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Abstract

We study a commonly-used second-kind boundary-integral equation for solving the Helm-
holtz exterior Neumann problem at high frequency, where, writing Γ for the boundary of the
obstacle, the relevant integral operators map L2(Γ) to itself. We prove new frequency-explicit
bounds on the norms of both the integral operator and its inverse. The bounds on the norm
are valid for piecewise-smooth Γ and are sharp, and the bounds on the norm of the inverse are
valid for smooth Γ and are observed to be sharp at least when Γ is curved. Together, these
results give bounds on the condition number of the operator on L2(Γ); this is the first time
L2(Γ) condition-number bounds have been proved for this operator for obstacles other than
balls.

Keywords: boundary integral equation, Helmholtz, high frequency, Neumann problem,
pseudodifferential operator, semiclassical analysis.

1 Introduction

1.1 Motivation, and informal discussion of the main results and their
novelty

The frequency-dependence of the norms of both Helmholtz boundary-integral operators and their
inverses has been studied since the work of Kress and Spassov [59, 58] and Amini [2], who studied
the case when the obstacle is a ball.

Over the last 15 years there has been renewed interest in this dependence at high-frequency
[20, 10, 34, 30, 24, 23, 14, 12, 77, 66, 13, 75, 26, 42, 47, 78, 11, 43, 31], motivated mainly by
its importance in the analysis of associated boundary-element methods [29, 44, 63, 25, 51, 27,
46, 50, 41, 45]. Almost all of the analysis of boundary-integral operators for the high-frequency
Helmholtz equation has been for the exterior Dirichlet problem. Indeed, there is only one paper
proving frequency-explicit bounds on boundary-integral operators used to solve the high-frequency
Helmholtz exterior Neumann problem [17]; in this informal discussion, we denote these operators
by B. We discuss the results of [17] in detail later, but note here that they prove (i) sharp bounds
on ‖B‖ when the obstacle is a ball and non-sharp bounds for smooth obstacles, and (ii) a bound
on ‖B−1‖ only when the obstacle is a ball.

In this paper, we prove bounds on ‖B‖ and ‖B−1‖ (see Theorems 2.1 and 2.3). The bounds
on ‖B‖ are valid for piecewise smooth domains and are sharp up to factors of log k, while those on
‖B−1‖ are valid for smooth domains, and are observed to be sharp (via numerical experiments)
at least for strictly-convex obstacles. These bounds are the Neumann analogues of the Dirichlet
results obtained in [30, 24, 12, 11, 60].
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In obtaining these bounds, we crucially use the high-frequency decompositions of the single-
layer, double-layer, and hypersingular integral boundary operators from [37], the PDE results of
[21, 85, 11, 60, 39, 38], and results about semiclassical pseudodifferential operators (see, e.g., [87],
[35, Appendix E]).

Two immediate applications of these bounds are in the first high-frequency analysis of the
boundary-element method applied to these Neumann boundary-integral operators (see the com-
panion paper [40]) and in extending the Dirichlet analysis in [64] of iterative methods applied to
the resulting linear systems to the Neumann case (see the discussion in §2.1).

1.2 The Helmholtz exterior Neumann problem
Let Ω− ⊂ Rd, d ≥ 2 be a bounded open set such that its open complement Ω+ := Rd \ Ω− is
connected. Let Γ := ∂Ω−; the majority of the results in this paper hold when Γ is C∞ (so that
we can easily use the calculus of pseudodifferential operators), but some results hold when Γ is
piecewise smooth in the sense of Definition B.4 below. Let n be the outward-pointing unit normal
vector to Ω−, and let γ± and ∂±n denote the Dirichlet and Neumann traces on Γ from Ω±.

We consider the exterior Neumann scattering problem. For simplicity, we consider boundary
data coming from an incident plane wave uI(x) := exp(ikx · â) for â ∈ Rd with |â|2 = 1, but we
note that the same boundary-integral operators used to solve this problem can be used to solve the
exterior Neumann problem given arbitrary data in H−1/2(Γ). That is, we consider the sound-hard
plane-wave scattering problem defined by: given k > 0 and the incident plane wave uI , find the
total field u satisfying

∆u+ k2u = 0 in Ω+, ∂+
n u = 0 on Γ, (1.1)

and
∂uS

∂r
− ikuS = o

(
1

r(d−1)/2

)
as r := |x| → ∞, uniformly in x/r, (1.2)

where uS := u− uI is the scattered field. We study this problem when the frequency k is large.

1.3 Boundary-integral operators
The standard single-layer, adjoint-double-layer, double-layer, and hypersingular operators are
defined for k ∈ C, φ ∈ L2(Γ), ψ ∈ H1(Γ), and x ∈ Γ by

Skφ(x) :=

∫

Γ

Φk(x, y)φ(y) ds(y), K ′kφ(x) :=

∫

Γ

∂Φk(x, y)

∂n(x)
φ(y) ds(y), (1.3)

Kkφ(x) :=

∫

Γ

∂Φk(x, y)

∂n(y)
ψ(y) ds(y), Hkψ(x) :=

∂

∂n(x)

∫

Γ

∂Φk(x, y)

∂n(x)
ψ(y) ds(y), (1.4)

where Φk(x, y) is the standard Helmholtz fundamental solution satisfying the radiation condition
(1.2); see (A.2) below. (We use the notation Kk, K ′k for the double-layer and its adjoint, instead
of Dk, D′k, to avoid a notational clash with the differential operator D := −i∂ used in §3 onwards.)

This paper studies the integral operators

Bk,η,R := iη

(
1

2
I −Kk

)
+RHk and B′k,η,R := iη

(
1

2
I −K ′k

)
+HkR (1.5)

where η ∈ C \ {0}, and the operator R satisfies the following assumption. This assumption uses
the notation of semiclassical pseudodifferential operators on Γ recapped in §3.

Assumption 1.1. R ∈ k−1Ψ1
k−1(Γ) is elliptic and its semiclassical principal symbol, σk−1(R), is

real.

The prototypical example of an operator satisfying Assumption 1.1 is Sik, i.e. the single-layer
operator at frequency ik. Assumption 1.1 and standard mapping properties of Kk,K

′
k, and Hk

(see (A.6) below) imply that Bk,η,R, B′k,η,R : L2(Γ)→ L2(Γ). Indeed, since Hk : L2(Γ)→ H−1(Γ),
the fact that R is a regulariser and maps H−1(Γ)→ L2(Γ) is crucial; see §2.1.1 below for a recap
of the history of this idea.

We use the ′ notation on B′k,η,R because, if R is self-adjoint in the real-valued L2(Γ) inner
product, then Bk,η,R and B′k,η,R are self-adjoint in this inner product; see Lemma 7.2 below.
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The relationship of Bk,η,R and B′k,η,R to the Helmholtz exterior Neumann problem. If
u is the solution of (1.1)-(1.2), then

Bk,η,Rγ
+u = iηγ+uI −R∂+

n u
I . (1.6)

Indeed, expressing u via Green’s integral representation (see (A.4)) and taking Dirichlet and Neu-
mann traces (using the third and fourth jump relations in (A.5)) yields the two integral equations

(
1

2
I −Kk

)
γ+u = γ+uI and Hkγ

+u = −∂+
n u

I ; (1.7)

acting on the second equation with R and then adding this to iη times the first, we obtain (1.6).
Furthermore, if φ satisfies

B′k,η,Rφ = −∂+
n u

I , (1.8)

then, by the jump relations (A.5), u = uI + (KkR − iηSk)φ is a solution of (1.1)-(1.2) (where the
double- and single-layer potentials, Kk and Sk, are defined by (A.1)).

Since the unknown in (1.6) is the unknown part of the Cauchy data of u satisfying (1.1)-(1.2),
the boundary-integral equation (BIE) (1.6) is called a direct BIE. On the other hand, since the
unknown in (1.8) has less-immediate physical relevance, the BIE (1.8) is known as an indirect BIE.

2 Statement of the main results
Our first main result gives bounds on the norms of Bk,η,R.and B′k,η,R.

Theorem 2.1 (Bounds on ‖Bk,η,R‖L2(Γ)→L2(Γ) amd ‖B′k,η,R‖L2(Γ)→L2(Γ)).
(i) If R satisfies Assumption 1.1 and Γ is C∞ and curved (in the sense of Definition B.3) then

given k0 > 0 there exists C > 0 such that, for all k ≥ k0,

‖Bk,η,R‖L2(Γ)→L2(Γ) +
∥∥B′k,η,R

∥∥
L2(Γ)→L2(Γ)

≤ C
(
1 + |η|

)
. (2.1)

(ii) If R satisfies Assumption 1.1 and Γ is C∞ then given k0 > 0 there exists C > 0 such that,
for all k ≥ k0,

‖Bk,η,R‖L2(Γ)→L2(Γ) +
∥∥B′k,η,R

∥∥
L2(Γ)→L2(Γ)

≤ C
(
|η|
(
1 + k1/4 log(k + 2)

)
+ log(k + 2)

)
. (2.2)

(iii) If R = Sik and Γ is piecewise smooth (in the sense of Definition B.4), then given k0 > 0
there exists C > 0 such that, for all k ≥ k0,

‖Bk,η,R‖L2(Γ)→L2(Γ) +
∥∥B′k,η,R

∥∥
L2(Γ)→L2(Γ)

≤ C
(
|η|
(
1+k1/4 log(k+2)

)
+
(

log(k+2)
)3/2)

. (2.3)

(iv) If R = Sik and Γ is piecewise curved (in the sense of Definition B.5), then given k0 > 0
there exists C > 0 such that, for all k ≥ k0,

‖Bk,η,R‖L2(Γ)→L2(Γ) +
∥∥B′k,η,R

∥∥
L2(Γ)→L2(Γ)

≤ C
(
|η|
(
1 + k1/6 log(k + 2)

)
+
(

log(k + 2)
)3/2)

.

We next give conditions under which Bk,η,R and B′k,η,R are invertible on L2(Γ).

Theorem 2.2 (Invertibility of Bk,η,R and B′k,η,R on L2(Γ)).
(i) If Γ is C∞, R satisfies Assumption 1.1, and η ∈ R \ {0}, then there exists a k0 > 0 such

that, for all k ≥ k0, Bk,η,R and B′k,η,R are injective and Fredholm on L2(Γ), and hence invertible.
(ii) Suppose that Γ is C1, η ∈ R \ {0}, and either R = Sik or R = S0, where in the latter case

in 2-d the constant a in the Laplace fundamental solution (A.3) is taken larger than the capacity
of Γ (see, e.g., [65, Page 263] for the definition of capacity). Then, for all k > 0, Bk,η,R and
B′k,η,R are injective and are equal to a multiple of the identity plus a compact operator on L2(Γ),
and hence invertible.
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In addition, we prove bounds on the inverses of Bk,η,R and B′k,η,R.

Theorem 2.3 (Upper bounds on ‖(Bk,η,R)−1‖L2(Γ)→L2(Γ)). Assume that η ∈ R\{0} is independent
of k and that R satisfies Assumption 1.1.

(i) If Ω− is C∞ and curved (and hence nontrapping in the sense of Definition B.1), then there
exists k0 > 0 and C > 0 such that, for all k ≥ k0,

∥∥(Bk,η,R)−1
∥∥
L2(Γ)→L2(Γ)

+
∥∥(B′k,η,R)−1

∥∥
L2(Γ)→L2(Γ)

≤ Ck1/3. (2.4)

(ii) If Ω− is C∞ and nontrapping, then there exists k0 > 0 and C > 0 such that, for all k ≥ k0,
∥∥(Bk,η,R)−1

∥∥
L2(Γ)→L2(Γ)

+
∥∥(B′k,η,R)−1

∥∥
L2(Γ)→L2(Γ)

≤ Ck2/3. (2.5)

(iii) If Ω− is C∞ then there exists k0 > 0 such that given δ > 0 there exists a set J ⊂ [k0,∞)
with |J | ≤ δ such that, given ε > 0, there exists C = C(k0, δ, ε) > 0 such that, for all k ∈ [k0,∞)\J,

∥∥(Bk,η,R)−1
∥∥
L2(Γ)→L2(Γ)

+
∥∥(B′k,η,R)−1

∥∥
L2(Γ)→L2(Γ)

≤ Ck5d/2+1+ε. (2.6)

(iv) If Ω− is C∞ then there exists k0 > 0, α > 0, and C > 0 such that, for all k ≥ k0,
∥∥(Bk,η,R)−1

∥∥
L2(Γ)→L2(Γ)

+
∥∥(B′k,η,R)−1

∥∥
L2(Γ)→L2(Γ)

≤ C exp(αk).

Remark 2.4 (Choice of η). Theorem 2.3 is proved under the assumption that η is independent of
k. This choice was advocated for in [19, 17], with these papers stating that this choice leads to a
“small number”/“nearly optimal numbers” of iterations of the generalised minimum residual method
(GMRES) compared to other choices of η; see [19, Equation 23], [17, §5]. §9 contains numerical
results showing that, at least for some geometries, both the condition number of Bk,η,R and the
number of GMRES iterations are smaller for some k-dependent choices of η than they are when η
is independent of k.

Part (iv) of Theorem 2.3 shows that ‖(Bk,η,R)−1‖L2(Γ)→L2(Γ) can grow at most exponentially
in k, although Part (iii) shows that for most frequencies ‖(Bk,η,R)−1‖L2(Γ)→L2(Γ) is polynomially
bounded in k. We now show that exponential growth occurs through a discrete set of ks.

Definition 2.5 (Quasimodes). A family of Neumann quasimodes of quality ε(k) is a sequence
{(uj , kj)}∞j=1 ⊂ H2

loc(Ω+)×R with ∂+
n u = 0 on Γ such that the frequencies kj →∞ as j →∞ and

there exists a compact subset K ⊂ Ω+ such that, for all j, supp uj ⊂ K,
∥∥(∆ + k2

j )uj
∥∥
L2(Ω+)

≤ ε(kj), and ‖uj‖L2(Ω+) = 1.

Theorem 2.6 (Lower bounds on ‖(Bk,η,R)−1‖L2(Γ)→L2(Γ)). Assume that Γ is piecewise smooth,
R is bounded on L2(Γ), and B′k,η,R and Bk,η,R are bounded and invertible on L2(Γ). If there exists
a family of Neumann quasimodes with quality ε(k), then there exists C > 0 (independent of j) such
that

min
{∥∥(B′kj ,η,R)−1

∥∥
L2(Γ)→L2(Γ)

,
∥∥(Bkj ,η,R)−1

∥∥
L2(Γ)→L2(Γ)

}

≥ C
(

1

ε(kj)
− 1

kj

)
k

1/2
j

(
‖R‖L2(Γ)→L2(Γ)kj + |η|

)−1

.

We emphasise that the lower bound of Theorem 2.6 does not require that R satisfy Assumption
1.1, and so holds for more general R (such as R = S0).

The following result gives situations where quasimodes with small quality exist; Part (i) is [79,
Theorem 1], and Part (ii) is [70, Theorem 3.1]. Recall that the resonances of the exterior Neumann
problem are the poles of the meromorphic continuation of the solution operator from Im k ≥ 0 to
Im k < 0; see, e.g., [35, Theorem 4.4. and Definition 4.6]). We use the notation that a = O(k−∞)
as k → ∞ if, given N > 0, there exists CN and k0 such that |a| ≤ CNk

−N for all k ≥ k0, i.e. a
decreases superalgebraically in k.
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Theorem 2.7 (Existence of quasimodes with ε(k) = O(k−∞)).
(i) If there exists a sequence of resonances {λ`}∞`=1 of the exterior Neumann problem with

0 ≤ − Imλ` = O
(
|λ`|−∞

)
and Reλ` →∞ as `→∞,

then there exists quasimodes with ε(k) = O(k−∞).
(ii) Let d = 2. Given a1 > a2 > 0, let

E :=

{
(x1, x2) :

(
x1

a1

)2

+

(
x2

a2

)2

< 1

}
. (2.7)

Assume that Γ coincides with the boundary of E in the neighbourhoods of the points (0,±a2), and
that Ω+ contains the convex hull of these neighbourhoods. Then there exist families of Neumann
quasimodes with

ε(k) = C1 exp(−C2k) for all k > 0.

where C1, C2 > 0 are both independent of k.

2.1 Discussion of the main results
2.1.1 The rationale behind using Bk,η,R and B′k,η,R to solve the exterior Neumann

problem.

Recall that taking the Dirichlet and Neumann traces of Green’s integral representation results in
the two equations (1.7). Each of the integral operators in these two equations is not invertible for
all k > 0. This fact prompted the introduction of “combined-field” or “combined-potential” BIEs
in the 1960s and 1970s, with [22] using the BIE

Bk,ηu = iηγ+uI − ∂+
n u

I , where Bk,η := iη

(
1

2
I −Kk

)
+Hk, (2.8)

and [18, 61, 71] introducing analogous BIEs for the exterior Dirichlet problem. The analogous
Neumann indirect formulation comes from posing the ansatz uS = (Kk − iηSk)φ, after which the
jump relations (A.5) imply that

B′k,ηφ = −∂+
n u

I , where B′k,η := iη

(
1

2
I −K ′k

)
+Hk. (2.9)

For k > 0 and Re η 6= 0, Bk,η and B′k,η are bounded and invertible operators from Hs+1/2(Γ) to
Hs−1/2(Γ) for all |s| ≤ 1/2; see [25, Theorem 2.27].

The presence of Hk in (2.8) and (2.9) means that both Bk,η and B′k,η are not bounded from
L2(Γ)→ L2(Γ), and this means that the condition numbers of their h-version Galerkin discretisa-
tions ∼ h−1 as h → 0 for fixed k [74, §4.5]. This motivates using the BIEs (1.6) and (1.8) where
R is chosen as an order −1 operator so that the composition RHk : L2(Γ)→ L2(Γ). (Once R is
introduced, the constant iη at the front of Bk,η,R and B′k,η,R is redundant, but we keep it so that
Bk,η,R and B′k,η,R reduce to the classic operators Bk,η and B′k,η when R = I.)

