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Objectives: There is uncertainty regarding the efficacy of

artificial intelligence (AI) software to detect advanced subtle

neoplasia, particularly flat lesions and sessile serrated lesions

(SSLs), due to low prevalence in testing datasets and prospec-

tive trials. This has been highlighted as a top research priority

for the field.

Methods: An AI algorithm was evaluated on four video test

datasets containing 173 polyps (35,114 polyp-positive frames

and 634,988 polyp-negative frames) specifically enriched with

flat lesions and SSLs, including a challenging dataset containing

subtle advanced neoplasia. The challenging dataset was also

evaluated by eight endoscopists (four independent, four

trainees, according to the Joint Advisory Group on gastroin-

testinal endoscopy [JAG] standards in the UK).

Results: In the first two video datasets, the algorithm

achieved per-polyp sensitivities of 100% and 98.9%. Per-frame

sensitivities were 84.1% and 85.2%. In the subtle dataset, the

algorithm detected a significantly higher number of polyps

(P < 0.0001), compared to JAG-independent and trainee

endoscopists, achieving per-polyp sensitivities of 79.5%,

37.2% and 11.5%, respectively. Furthermore, when considering

subtle polyps detected by both the algorithm and at least one

endoscopist, the AI detected polyps significantly faster on

average.

Conclusions: The AI based algorithm achieved high per-polyp

sensitivities for advanced colorectal neoplasia, including flat

lesions and SSLs, outperforming both JAG independent and

trainees on a very challenging dataset containing subtle lesions

that could have been overlooked easily and contribute to

interval colorectal cancer. Further prospective trials should

evaluate AI to detect subtle advanced neoplasia in higher risk

populations for colorectal cancer.

Key words: artificial intelligence, colonic polyps, colonoscopy,

colorectal neoplasms, deep learning

INTRODUCTION

ARTIFICIAL INTELLIGENCE (AI) based systems for
polyp detection have been shown to increase adenoma

detection rate (ADR) in randomized controlled trials. To
date, these have been limited to non-advanced adenomas.1

There remains significant uncertainty regarding the effi-
cacy of AI software to detect advanced neoplasia, particu-
larly flat lesions, due to low prevalence of these subtle
abnormalities in both pre-clinical testing datasets and
prospective trials.2,3 A similar issue exists for sessile
serrated lesions (SSLs).

This issue is particularly important since there is debate
about whether the increased detection of non-advanced
adenomas alone translates to reductions in interval colorec-
tal cancers (CRCs). Improving the performance of AI to
detect more challenging and advanced lesions, was ranked
as the second highest priority in a recent international
research priority setting exercise for AI in colonoscopy.4 In
particular a recommendation was made to create enriched
datasets with subtle lesions, especially in scenarios where
perceptual errors can occur. This was further emphasized by
a recent literature review.3

Although current research efforts predominantly focus on
prospective evaluation of computer aided detection (CADe)
software in clinical trials, there remains an important role for
retrospective pre-clinical studies using video datasets. These
allow for evaluation and improvement of standalone tech-
nical performance of the AI software, and comparison of
performance against multiple endoscopists who view the
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same videos. Current datasets are often limited by selection
bias, largely containing lesions that are readily identified
during routine clinic practice.5

In this study, we aimed to develop video datasets that were
enriched with flat lesions, SSLs and advanced colorectal
polyps, to evaluate AI technical performance, including a
perceptually challenging video database to also allow for
comparisons of AI performance against endoscopists.

METHODS
Datasets

Training and initial test set

TO DEVELOP THE deep-learning based algorithm, a
training dataset was created which consisted of a

combination of still colonoscopy images and videos (Dataset
A and Dataset B). Dataset B is a public dataset containing
10,993 polyp-positive frames (CVC-ColonDB300, CVC-
ClinicDB612, CVC-ClinicHDSegmentTrain and CVC-Video
databases).6–9 A video database was also created at our
institution between August 2018 andMarch 2019 consisting of
complete colonoscopy withdrawals from 50 patients (cecum to
rectum) using Olympus (Tokyo, Japan) EVIS LUCERA
CV290(SL) processors and colonoscopes, recorded at 25
frames per second. Patients with advanced CRC or inflamma-
tory bowel disease were excluded. Procedures were performed
by two expert national bowel cancer screening accredited
colonoscopists (ADR >45%). All polyps were confirmed by
histopathology. Polyp size, morphology and location were also
recorded. Full-length videos (white light only) were divided
into shorter polyp-positive and -negative sequences. Magnifi-
cation or near-focus frames were excluded. Polyp-positive
frames were annotated based on the methods described in
Appendix S1. The 50 procedures containing 210 polyps were
randomly split on a per-procedure basis to create training
(Dataset A), tuning and initial test datasets (Dataset C) consist-
ing of 33, two and 15 procedures, respectively. The datasets are
described in further detail in Table 1. The tuning dataset was
used for optimizing the model hyperparameters.

