2 (Lp- 
PLA2) [10,11] 

Darapladib Phase III Cardiovascular 
disease 

Major 
cardiovascular 
events or major 
coronary events 

No reduction in 
CVD events in 
patients with 
stable coronary 
disease or recent 
ACS; despite 
reductions in Lp-
PLA2 mass and 
activity. 

PLA2G7[12, 13] Lp-PLA2 
concentration, 
blood lipids, 
inflammation 
markers, and 
CHD events 

PLA2G7 variants 
were not 
associated with 
alterations in 
cardiovascular 
risk markers or 
CHD events 

Lp-PLA2 is not 
involved in the 
development of 
cardiovascular 
disease; low 
priority as 
therapeutic 
target for this 
indication 

Interleukin-6 receptor[14] Tocilizumab Phase III Autoimmune 
disease 

Blood lipid 
fractions and 
inflammation 
markers 
including IL- 6, 
CRP and 
fibrinogen 

In patients with 
rheumatoid 
arthritis, 
tocilizumab 
induced 
alterations in 
circulating 
inflammation 
markers 
characteristic of 
IL-6 blockade 

IL6R[14] Blood lipid 
fractions and 
inflammation 
markers including 
iL-6, CRP and 
fibrinogen. 
Cardiovascular 
events including 
CHD events and 
abdominal aortic 
aneurysm 

Variants in the 
IL6R 
gene that 
recapitulate the 
biomarker profile 
of IL6-R 
blockade were 
associated with 
a reduction in 
CHD events 

IL-6 receptor 
signalling is 
involved in the 
development of 
CHD. The IL-6 
receptor blocker 
tocilizumab 
could be 
repurposed for 
the treatment of 
CVD 

C-reactive 
protein[15] 

No CRP inhibitors 
yet available for 

Preclinical Cardiovascular 
disease 

Effects of CRP 
on processes 

Observational 
associations of 

CRP[16] Inflammation 
and coagulation 

SNPs in the CRP 
gene exclusively 

CRP is not  
Causal in CHD 
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clinical use. believed to 
contribute to 
atherosclerosis 
studied in vitro or 
in animals. 
Associations of 
CRP with CVD in 
human 
observational 
studies. 

CRP with CVD 
events in 
humans, but 
studies prone to 
confounding. 
Pro-atherogenic 
effect of CRP in 
vitro and in 
animals later 
proved to be 
artefactual. 

markers, blood 
lipid fractions, 
and coronary 
heart disease 
events 

associated with 
CRP exhibited 
no association 
with CHD. No 
causal association 
of CRP with CHD 
based on 
instrumental 
variables 
analysis. 

pathogenesis; 
priority as a 
therapeutic 
target for CHD 
prevention 
diminished 

Secretory phospholipase A2 
(sPLA2)[17] 

Varespladib Phase III Cardiovascular 
disease 

sPLA2 
concentration, 
blood lipids, 
inflammation 
markers, and CVD 
events 

No beneficial 
effect of 
varespladib on 
CVD events in 
patients with 
recent acute 
coronary 
syndrome (ACS), 
despite a drug- 
induced 
reduction in 
sPLA2 
concentration 
and activity 

PLA2G2A[18] sPLA2 mass and 
activity and 
major vascular 
events (MVE) in 
general 
populations and 
patients with ACS 

SNPs in the 
PLA2G2A gene 
were associated 
with substantial 
alterations in 
sPLA2 mass and 
activity but not 
with MVE 

sPLA2 is not 
involved in the 
development of 
cardiovascular 
disease; 
dismissed as a 
therapeutic 
target in CVD 

Potassium/sodium 
hyperpolarization-activated cyclic 
nucleotide-gated channel 4 [19] 

Ivabradine Phase IV 
(post- 
marketing) 

Cardiovascular 
disease  

Risk of atrial 
fibrillation 

Developed for 
angina and heart 
failure, post-hoc  
meta-analysis of 
RCTs (motivated 
by genetic 
findings [14, 15], 
indicated 
ivabridine 
treatment is 
associated with 
a higher risk of 
atrial fibrillation.  

HCN4 [20,21] Atrial fibrillation 
(genome wide 
association 
analysis) 

Variants in the 
gene HCN4 
encoding the 
target of 
ivabridine 
associate with a 
higher risk of 
atrial fibrillation.   

Atrial fibrillation 
is a mechanism-
based adverse 
effect of 
ivabridine 
treatment.  

TNF receptor 1 and TNF [22 23] Monoclonal 
antibodies 
against tumour 
necrosis factor-
alpha (TNF) 
 

Phase II I and 
Phase IV 

Neurological 
disease 

Multiple sclerosis 
exacerbations 

Multiple sclerosis 
exacerbations. 

TNFRSF1A 
[24] 

Multiple 
sclerosis  

A variant in the 
TNFRSF1A that 
encodes the TNF 
receptor 1 gene 
indices 
expression of a 

Exacerbation of 
MS induced by 
anti-TNF 
monoclonal 
antibodies is 
mechanism 
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