A popular choice is R = S0 (see, e.g., [81, 3]) or R = (S0)2 (see, e.g., [32, §3.2], [68, Proof of
Theorem 9.1]). These choices are motivated by the Calderón relations

SkHk = −1

4
I +K2

k and HkSk = −1

4
I + (K ′k)2, (2.10)

for all k ≥ 0; see, e.g., [25, Equation 2.56]. Indeed, if R = S0 and Γ is C1, then Bk,η,R and B′k,η,R
equal a multiple of the identity plus a compact operator on L2(Γ), since Kk and K ′k are compact
when Γ is C1 by [36, Theorem 1.2], and (Sk − S0)Hk and Hk(Sk − S0) are compact (this follows
from the mapping properties (A.6) and the bounds on Φk − Φ0 in, e.g., [25, Equation 2.25]). The
idea of composing the hypersingular operator with the single-layer operator (and, more generally,
composing a pseudodifferential operator with one of opposite order) was introduced in [81], and
falls under the class of methods known as “operator preconditioning”; see [52].
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Following the use of R = S0, the choice R = Sik was proposed in [19], and then advocated for
in [17, 84], with [17] also using the principal symbol of Sik. Part of the contribution of the present
paper is the rigorous justification of this choice. Indeed, a result of [37] (extended in Theorem 4.6
below) shows that the norm of Hk grows with k. If R is an order −1 operator that is independent
of k, then RHk : L2(Γ)→ L2(Γ), but with a norm that grows with k. A better choice is therefore
an operator of order −1 whose norm decreases with k, leading to the general class of R described
in Assumption 1.1, to which Sik belongs.

Finally, we note that if R equals iη times the exterior Neumann-to-Dirichlet map P+
NtD, then

Bk,η,R = I (this can be proved by taking the Neumann trace of Green’s integral representation
and using the definition of P+

NtD). This observation is then the basis of the construction of suitable
operators R (more complicated than S0 or Sik) in [62, 5, 4, 7, 33, 6].

2.1.2 Comparison with the results of [17]

The paper [17] considers the operator B′k,η,R with R equal to either Sik or its principal symbol.
By Lemma 7.2, the results in [17] also hold for Bk,η,R with these choices of R. The majority of
the bounds in [17] are proved for Ω− a 2- or 3-d ball, using the fact that the eigenvalues of the
boundary-integral operators can be expressed in terms of Bessel and Hankel functions, and then
bounding the appropriate combinations of these functions uniformly in both argument and order.

The results [17, Theorems 3.2 and 3.4] prove the bound (2.1) when Ω− is a 2- or 3-d ball. The
result [17, Theorem 3.12] proves that, if Γ is C∞, then ‖Bk,η,R‖L2(Γ)→L2(Γ) . (1 + |η|)k1/2+ε for
any ε > 0, which is less sharp in its k-dependence than (2.2). The results [17, Theorems 3.6 and
3.9] show that there exist k0, C1, C2 > 0 such that if Ω− is a 2- or 3-d ball, k ≥ k0, and η ≥ C1k

1/3,
then

Re
〈
B′k,η,Rφ, φ

〉
Γ
≥ C2 ‖φ‖2L2(Γ) for all φ ∈ L2(Γ);

i.e., that B′k,η,R is coercive on L2(Γ) when Ω− is a ball. By the Lax–Milgram theorem, this
implies that ‖(B′k,η,R)−1‖L2(Γ)→L2(Γ) ≤ (C2)−1, under the same assumptions on Ω−, k, and η. The
calculations in [17] suggest actually that (for sufficiently-large k) B′k,η,R is coercive with constant
|η|k−1/3; see [17, Remark 3.7]. If this were the case, then ‖(B′k,η,R)−1‖L2(Γ)→L2(Γ) ≤ Ck1/3/|η|
for Ω− the ball, which would be consistent with the k-dependence in (2.4) (recall that this latter
bound is proved assuming that η ∈ R \ {0} is independent of k).

2.1.3 Comparison of conditioning of Bk,η,R with that for its Dirichlet analogue

If Ω− is smooth and curved and η is independent of k, then the L2(Γ)→ L2(Γ) condition number
of Bk,η,R,

cond(Bk,η,R) := ‖Bk,η,R‖L2(Γ)→L2(Γ)

∥∥(Bk,η,R)−1
∥∥
L2(Γ)→L2(Γ)

, (2.11)

satisfies cond(Bk,η,R) ∼ k1/3. This is the same k-dependence as the condition number of the
direct and indirect boundary-integral operators used to solve the exterior Dirichlet problem for
this geometry. Indeed, these operators are, respectively,

A′k,η :=
1

2
I +K ′k − iηSk and Ak,η :=

1

2
I +Kk − iηSk. (2.12)

When |η| ∼ k (which one can actually prove is the optimal choice for general Ω−), cond(A′k,η) =

cond(Ak,η) ∼ k1/3, with the bound on ‖(A′k,η)−1‖L2(Γ)→L2(Γ) coming from [30, Theorem 4.3] or
[11, Theorem 1.13] and the bound on the norm coming from [42, Theorem 1.2] and [47, Theorem
A.1].

When Ω− is C∞ and nontrapping and η ∼ 1, cond(Bk,η,R) . k11/12 log k by (2.2) and (2.5).
In contrast, when Ω− is C∞ and nontrapping and |η| ∼ k, cond(A′k,η) = cond(Ak,η) . k1/2 log k
(with the bound on the norm again coming from [42, 47] and the bound on the inverse coming
from [11, Theorem 1.13]). For summaries of the results on the conditioning of A′k,η and Ak,η and
their sharpness, see [25, §5.4], [11, Section 7], [31, Theorem 6.4].
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2.1.4 Why is Bk,η,R harder to analyse than Bk,η?

The summary is that analysing Bk,η,R is harder than analysing Bk,η because (Bk,η)−1 can be
expressed in terms of the interior Impedance-to-Dirichlet map, about which much is known, but
(Bk,η,R)−1 can only be expressed in terms of a non-standard Impedance-to-Dirichlet map involving
R (see (2.16) below), about which very little was known until the recent results of [38].

As well as being used to solve the exterior Neumann problem, the integral operator Bk,η defined
by (2.8) can be also used to solve the interior impedance problem

∆u+ k2u = 0 in Ω− and ∂−n u− iηγ−u = g on Γ. (2.13)

Indeed, seeking a solution of (2.13) of the form u = Kkφ, the third and fourth jump relations in
(A.5) implies that Bk,ηφ = g. This relationship between the operator Bk,η,R, the exterior Neumann
problem, and the interior impedance problem is demonstrated further by the decomposition

(Bk,η)−1 = P+
NtD − (I − iηP+

NtD)P−,ηItD (2.14)

[25, Equation 2.94]. Here P+
NtD : H−1/2(Γ) → H1/2(Γ) is the Neumann-to-Dirichlet map for

the Helmholtz equation posed in Ω+ with the Sommerfeld radiation condition (1.2), and P−,ηItD :
H−1/2(Γ)→ H1/2(Γ) is the Impedance-to-Dirichlet map for the problem (2.13) (i.e., the map g 7→
γ−u). Recall that both P+

NtD and P−,ηItD have unique extensions to bounded operators Hs−1/2(Γ)→
Hs+1/2(Γ) for |s| ≤ 1/2 (see [25, Section 2.7] and Lemma 5.1 below) and thus (2.14) is valid on
this range of Sobolev spaces.

The analogue of (2.14) for Bk,η,R is

(Bk,η,R)−1 = P+
NtDR

−1 − (I − iηP+
NtDR

−1)P−,η,RItD (2.15)

where the map P−,η,RItD takes g 7→ γ−u, where u is the solution of

∆u+ k2u = 0 in Ω− and R∂−n u− iηγ−u = g on Γ. (2.16)

The formula (2.15) was proved in [11, Lemma 6.1]; since it is central to the present paper we
nevertheless state this result as Lemma 7.4 below and give a short proof, different to that in [11].
In §6 we prove the necessary results about the problem (2.16) to prove Theorem 2.3, using results
about semiclassical pseudodifferential operators and recent results about the frequency-explicit
wellposedness of (2.16) from [38, Section 4].

2.1.5 Extending the results of [64] to Bk,η,R.

The paper [64] proves a k-explicit bound on the number of iterations when GMRES is applied to
the standard second-kind integral equation for the exterior Dirichlet problem when Ω− is trapping,
and the proof uses the Dirichlet analogues of (a) the bounds in Parts (iii) and (iv) of Theorem 2.3,
and (b) the bounds in Theorem 2.1. Therefore, with the bounds of Theorems 2.1 and 2.3 in hand,
the main result of [64] (i.e., [64, Theorem 1.6]) also holds for Bk,η,R; see [64, Remark 2.7].

2.2 Outline of the paper
§3 recaps existing results about layer potentials, boundary-integral operators, and semiclassical
pseudodifferential operators. §4 proves new results about boundary-integral operators. §5 proves
new bounds on the exterior Neumann-to-Dirichlet map P+

NtD. §6 proves new bounds on the interior
impedance-to-Dirichlet map P−,η,RItD . §7 proves the main results in §2. §8 contains numerical exper-
iments illustrating the main results. §9 contains a heuristic discussion and numerical experiments
investigating the dependence on the coupling parameter η.

Notation: In many of the proofs, C > 0 is a constant whose values may change from line to
line. We sometimes use the notation that a . b if there exists C > 0, independent of k, such that
a ≤ Cb. We say that a ∼ b if a . b and b . a.
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3 Recap of existing results about layer potentials, boundary-
integral operators, and semiclassical pseudodifferential op-
erators

3.1 Definition of weighted Sobolev spaces
We first define weighted Sobolev spaces on Rd, and then use these to define analogous weighted
Sobolev spaces on Γ. Let

(Fu)(ζ) :=

∫

Rd
exp(−iζ · x)u(x) dx,

and, for s ∈ R and k > 0, let

Hs
k(Rd) :=

{
u ∈ S∗(Rd) such that

(
1 + k−2|ζ|2

)s/2
(Fu)(ζ) ∈ L2(Rd)

}
, (3.1)

where S(Rd) is the Schwartz space (see, e.g., [65, Page 72]) and S∗(Rd) its dual. Define the norm

‖u‖2Hsk(Rd) :=

∫

Rd

(
1 + k−2|ζ|2

)s|(Fu)(ζ)|2 dζ. (3.2)

and observe that, for s > 0,

‖u‖H−sk (Rd) ≤ ‖u‖L2(Rd) ≤ ‖u‖Hsk(Rd) . (3.3)

If Γ is Cm−1,1, the weighted spaces Hs
k(Γ) for |s| ≤ m can be defined by charts; see, e.g., [65,

Pages 98 and 99] for the unweighted case and [69, §5.6.4] or [35, Definition E.20] for the weighted
case (but note that [69, §5.6.4] uses the weight (k2 + |ζ|2

)s in (3.2) instead of our (1 + k−2|ζ|2
)s).

The facts we need about these spaces in the rest of the paper are the following.
(i) Since H−sk (Rd) is an isometric realisation of the dual space of Hs

k(Rd) [65, Page 76], H−sk (Γ)
is a realisation of the dual space of Hs

k(Γ) [65, Page 98].
(ii)

‖w‖2H1
k(Γ) ∼ k−2 ‖∇Γw‖2L2(Γ) + ‖w‖2L2(Γ) , (3.4)

where ∇Γ is the surface gradient operator, defined in terms of a parametrisation of the boundary
by, e.g., [25, Equation A.14].

(iii) If Γ is Lipschitz, then given k0 > 0 there exists C > 0 such that for all k ≥ k0 and
1/2 < s < 3/2 the Dirichlet trace operators γ± satisfy

‖γ±‖
Hsk(Ω±)→H

s− 1
2

k (Γ)
≤ Ck 1

2 ; (3.5)

this is proved in the unweighted case in [65, Theorem 3.38], and the proof for the weighted case
follows similarly; see, e.g., [69, Theorem 5.6.4]. When γ+u = γ−u we write γu = γ±u; recall that
the adjoint of this two-sided trace operator is defined by

〈
γ∗φ, u

〉
Rd =

〈
φ, γu

〉
Γ

(3.6)

for φ ∈ H1/2−s(Γ), 1/2 < s < 3/2, and u ∈ C∞comp(Rd) (see, e.g., [65, Equation 6.14]), and then
(3.5) implies that

‖γ∗‖
H

1
2
−s

k (Γ)→H−sk (Rd)
≤ Ck 1

2 . (3.7)

3.2 Recap of results about layer potentials and integral operators
Theorem 3.1. (Bounds on the L2(Γ)→ L2(Γ) norms of Kk,K

′
k [42], [47, Appendix A], [37].) Let

Ω− a bounded Lipschitz open set such that the open complement Ω+ := Rd \ Ω− is connected

1. If Ω− is convex and Γ is C∞ and curved (in the sense of Definition B.3), then given k0 > 0
there exists C > 0 such that

‖K ′k‖L2(Γ)→L2(Γ) + ‖Kk‖L2(Γ)→L2(Γ) ≤ C for all k ≥ k0.
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2. If Γ is piecewise curved (in the sense of Definition B.5), then given k0 > 0 there exists C > 0
such that

‖K ′k‖L2(Γ)→L2(Γ) + ‖Kk‖L2(Γ)→L2(Γ) ≤ Ck1/6 log(k + 2) for all k ≥ k0.

3. If Γ is piecewise smooth (in the sense of Definition B.4), then given k0 > 0 there exists C > 0
such that

‖K ′k‖L2(Γ)→L2(Γ) + ‖Kk‖L2(Γ)→L2(Γ) ≤ Ck1/4 log(k + 2) for all k ≥ k0.

We make two remarks: (i) the bounds in Points 2 and 3 are sharp up to the factor of log(k+2),
and the bound in Point 1 is sharp; see [43, §3], [47, §A.3], (ii) by [43], bounds with the same
k-dependence hold on the L2(Γ) → H1

k(Γ) norms under the additional assumption that Γ is C2,α

for some α > 0, which is necessary for Kk and Kk to be bounded operators from L2(Γ)→ H1(Γ)
[57, Theorem 4.2], [32, Theorem 3.6].

Theorem 3.2 (Bound on Dk [47, Theorem 1.2]). If Γ is piecewise smooth, then, given χ ∈
C∞comp(Rd) and k0 > 0 there exists C > 0 such that

‖χDk‖L2(Γ)→L2(Ω+) ≤ C and ‖Dk‖L2(Γ)→L2(Ω−) ≤ C

for all k ≥ k0.

We also recall well-known bounds on the free resolvent i.e., integration against the fundamental
solution Φk(x, y) defined by (A.2). Let

Rkf(x) :=

∫

Ω+

Φk(x, y)f(y) dy. (3.8)

Theorem 3.3 (Bound on Rk). Given χ1, χ2 ∈ C∞comp(Rd) and k0 > 0 there exists C > 0 such that

1

k
‖χ1Rkχ2‖L2(Ω+)→H2(Ω+) + ‖χ1Rkχ2‖L2(Ω+)→H1(Ω+) + k ‖χ1Rkχ2‖L2(Ω+)→L2(Ω+) ≤ C

for all k ≥ k0.

References for the proof. See, e.g., [35, Theorem 3.1] for odd d and [54, Theorem 14.3.7] for arbit-
rary dimension (note that [54, Theorem 14.3.7] is for fixed k, but a rescaling of the independent
variable yields the result for arbitrary k).

Finally, we recall that Sik : H−1/2(Γ) → H1/2(Γ) is coercive by, e.g., [69, Theorem 5.6.5]; this
result is proved using Green’s first identity and the first two jump relations in (A.5). Note that
we use different weighted norms than [69, Theorem 5.6.5], so that [69, Theorem 5.6.5] has the
coercivity constant independent of k, but we have it proportional to 1/k.

Theorem 3.4 (Coercivity of Sik on H−1/2(Γ) [69, Theorem 5.6.5]). If Γ is Lipschitz then given
k0 > 0 there exists C > 0 such that, for all k ≥ k0,

〈
Sikφ, φ

〉
Γ
≥ C

k
‖φ‖2

H
−1/2
k (Γ)

for all φ ∈ H−1/2(Γ).

3.3 Recap of results about semiclassical pseudodifferential operators
3.3.1 The semiclassical parameter and weighted Sobolev spaces

Semiclassical pseudodifferential operators are pseudodifferential operators with a large/small para-
meter, where behaviour with respect to this parameter is explicitly tracked in the associated
calculus. In our case the small parameter is ~ := k−1; normally this parameter is denoted by h,
but we use ~ to avoid a notational clash with the meshwidth of the h-version of the boundary
element method. The notation ~ is motivated by the fact that the semiclassical parameter is often
related to Planck’s constant, which is written as 2π~ see, e.g., [87, S1.2], [35, Page 82].
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We define the weighted spaces Hs
~(Rd) by (3.1) with ~ = k−1. These spaces can also be defined

by the semiclassical Fourier transform and its inverse

(F~φ)(ξ) :=

∫

Rd
exp

(
− ix · ξ/~

)
φ(x) dx, (F−1

~ ψ)(x) := (2π~)−d
∫

Rd
exp

(
ix · ξ/~

)
ψ(ξ) dξ;

see [87, §3.3]. Indeed, since (Fu)(ξ/~) = F~(ξ), (3.2) implies that

‖u‖2Hmk (Rd) = ~−d
∫

Rd
〈ξ〉2m|F~u(ξ)|2 dξ, (3.9)

where 〈ξ〉 := (1 + |ξ|2)1/2. We define ‖ · ‖Hs~(Rd) to be the right-hand side of (3.9); this definition
means that ‖ · ‖Hs~(Rd) = ‖ · ‖Hsk(Rd); we use this clashing notation to avoid writing Hs

k−1(Rd) and
‖ · ‖Hs

k−1 (Rd). The weighted spaces Hs
~(Γ) are then equal to Hs

k(Γ) defined in §3.1.
In §3.3.2-§3.3.6 we review basic facts about semiclassical pseudodifferential operators, with our

default references being [87] and [35, Appendix E]. Homogeneous – as opposed to semiclassical –
versions these results can be found in, e.g., [82, Chapter 7], [73, Chapter 7], [56, Chapter 6].