Prospective independent test datasets

Once the algorithm had been developed and initially
evaluated in the first step above, we prospectively recorded
a further 45 patient colonoscopy withdrawals using the same
methods described previously at our institution between
April 2019 and November 2019. Twenty of these procedures
contained 88 polyps and 25 were negative. Based on the
methods in Appendix S1, these generated 8950 polyp-
positive (Dataset D) and 542,484 polyp-negative frames
(Dataset E) which are described in further detail in Table 1.

‘Subtle’ and perceptually challenging
dataset

To specifically evaluate the algorithm on perceptually
challenging lesions, we prospectively collected colono-
scopy polyp encounter videos, during routine clinical
care, where two expert endoscopists identified subtle
visual cues of polyps in ‘near miss’ scenarios. Short white
light video sequences were generated. Initial early
sequences of the polyp encounter, including the subtle
visual cues of the polyp, were created. The median length
of these videos was 9.5 s (interquartile range [IQR] 8.0–
10.0). In these situations, the polyp was not immediately
identified i.e. the operator continued to withdraw a few
folds before noticing the subtle visual cue, or the lesion
was in the periphery or distance of the visual field before
being recognized. For the same polyp encounters, we also
created paired late short sequences, where the same polyp
had been brought close into view, and optimally posi-
tioned i.e. centered just prior to polypectomy. The median
length of these videos was 4.0 s (IQR 3.0–6.0). All of
these polyps were confirmed by histopathology. Frames
were annotated according to the methods in Appendix S1.
A total of 39 polyps were included from 30 patients
resulting in a total of 7683 polyp-positive frames (Dataset
F). We named this the University College London (UCL)-
subtle polyp dataset.

External validation dataset

The ETIS-LARIB open database consists of 196 high-
definition polyp-positive frames, from 44 different polyps
involving 31 sequences, captured using Pentax 90i series,
EPKi 7000 processors (Dataset G).9,10

All the datasets are summarized in Table 1; two were used
for training (Datasets A and B) and five for testing purposes
(Datasets C, D, E, F and G). The test datasets were
independent of all training processes with no patient overlap.

Algorithm development

A fully convolutional network with a ResNet-101 backbone
architecture was used. Themodel was trained with Pytorch on
an NVIDIA GeForce RTX 2080 Ti GPU. Further algorithm
development details are included in Appendix S1.

Evaluating the algorithm

The bounding box annotations were used as ground truth for
polyp presence or absence, with all polyps included in the
study confirmed by histopathology. Performance metrics for
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evaluating the algorithm performance included per-frame
sensitivity, per-frame specificity, and per-frame positive
predictive value. A true positive occurred when the algorithm

bounding box overlapped with the ground truth bounding
box. Per-polyp sensitivity was defined as the number of
polyps correctly detected by the model in at least one frame

Table 1 Description of all the datasets used to train and test the artificial intelligence algorithm

Training datasets Initial test dataset

(Dataset C)
Dataset A Dataset B

33 procedures

53,849 polyp-positive frames

5000 polyp-negative frames

158 polyps

Mean size = 7.0 � 4.9 mm

Public datasets

(CVC-ColonDB300, CVC-

ClinicDB612, CVC-

ClinicHDSegmentTrain and

CVC-Video databases)

10,993 polyp-positive

video + static (still image)

frames

15 procedures

18,481 polyp-positive frames

92,504 polyp-negative frames

46 polyps

Mean size = 8.0 � 5.0 mm

Paris classification

Protruded 46% (72)

Flat/Flat elevated 54% (86)

Paris classification

Protruded 57% (26)

Flat/Flat elevated 43% (20)