3.3.2 Phase space, symbols, quantisation, and semiclassical pseudodifferential oper-
ators.

For simplicity of exposition, we begin by discussing semiclassical pseudodifferential operators on
Rd, and then outline in §3.3.4 below how to extend the results from Rd to Γ.

The set of all possible positions x and momenta (i.e. Fourier variables) ξ is denoted by T ∗Rd;
this is known informally as “phase space”. Strictly, T ∗Rd := Rd × (Rd)∗, i.e. the cotangent bundle
to Rd, but for our purposes, we can consider T ∗Rd as {(x, ξ) : x ∈ Rd, ξ ∈ Rd}.

A symbol is a function on T ∗Rd that is also allowed to depend on ~, and can thus be considered
as an ~-dependent family of functions. Such a family a = (a~)0<~≤~0

, with a~ ∈ C∞(T ∗Rd), is a
symbol of order m, written as a ∈ Sm(T ∗Rd), if for any multiindices α, β

|∂αx ∂βξ a~(x, ξ)| ≤ Cα,β〈ξ〉m−|β| for all (x, ξ) ∈ T ∗Rd and for all 0 < ~ ≤ ~0, (3.10)

(recall that 〈ξ〉 := (1 + |ξ|2)1/2) and Cα,β does not depend on ~; see [87, p. 207], [35, §E.1.2].
For a ∈ Sm, we define the semiclassical quantisation of a, denoted by a(x, ~D) : S(Rd) →

S(Rd), by

a(x, ~D)v(x) := (2π~)−d
∫

Rd

∫

Rd
exp

(
i(x− y) · ξ/~

)
a(x, ξ)v(y) dydξ (3.11)

where D := −i∂; see, e.g., [87, §4.1] [35, Page 543]. We also write a(x, ~D) = Op~(a). The integral
in (3.11) need not converge, and can be understood either as an oscillatory integral in the sense
of [87, §3.6], [53, §7.8], or as an iterated integral, with the y integration performed first; see [35,
Page 543].

Conversely, if A can be written in the form above, i. e. A = a(x, ~D) with a ∈ Sm, we say that
A is a semiclassical pseudo-differential operator of order m and we write A ∈ Ψm

~ . We use the
notation a ∈ ~lSm if ~−la ∈ Sm; similarly A ∈ ~lΨm

~ if ~−lA ∈ Ψm
~ . We define Ψ−∞~ = ∩mΨ−m~ .

Theorem 3.5. (Composition and mapping properties of semiclassical pseudo-differential operators
[87, Theorem 8.10], [35, Propositions E.17, E.19, and E.24].) If A ∈ Ψm1

~ and B ∈ Ψm2

~ , then

(i) AB ∈ Ψm1+m2

~ .

(ii) For any s ∈ R, A is bounded uniformly in ~ as an operator from Hs
~ to Hs−m1

~ .

A key fact we use below is that if ψ ∈ C∞comp(R) then, given s ∈ R, N > 0 and ~0 > 0 there
exists C > 0 such that for all ~ ≤ ~0,

‖ψ(|~D|)‖Hs~(Rd)→Hs+N~ (Rd) ≤ C; (3.12)

this can easily be proved using the semiclassical Fourier transform, since ψ(|~D|) is a Fourier
multiplier (i.e., ψ(|~D|) is defined by (3.11) with a(x, ξ) = ψ(|ξ|), which is independent of x).
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3.3.3 The principal symbol map σ~.

Let the quotient space Sm/~Sm−1 be defined by identifying elements of Sm that differ only by an
element of ~Sm−1. For any m, there is a linear, surjective map

σm~ : Ψm
~ → Sm/~Sm−1,

called the principal symbol map, such that, for a ∈ Sm,

σm~
(
Op~(a)

)
= a mod ~Sm−1; (3.13)

see [87, Page 213], [35, Proposition E.14] (observe that (3.13) implies that ker(σm~ ) = ~Ψm−1
~ ).

When applying the map σm~ to elements of Ψm
~ , we denote it by σ~ (i.e. we omit the m depend-

ence) and we use σ~(A) to denote one of the representatives in Sm (with the results we use then
independent of the choice of representative). The key properties of the principal symbol that we
use below is that

σ~(AB) = σ~(A)σ~(B) and σ~(A∗) = σ~(A); (3.14)

see [35, Proposition E.17].

3.3.4 Extension of the above results from Rd to Γ

While the definitions above are written for operators on Rd, semiclassical pseudodifferential operat-
ors and all of their properties above have analogues on compact manifolds (see e.g. [87, §14.2], [35,
§E.1.7]). Roughly speaking, the class of semiclassical pseudodifferential operators of order m on a
compact manifold Γ, Ψm

~ (Γ), are operators that, in any local coordinate chart, have kernels of the
form (3.11) where the function a ∈ Sm modulo a remainder operator R that has the property that

‖R‖H−N~ →HN~
≤ CN~N ; (3.15)

we say that an operator R satisfying (3.15) is O(~∞)Ψ−∞~
.

Semiclassical pseudodifferential operators on manifolds continue to have a natural principal
symbol map

σ~ : Ψm
~ → Sm(T ∗Γ)/~Sm−1(T ∗Γ)

where now Sm(T ∗Γ) is the class of functions on T ∗Γ, the cotangent bundle of Γ, that satisfy the
estimate (3.10). The properties (3.14) hold as before.

Finally, there is a noncanonical quantisation map Op~ : Sm(T ∗Γ)→ Ψm(Γ) (involving choices
of cut-off functions and coordinate charts) that satisfies

σ~(Op~(a)) = a,

and for all A ∈ Ψm
~ (Γ) there exists a ∈ Sm(T ∗Γ) such that

A = Op~(a) +O(~∞)Ψ−∞~
.

3.3.5 Local coordinates

Near the boundary Γ, we use Riemannian/Fermi normal coordinates (x1, x
′), in which Γ is given

by {x1 = 0}, Ω− = {x1 < 0}, Ω+ = {x1 > 0}, and so ∂n = ∂x1 . We write D′ = −i∂x′ . The
conormal and cotangent variables are given by (ξ1, ξ

′). We write gΓ(x′) for the metric induced on
Γ from the Euclidean metric on Rd, and | · |g for the corresponding norm (thus abbreviated gΓ to
g in the subscript). The trace operators γ± are such that

(γ±u)(x′) = lim
x1→0±

u(x1, x
′), u ∈ C∞(Rd)

and γ∗ defined by (3.6) satisfies γ∗φ(x) = φ(x′)δ(x1)
√
|det gΓ(x′)|. Finally, recall that, in these

local coordinates, the conormal bundle to Γ, N∗Γ, consists of (x, ξ) of the form (0, x′, ξ1, 0).
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3.3.6 Ellipticity

We now give a simplified version of the general semiclassical ellipticity estimate.

Theorem 3.6 (Simplified elliptic estimate). Assume that Γ is C∞. If B ∈ Ψ`
~(Γ) is elliptic, i.e.,

there exists δ > 0 such that

inf
(x′,ξ′)∈T∗Γ

∣∣σ~(B)(x′, ξ′)〈ξ′〉−`
∣∣ ≥ δ,

then there exists ~0 > 0 such that, for all 0 < ~ ≤ ~0, B−1 ∈ Ψ−`~ (Γ).

References for the proof. This follows from [35, Theorem E.33] (and the second remark afterwards)
with P = I, A = I,B1 = B, m = 0, and ` = 0. In simplifying this general result, we use that (i)
since A = I, the O(~∞) error term on the right-hand side of [35, Equation E.2.9] can be absorbed
on the left-hand side, (ii) since Γ is compact B ∈ Ψ`

~(Γ) is compactly supported.

Corollary 3.7 (Upper and lower bounds on R). If R satisfies Assumption 1.1, then given k0 > 0
and t ∈ R there exists C1, C2 > 0 such that for all k ≥ k0,

C1

k
≤ ‖R‖Htk(Γ)→Ht+1

k (Γ) ≤
C2

k
(3.16)

and
k

C2
≤
∥∥R−1

∥∥
Ht+1
k (Γ)→Htk(Γ)

≤ k

C1
. (3.17)

Proof. Once we prove the upper bounds in (3.16) and (3.17), the lower bounds then follow. Indeed,
the upper bound in (3.16) implies the lower bound in (3.17), and vice versa.

By assumption, R = k−1R̃ with R̃ ∈ Ψ−1
~ (Γ). Therefore, by Part (ii) of Theorem 3.5, given

~0 > 0 and t ∈ R there exists C2 > 0 such that
∥∥R̃
∥∥
Ht~(Γ)→Ht+1

~ (Γ)
≤ C2 for all 0 < ~ ≤ ~0;

the upper bound in (3.16) immediately follows since R = k−1R̃. By assumption, R̃ is elliptic, and
thus invertible by Theorem 3.6. Indeed, given ~0 > 0 and t ∈ R, there exists C1 > 0 such that

∥∥R̃−1
∥∥
Ht+1

~ (Γ)→Ht~(Γ)
≤ (C1)−1 for all 0 < ~ ≤ ~0;

the upper bound in (3.17) immediately follows.

3.3.7 Sharp Gårding inequality

Theorem 3.8. If Γ is C∞ and A ∈ Ψ`
~(Γ) with Reσ~(A) ≥ 0 on T ∗Γ, then there exists C > 0

and ~0 such that, for all 0 < ~ ≤ ~0,

Re
〈
Aφ, φ

〉
Γ
≥ −C~ ‖φ‖2

H
(`−1)/2
~ (Γ)

for all φ ∈ H`/2(Γ).

References for the proof. This follows from [35, Proposition E.23] using the fact that every A ∈
Ψ`

~(Γ) is compactly supported since Γ is compact.

3.3.8 Microlocality of pseudodifferential operators

We next recall the fact that pseudodifferential operators act microlocally (i.e., pseudo locally in
phase space). We include here the following lemma which follows from the more general statements
in [35, E.2.4-E.2.5] or [87, Theorem 9.5].

Lemma 3.9. If K b T ∗Γ, a, b ∈ C∞comp(K) and there exists c > 0 such that

d
(

supp a, supp b
)
> c, then Op~(a)Op~(b) = O(~∞)Ψ−∞~

.
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3.4 Restriction of pseudodifferential kernels to submanifolds
We recall in this section a simplified version of [37, Lemma 4.22] which describes the operator

γ±Aγ∗ (3.18)

when A ∈ Ψm
~ (Rd). The motivation for considering operators of the form (3.18) is the following.

Let L be a vector field equal to ∂n in a neighbourhood of Γ (where n is the outward-pointing unit
normal vector to Ω−). Then with Rk defined by (3.8), for Im k ≥ 0,

Sk = γRkγ∗, Hk = γ±LRkL∗γ∗, (3.19)

Kk = ∓1

2
I + γ±RkL∗γ∗, K ′k = ±1

2
I + γ±LRkγ∗; (3.20)

see [65, Page 202 and Equation 7.5]. That is, Sk,Kk ± I/2, K ′k ∓ I/2, and Hk can all be written
in the form (3.18) for suitable A involving Rk, L, and L∗.

In the next lemma, we use the notions of conic sets V ⊂ T ∗Rd \ {0} and conic neighborhoods
thereof. Here, we say that V ⊂ T ∗Rd \ {0} is conic if for all λ > 0

(x, ξ) ∈ V implies (x, λξ) ∈ V.

For a conic set V ⊂ T ∗Rd, we say that U is a conic neighborhood of V if U ⊂ T ∗Rd \ {0} is an
open conic set containing the closure of V (as a subset of T ∗Rd \ {0}).
Lemma 3.10. Suppose that Γ ⊂ Rd is an embedded hypersurface. Let A ∈ Ψm

~ (Rd) with A =
Op~(a) +O(~∞)Ψ~−∞

and suppose that
∣∣∣∣∣∣
∂αx ∂

β
ξ

(
a(x, ξ)−

m∑

j=−1

aj(x, ξ)

)∣∣∣∣∣∣
≤ Cαβ〈ξ〉−2−|β| for |ξ| ≥ 1, (3.21)

with aj homogeneous of degree j in ξ (i.e., aj(x, λξ) = λjaj(x, ξ) for λ > 0) and there is an open
conic neighbourhood, U , of N∗Γ such that

aj(x, ξ) = (−1)jaj(x,−ξ) for (x, ξ) ∈ U ∩ T ∗Rd \ {0}. (3.22)

Then γ±Aγ∗ ∈ ~−1Ψm+1 and, in coordinates (x, ξ) with Γ = {(0, x′)},

σ~(γ±Aγ∗) = lim
x1→0±

F−1
~

(
σ~(A)(x, ·, ξ′)

)
(x1). (3.23)

The non-semiclassical analogue of Lemma 3.10 can be found in, e.g., [82, Chapter 7, §11] and
[56, Theorem 8.4.3]. These non-semiclassical results are slightly simpler because there one is not
concerned with the behavior of the symbol inside a compact set and hence one works directly with
homogeneous expansions of symbols; i.e. the assumption (3.21) is immediate from the definition of
a polyhomogeneous pseudodifferential operator.

A key ingredient in the proof of Lemma 3.10 is the following preparatory lemma.

Lemma 3.11. Suppose that A ∈ Ψm
~ (Rd), Γ = {x1 = 0}, and there are ε > 0, a ∈ Sm such that

A = Op~(a) +O(~∞)Ψ−∞~
,

∣∣∣∣∣∣
∂αx ∂

β
ξ

(
a(x, ξ)−

m∑

j=−1

aj(x, ξ)

)∣∣∣∣∣∣
≤ Cαβ〈ξ〉−2−|β| for |ξ| ≥ 1 and |x1| < ε (3.24)

with aj homogeneous of degree j in ξ (i.e., aj(x, λξ) = λjaj(x, ξ) for λ > 0) and satisfying
∣∣∣∣∣∂
α
x ∂

β
ω′

(
aj(x, ξ1, ω

′)−
j∑

`=−1

ãj,`(x, ω
′)ξ`1

)∣∣∣∣∣ ≤ Cαβ |ξ1|
−2−|β| for |ω′| ≤ 1, |x1| < ε, and |ξ1| ≥ 1,

(3.25)
where ãj,`(x, ω′) ∈ C∞(Rd−1

x′ ×B(0, 2)ω′).
Then γ±Aγ∗ ∈ ~−1Ψm+1

~ (Γ) with semiclassical principal symbol given by (3.23).
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Proof. First observe that, for u ∈ C∞(Γ),

γ±Aγ∗u(x′) = (2π~)−d lim
x1→0±

∫

Rd

∫

Γ

e
i
~ (x1ξ1+〈x′−y′,ξ′〉)a(x1, x

′, ξ1, ξ
′)u(y′)

√
|det gΓ(y′)|dy′dξ

= (2π~)−(d−1)

∫

Rd−1

∫

Γ

e
i
~ 〈x
′−y′,ξ′〉

(
lim

x1→0±
(2π~)−1

∫

R
e

i
~x1ξ1a(x1, x

′, ξ1, ξ
′)dξ1

)
u(y′)

√
|det gΓ(y′)|dy′dξ′.

Therefore, to prove the lemma, we only need to show that

I±(a) := (2π~)−1 lim
x1→0±

∫

R
e

i
~x1ξ1a(x1, x

′, ξ1, ξ
′)dξ1 ∈ ~−1Sm+1(T ∗Γ).

We start by decomposing a into its integrable and non-integrable pieces (with respect to ξ1).
Let ϕ ∈ C∞comp((−2, 2); [0, 1]) with ϕ ≡ 1 on [−1, 1], let ψ := 1− ϕ, and write

a = aL + aH , aH =

m∑

j=−1

aj(x, ξ)ψ(|ξ|).

By (3.24) and the fact that a ∈ Sm(T ∗Rd), aL ∈ Smin(−2,m)(T ∗Rd) (where the minimum is achieved
at m only when all the ajs equal zero). Since

I±(aL) = (2π~)−1 lim
x1→0±

∫

R
e

i
~x1ξ1aL(x, ξ)dξ1.

and, for n > 1, ∫

R
〈ξ〉−ndξ1 ≤ C〈ξ′〉1−n,

we have
I+(aL) = I−(aL) ∈ ~−1Smin(−1,m+1)(T ∗Γ).

Now, using the change of variables ξ1 7→ ξ1〈ξ′〉, the homogeneity of aj(x, ξ), and the fact that
φ+ ψ = 1, we have

I±(ajψ) = (2π~)−1 lim
x1→0±

∫

R
e

i
~x1ξ1aj(x, ξ)ψ(|ξ|)dξ1

= (2π~)−1〈ξ′〉j+1 lim
x1→0±

∫

R
e

i
~x1〈ξ′〉ξ1ψ

(∣∣(〈ξ′〉ξ1, ξ′)
∣∣)ϕ
(
|ξ1|/2

)
aj

(
x, ξ1,

ξ′

〈ξ′〉

)
dξ1

+ (2π~)−1〈ξ′〉j+1 lim
x1→0±

∫

R
e

i
~x1〈ξ′〉ξ1ψ

(
|ξ1|/2

)
aj

(
x, ξ1,

ξ′

〈ξ′〉

)
dξ1

=: (2π~)−1〈ξ′〉j+1
(
I1,±,j + I2,±,j

)
.

Since (2π~)−1〈ξ′〉j+1 ∈ ~−1Sj+1(T ∗Γ), we need only show that I1,±,j , I2,±,j ∈ S0(T ∗Γ).
We first study I1,±,j . By the definition of ϕ, uniformly in |x1| small,

ψ
(
|(〈ξ′〉ξ1, ξ′)|

)
ϕ
(
|ξ1|/2

)
aj

(
x, ξ1,

ξ′

〈ξ′〉

)
∈ C∞comp

(
(−4, 4)ξ1 ;S0(T ∗Γ)

)
,

and thus
I1,+,j = I1,−,j ∈ S0(T ∗Γ),

where we use that ∂ψ(|(〈ξ′〉ξ1, ξ′)|) is compactly supported in ξ′ to see that derivatives falling on
this term are harmless.

Finally, we consider I2,±,j . Observe that by the chain rule and the fact that ξ′/〈ξ′〉 ∈ S0(T ∗Γ),
to obtain I2,±,j ∈ S0(T ∗Γ) we only need to show that

lim
x1→±0

∫

R
e

i
~x1〈ξ′〉ξ1ψ

(
|ξ1|/2

)
aj(x, ξ1, ω

′)dξ1 ∈ C∞
(
Rd−1
x′ ×B(0, 2)ω′

)
.
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To do this, put

qj(x, ω
′, ξ1) :=

j∑

`=−1

ãj,`(x, ω
′)ξ`1 ∈ C∞

(
Rdx ×B(0, 2)ω′ ;S ′(R)

)
,

where we interpret ξ−1
1 as p.v.ξ−1

1 (see, e.g., [65, Page 166]), and let rj(x, ω′, ξ1) = ψ(|ξ1|/2)aj(x, ω
′, ξ1)−

qj(x, ω
′, ξ1). Observe that rj ∈ C∞(Rdx ×B(0, 2)ω′ ;S ′(R)) and, by (3.25),

|rj(x, ξ1, ω′)| ≤ C|ξ1|−2 for |ξ1| ≥ 2.

Therefore, since the Fourier transform of an L1 function is continuous,

rj,Γ(x, ω′) := (2πh)−1

∫

R
e

i
~x1〈ξ′〉ξ1rj(x, ξ1, ω

′)dξ1

is continuous in x1 and satisfies,

∣∣∂αx′∂βω′rj,Γ(0, x′, ω′)
∣∣ =

∫

R

∣∣∣∂αx′∂βω′rj(0, x′, ξ1, ω′)
∣∣∣dξ1 ≤ Cαβ .

Therefore, we only need to consider the term qj . For this, recall that

ξj1 = F~((~Dx1
)jδ0(x1)), j ≥ 0, p.v. ξ−1

1 = F~

(
i

2h
sgn(x1)

)

where sgn(x) := 1 for x > 0 and := −1 for x < 0. Let

qj,Γ(x, ξ′) := (2πh)−1

∫

R
e

i
~x1〈ξ′〉ξ1

(
j∑

`=−1

ãj,`(x, ω
′)ξ`1

)
dξ1

=

j∑

`=0

ãj,`(x, ω
′)(~Dx1

)`δ(x1〈ξ′〉) +
i

2h
ãj,−1(x, ω′) sgn(x1〈ξ′〉).

Therefore,

lim
x1→0±

qj,Γ(x1, x
′, ξ′) = ± i

2h
ãj,−1,(0, x

′, ω′) ∈ C∞
(
Rd−1
x′ ×B(0, 2)ω′

)
,

and the proof is complete.

Proof of Lemma 3.10. By a partition of unity and pseudolocality of pseudodifferential operators,
we can assume that supp a is contained in a small open subset, V , of Rd. Let V ′ ⊂ Rd and
Φ : V ′ → V be a diffeomorphism such that

{Φ(0, y′) : (0, y′) ∈ V } = V ∩ Γ.

To prove the lemma, we observe that, by [87, Theorem 9.9], [55, Theorem 18.1.17],

Φ∗Op~(a)(Φ−1)∗ = Op~(b) +O(~∞)Ψ−∞~
,

where b ∈ Sm satisfies

b(y, η)−
∑

|α|≤N−1

1

α!
∂αξ a

(
Φ(y), [(∂Φ)−1]t(Φ(y))η

)
(~Dz)

αe
i
~ 〈ρΦ(y)(z),η〉

∣∣∣
z=Φ(y)

∈ ~d
N
2 eSm−d

N
2 e,

(3.26)
and

ρx(z) = Φ−1(z)− Φ−1(x)− ∂Φ−1(x)(y − x).

Now, if ϕ ∈ C∞c (R) with ϕ ≡ 1 on [−1, 1], then, by (3.21), a−∑m
j=−1(1− ϕ)aj ∈ Smin{m,−2}.

Therefore, by writing

a =
(
a−

m∑

j=−1

(1− ϕ)aj

)
+

m∑

j=−1

(1− ϕ)aj

15



and then changing variables and using (3.26),

∣∣∣∂αy ∂βη
(
b(y, η)−

m∑

j=−1

∑

|α|≤2j+3

bα,j(y, η)
)∣∣∣ ≤ Cαβ〈η〉−2−|β|, |η| ≥ 1,

(where the significance of 2j + 3 in the index of the sum is that j − d(2j + 3)/2e = −2) where

bα,j(y, η) := aj,α(y, η)(~Dz)
αe

i
~ 〈ρΦ(y)(z),η〉

∣∣∣
z=Φ(y)

, aj,α(y, η) :=
1

α!
∂αξ aj

(
Φ(y), [(∂Φ)−1]t(Φ(y))η

)
.

Since aj is homogeneous degree j, aj,α is homogeneous degree j − |α|. Next, since ρx(z) vanishes
to order 2 at z = x, direct calculation shows that

(~Dz)
αe

i
~ 〈ρΦ(y)(z),η〉

∣∣∣
z=Φ(y)

=

b |α|2 c∑

`=0

b̃α,`(y, η),

where b̃α,`(y, η) is a polynomial in η, and hence ~`b̃α,` ∈ S` and is homogeneous of degree `. In
particular, grouping terms with a given homogeneity in η, b satisfies

∣∣∣∂αy ∂βη
(
b(y, η)−

m∑

j=−1

bj(y, η)
)∣∣∣ ≤ Cαβ〈η〉−2−|β|, |η| ≥ 1, (3.27)

with bj homogeneous of degree j and defined by

bj :=

m∑

`=j

2(`−j)∑

|α|=0

a`,αb̃α,j−`+|α|.

We claim that there is a conic neighbourhood U ′ of {(0, y′, η1, 0) : (0, y′) ∈ V, η1 ∈ R \ [−1, 1]}
such that

bj(y, η) = (−1)jbj(y,−η), (y, η) ∈ U ′. (3.28)

To see this, first note that for η1 ∈ R, ([(∂Φ)−1]t(Φ(y)))(η1, 0) ∈ N∗Γ and therefore there is a conic
neighbourhood, U ′, of {(0, y′, η1, 0) : (0, y′) ∈ V, η1 ∈ R \ [−1, 1]} such that

{(
Φ(y), [(∂Φ)−1]t(Φ(y))η

)
: (y, η) ∈ U ′

}
⊂ U.

Therefore, since the aj satisfy (3.22),

aj,α(y, η) = (−1)j−|α|aj,α(y,−η), (y, η) ∈ U ′.

Next, since b̃α,`(y, η) is a polynomial of degree ` in η,

b̃α,`(y, η) = (−1)`b̃α,`(y,−η).

Thus, we have, for (y, η) ∈ U ′,

bj(y, η) =

m∑

k=j

2(k−j)∑

|α|=0

ak,α(y, η)̃bα,j−k+|α|(y, η)

=

m∑

k=j

2(k−j)∑

|α|=0

(−1)k−|α|ak,α(y,−η)(−1)j−k+|α|b̃α,j−k+|α|(y,−η) = (−1)jbj(y, η),

and we have thus proved (3.28).
Now, there are C > 0, ε > 0 such that

{(y1, y
′, η1, ω

′) : |y1| < ε, |ω′| < 2, |η1| > C} ⊂ U ′.
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Therefore, by (3.28), for |y1| < ε, |ω′| < 2, and |η1| > C

bj(y, η1, ω
′) = (−1)jbj(y,−η1,−ω′)

Furthermore, since bj is homogeneous degree j, for |y1| < ε,

∂αy ∂
β
ξ′bj(y, 1, 0) = (−1)j+|β|∂αy ∂

β
ξ′bj(y,−1, 0).

By homogeneity and Taylor’s theorem,

∂αy ∂
β
ω′bj(y, η1, ω

′)

= |η1|j∂αy ∂βω′
(
bj
(
y, η1

|η1| ,
ω′

|η1|
))

=
∑

|β1|≤j+1

1

β1!
|η1|j−|β|−|β1|∂β1+β

ξ′ ∂αy bj(y, sgn(η1), 0)(ω′)β1 +O(|η1|−2−|β|)

=
∑

|β1|≤j+1

1

β1!
η
j−|β|−|β1|
1 ∂β1+β

ξ′ ∂αy (sgn(η1))j−|β|−|β1|bj(y, sgn(η1), 0)(ω′)β1 +O(|η1|−2−|β|)

=
∑

|β1|≤j+1

1

β1!
η
j−|β|−|β1|
1 ∂β1+β

ξ′ ∂αy bj(y, 1, 0)(ω′)β1 +O(|η1|−2−|β|). (3.29)

The bound (3.27) and the expansion (3.29) show that b satisfies the assumptions of Lemma 3.11
(with a replaced by b), and the result of this lemma then completes the proof.

4 New results about boundary-integral operators

4.1 The high-frequency components of the operators Sk, Kk, K ′k, and Hk.
In this subsection, we prove results about the high-frequency components of the standard boundary-
integral operators; these results are then used to prove bounds on Hk (Theorem 4.6 below) and to
prove that Bk,η,R and B′k,η,R are Fredholm (i.e., in Part (i) of Theorem 2.2).

Lemma 4.1. Let ψ ∈ C∞comp((−2, 2)) with ψ ≡ 1 in a neighbourhood of [−1, 1]. Then, with ψ(|~D|)
defined by (3.11) and Rk the free resolvent defined by (A.2),

S̃Lk := γ(1− ψ(|~D|))Rkγ∗ ∈ ~Ψ−1
~ (Γ), S̃Rk := γRk(1− ψ(|~D|))γ∗ ∈ ~Ψ−1

~ (Γ),

(K̃ ′k)±,L := γ±(1− ψ(|~D|))LRkγ∗ ∈ Ψ0
~(Γ), (K̃ ′k)±,R := γ±LRk(1− ψ(|~D|))γ∗ ∈ Ψ0

~(Γ),

(K̃k)±,L := γ±(1− ψ(|~D|))RkL∗γ∗ ∈ Ψ0
~(Γ), (K̃k)±,R := γ±RkL∗(1− ψ(|~D|))γ∗ ∈ Ψ0

~(Γ),

(H̃k)±,L := γ±(1− ψ(|~D|))LRkL∗γ∗ ∈ ~−1Ψ1
~(Γ), (H̃k)±,R := γ±LRkL∗(1− ψ(|~D|))γ∗ ∈ ~−1Ψ1

~(Γ).

Moreover, for |ξ′|g ≥ 2,

σ(S̃
L/R
k )(x′, ξ′) =

~

2
√
|ξ′|2g − 1

, σ
(
(K̃k)±,L/R

)
(x′, ξ′) = ±1

2
, (4.1)

σ
(
(K̃ ′k)±,L/R

)
(x′, ξ′) = ∓1

2
, σ

(
(H̃k)±,L/R

)
(x′, ξ′) = −~−1

√
|ξ′|2g − 1

2
. (4.2)

Our plan to prove Lemma 4.1 is to apply Lemma 3.10 with suitable choices of A ∈ Ψm
~ (Rd).

For the results for S̃L/Rk , we want to let A = (1 − ψ(|~D|))Rk and A = Rk(1 − ψ(|~D|)). These
two operators are studied in the following lemma (which is similar to [37, Lemma 4.12]).

Recall the following property of the free resolvent R (3.8) (from, e.g., [1, Theorem 4.1]): for
s > 1/2 and f with F~(f) ∈ Hs(Rd), F~(Rkf) ∈ H−s(Rd) and

Rkf = lim
ε→0+

(−∆− (k + iε)2)−1f = ~2 lim
ε→0+

F−1
~

( F~(f)(ξ)

|ξ|2 − (1 + iε)2

)
. (4.3)
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Lemma 4.2. Let ψ ∈ C∞comp with ψ ≡ 1 in a neighbourhood of [−1, 1]. Then

Rk(1− ψ(|~D|)) = (1− ψ(|~D|))Rk = Op~

(
~2(1− ψ(|ξ|))
|ξ|2 − 1

)
∈ ~2Ψ−2

~ (Rd).

Proof. Since (1− ψ(|ξ|)) : Hs(Rd)→ Hs(Rd), for f ∈ L2(Rd) with F~(f) ∈ Hs(Rd),

Rk(1− ψ(|~D|))f = lim
ε→0+

F−1
~

(~2F~(f)(ξ)(1− ψ(|ξ|)
|ξ|2 − (1 + iε)2

)
= F−1

~

(~2F~(f)(ξ)(1− ψ(|ξ|)
|ξ|2 − 1

)
.

A nearly identical argument implies that

(1− ψ(|~D|))Rk = Rk(1− ψ(|~D|))

and the fact that Rk(1− ψ(|~D|)) ∈ ~2Ψ−2
~ (Rd) follows from the definition of Ψ−2

~ (Rd).

The other choices of A required to prove Lemma 4.1 (via Lemma 3.10) are covered by the
following lemma.

Lemma 4.3. If b ∈ Sm with supp(b) ∩ {|ξ| ≤ 1} = ∅, Op~(b)Rk ∈ ~2Ψm−2
~ (Rd), RkOp~(b) ∈

~2Ψm−2
~ (Rd), and there is ψ̃ ∈ C∞c (R) with ψ̃ ≡ 1 in a neighbourhood of [−1, 1] such that

Op~(b)Rk = ~2Op~(b)Op~

(1− ψ̃(|ξ|)
|ξ|2 − 1

)
+O(~∞)Ψ−∞~

, (4.4)

and

RkOp~(b) = ~2Op~

(1− ψ̃(|ξ|)
|ξ|2 − 1

)
Op~(b) +O(~∞)Ψ−∞~

. (4.5)

Proof. Let ψ̃ ∈ C∞c (R) with ψ̃ ≡ 1 on a neighbourhood of [−1, 1] and such that
{

(x, ξ) ∈ supp b : |ξ| ∈ supp ψ̃
}

= ∅.

Then, by Lemma 3.9,

Op~(b)Rk = Op~(b)(1− ψ̃(|~D|))Rk +O(~∞)Ψ−∞~
,

and
RkOp~(b) = Rk(1− ψ̃(|~D|))Op~(b) +O(~∞)Ψ−∞~

.

By Lemma 4.2, (1− ψ̃(|~D|))Rk, Rk(1− ψ̃(|~D|)) ∈ ~2Ψ−2
~ and both are given by

~2Op~

(1− ψ̃(|ξ|)
|ξ|2 − 1

)
,

which completes the proof.

Proof of Lemma 4.1. We apply Lemma 3.10 and use the results of Lemmas 4.2 and 4.3. For Sk,
we let A = ~−2(1 − ψ(|~D|))Rk = ~−2Rk(1 − ψ(|~D|)), which is in Ψ−2

~ (Rd) by Lemma 4.2, so
that S̃L/Rk = S̃k = ~2γ±Aγ∗ by definition. Since A = Op~(a) with a = (1 − ψ(|ξ|))(|ξ|2 − 1)−1 ∈
S−2(T ∗Rd), Lemma 3.10 applies with m = −2 and aj = 0. Therefore S̃k ∈ ~2~−1Ψ−1

~ (Γ) =
~Ψ−1

~ (Γ) and

σ~(S̃k) = ~2 lim
x1→0±

1

2π~

∫ ∞

−∞

(
1− ψ

(√
ξ2
1 + |ξ′|2g

))

ξ2
1 + |ξ′|2g − 1

eiξ1x1/~dξ1.

When |ξ′|g ≥ 2, the integrand has poles at ±i
√
|ξ′|2g − 1 and evaluating the integral via the residues

at these poles gives the first equation in (4.1).
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With n any extension of the normal vector field to Γ to all of Rd,

~L = Op~(i〈ξ, n〉), ~L∗ = Op~(−i〈ξ, n〉 − ~div(n)). (4.6)

and thus ~L and ~L∗ ∈ Ψ1(Rd).
For (K ′k)±,R we let A = ~−1LRk(1−ψ(|~D|), which is in Ψ−1

~ (Rd) by Lemma 4.2 and Part (i) of
Theorem 3.5. For (K ′k)±,L we let A = ~−1(1−ψ(|~D|)LRk; we now claim that this is in Ψ−1

~ (Rd).
Indeed, (4.6) and the composition formula for symbols [87, Theorem 4.14], [35, Proposition E.8]
imply that (

1− ψ(|~D|)
)
~L = Op~(b) +O(~∞)Ψ−∞~

,

where b satisfies the conditions of Lemma 4.3 with m = 1; this lemma therefore implies that
(1− ψ(|~D|)~LRk ∈ ~2Ψ−1

~ (Rd), and thus A = ~−1(1− ψ(|~D|)LRk ∈ Ψ−1
~ (Rd).

We now claim that, for both (K ′k)±,R and (K ′k)±,L, Lemma 3.10 holds with m = −1. Indeed,
by (4.4) and (4.5), in both cases A = Op~(a) with

a(x, ξ) :=
i〈ξ, n〉

(
1− ψ(|ξ|)

)

|ξ|2 − 1
+ ~r(x, ξ),

with r ∈ S−2. In particular, for |〈ξ, n〉| ≥ 2,

a(x, ξ) =
i〈ξ, n〉
|ξ|2

(
1 +

1

|ξ|2 +
1

|ξ|4 + · · ·
)

+ ~r(x, ξ);

therefore, (3.24) holds with a−1(x, ξ) = i〈ξ, n〉/|ξ|2 – observe that this is homogeneous of degree −1

and satisfies (3.22) with j = −1. Lemma 3.10 with m = −1 then implies that (K̃ ′k)±,L/R ∈ Ψ0
~(Γ)

with

σ~
(
(K̃ ′k)±,L/R

)
= ~σ~(γ±Aγ∗) = ~ lim

x1→0±

1

2π~

∫ ∞

−∞

iξ1ψ
(√

ξ2
1 + |ξ′|2g

)

ξ2
1 + |ξ′|2g − 1

eiξ1x1/~dξ1;

evaluating the integral via residues gives the second equation in (4.1).
The proofs for (Kk)±,L/R are very similar to those for (K ′k)±,L/R; indeed, for (Kk)±,L we

let A = ~−1(1 − ψ(|~D|)RkL∗, which is in Ψ−1
~ (Rd) by Lemma 4.2, and for (Kk)±,R, we let

A = ~−1RkL∗(1− ψ(|~D|), which is in Ψ−1
~ (Rd) using similar arguments to those used above for

~−1(1−ψ(|~D|)LRk. The first equation in (4.2) follows in a similar way to above, since the symbol
of A for (Kk)±,L/R is now minus the symbol of A for (K ′k)±,L/R.