Location

Right 65% (102)

Left 32% (51)

Rectum 3% (5)

Location

Right 74% (34)

Left 13% (6)

Rectum 13% (6)

Pathology

HGD adenoma 1% (1)

LGD adenoma 78% (124)

Sessile serrated lesion 17% (26)

Hyperplastic 4% (7)

Pathology

HGD adenoma 2% (1)

LGD adenoma 52% (24)

Sessile serrated lesion 39% (18)

Hyperplastic 7% (3)

Advanced colorectal polyp 35% (16)

Prospective independent validation test datasets Perceptually challenging

subtle test dataset (Dataset F)

External validation

(Dataset G)
Dataset D Dataset E

20 procedures 25 negative procedures 30 procedures ETIS-LARIB database

8950 polyp-positive video

frames

542,484 non-polyp frames 7683 polyp-positive frames 196 high definition frames (still

images)

88 polyps

Mean size = 8.8 � 5.4 mm

39 polyps

Mean size = 10.2 � 7.3 mm 44 polyps from 31 sequences

Paris classification*
Protruded 45% (40)

Flat/Flat elevated 55% (48)

Paris classification*
Protruded 31% (12)

Flat/Flat elevated 69% (27)

Polyp size, morphology and

histopathology data not

available

Location

Right 70% (62)

Left 26% (23)

Rectum 3% (3)

Location

Right 77% (30)

Left 18% (7)

Rectum 5% (2)

Pathology

LGD adenoma 39% (34)

Sessile serrated lesion 54%

(48)

Hyperplastic 7% (6)

Advanced colorectal polyp

42% (37)

Pathology

LGD adenoma 46% (18)

Sessile serrated lesion 54% (21)

Advanced colorectal polyp 36%

(14)

*LST-G-H (IIa + Is) = 2,

LST-G-M (IIa + Is) = 1,

LST-NG-PD (IIa + IIc) = 1,

LST-NG-F (IIa) = 1

*LST-NG-F (IIa) = 4,

LST-G-H (IIa) = 1

LST-G-M (IIa + Is) = 1

LST-G-H, laterally spreading tumor, granular homogeneous type; LST-G-M, laterally spreading tumor, granular mixed-nodular type; LST-NG-F,

laterally spreading tumor, non-granular flat-elevated type; LST-NG-PD, laterally spreading tumor, non-granular pseudo-depressed type.
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divided by the total number of polyps present in the test
dataset. For theUCL-subtle dataset, time to detectionwas also
calculated. Further detailed definitions are in Appendix S1.

We also utilized an existing published false positive
CADe clinical classification system to categorize false
positives.11 For the purposes of this analysis, a total of 80
false positives were randomly extracted based on duration of
appearance.

Endoscopist evaluation

To compare performance with the algorithm, and also
evaluate the perceptual difficulty of the UCL-subtle polyp
dataset, eight endoscopists from our institution reviewed
the same 34 video clips containing 39 polyps. The endo-
scopists had never seen the lesions before. In these instances,
only the challenging early video polyp sequences were
included. Further methodological details are included in
Appendix S1.

Two groups of endoscopists participated. The first
consisted of four independent colonoscopists who had
performed >1000 colonoscopies and were accredited
according to the Joint Advisory Group on gastrointestinal
endoscopy (JAG) national standards in the UK. The second
group included four JAG non-independent (trainee) endo-
scopists who had performed <500 colonoscopies.

Statistical analysis

Parametric continuous variables are expressed as means
with standard deviation and non-parametric variables as
medians with IQR. Clopper–Pearson exact 95% confidence
intervals (CIs) were calculated. Chi-squared, or Fisher’s
exact test where appropriate, was used to compare differ-
ences in categorical variables. The Mann–Whitney U test
was used to compare differences in polyp detection reaction
times between endoscopists and the convolutional neural
network (CNN). P < 0.05 was considered to be statistically
significant. All statistical analyses were performed using
GraphPad Prism (version 8; San Diego, CA, USA).

Ethics

The study was approved by the Cambridge central research
medical ethics committee (REC Reference No. 18/EE/0148).