For (H̃k)±,L we let A = (1−ψ(|~D|))LRkL∗ and for (H̃k)±,R we let A = LRkL∗(1−ψ(|~D|)) ∈
Ψ0

~(Rd); note that in both cases A ∈ Ψ0
~(Rd) by the arguments above (using Lemma 4.3) and Part

(i) of Theorem 3.5. Furthermore, in both cases, by the composition formula for symbols [87,
Theorem 4.14], (4.6), (4.4), and (4.5), A = Op~(a) with

a(x, ξ) =
〈ξ, n〉2

(
1− ψ(|ξ|)

)

|ξ|2 − 1
−~i

div(n)〈ξ, n〉
(
1− ψ(|ξ|)

)

|ξ|2 − 1
−~i

〈
∂ξ
〈ξ, n〉

(
1− ψ(|ξ|)

)

|ξ|2 − 1
, ∂x〈ξ, n〉

〉
+~r(x, ξ),

where r ∈ S−2. Therefore (3.24) holds with

a−1(x, ξ) = −~i
(div(n)〈ξ, n〉

|ξ|2 +
〈
∂ξ
〈ξ, n〉
|ξ|2 , ∂x〈ξ, n〉

〉)

and a0(x, ξ) = 〈ξ, n〉2/|ξ|2; observe that a−1 is homogeneous of degree −1, a0 is homogeneous of
degree 0, and both satisfy (3.22).

Theorem 4.4 (The high-frequency components of the operators Sk, Kk, K ′k, and Hk.). Let
χ ∈ C∞comp(R) with χ(ξ) = 1 for |ξ| ≤ 2 and χ(ξ) = 0 for |ξ| ≥ 3. Then

(
1− χ

(
|~D′|g

))
Sk, Sk

(
1− χ

(
|~D′|g

))
∈ ~Ψ−1

~ (Γ),
(
1− χ

(
|~D′|g

))
K ′k, K

′
k

(
1− χ

(
|~D′|g

))
∈ ~Ψ−1

~ (Γ),
(
1− χ

(
|~D′|g

))
Kk, Kk

(
1− χ

(
|~D′|g

))
∈ ~Ψ−1

~ (Γ),
(
1− χ

(
|~D′|g

))
Hk, Hk

(
1− χ

(
|~D′|g

))
∈ ~−1Ψ1

~(Γ).
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Moreover,

σ~
((

1− χ
(
|~D′|g

))
Sk
)

= σ~
(
Sk
(
1− χ

(
|~D′|g

))
=

~(1− χ(|ξ′|g)
2
√
|ξ′|2g − 1

and

σ~
((

1− χ
(
|~D′|g

))
Hk

)
= σ~

(
Hk

(
1− χ

(
|~D′|g

))
= −

(
1− χ(|ξ′|g)

)
√
|ξ′|2g − 1

2~
. (4.7)

Proof. We first claim that for χ as in the statement of the theorem and ψ ∈ C∞comp((−2, 2)),

T := ψ(|~D|)γ∗(1− χ(|~D′|g)) = O(~∞)H−N~ (Γ)→HN~ (Rd). (4.8)

Indeed, in the local coordinates described in §3.3.5, the kernel of T is given by

T (x, y′) =
1

(2πh)d

∫

Rd
e

i
~ (〈x′−y′,ξ′〉+x1ξ1)a(y′, ξ′)b(x, ξ)dξ

where supp a ∩ supp b = ∅. Hence, the kernel of T ∗T is given by

(T ∗T )(x′, y′) =

∫

Rd
T (z, x′)T (z, y′)dz,

=
1

(2π~)2d

∫

Rd

∫

Rd

∫

Rd
e

i
~ (〈x′−z′,ξ′〉−z1ξ1+〈z′−y′,η′〉+z1η1)ā(x′, ξ′)b̄(z, ξ)a(y′, η′)b(z, η)dηdzdξ

=
1

(2π~)2d

∫

Rd

∫

Rd

∫

Rd
e

i
~ (〈x′,ξ′〉+〈z′,η′−ξ′〉+z1(ξ1−η1)−〈y′,η′〉)ā(x′, ξ′)b̄(z, ξ)a(y′, η′)b(z, η)dηdzdξ.

Now, if |ξ− η| > c > 0, then we can integrate by parts in z to gain powers of ~|ξ− η|−1 and hence
obtain O(~∞)Ψ−∞~ (Γ). Similarly if |z1| > c, |z′ − x′|, or |z′ − y′| > c, we can integrate by parts in
respectively η1, ξ′, or η′ to gain powers of h|z1|−1, h|z′−x′|−1, or h|z′− y′|−1. Since the integrand
is compactly supported in (x′, y′, ξ, η) and when ξ′ = η′, x′ = z′ = y′, and z1 = 0, the integrand is
0, this implies (4.8). Taking adjoints of (4.8) implies also that

(1− χ(|~D′|g))γψ(|~D|) = O(~∞)H−N~ (Rd)→HN~ (Γ). (4.9)

By (3.19) and (4.9),

(1− χ(|~D′|g))Sk = (1− χ(|~D′|g))γRkγ∗ = (1− χ(|~D′|g))γ(1− ψ(|~D|))Rkγ∗ +O(~∞)Ψ−∞~ (Γ),

and the claim that (1−χ(|~D′|g))Sk ∈ ~Ψ−1
~ (Γ) then follows from Lemma 4.1. Similarly, by (3.20),

and (4.9),

(1− χ(|~D′|g))Kk = (1− χ(|~D′|g))(γ+RkL∗γ∗ − 1
2I)

= (1− χ(|~D′|g))(γ+(1− ψ(|~D|))RkL∗γ∗ − 1
2I) +O(~∞)Ψ−∞~ (Γ),

and the claim that (1 − χ(|~D′|g))Kk ∈ ~Ψ−1
~ (Γ) follows from Lemma 4.1. The arguments for

(1−χ(|~D′|g))K ′k and (1−χ(|~D′|g))Hk are similar. To prove the results with cutoffs on the right
of Sk,Kk,K

′
k, and Hk, we argue similarly but with (4.9) replaced by (4.8).

We record the following corollary of Theorem 4.4, for specific use in the proof that Bk,η,R and
B′k,η,R are Fredholm (in Part (i) of Theorem 2.2) and in the numerical analysis of the h-version of
the boundary element method in [40].

Corollary 4.5. Suppose that R satisfies Assumption 1.1. If χ ∈ C∞comp(R) with χ(ξ) = 1 for
|ξ| ≤ 2 and χ(ξ) = 0 for |ξ| ≥ 3, then

(
1− χ

(
|~D′|g

))
RHk,

(
1− χ

(
|~D′|g

))
HkR ∈ Ψ0

~(Γ),

and the semiclassical principal symbols of both these operators are real.
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Proof. The fact that (1 − χ(|~D′|g))HkR ∈ Ψ0
~(Γ) follows immediately from Part (i) of Theorem

3.5, Theorem 4.4, and Assumption 1.1, and that its semiclassical principal symbol is real follows
from (4.7), Assumption 1.1, and the first equation in (3.14).

To prove the result about (1 − χ(|~D′|g))RHk, let χ̃ ∈ C∞comp({χ ≡ 1}) and χ̃ ≡ 1 in a
neighbourhood of [−1, 1]. Then, by the composition formula for symbols [87, Theorem 4.14], [35,
Proposition E.8] and Lemma 3.9,

(1− χ
(
|~D′|g

))
Rχ̃(|hD′|) = O(~∞)Ψ−∞~ (Rd).

Therefore

(1− χ
(
|~D′|g

))
RHk = (1− χ

(
|~D′|g

))
R
(
1− χ̃(|hD′|)

)
Hk +O(~∞)Ψ−∞~ (Rd);

the result for (1 − χ(|~D′|g))RHk then follows using the same arguments used above for (1 −
χ(|~D′|g))HkR.

4.2 Bounds on Hk

The following result improves the k-dependence of the bounds in [37, Theorems 4.5 and 4.37].

Theorem 4.6 (Bounds on Hk). If Γ is Lipschitz and piecewise smooth, then given k0 > 0 there
exists C1 > 0 such that

‖Hk‖Htk(Γ)→Ht−1
k (Γ) ≤ C1k log(k + 2) for all k ≥ k0 and t ∈ [0, 1]. (4.10)

If Ω− is convex and Γ is C∞ and curved, then given k0 > 0 there exists C2 > 0 such that

‖Hk‖Htk(Γ)→Ht−1
k (Γ) ≤ C2k for all k ≥ k0 and t ∈ R. (4.11)

In the proof, and in the rest of the paper, 〈·, ·〉Γ,R denotes the real -valued duality pairing between
Hs(Γ) and H−s(Γ), so that 〈φ, ψ〉Γ,R is the real-valued L2(Γ) inner product when φ, ψ ∈ L2(Γ).

Proof. We first show that, for all k > 0,
〈
Hkφ, ψ

〉
Γ,R =

〈
φ,Hkψ

〉
Γ,R for all φ ∈ L2(Γ) and ψ ∈ H1(Γ). (4.12)

By the density of H1/2(Γ) in L2(Γ) and the fact that Hk is bounded H1(Γ)→ L2(Γ) and L2(Γ)→
H−1(Γ) by (A.6), we only need to show that (4.12) holds for all φ, ψ ∈ H1/2(Γ). Given φ, ψ ∈
H1/2(Γ), let u = Kkφ and v = Kkψ. The relation (4.12) then holds by applying Green’s second
identity to u and v in both Ω− and in Ω+ ∩BR with R > diam(Ω−), subtracting the two resulting
equations, using the third and fourth jump relations in (A.5), letting R→∞, and using that

〈
∂+
n u, γ

+v〉Γ,R =
〈
∂+
n v, γ

+u〉Γ,R, (4.13)

which holds since both u and v satisfy the Sommerfeld radiation condition; note that here it is
important that 〈·, ·〉Γ,R is the real -valued duality pairing – see [76, Lemma 6.13].

By (4.12),
‖Hk‖L2(Γ)→H−1

k (Γ) = ‖Hk‖H1
k(Γ)→L2(Γ) .

Using this and interpolation (see, e.g., [31, §2.3], [28, §4]), it is therefore sufficient to prove (4.10)
for t = 1. Lemma 4.1 and Part (ii) of Theorem 3.5 implies that

∥∥(H̃k)±
∥∥
Hsk(Γ)→Hs−1

k (Γ)
≤ Ck. (4.14)

The bound
‖γ±LRkψ(|~D|)L∗γ∗‖L2(Γ)→L2(Γ) ≤ C〈k〉 log(k + 2)

follows from [37, Lemmas 4.6, 4.11]; combining this with (4.14) implies (4.10) with t = 1.
The bound (4.11) when Ω− is convex and Γ is C∞ and curved follows from [37, Theorem 4.37]

(or, more precisely [37, Lemmas 4.27 and 4.36]).
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4.3 Bounds on Sik

Lemma 4.7. Sik satisfies Assumption 1.1.

Proof. We claim that Sik = k−1S̃ where S̃ ∈ Ψ−1
~ (Γ), with

σ~(S̃) =
1

2
√
|ξ′|2 + 1

. (4.15)

By the first equation in (3.19), Sik = γ±Rikγ
∗, and by (4.3) Rik is the Fourier multiplier with

(semiclassical) symbol ~2(|ξ|2 + 1)−1. Let A = ~2Rik ∈ Ψ−2(Rd), so that S̃ = ~−1Sik = ~γ±Aγ∗,
Since A = Op~(a) with a = (|ξ|2 + 1)−1 ∈ S−2, Lemma 3.10 applies with m = −2 and aj = 0, and
implies that S̃ ∈ ~~−1Ψ−1

~ (Γ) = Ψ−1
~ (Γ) with

σ~(S̃) = ~ lim
x1→0±

1

2π~

∫ ∞

−∞

exp(iξ1x1/~)

ξ2
1 + |ξ′|2g + 1

dξ1;

calculating the integral via residues gives (4.15).

The bounds in Corollary 3.7 therefore hold with R = Sik. We now show that, modulo an
additional (log(k+ 2))1/2 factor, the upper bound in (3.16) holds when R = Sik and Γ is piecewise
C∞ (as opposed to C∞ in Corollary 3.7).

Theorem 4.8. Let Ω− be Lipschitz with Γ piecewise smooth (in the sense of Definition B.4). Then
given k0 > 0 there is C > 0 such that for all k ≥ k0

‖Sik‖L2(Γ)→H1
k(Γ) + ‖Sik‖H−1

k (Γ)→L2(Γ) ≤ Ck−1(log(k + 2))1/2. (4.16)

Proof. We prove the first estimate in (4.16); the second estimate follows since Sik is self-adjoint
on L2(Γ) (see, e.g., [25, Equation 2.37]). Recall from the first equation in (3.19) that Sik =
γ(−∆ + k2)−1γ∗ and recall that, since k2(−∆ + k2)−1 ∈ Ψ−2

~ (Rd), for k ≥ k0,

‖(−∆ + k2)−1‖Hsk(Rd)→Hs+2
k (Rd) ≤ Ck−2. (4.17)

Therefore, fixing 0 < ε < 1/2, and using (4.17), the trace bounds (3.5), (3.5), and the inequalities
(3.3), we have

‖Sik‖L2(Γ)→L2(Γ) ≤ ‖γ∗‖
H−εk (Γ)→H

− 1
2
−ε

k (Rd)
‖(−∆ + k2)−1‖

H
− 1

2
−ε

k (Rd)→H
3
2
−ε

k (Rd)
‖γ‖

H
3
2
−ε

k (Rd)→L2(Γ)

≤ Ck−1. (4.18)

By (3.4),
‖Sik‖L2(Γ)→H1

k(Γ) ≤ C
(
‖Sik‖L2→L2 + k−1‖∇ΓSik‖L2(Γ)→L2(Γ)

)
, (4.19)

therefore, we only need to estimate k−1∇ΓSik : L2(Γ) → L2(Γ). For this, we let ψ ∈ C∞comp(R)
with ψ ≡ 1 on [−1, 1], and decompose Sik as follows:

Sik = Si + (Sik − Si),

= Si + γ
[
(−∆ + k2)−1 − (−∆ + 1)−1

]
γ∗,

= Si + γψ(k−1|D|)(−∆ + k2)−1γ∗

+ γ(1− ψ(k−1|D|))
[
(−∆ + k2)−1 − (−∆ + 1)−1

]
γ∗ − γψ(k−1|D|)(−∆ + 1)−1γ∗

=: I + II + III + IV

(4.20)

We now estimate each term I through IV individually. First, for I, we recall from (A.6) that

‖Si‖L2(Γ)→H1(Γ) ≤ C. (4.21)
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To estimate II, recall that, since ψ has compact support, ψ(k−1|D|) : Hs
k(Γ) → Hs+N

k (Γ) for any
N is bounded (uniformly in k) (cf. (3.12)). Therefore, using (3.3), the trace bounds (3.5) and (3.7),
and (4.17), we have

‖II‖L2(Γ)→H1
k(Γ) = ‖γψ(k−1|D|)(−∆ + k2)−1γ∗‖L2(Γ)→H1

k(Γ) ≤ Ck−1. (4.22)

We now claim that
∥∥∥
(
1− ψ(k−1|D|)

)[
(−∆ + k2)−1 − (−∆ + 1)−1

]∥∥∥
Hsk(Rd)→Hs+4

k (Rd)
≤ k−2. (4.23)

and thus, using (3.5), (3.7), and (3.3) again,

‖III‖L2(Γ)→H1
k(Γ) =

∥∥γ
(
1−ψ(k−1|D|)

)[
(−∆+k2)−1−(−∆+1)−1

]
γ∗
∥∥
L2(Γ)→H1

k(Γ)
≤ Ck−1. (4.24)

To prove (4.23), observe that (1− ψ(k−1|D|))[(−∆ + k2)−1 − (−∆ + 1)−1] is a Fourier multiplier
with (semiclassical) symbol

(
1− ψ(ξ)

)
~2

[
1

|ξ|2 + 1
− 1

|ξ|2 + ~2

]
=

~2(−1 + ~2)
(
1− ψ(ξ)

)

(|ξ|2 + 1)(|ξ|2 + ~2)
;

therefore

∥∥∥
(
1−ψ(k−1|D|)

)[
(−∆+k2)−1−(−∆+1)−1

]∥∥∥
Hsk(Rd)→Hs+4

k (Rd)
≤ sup
ξ∈Rd

∣∣∣∣∣〈ξ〉
4 ~

2(−1 + ~2)
(
1− ψ(ξ)

)

(|ξ|2 + 1)(|ξ|2 + ~2)

∣∣∣∣∣ ,

and (4.23) follows since 1− ψ(ξ) = 0 for |ξ| ≤ 1.
To estimate IV, we claim that

‖ψ(k−1|D|)γ∗‖L2(Γ)→H−1/2(Rd) ≤ C(log(k + 2))1/2;

indeed,
∫

Rd
〈ξ〉−1

∣∣F~u(ξ′)
∣∣2(ψ(k−1|ξ|))2dξ ≤

∫

Rd
〈ξ1〉−1

∣∣F~u(ξ′)
∣∣2(ψ(k−1|ξ|))2dξ1dξ′

. log(k + 2)

∫

Rd−1

∣∣F~u(ξ′)
∣∣2dξ′.

Then, since (−∆ + 1)−1 : H−1/2(Rd)→ H3/2(Rd) and γ : H3/2(Rd)→ H1(Γ) are bounded,

‖IV‖L2(Γ)→H1(Γ) = ‖γ(−∆ + 1)−1ψ(k−1|D|)γ∗‖L2(Γ)→H1(Γ) ≤ C(log(k + 2))1/2. (4.25)

Therefore, combining (4.21), (4.22), (4.24), and (4.25) with (4.20), we have

‖k−1∇ΓSik‖L2(Γ)→L2(Γ) ≤ k−1‖I‖L2→H1 + ‖II‖L2(Γ)→H1
k(Γ) + ‖III‖L2(Γ)→H1

k(Γ) + k−1‖IV‖L2(Γ)→H1(Γ)

≤ Ck−1(log(k + 2))1/2; (4.26)

the result then follows by combining (4.19), (4.18), and (4.26).