RESULTS

Algorithm performance

THE ALGORITHM WAS first evaluated on the initial
test set (Dataset C), which consisted of 15 colonoscopy

procedures containing 46 polyps. The model achieved a per-
polyp sensitivity of 100% (95% CI 92.3–100.0%). The per
frame sensitivity was 84.1% (95% CI 83.6–84.6%) and per
frame specificity was 79.6% (95% CI 79.3–79.8%).
Further evaluation was undertaken on the prospective

independent test datasets (Datasets D and E). These
included 20 procedures with 88 polyps and 25 completely
negative withdrawals. The algorithm achieved a per-polyp
sensitivity of 98.9% (95% CI 93.8–100.0%) and a per
frame sensitivity of 85.2% (95% CI 84.5–85.9%). The per-
frame specificity was 79.2% (95% CI 79.1–79.3%) for the
negative withdrawals.
Evaluation on the perceptually difficult UCL-subtle dataset

was split into performance on the early and late polyp
sequences. For early sequences, the algorithm achieved a per-
polyp sensitivity of 79.5% (95% CI 63.5–90.7%), a per-frame
sensitivity of 18.8% (95%CI17.6–20.1%). For late sequences,
per-polyp sensitivity and per frame sensitivity were 100%
(95% CI 91.0–100.0%) and 80.1% (95% CI 78.8–81.3%),
respectively. There were statistically significant differences in
all metrics when comparing early and late sequence perfor-
mance.
The inference time for the algorithm was 53.5 ms for the

testing dataset (using a NVIDIA Geforce RTX 2080 Ti
GPU), meeting the requirements for real-time detection.
Figure 1 and Video S1 demonstrate detections of subtle

polyps by the algorithm.
Performance in test datasets (Datasets C, D, E and G) and

the subtle dataset (Dataset F) are summarized in Tables 2
and 3.
Further subgroup analyses based on polyp size, morphol-

ogy and histopathology are included in Tables S2 and S3.

Endoscopist performance on perceptually
difficult UCL-subtle dataset

The Joint Advisory Group independent endoscopists
achieved a per-polyp sensitivity of 37.2% (95% CI 29.6–
45.3%) and a per-polyp positive predictive value of 78.4%
(95% CI 67.3–87.1%).
JAG non-independent (trainee) endoscopists achieved a

per-polyp sensitivity of 11.5% (95% CI 7.0–17.6%) and a
per-polyp positive predictive value of 45.0% (95% CI 29.3–
61.5%).
The CNN detected significantly more polyps (P < 0.0001)

than both independent and trainee endoscopists with a
per-polyp sensitivity of 79.5% (95% CI 63.5–90.7%).
When considering only polyps that were detected by both

the CNN and at least one endoscopist, after correcting for
baseline endoscopist reaction times, the median detection
times for JAG independent endoscopists and the CNN were
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Figure 1 Examples of subtle polyp detections by algorithm. Top row contains raw images and bottom row contains

corresponding images with the algorithm output (blue bounding box) and a black outline highlighting the polyp area. From left to

right, the first image contains two LSTs (LST-G-H and LST-NG-F) subtypes in the cecum, the second image contains a LST-NG-F

subtype in the transverse colon, the third contains a sessile serrated lesion (SSL) in the transverse colon and the final image

contains two SSLs in the transverse colon. LST-G-H, laterally spreading tumor, granular homogeneous type; LST-NG-F, laterally

spreading tumor, non-granular flat-elevated type.

Table 2 Algorithm performance in test datasets C, D, E and G

Dataset C Dataset D Dataset E Dataset G

Per-polyp sensitivity

[95% CIs] (n)

100% [92.3–100.0]
(46/46)

98.9% [93.8–100.0]
(87/88)

N/A N/A

Per frame sensitivity

[95% CIs] (n)

84.1% [83.6–84.6]
(16,450/19,560)

85.2% [84.5–85.9]
7847/9210

N/A 82.6% [76.9–87.5]
(176/213)

Per frame specificity

[95% CIs] (n)

79.6% [79.3–79.8]
(76,611/96,301)

N/A 79.2% [79.1–79.3]
(441,391/557,161)

N/A

Per frame positive predictive value

[95% CIs] (n)

45.5% [45.0–46.0]
(16,450/36,140)

90.8% [90.2–91.4]
(7847/8643)

N/A 93.6% [89.1–96.7]
(176/188)

F1-score

[95% CIs] (n)

59.1% [58.5–59.6]
(16,450/27,850)

87.9% [87.2–88.6]
(7847/8926.5)

N/A 87.8% [82.2–91.8]
(176/200.5)

CI, confidence interval; N/A, not available.