5 New bounds on the exterior Neumann-to-Dirichlet map
P+

NtD and their proofs

Recall that P+
NtD : H−1/2(Γ)→ H1/2(Γ) denotes the Neumann-to-Dirichlet map for the Helmholtz

equation posed in Ω+ with the Sommerfeld radiation condition (1.2).

Lemma 5.1. For all k > 0, P+
NtD has a unique extension to a bounded operator P+

NtD : H−1(Γ)→
L2(Γ). Furthermore P+

NtD : Hs−1/2(Γ)→ Hs+1/2(Γ) and
∥∥P+

NtD

∥∥
H
s−1/2
k (Γ)→Hs+1/2

k (Γ)
=
∥∥P+

NtD

∥∥
L2(Γ)→H1

k(Γ)
for all |s| ≤ 1/2. (5.1)
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Proof of Lemma 5.1. The extension to H−1(Γ) → L2(Γ) follows from, e.g., [25, Theorem 2.31].
By Green’s second identity, the Sommerfeld radiation condition and the fact that 〈·, ·〉Γ,R is the
real -valued duality pairing (as opposed to the complex one; see [76, Lemma 6.13]).

〈
P+

NtDφ, ψ〉Γ,R =
〈
φ, P+

NtDψ〉Γ,R for all φ, ψ ∈ H1/2(Γ)

(this relation was used in the form (4.13) in the proof of Theorem 4.6). By density of H1/2(Γ) in
H1(Γ), this last equation holds for all ψ ∈ H1(Γ), and thus

∥∥P+
NtD

∥∥
H−1
k (Γ)→L2(Γ)

=
∥∥P+

NtD

∥∥
L2(Γ)→H1

k(Γ)
;

see, e.g., [75, Lemma 2.3]. The bound (5.1) then holds by interpolation; see, e.g., [31, §2.3], [28,
§4].

Part (i) of the following theorem is from [11, Theorem 1.8]; the other parts are stated and
proved here for the first time (using the PDE results of [60, 21, 85]).

Theorem 5.2 (Bounds on P+
NtD).

(i) If Ω− is C∞ and nontrapping, then given k0 > 0 there exists C > 0 such that
∥∥P+

NtD

∥∥
H
s−1/2
k (Γ)→Hs+1/2

k (Γ)
≤ Ck−β for all k ≥ k0 and for all |s| ≤ 1/2,

where β = 2/3 if Γ is curved, β = 1/3 otherwise.
(ii) If Ω− is Lipschitz then, given k0 > 0 and δ > 0, there exists a set J ⊂ [k0,∞) with |J | ≤ δ

such that given ε > 0 there exists C = C(k0, δ, ε) > 0 such that
∥∥P+

NtD

∥∥
H
s−1/2
k (Γ)→Hs+1/2

k (Γ)
≤ Ck5d/2+1+ε for all k ∈ [k0,∞) \ J and for all |s| ≤ 1/2.

(iii) If Ω− is C1,σ for some σ > 0, then, given k0 > 0 and δ > 0, there exists a set J ⊂ [k0,∞)
with |J | ≤ δ such that given ε > 0 there exists C = C(k0, δ, ε) > 0 such that

∥∥P+
NtD

∥∥
H
s−1/2
k (Γ)→Hs+1/2

k (Γ)
≤ Ck5d/2+ε for all k ∈ [k0,∞) \ J and for all |s| ≤ 1/2.

(iv) If Ω− is C∞, then, given k0 > 0 there exists α′ > 0 and C > 0 such that
∥∥P+

NtD

∥∥
H
s−1/2
k (Γ)→Hs+1/2

k (Γ)
≤ C exp(α′k) for all k ≥ k0 and for all |s| ≤ 1/2.

Parts (ii)-(iv) of Theorem 5.2 are proved using Lemma 5.1 and the following lemma.

Lemma 5.3. Assume that, given k0 > 0 and f ∈ L2(Ω+) with support in BR for some R > 0,
the solution u ∈ H1

loc(Ω+) of the Helmholtz equation ∆u + k2u = −f in Ω+ that satisfies the
Sommerfeld radiation condition (1.2) and ∂nu = 0 on Γ satisfies

‖∇u‖L2(Ω+∩BR) + k ‖u‖L2(Ω+∩BR) ≤ C1K(k) ‖f‖L2(Ω+) (5.2)

for k in some subset of [k0,∞) and C1 > 0 independent of k. Then there exists C2 > 0 (independent
of k) such that, for k in the same subset of [k0,∞),

∥∥P+
NtD

∥∥
L2(Γ)→H1

k(Γ)
≤ C2K(k).

This result is analogous to the Dirichlet result in [31, Lemma 4.2]. However, whilst the k-
dependence in [31] is sharp, the k-dependence in Lemma 5.3 is not. Indeed, when Ω− is nontrapping
K(k) ∼ 1 by the results of [83, 67] (see, e.g., the discussion in [11, §1.2]), but the sharp bound on
P+

NtD in this case is ‖P+
NtD‖L2(Γ)→H1

k(Γ) ≤ Ck−1/3 given by Part (i) of Theorem 5.2.

Proof of Lemma 5.3. This result with K(k) = 1 is proved in [75, Theorem 1.5]. The result for
more general K(k) follows in exactly the same way.

Proof of Theorem 5.2. Part (i) is proved for s = 1/2 in [11, Theorem 1.8], and then holds for all
|s| ≤ 1/2 by Lemma 5.1. Under the assumptions of Part (ii), by [60, Theorem 1.1 and Lemma
2.1], given k0 > 0 and δ > 0, there exists J ⊂ [k0,∞) with |J | ≤ δ such that (5.2) holds for
k ∈ [k0,∞) \ J with K(k) = k5d/2+1+ε. Under the assumptions of Part (iii), an analogous result
holds with K(k) = k5d/2+ε by [60, Corollary 3.7]. Under the assumptions of Part (iv), (5.2) holds
for all k with K(k) = exp(αk), for some α > 0, by [21, Theorem 2], [85].
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6 New results about the interior impedance-to-Dirichlet map
P−,η,RItD and their proofs

Lemma 6.1 (Existence of P−,η,RItD : H1/2(Γ)→ H1/2(Γ)). Let Γ be Lipschitz and s > 1/2. Suppose
R : H−1/2(Γ)→ H1/2(Γ) is bounded, there exist C1, C2 > 0 such that

|Re
〈
Rψ,ψ

〉
Γ
| ≥ C1 ‖ψ‖2H−1/2(Γ) for all ψ ∈ H−1/2(Γ), (6.1)

| Im
〈
Rψ,ψ

〉
Γ
| ≤ C2 ‖ψ‖2H−s(Γ) for all ψ ∈ H−1/2(Γ), (6.2)

and R−1 : H1−s(Γ)→ H−s(Γ) is bounded.
Then, given g ∈ H1/2(Γ), k > 0, and η ∈ R \ {0}, there exists a unique solution u ∈ H1(Ω−)

to the boundary-value problem

∆u+ k2u = 0 in Ω− and R∂−n u− iηγ−u = g on Γ, (6.3)

and thus P−,η,RItD : H1/2(Γ)→ H1/2(Γ) is well-defined.

Proof. The variational formulation of the boundary-value problem (2.16) with g ∈ H1/2(Γ) is:

find u ∈ H1(Ω−) such that a(u, v) = F (v) for all v ∈ H1(Ω−), (6.4)

where

a(u, v) :=

∫

Ω−

(
∇u · ∇v − k2u v

)
− iη

〈
R−1γ−u, γ−v

〉
Γ

and F (v) :=
〈
R−1g, γ−v

〉
Γ
.

We now show that the solution of this problem, if it exists, is unique. By (6.1) if g = 0, then

0 = | Im a(u, u)| =
∣∣ηRe

〈
R−1γ−u, γ−u

〉
Γ

∣∣ ≥ η C1

∥∥R−1γ−u
∥∥2

H−1/2(Γ)
,

and uniqueness follows since R is invertible from H−1/2(Γ) → H1/2(Γ) by (6.1) and the Lax–
Milgram theorem (see, e.g., [65, Lemma 2.32]).

To prove existence, first observe that, by (6.2) and the assumption that R−1 : H1−s(Γ) →
H−s(Γ) is bounded, for ψ ∈ H1/2(Γ),

∣∣ Im
〈
R−1ψ,ψ

〉
Γ

∣∣ =
∣∣〈(R−1)∗(ImR)R−1ψ,ψ

〉
Γ

∣∣
=
∣∣〈(ImR)R−1ψ,R−1ψ

〉
Γ

∣∣ ≤ C‖R−1ψ‖2H−s(Γ) ≤ C‖ψ‖2H1−s(Γ).

Therefore, for v ∈ H1(Ω−) and s > 1/2,

Re a(v, v) = ‖∇v‖2L2(Ω−) − k2 ‖v‖2L2(Ω−) + η Im〈R−1γ−v, γ−v〉Γ ≥ ‖v‖2H1(Ω−) − C‖v‖2H 3
2
−s(Ω−)

.

Since H1(Ω−) is compactly contained in H3/2−s(Ω−) with s > 1/2 (see, e.g., [65, Theorem 3.27]),
the solution of the variational problem (6.4) exists and is unique in H1(Ω−) by Fredholm theory
(see, e.g., [65, Theorem 2.34]).

We now show that if Γ is C∞ and R satisfies Assumption 1.1 then R satisfies the assumptions
of Lemma 6.1 for sufficiently large k, and hence that P−,η,RItD : H1/2(Γ) → H1/2(Γ) exists for
sufficiently large k.

Lemma 6.2. If Γ is C∞ and R satisfies Assumption 1.1, then there exists k0 > 0 and C > 0 such
that, for all k ≥ k0,

± Re
〈
Rψ,ψ

〉
Γ
≥ Ck−1 ‖ψ‖2

H
−1/2
k (Γ)

for all ψ ∈ H−1/2(Γ), (6.5)

where the plus sign is chosen if σ~(R) is positive, and the minus sign is chosen if σ~(R) is negative.
Moreover, R−1 : H1−s

k → H−sk for any s and

| Im〈Rψ,ψ〉Γ| ≤ Ck−1‖ψ‖2
H−1
k (Γ)

for all ψ ∈ H−1/2(Γ). (6.6)
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Proof. Let R̃ = ~−1R. Since σ~(R̃) is real and R̃ ∈ Ψ−1
~ is elliptic,

± σ~(R̃) ≥ C1

〈ξ′〉 for all (x′, ξ′) ∈ T ∗Γ. (6.7)

If (6.7) holds with the plus sign, then A := R̃ − C1/〈ξ′〉 satisfies the assumption of Theorem 3.8
with ` = −1, and thus

Re

〈(
R̃− C1

〈ξ′〉

)
φ, φ

〉

Γ

≥ −C2~ ‖φ‖2H−1
~ (Γ) for all φ ∈ H−1/2(Γ).

Therefore, by the definition of the H−1/2
~ (Γ) norm,

Re
〈
R̃φ, φ

〉
Γ
≥ C3 ‖φ‖2H−1/2

~ (Γ)
− C2~ ‖φ‖2H−1

~ (Γ) for all φ ∈ H−1/2(Γ),

and the bound (6.5) with the plus sign follows if ~ is sufficiently small (i.e., for all k sufficiently
large). If (6.7) holds with the minus sign, then A := −R̃ − C/〈ξ〉 satisfies the assumption of
Theorem 3.8 with ` = −1, and the bound (6.5) with the minus sign follows in a similar way to
above.

The fact that R−1 : H1−s
~ → H−s~ follows from the fact that R−1 ∈ Ψ1

~(Γ) by Lemma 3.6 and
the mapping property in Part (ii) of Theorem 3.5. To check that (6.6) holds, observe that since
σ−1
~ (R̃) is real, by the second equation in (3.14),

σ−1
~ (R̃− R̃∗) = 0.

Therefore Im R̃ = (R̃ − R̃∗)/(2i) ∈ Ψ−2
~ (Γ) and hence, by the boundedness properties of elements

of Ψ−2
~ ,

| Im〈Rψ,ψ〉Γ| = ~| Im〈R̃ψ, ψ〉Γ| ≤ ~‖ Im R̃ψ‖H1
~
‖ψ‖H−1

~
≤ C~‖ψ‖2

H−1
~
,

which is (6.6).

In §7.2, Lemma 6.1 is used to prove invertibility of Bk,η,R and B′k,η,R when R satisfies Assump-
tion 1.1, k > 0, and η ∈ R \ {0} (i.e., Part (i) of Theorem 2.2). We now use this invertibility of
B′k,η,R to prove the following result about P−,η,RItD and P−,η,R

′

ItD .
Recall that 〈·, ·〉Γ,R denotes the real-valued duality pairing on Γ between Hs(Γ) and H−s(Γ).

Lemma 6.3. Assume that Γ is C∞, R satisfies Assumption 1.1, η ∈ R \ {0}, and k > 0 is
sufficiently large so that P−,η,RItD : H1/2(Γ)→ H1/2(Γ) exists.

(i) P−,η,RItD and P−,η,R
′

ItD have unique extensions to bounded operators H1(Γ) → H1(Γ), where
R′ denotes the adjoint of R with respect to the real-valued L2 inner product.

(ii) (R−1P−,η,RItD )′ = (R′)−1P−,η,R
′

ItD , i.e.,
〈
R−1P−,η,RItD φ, ψ

〉
Γ,R =

〈
φ, (R′)−1P−,η,R

′

ItD ψ
〉

Γ,R for all φ, ψ ∈ H1/2(Γ). (6.8)

(iii) ∥∥∥R−1P−,η,RItD

∥∥∥
L2(Γ)→H−1

k (Γ)
=
∥∥∥(R′)−1P−,η,R

′

ItD

∥∥∥
H1
k(Γ)→L2(Γ)

,

and thus both P−,η,RItD and P−,η,R
′

ItD are also bounded operators L2(Γ)→ L2(Γ).

Proof. (i) The plan is to express P−,η,RItD as an operator on H1/2(Γ) in terms of (B′k,η,R)−1; indeed
we show that

P−,η,RItD = −R
(
B′k,η,R

)−1
(

1

2
I −K ′k

)
R−1, (6.9)

and then show that this expression extends P−,η,RItD to an operator on H1(Γ).
Given g ∈ H1/2(Γ), let u be the solution to (6.3). By Green’s integral representation (see, e.g.,

[25, Theorem 2.20]),
u = Sk∂−n u−Kkγ−u.

26



Taking the Neumann trace and using the jump relations (A.5), we find that
(

1

2
I −K ′k

)
∂−n u+Hkγ

−u = 0.

The boundary condition in (2.16) implies that

∂−n u = iηR−1γ−u+R−1g,

and combining the last two displayed equations, we find that

iη

(
1

2
I −K ′k

)(
R−1γ−u

)
+Hkγ−u = −

(
1

2
I −K ′k

)
R−1g,

that is, by the definition of B′k,η,R (1.5),

B′k,η,R
(
R−1γ−u

)
= −

(
1

2
I −K ′k

)
R−1g. (6.10)

The arguments in the proof of Theorem 2.2 (in §7.2) that show B′k,η,R is invertible from
L2(Γ)→ L2(Γ) also show that B′k,η,R is invertible from H−1/2(Γ) to H−1/2(Γ) (indeed, the proof
of Theorem 2.2 shows injectivity on H−1/2(Γ), and the proof that B′k,η,R is Fredholm on L2(Γ) also
shows that B′k,η,R is Fredholm on H−1/2(Γ)). Combining this result with the mapping properties
of R,R−1, and K ′k (see (A.6)), we see that, given g ∈ H1/2(Γ),

R
(
B′k,η,R)−1

(
1

2
I −K ′k

)
R−1g ∈ H1/2(Γ).

By Lemma 6.1 and Assumption 1.1, P−,η,RItD is well-defined on H1/2(Γ). Therefore, (6.10) implies
that (6.9) holds with both sides well-defined on H1/2(Γ).

Using that R : L2(Γ)→ H1(Γ) is bounded and invertible, K ′k is bounded on L2(Γ), and B′k,η,R
is bounded and invertible on L2(Γ), we find that (6.9) extends P−,η,RItD to a well-defined operator
on H1(Γ). Since R′ also satisfies Assumption 1.1, P−,η,R

′

ItD also extends to a well-defined operator
on H1(Γ).

(ii) To prove (6.8), let u be the solution of (2.16) with data φ and let v be the solution of (2.16)
with data ψ and R replaced by R′; then

γ−u = P−,η,RItD φ and γ−v = P−,η,R
′

ItD ψ. (6.11)

By Green’s second identity applied in Ω− (see, e.g., [25, Theorem 2.19]),

〈
γ−u, ∂−n v

〉
Γ,R − 〈γ

−v, ∂−n u〉Γ,R =

∫

Ω−
u∆v − v∆u = 0,

and thus, by using the boundary conditions satisfied by u and v,
〈
γ−u, (R′)−1(ψ + iηγ−v)

〉
Γ,R =

〈
γ−v, R−1(φ+ iηγ−u)

〉
Γ,R.