Table 3 Algorithm performance on subtle dataset split into early and late sequences

Early sequences Late sequences P-value

Per-polyp sensitivity

[95% CIs] (n)

79.5% [63.5–90.7]
(31/39)

100% [91.0–100.0]
(39/39)

0.0026

Per frame sensitivity

[95% CIs] (n)

18.8% [17.6–20.1]
(721/3828)

80.1% [78.8–81.3]
(3087/3855)

<0.0001

Per frame positive predictive value

[95% CIs] (n)

32.2% [30.3–34.2]
(721/2237)

95.2% [94.5–96.0]
(3087/3241)

<0.0001

CI, confidence interval.

Digestive Endoscopy 2021; ��: ��–�� AI detection of subtle colorectal polyps 5

© 2021 The Authors. Digestive Endoscopy published by John Wiley & Sons Australia, Ltd
on behalf of Japan Gastroenterological Endoscopy Society.



1.78 s (IQR 0.85–3.20) and 0.28 s (IQR 0.04–0.83)
respectively across 22 polyps. The CNN was significantly
faster at detecting these polyps (P < 0.0001). The CNN was
also significantly faster than JAG non-independent trainees
with median detection times of 1.19 s (IQR 0.99–2.83) and
0.28 s (IQR 0.04–0.56) (P < 0.0001) across 11 polyps.

False positive analysis

Of the randomly selected 80 false positives that were
reviewed, 86% (n = 69) were caused by artefacts from the
bowel wall and 14% (n = 11) were caused by artefacts from
bowel content. The subcategories leading to the highest
proportion of false positives included folds 43.8% (n = 35),
followed by normal mucosa 16.3% (n = 13) and ileocecal
valve 15% (n = 12). The results are summarized in
Table S1.

DISCUSSION

IN THIS STUDY we developed and validated an AI polyp
detection system across multiple datasets, effectively

creating high-risk populations enriched with flat lesions
including a high proportion of SSLs and advanced colorectal
polyps including laterally spreading tumors (LSTs). Our
model was evaluated exclusively on video frames, demon-
strating high per lesion sensitivities. Moreover, in our
unique perceptually challenging video dataset, our CADe
detected significantly more subtle polyps when compared to
both JAG independent and trainee endoscopists.

To our knowledge, our study reports the largest video
validation for CNN performance on SSLs to date. Most
prior landmark studies that report polyp histopathology
contain either none or fewer than five SSLs in their video
test sets.12–15 Hassan et al.16 reported results using one of
the largest video test datasets, containing 338 polyps,
however absolute SSLs numbers were not described,
performance reporting was grouped with adenomas and
was on a per lesion basis. Zhou et al.17 specifically
addressed SSL validation on a dataset of 42 SSLs, with a
per frame and per-polyp sensitivity of 84.1% and 100%,
respectively. However, in the dataset described by Zhou
et al., 47% of SSLs were located in the rectum and sigmoid,
and overall 69% were diminutive, which are less likely to
contribute to interval CRC. Similarly, video performance
evaluation on flat neoplasia, particularly advanced lesions
including LSTs, is very limited in published studies.3

Misawa et al. recently published an open-access video
dataset, with a reported CNN flat per-lesion sensitivity of
98.3%, and a per-frame sensitivity of 86.7%. This dataset
contained 100 lesions, including 34 flat lesions, one LST

and four SSLs.13 Yamada et al. produced a flat morphology
enriched video dataset of 56 lesions, where 44 were slightly
elevated or depressed, reporting an overall per frame and
per-lesion sensitivity of 74% and 100%, respectively.15 On
the basis of per-frame sensitivities, our model performance
was better than Yamada et al. and was comparable to
Misawa et al. on all our datasets, excluding the subtle
dataset. There is considerable variability in the definition for
per-polyp sensitivity across studies, future consensus defi-
nitions could improve benchmarking.
Existing published retrospective CADe studies have

rarely compared AI video performance with multiple
endoscopists. Wang et al.18 performed a post-hoc analysis,
using 159 short video clips of missed polyps from a double-
blind CADe RCT. Three experienced endoscopists retro-
spectively reviewed the video clips achieving an overall per-
polyp sensitivity of 17%. Almost half of the missed polyps
were hyperplastic, and 91% of the adenomas were diminu-
tive and 99% were sessile. Furthermore, only five SSLs and
one advanced adenoma (LST) were included. Livovsky
et al.19 evaluated CADe performance on a large testing
video set, containing 1393 procedures, including a subgroup
of ‘subtle polyps’ missed by endoscopists, although these
were defined by re-analysis of false positives, without
corresponding data for polyp size, morphology or
histopathology. Our perceptually challenging dataset was
enriched with lesions which are critical for CRC prevention.
Our study is also the first to introduce the concept of
separating analyses into early and late polyp encounter
sequences. We demonstrate significantly lower sensitivities
for early sequences. This emphasizes the importance of
focusing video dataset design on the most challenging
component of sequences. We also validated perceptual
difficulty, by performing multi-reader studies on the polyp
encounters, demonstrating a superior performance of our
CNN against both JAG accredited independent endoscopists
and trainees. The relatively low sensitivity of endoscopists
in this study suggests that recognition errors for subtle
advanced neoplasia could be an important factor in interval
CRCs. In addition, our results suggest that a learning curve
may exist.
When considering false positives, overall the per-frame

specificity was approximately 80%, which is slightly lower
than other video studies.20 However, we did not exclude
low-quality images in our non-polyp frames, unlike many
other studies, which are a common source of false positives.
However, per-frame metrics alone may not reflect the
clinical relevance of false positives, therefore we classified a
random selection of false positives using a published
scheme.11 The distribution of causes of false positives was
similar to that published for another CADe system, mostly
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represented by artefacts from the bowel wall, and a smaller
proportion due to bowel content. Similarly, the main two
subcategories were folds and normal mucosa. The previ-
ously published classification study suggested that most of
these were readily discarded by endoscopists. False posi-
tives may, however, lead to poor adoption of CADe systems.
Further research is warranted to identify methods to address
this, such as the use of recurrent neural networks, whilst
ensuring that sensitivity is maintained for the detection of
subtle, advanced colorectal neoplasia.

Limitations of this study include its retrospective design,
with results possibly being subject to selection bias,
however this was minimized by using video data including
low quality image frames from perceptually challenging
lesions. Bowel preparation scores were not recorded for
procedures, therefore its effect on CADe performance was
not evaluated. Also, we did not evaluate AI-endoscopist
interaction. The clinical impact of CADe systems will
depend on the ability of operating endoscopists to recognize
whether the AI output represents a true lesion, or it might be
discarded incorrectly as a false positive. Furthermore,
although we did perform an external validation using a still
image dataset, it is very difficult to obtain video datasets
enriched with subtle advanced lesions. Moreover, although
we created a novel dataset, the absolute number of advanced
subtle lesions was relatively small. Given the low preva-
lence of such lesions, large multi-center research collabo-
rations will be required to overcome this limitation.

In conclusion, we evaluated the technical performance of
a CADe algorithm to detect flat neoplasia, SSLs and
advanced polyps demonstrating high sensitivity in a video
dataset. Using a novel perceptually challenging dataset
enriched with advanced lesions, the algorithm detected
significantly more polyps than endoscopists. Prospective
clinical trials should assess the ability of CADe systems to
detect subtle advanced neoplasia in higher risk populations
for CRC. However, ultimately population-based trials,
targeting ‘average-risk’ individuals are required to establish
the value of AI in CRC prevention.21
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SUPPORTING INFORMATION

ADDITIONAL SUPPORTING INFORMATION may
be found in the online version of this article at the

publisher’s web site.
Table S1 False positive classifications.
Table S2 Algorithm subgroup analysis for flat lesions,

sessile serrated lesions, advanced colorectal lesions and
laterally spreading tumors.

Table S3 Algorithm subgroup analysis on all testing
datasets combined based on polyp histopathology and
morphology.

Appendix S1 Algorithm development, evaluation met-
rics, annotation methods and endoscopist video evaluation
on UCL-subtle dataset.

Video S1 Videos demonstrating subtle polyp detections
by the CNN, including advanced adenomas, laterally
spreading tumors and sessile serrated lesions.
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