By the definition of R′, the last equality becomes
〈
γ−u, (R′)−1ψ

〉
Γ,R =

〈
γ−v,R−1φ

〉
Γ,R,

and then (6.8) follows by using (6.11).
(iii) To prove R−1P−,η,RItD is bounded L2(Γ) → H−1(Γ), it is sufficient to show that

〈R−1P−,η,RItD φ, ψ〉Γ,R is bounded for all φ ∈ L2(Γ) and ψ ∈ H1(Γ). Given φ ∈ L2(Γ), there ex-
ists φj ∈ H1/2(Γ) such that φj → φ in L2(Γ) as j →∞. Then, by (6.8), for all ψ ∈ H1(Γ),

〈
R−1P−,η,RItD φj , ψ

〉
Γ,R =

〈
(R′)−1P−,η,R

′

ItD ψ, φj
〉

Γ,R →
〈
(R′)−1P−,η,R

′

ItD ψ, φ
〉

Γ,R as j →∞,
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since P−,η,R
′

ItD : H1(Γ)→ H1(Γ) is bounded, and thus R−1P−,η,RItD : H1(Γ)→ L2(Γ) is bounded.
Therefore, (6.8) holds for all φ ∈ L2(Γ) and ψ ∈ H1(Γ), and thus

∥∥∥R−1P−,η,RItD

∥∥∥
L2(Γ)→H−1

k (Γ)
= sup
φ∈L2(Γ),ψ∈H1(Γ)

〈
R−1P−,η,RItD φ, ψ

〉
Γ,R

‖φ‖L2(Γ) ‖ψ‖H1
k(Γ)

= sup
φ∈L2(Γ),ψ∈H1(Γ)

〈
(R′)−1P−,η,R

′

ItD ψ, φ
〉

Γ,R

‖φ‖L2(Γ) ‖ψ‖H1
k(Γ)

=
∥∥∥(R′)−1P−,η,R

′

ItD

∥∥∥
H1
k(Γ)→L2(Γ)

.

Corollary 6.4. If Γ is C∞, k > 0, and Re η 6= 0, then
∥∥∥P−,η,RItD

∥∥∥
L2(Γ)→L2(Γ)

∼
∥∥∥P−,η,R

′

ItD

∥∥∥
H1
k(Γ)→H1

k(Γ)
. (6.12)

Proof of Corollary 6.4. We claim that

k
∥∥∥P−,η,R

′

ItD

∥∥∥
H1
k(Γ)→H1

k(Γ)
.
∥∥∥(R′)−1P−,η,R

′

ItD

∥∥∥
H1
k(Γ)→L2(Γ)

. k
∥∥∥P−,η,R

′

ItD

∥∥∥
H1
k(Γ)→H1

k(Γ)

and
k
∥∥∥P−,η,RItD

∥∥∥
L2(Γ)→L2(Γ)

.
∥∥∥R−1P−,η,RItD

∥∥∥
L2(Γ)→H−1

k (Γ)
. k

∥∥∥P−,η,RItD

∥∥∥
L2(Γ)→L2(Γ)

.

Indeed, the first bound in each inequality follows from the upper bound in (3.16) (first applied
to R′ with t = 0 and then applied to R with t = −1), and the second bound in each inequality
follows from the upper bound in (3.17) (first applied to R′ with t = 0 and then applied to R′ with
t = −1); the result then follows from Lemma 6.3.

Theorem 6.5. If Ω− is C∞, R satisfies Assumption 1.1, and η ∈ R \ {0} is independent of k
then, there exists k0 > 0 and C > 0 (independent of k) such that, for all k ≥ k0,

∥∥∥P−,η,RItD

∥∥∥
L2(Γ)→L2(Γ)

≤ C.

Proof. By Lemma 6.3 and (6.12), it is sufficient to show that
∥∥∥P−,η,R

′

ItD

∥∥∥
H1
k(Γ)→H1

k(Γ)
≤ C;

i.e., that given g ∈ H1(Γ), the solution u to (2.16) with R replaced by R′ exists and satisfies

‖u‖H1
k(Γ) ≤ C ‖g‖H1

k(Γ) (6.13)

with C > 0 independent of k. By Assumption 1.1, R′ = ~R̃ with R̃ ∈ Ψ−1
~ (Γ). Using this in the

boundary-value problem defining u (2.16) and multiplying by R̃−1, we obtain that

(−~2∆− 1)u = 0 in Ω− and
1

i
~∂nu− (R̃)−1ηu = g̃ on Γ, (6.14)

where
g̃ :=

1

i
(R̃)−1g ∈ L2(Γ).

By Part (ii) of Theorem 3.5 (or equivalently Corollary 3.7), ‖R̃−1‖H1
~(Γ)→L2(Γ) ≤ C, and thus

∥∥g̃
∥∥
L2(Γ)

≤ C ‖g‖H1
~(Γ) . (6.15)

The boundary-value problem (6.14) fits in the framework studied in [38, Section 4] with, in
the notation of [38], N = 1,D = η(R̃)−1, m1 = 0, and m0 = 1. Whereas [38, Section 4] studies
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this problem when Ω− is curved, the results hold for general smooth Ω− if [39, Lemma 3.3] is
used instead of [38, Lemma 4.8]. When applying [39, Lemma 3.3] to the set up in [38], we note
that, since Ω− is bounded, the set A in [39, Lemma 3.3] is the whole of S∗Ω−R

d. Therefore, when
η σ~(R̃) > 0, the result [38, Theorem 4.6] (combined with [39, Lemma 3.3] as indicated above)
shows that the solution u to (2.16) with R replaced by R′ exists and satisfies

‖u‖H1
~(Ω−) ≤ C ‖g̃‖L2(Γ) , (6.16)

with C > 0 is independent of ~. Then, inputting m1 = 0 and m0 = 1 into the trace result [38,
Theorem 4.1] and choosing ` = 0, we find that, for C > 0 (independent of ~),

‖u‖H1
~(Γ) ≤ C

(
‖u‖L2(Ω−) + ‖g̃‖L2(Γ)

)
. (6.17)

The combination of (6.17), (6.16), and (6.15) therefore gives the required result (6.13) when
η σ~(R̃) > 0. When η σ~(R̃) < 0, these results of [38, Section 4] (combined with [39, Lemma 3.3]
as indicated above) apply to the boundary-value problem

(−~2∆− 1)v = 0 in Ω− and
1

i
~∂nv + (R̃∗)−1ηv = g̃ on Γ.

Since v = u where u is the solution of (6.14), the bound (6.13) also holds when η σ~(R̃) < 0, and
the proof is complete.

In §9 (the discussion on the choice of η) we use the following lemma.

Lemma 6.6. If η ∈ R \ {0} and R satisfies Assumption 1.1 then there exists k0 > 0 and C > 0
such that for all k ≥ k0 ∥∥∥P−,η,RItD

∥∥∥
H

1/2
k (Γ)→H1/2

k (Γ)
≤ C

|η| . (6.18)

Proof. By Lemmas 6.1 and 6.2, the solution u of the variational problem (6.4) defining P−,η,RItD

exists. Choosing v = u (6.4) and taking the imaginary part, we obtain that

ηRe
〈
R−1γ−u, γ−u

〉
Γ

= Im
〈
R−1g, γ−u

〉
Γ
.

By the coercivity of R (6.5),

C|η|k−1
∥∥R−1γ−u

∥∥2

H
−1/2
k (Γ)

≤
∥∥R−1g

∥∥
H
−1/2
k (Γ)

∥∥γ−u
∥∥
H

1/2
k (Γ)

.

where C is as in (6.5); the result then follows by using both the upper- and lower-bounds on R−1

in (3.17).

By considering Neumann eigenfunctions, we see that the bound (6.18) is sharp in its η-
dependence. Indeed, if k2 is a Neumann eigenvalue of the Laplacian with u the corresponding
eigenfunction, then

R∂−n u− iηγ−u = −iηγ−u and thus P−,η,RItD γ−u =
i

η
γ−u.

7 Proofs of the main results

7.1 Proof of Theorem 2.1
Proof of Theorem 2.1. By the triangle inequality,

‖Bk,η,R‖L2(Γ)→L2(Γ) ≤ |η|
(
1/2 + ‖Kk‖L2(Γ)→L2(Γ)

)
+ ‖R‖H−1

k (Γ)→L2(Γ) ‖Hk‖L2(Γ)→H−1
k (Γ) .

The bounds on ‖Bk,η,R‖L2(Γ)→L2(Γ) in Theorem 2.1 then follow by using the bounds in Theor-
ems 3.1, Theorem 4.6, and 4.8. The bounds on ‖B′k,η,R‖L2(Γ)→L2(Γ) follow similarly.
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Because of the interest in choosing R = S0 (see the discussion in §2.1.1), we also record the
following bound on ‖Bk,η,S0

‖L2(Γ)→L2(Γ) and ‖B′k,η,S0
‖L2(Γ)→L2(Γ) (which we refer to in §8). For

simplicity we assume that |η| is bounded independently of k (since then the norm of S0Hk dominates
for all geometries), but it is straightforward to obtain bounds for general η analogous to those in
Theorem 2.1.

Lemma 7.1. If |η| ≤ c with c independent of k and Γ is piecewise smooth, then given k0 > 0 there
exists C > 0 such that for all k ≥ k0

‖Bk,η,S0
‖L2(Γ)→L2(Γ) +

∥∥B′k,η,S0

∥∥
L2(Γ)→L2(Γ)

≤ Ck log(k + 2).

If, in addition, Γ is C∞ and curved then given k0 > 0 there exists C > 0 such that for all k ≥ k0

‖Bk,η,S0
‖L2(Γ)→L2(Γ) +

∥∥B′k,η,S0

∥∥
L2(Γ)→L2(Γ)

≤ Ck.

Proof. By the triangle inequality,

‖Bk,η,S0‖L2(Γ)→L2(Γ) ≤ |η|
(
1/2 + ‖Kk‖L2(Γ)→L2(Γ)

)
+ ‖S0‖H−1(Γ)→L2(Γ) ‖Hk‖L2(Γ)→H−1(Γ) .

The result then follows from Theorems 3.1 and Theorem 4.6, using the fact that

‖Hk‖L2(Γ)→H−1(Γ) = ‖Hk‖H1(Γ)→L2(Γ) ≤ k−1
0 ‖Hk‖H1

k(Γ)→L2(Γ) ,

where the equality follows from (4.12) and the inequality holds since ‖φ‖H1
k(Γ) ≤ k−1

0 ‖φ‖H1(Γ) for
k ≥ k0 and all φ ∈ H1(Γ).

7.2 Proof of Theorem 2.2
Lemma 7.2. 〈

Bk,η,Rφ, ψ
〉

Γ,R =
〈
φ,B′k,η,R′ψ

〉
Γ,R for all φ, ψ ∈ L2(Γ); (7.1)

i.e., B′k,η,R′ is the adjoint of Bk,η,R with respect to the real-valued L2(Γ) inner product.

Proof. By, e.g., [25, Equation 2.40], 〈Kkφ, ψ〉Γ,R = 〈φ,K ′kψ〉Γ,R for all φ, ψ ∈ L2(Γ). Since R :
L2(Γ) → H1(Γ) is bounded, the result then follows from (4.12) and the definitions of Bk,η,R and
B′k,η,R′ (1.5).

Corollary 7.3.
‖Bk,η,R‖L2(Γ)→L2(Γ) =

∥∥B′k,η,R′
∥∥
L2(Γ)→L2(Γ)

Furthermore, if Bk,η,R is invertible on L2(Γ), then
∥∥(Bk,η,R)−1

∥∥
L2(Γ)→L2(Γ)

=
∥∥(B′k,η,R′)

−1
∥∥
L2(Γ)→L2(Γ)

.

Proof. This follows from Lemma 7.2 and, e.g., [25, Remark 2.24].

Proof of Theorem 2.2. We first prove that if R is satisfies the assumptions of Lemma 6.1, then
B′k,η,R and Bk,η,R are injective on H−1/2(Γ); injectivity of B′k,η,R on L2(Γ) immediately follows.
Suppose φ ∈ H−1/2(Γ) is such that B′k,η,Rφ = 0. Let u = (KkR− iηSk)φ. The jump relations (A.5)
imply that ∂+

n u = B′k,η,Rφ = 0 (this is the same argument used to derive the BIE (1.6)). Since
u satisfies the Sommerfeld radiation condition (1.2), and the solution of the exterior Neumann
problem is unique, u = 0 in Ω+, and thus γ+u = 0. The jump relations imply that

∂+
n u− ∂−n u = iηφ and γ+u− γ−u = Rφ, (7.2)

and thus ∂−n u = −iηφ and γ−u = −Rφ. Therefore, u solves the boundary-value problem (6.3)
with g = 0. By Lemma 6.1, u = 0 in Ω−. Therefore ∂−n u = 0, and the first equation in (7.2)
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implies that φ = 0. Now suppose φ ∈ H−1/2(Γ) is such that Bk,η,Rφ = 0. Let u = Kkφ; the third
and fourth jump relations in A.5 imply that

γ±u =

(
±1

2
I +Kk

)
ϕ, ∂±n u = Hkϕ. (7.3)

Therefore, since Bk,η,Rφ = 0, R∂−n u − iηγ−u = 0. Similar to above, u = 0 in Ω− by Lemma 6.1,
and thus ∂−n u = 0. By (7.3), ∂+

n u = 0, and by uniqueness of the Helmholtz exterior Neumann
problem with the radiation condition (1.2) (which holds when Γ is Lipschitz by, e.g.,[25, Corollary
2.9]), u = 0 in Ω+. Therefore, φ = ∂+

n u− ∂−n u = 0.
We now need to check that R satisfies the assumptions of Lemma 6.1 if (a) R satisfies Assump-

tion 1.1 and k is sufficiently large, (b) R = Sik and k > 0, and (c) R = S0 and (in 2-d) the constant
a in (A.3) is larger than the capacity of Γ. Indeed, (a) follows from Lemma 6.2 (b) follows from
Theorem 3.4 and [65, Theorem 7.17], and (c) follows from [65, Corollary 8.13, Theorem 8.16, and
Theorem 7.17]); the injectivity results in both Parts (i) and (ii) therefore follow.

We now complete the proof of Part (i) by showing that, when Γ is C∞ and R satisfies Assump-
tion 1.1, Bk,η,R and B′k,η,R are Fredholm on L2(Γ) for k sufficiently large. Let χ ∈ C∞comp(R) be
as in Theorem 4.4 (i.e., χ(ξ) = 1 for |ξ| ≤ 2 and χ(ξ) = 0 for |ξ| ≥ 3). By the definition of B′k,η,R
(1.5), B′k,η,R := B′1 +B′2, where

B′1 :=
iη

2
I +

(
1− χ(|~D′|g)

)
HkR and B′2 := χ(|~D′|g)HkR− iηK ′k.

We first claim that B′2 is compact on L2(Γ); indeed, this follows since HkR : L2(Γ) → L2(Γ) is
bounded, ψ(|~D′|g) : L2(Γ)→ H1

k(Γ) is bounded (cf. (3.12)) and hence compact on L2(Γ), and K ′k
is compact on L2(Γ) by [36, Theorem 1.2]. We next claim that B′1 is invertible on L2(Γ); indeed,
by Corollary 4.5, (1 − χ(|~D′|g))HkR ∈ Ψ0

~(Γ) with real-valued semiclassical principal symbol.
Since η ∈ R \ {0}, B′1 is therefore elliptic and hence invertible for sufficiently large k by Theorem
3.6. Thus B′k,η,R is the sum of an invertible operator (B′1) and a compact operator (B′2) and so
is Fredholm; the result for Bk,η,R follows either from very similar arguments (using the result in
Corollary 4.5 about (1− χ(|~D′|g))RHk) or from the adjoint relation (7.1).

To complete the proof of Part (ii), we prove that Bk,η,R and B′k,η,R are second-kind when
R = Sik and Γ is C1; the proof for R = S0 is very similar. Observe that

Bk,η,R =

(
iη

2
− 1

4

)
I + Lk,η and B′k,η,R =

(
iη

2
− 1

4

)
I + L′k,η

where
Lk,η := −iηKk + SikHk +

1

4
I and L′k,η := −iηK ′k +HkSik +

1

4
I.

By the Calderón relations (2.10),

Lk,η = −iηKk +
(
Sik − Sk

)
Hk + (Kk)2,

and
L′k,η = −iηK ′k +

(
Hk −Hik

)
Sik + (K ′k)2,

When Γ is C1, Kk and K ′k are compact on L2(Γ) by [36, Theorem 1.2]. By this, and the mapping
properties of Sik and Hk from (A.6), to show that Lk,η and L′k,η are compact it is sufficient to
prove that (a) Sk − Sik : H−1(Γ) → L2(Γ) is compact, and (b) Hk − Hik : H1(Γ) → L2(Γ) is
compact. Since Φk −Φik = (Φk −Φ0)− (Φik −Φ0), the bounds on Φk −Φ0 in [25, Equation 2.25]
(valid for k ∈ C) show that Sik − Sk : H−1(Γ) → H1(Γ) and Hk −Hik : H1(Γ) → H1(Γ). Since
the inclusion H1(Γ) → L2(Γ) is compact (see, e.g., [65, Theorem 3.27]), both the properties (a)
and (b) hold1; see also [16, Theorem 2.2] for a proof of these mapping properties using regularity
results about transmission problems and standard trace results.

1In fact, when Γ is C1,1 (so that H2(Γ) is well-defined) these bounds on Φk−Φ0 show that Sik−Sk : H−1(Γ)→
H2(Γ) and Hik −Hk : H1(Γ)→ H2(Γ).
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7.3 Proof of Theorem 2.3
Lemma 7.4.

(Bk,η,R)−1 = P+
NtDR

−1 − (I − iηP+
NtDR

−1)P−,η,RItD (7.4)

and

(B′k,η,R)−1 = R−1P+
NtD −R−1P−,η,RItD (R− iηP+

NtD). (7.5)

Proof of Lemma 7.4. We first show that (7.5) follows from (7.4). By Lemma 7.2,

(B′k,η,R)−1 =
(
(Bk,η,R′)

′)−1 =
(
(Bk,η,R′)

−1
)′
. (7.6)

By (4.13), (P+
NtD)′ = P+

NtD. By Part (ii) of Lemma 6.3, ((R′)−1P−,η,R
′

ItD )′ = R−1P−,η,RItD and thus

(P−,η,R
′

ItD )′ = R−1P−,η,RItD R. (7.7)

Replacing R by R′ in (7.4), taking the ′, and using (7.6) and (7.7), the result (7.5) follows.
We now prove (7.4). Given g and ϕ satisfying Bk,η,Rϕ = g, let u := Kkϕ; the motivation

for this choice is that Bk,η,R is the direct BIE arising from Green’s integral representation where,
for the Neumann problem, u is the sum of a double-layer potential and uI ; see (A.4). Our goal
is to express ϕ as a function of g. The equation Bk,η,Rϕ = g and the jump relations (7.3) then
imply that R∂−n u− iηγ−u = g. By the definition of P−,η,RItD , γ−u = P−,η,RItD g. Then, using this last
equation, (7.3), and the fact that ∂+

n u = ∂−n u, we find that

ϕ = γ+u− γ−u = P+
NtD(∂+

n u)− P−,η,RItD g = P+
NtDR

−1(g + iηγ−u)− P−,η,RItD g,

=
(
P+

NtDR
−1 − (I − iηP+

NtDR
−1)P−,η,RItD

)
g,

and the result (7.4) follows.

Proof of Theorem 2.3. We prove the upper bounds on ‖(Bk,η,R)−1‖L2(Γ)→L2(Γ). The same argu-
ment proves upper bounds on ‖(Bk,η,R′)−1‖L2(Γ)→L2(Γ) with identical k-dependence, and the upper
bounds on ‖(B′k,η,R)−1‖L2(Γ)→L2(Γ) then follows from Corollary 7.3.

By (7.4) and the triangle inequality,
∥∥(Bk,η,R)−1

∥∥
L2(Γ)→L2(Γ)

≤
∥∥P+

NtDR
−1
∥∥
L2(Γ)→L2(Γ)

+
∥∥P−,η,RItD

∥∥
L2(Γ)→L2(Γ)

(
1 + |η|

∥∥P+
NtDR

−1
∥∥
L2(Γ)→L2(Γ)

)
.

Furthermore,
∥∥P+

NtDR
−1
∥∥
L2(Γ)→L2(Γ)

≤
∥∥P+

NtD

∥∥
H−1
k (Γ)→L2(Γ)

∥∥R−1
∥∥
L2(Γ)→H−1

k (Γ)
.

Combining these last two inequalities, we obtain that

‖(Bk,η,R)−1‖L2(Γ)→L2(Γ) ≤
∥∥P−,η,RItD

∥∥
L2(Γ)→L2(Γ)

+ (1 + |η|
∥∥P−,η,RItD

∥∥
L2(Γ)→L2(Γ)

)
∥∥P+

NtD

∥∥
H−1
k (Γ)→L2(Γ)

∥∥R−1
∥∥
L2(Γ)→H−1

k (Γ)
.

By Theorem 6.5 and Corollary 3.7,

∥∥(Bk,η,R)−1
∥∥
L2(Γ)→L2(Γ)

≤ C
(

1 + (1 + |η|)k
∥∥P+

NtD

∥∥
H−1
k (Γ)→L2(Γ)

)
.

Theorem 2.3 can then be obtained by using the upper bounds on
∥∥P+

NtD

∥∥
H−1
k (Γ)→L2(Γ)

from The-
orem 5.2.

32



7.4 Proof of Theorem 2.6
This proof follows the same ideas as the proof of the corresponding result for the BIEs (2.12) (used
to solve the exterior Dirichlet problem) in [12, Theorem 2.8]; see also [25, Pages 222 and 223].

We prove the lower bound on ‖(Bk,η,R)−1‖L2(Γ)→L2(Γ); the same argument proves the analogous
lower bound on ‖(Bk,η,R′)−1‖L2(Γ)→L2(Γ), and then the lower bound on ‖(B′k,η,R)−1‖L2(Γ)→L2(Γ)

follows from Corollary 7.3 and the fact that ‖R‖L2(Γ)→L2(Γ) = ‖R′‖L2(Γ)→L2(Γ).
Let (uj , kj)

∞
m=1 be a quasimode with suppuj ⊂ K ⊂ Ω+, ‖uj‖L2(Ω+) = 1, and ∆uj +k2

juj = gj ,
where (by definition)

‖gj‖L2(Ω+) ≤ ε(kj). (7.8)

Let

uIj (x) := Rkgj(x) =

∫

Ω+

Φkj (x, y)gj(y) dy.

By standard properties of the free resolvent Rk (see, e.g., [65, Pages 197, 282]),

∆uIj + k2
ju
I
j = gj .

We now think of uIj as an incident field and observe that, since uIj and uj satisfy the Sommerfeld
radiation condition and ∂+

n uj = 0, uj is the corresponding solution of the scattering problem (1.1)
and (1.2). Green’s integral representation theorem [25, Theorem 2.21] implies that

−(Skj∂nuSj )(x) + (KkjuSj )(x) =

{
uSj for x ∈ Ω+,

0 for x ∈ Ω−,

−(Skj∂nuIj )(x) + (KkjuIj )(x) =

{
0 for x ∈ Ω+,

uIj for x ∈ Ω−.

Adding the two equations in Ω+, and using the fact that ∂+
n uj = 0, we find that

uj = uIj +Kkjγ+uj in Ω+. (7.9)

Applying the operator R∂+
n − iηγ+ and using the jump relations (A.5), we obtain that

Bk,η,R(γ+uj) = fj , where fj := −
(
R∂+

n − iηγ+
)
uI . (7.10)

Therefore, to prove Theorem 2.6, we only need to show that

∥∥γ+uj
∥∥
L2(Γ)

≥ C ‖fj‖L2(Γ) k
1/2
j

(
‖R‖L2(Γ)→L2(Γ)kj + |η|

)−1
(

1

ε(kj)
− 1

kj

)
. (7.11)

By (7.9) and the definition of the quasimode,

1 = ‖uj‖L2(Ω+) = ‖uj‖L2(K) ≤
∥∥Dkjγ+uj

∥∥
L2(K)

+ ‖Rgj‖L2(K) ≤C
(∥∥γ+uj

∥∥
L2(Γ)

+
1

kj
‖gj‖L2(K)

)

≤C
(∥∥γ+uj

∥∥
L2(Γ)

+
1

kj
ε(kj)

)
,

(7.12)

where we used Theorem 3.2 to bound Kk, Theorem 3.3 to bound Rk, and the bound (7.8) on gj .
Having proved the bound (7.12) on γ+uj from below, to prove (7.11), we now need an upper

bound on ‖fj‖L2(Γ). Let χ ∈ C∞comp(Rd) with χ = 1 on a neighbourhood of Ω−. By the norm
relation (3.3), the trace bound (3.5), and Theorem 3.3,

∥∥γ+uIj
∥∥
L2(Γ)

≤
∥∥γ+uIj

∥∥
H

1/2
kj

(Γ)
≤ Ck1/2

j

∥∥χuIj
∥∥
H1
kj

(Ω+)
≤ Ck−1/2

j ‖gj‖L2(Ω+) .

Similarly,
∥∥∂+

n u
I
j

∥∥
L2(Γ)

≤ C
∥∥γ+∇(χuIj )

∥∥
H

1/2
kj

(Γ)
≤ Ck1/2

∥∥∇(χuI)
∥∥
H1
k(Ω+)

≤ Ck3/2
∥∥χuI

∥∥
H2
k(Ω+)
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≤ Ck1/2
j ‖gj‖L2(Ω+) .

Using these last two displayed bounds in the definition of fj (7.10), we find that

‖fj‖L2(Γ) ≤ Ck
−1/2
j

(
kj‖R‖L2(Γ)→L2(Γ) + |η|

)
ε(kj).

Combining this last inequality with (7.12), we obtain (7.11) and the result follows.

8 Numerical experiments illustrating the main results

8.1 Obstacles considered
We consider the following obstacles Ω−, shown in Figure 8.1, and inspired by those considered in
the experiments in [12].

• The unit circle and an ellipse whose minor and major axis are respectively 0.5 and 1; these
are both examples where Γ is C∞ and curved (in the sense of Definition B.3).

• The “kite” domain defined by (cos(t) − 0.65 cos(2t) − 0.65, 1.5 sin(t)) with t ∈ [0, 2π]; this Γ
is smooth.

• A square with side length 2; this Γ is piecewise smooth (in the sense of Definition B.4).

• The “moon” domain defined as the union of an elliptic arc and a circular arc, where the
particular ellipse is (0.5 cos(t), sin(t)) with t ∈ [0, 2π] and the particular circle is (cos(t) +
0.25, sin(t)) with t ∈ [0, 2π]; this Γ is both piecewise smooth and piecewise curved (in the
sense of Definition B.5).

• The “elliptic cavity” defined as the region between the two elliptic arcs

(cos(t), 0.5 sin(t)), t ∈ [−φ0, φ0] and (1.3 cos(t), 0.6 sin(t)), t ∈ [−φ1, φ1]

with φ0 = 7π/10 and φ1 = arccos

(
1

1.3
cos(φ0)

)
;

this corresponds to the shared interior of the solid lines in Figure 8.1f.

All these Ω− are nontrapping (in the sense of Definition B.1), apart from the elliptic cavity,
which is trapping. The elliptic cavity also satisfies the assumptions of Part (ii) of Theorem 2.7,
and so there exists a quasimode with exponentially-small quality.

When considering R = S0, we choose the constant a in the Laplace fundamental solution
(A.3) to be 4. Since the maximal diameter of the considered Ω− is ≤ 3 and the capacity of Ω−

is ≤ diam(Ω−) (see [65, Exercise 8.12]), this choice of a ensures that S0 is coercive and that
(Bk,η,S0)−1 exists when Γ is C1 by Part (ii) of Theorem 2.2.

For all nontrapping domains, we compute norms of Bk,η,R and (Bk,η,R)−1 for k = 5 × 2n

with n = 0, 1, . . . , 8, i.e., k ∈ (5, 1280). For the elliptic cavity, we compute at k = 5 × 2n with
n = 0, 1, . . . , 7, i.e., k ∈ (5, 640), but we also compute at (approximations of) particular frequencies
in the quasimode. The particular frequencies are denoted kem,0, with this notation explained in the
following remark.

Remark 8.1 (The quasimode frequencies kem,0). The functions uj in the Neumann quasimode
construction in Part (ii) of Theorem 2.7 (from [70, Theorem 3.1] and analogous to the Dirichlet
quasimode construction in [12]) are based on the family of eigenfunctions of the Laplacian operator
in the ellipse E (2.7) localising around the periodic orbit {(0, x2) : |x2| ≤ a2}, i.e., the minor axis
of the ellipse; the square root of the associated eigenvalues defines frequencies in the quasimode.
We use the method introduced in [86] and the associated MATLAB toolbox to compute the eigen-
values of the ellipse, and hence the frequencies in the quasimode. In this paper we consider the
frequencies kem,0; the superscript ‘e’ is because the associated eigenfunctions are even functions of
the “angular” variable, the subscript ‘m, 0’ means that the associated eigenfunction has no zeros
when the angular variable is in [0, π) and m zeros when the radial variable, µ, is in (0, µ0), where
µ0 := cosh−1(a1/

√
a2

1 − a2
2) and the boundary of the ellipse is µ = µ0; see [64, Appendix E] for

more details.
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Figure 8.1: Obstacles considered in the numerical experiments
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8.2 Description of the discretisation used for the experiments
We consider Bk,η,R (1.6) with R = Sik and R = S0. These operators are discretised using the
boundary-element method (BEM) with continuous piecewise-linear functions. We choose η = 1/2
as in [19, (23)], and we define the mesh using ten points per wavelength. In more detail: given a
finite-dimensional subspace Vn ⊂ L2(Γ), the Galerkin method is

find vn ∈ Vn such that
(
Bk,η,Rvn, wn

)
L2(Γ)

=
(
f, wn

)
L2(Γ)

for all wn ∈ Vn, (8.1)

where f denotes the right-hand side of the BIE in (1.6); the Galerkin solution vn is then an
approximation to γ+u. We denote the continuous piecewise-linear basis functions by φj ∈ Vn for
j = 1, . . . , n. The matrix of the Galerkin linear system (8.1) can be written

Bk,η,R := iη

(
1

2
M−Kk

)
+ RM−1Hk,

where (Bk,η,R)j,k =
(
Bk,η,Rφk, φj

)
L2(Γ)

; the matrices arising from the operators Kk, Rk and Hk

are defined similarly, and the mass matrix M is the discretisation of the L2 scalar product on Vn.
The meshwidth h was chosen so that 10h = 2π/k; this corresponds to having ten gridpoints per
wavelength, which, at least empirically, ensures the accuracy does not deteriorate as k →∞ (but
see [41] and [40] for more discussion on this). This choice of h means that n ∼ h−(d−1) ∼ kd−1.

Approximations to the norms of Bk,η,R and (Bk,η,R)−1 are computed as the maximal singular
value of M−1Bk,η,R and the inverse of the minimum singular value of M−1Bk,η,R, respectively. As
h → 0 for fixed k, we expect these approximations to converge by the following lemma combined
with (a) the fact that cond(M) is bounded independently of h for standard BEM spaces (see
[74, Theorem 4.4.7 and Remark 4.5.3] and [80, Corollary 10.6]), and (b) the fact that Bk,η,R is a
compact perturbation of a multiple of the identity when Γ is C1 by Part (ii) of Theorem 2.2.

Lemma 8.2. ([64, Lemma B.1].) Let Vn ⊂ L2(Γ) be a finite-dimensional space with real basis
{φj}nj=1. Given A : L2(Γ)→ L2(Γ), let A be defined by (A)j,k = (Aφk, φj)L2(Γ). Let Ph : L2(Γ)→
Vh be the orthogonal projection, and let

Ã := PhA|Vh .

(i) ∥∥M−1A
∥∥

2
≤
√

cond(M)
∥∥Ã
∥∥
L2(Γ)→L2(Γ)

where cond(M) := ‖M‖2‖M−1‖2, and if (M−1A)−1 exists, then
∥∥(M−1A)−1

∥∥
2
≤
√

cond(M)
∥∥Ã−1

∥∥
L2(Γ)→L2(Γ)

.

(ii) If Phφ→ φ as h→ 0 for all φ ∈ L2(Γ), then
∥∥Ã
∥∥
L2(Γ)→L2(Γ)

→ ‖A‖L2(Γ)→L2(Γ) as h→ 0;

if, in addition, A = aI +K, where a 6= 0 and K is compact, then
∥∥Ã−1

∥∥
L2(Γ)→L2(Γ)

→
∥∥A−1

∥∥
L2(Γ)→L2(Γ)

as h→ 0.

The numerical experiments were conducted with the software FreeFEM [48] using

• the interface of FreeFEM with BemTool2 and HTool3 to generate the dense matrices stem-
ming from the BEM discretisation of the considered operators, and

• the interface of FreeFEM with PETSc [9, 8] and SLEPc [49, 72] to solve singular value
problems; in particular, we used ScaLAPACK [15] to obtain the largest and smallest singular
values of M−1Bk,η,R and in Figure 8.6 we used the cross method to compute the largest
singular values of the Galerkin matrices of Dk, S0Hk, and SikHk.

2https://github.com/xclaeys/BemTool
3https://github.com/htool-ddm/htool
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8.3 Numerical results
With R = Sik and R = S0, the maximum singular value of M−1Bk,η,R and the inverse of the min-
imum singular value of M−1Bk,η,R (which equals the maximum singular value of (M−1Bk,η,R)−1)
are plotted in Figure 8.2 (circle and ellipse), Figure 8.3 (moon), Figure 8.4 (kite and square), and
Figure 8.6 (elliptic cavity). In the captions of the figures we abuse notation and write “σmax for
Bk,η,Sik

” and “1/σmin for Bk,η,Sik
”. The computed growth rates with k are summarised in Table

8.1 and compared with those in the bounds in §2.
We now discuss separately (i) the norms for all Ω− other than the elliptic cavity, (ii) the norms

of the inverses for all Ω− other than the elliptic cavity, and (iii) the norms and the norms of the
inverses for the elliptic cavity.

Circle Ellipse

Observed Expected Observed Expected

‖Bk,η,Sik
‖ ∼ 1 . 1 ∼ 1 . 1

‖(Bk,η,Sik
)−1‖ ∼ k0.34 . k1/3 ∼ k0.28 . k1/3

‖Bk,η,S0
‖ ∼ k0.94 . k ∼ k0.99 . k

Table 8.1: Comparison of the k-dependence of the computed norms for the circle (Figures 8.1a)
and the ellipse (Figure 8.1b) (column “Observed”) and the bounds in Section 2 (column “Expected”)

Moon

Observed Expected

‖Bk,η,Sik
‖ ∼ k0.15 . k1/6 log(k + 2)

‖(Bk,η,Sik
)−1‖ ∼ k0.41 . k2/3

‖Bk,η,S0
‖ ∼ k1.00 . k log(k + 2)

Table 8.2: Comparison of the k-dependence of the computed norms for the moon obstacle in
Figure 8.1e (column “Observed”) and the bounds in Section 2 (column “Expected”). (Note that the
bound on (Bk,η,Sik

)−1 from Theorem 2.3 strictly does not apply since Γ is not C∞.)

Kite Square

Observed Expected Observed Expected

‖Bk,η,Sik
‖ ∼ k0.21 . k1/4 log(k + 2) ∼ k0.16 . k1/4 log(k + 2)

‖(Bk,η,Sik
)−1‖ ∼ k0.41 . k2/3 ∼ k0.13 . k2/3

‖Bk,η,S0
‖ ∼ k1.00 . k log(k + 2) ∼ k0.98 . k log(k + 2)

Table 8.3: Comparison of the k-dependence of the computed norms for the kite (Figures 8.1c) and
the square (Figure 8.1d) (column “Observed”) and the bounds in Section 2 (column “Expected”).
(Note that the bound on (Bk,η,Sik

)−1 from Theorem 2.3 strictly does not apply to the square since
Γ is not C∞.)

Discussion of the norms of Bk,η,S0
and Bk,η,Sik

The computed norms of Bk,η,S0
and Bk,η,Sik

agree well with the theory for all obstacles apart from the square and the elliptic cavity, where
the norms of Bk,η,Sik

grow slightly slower than expected. The explanation of this discrepancy for
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the elliptic cavity is given below while for the square it appears that we have not computed large
enough frequencies to reach the asymptotic regime.

Figure 8.6 plots the norms of Bk,η,S0 and Bk,η,Sik
and the norms of their component parts,

i.e., S0Hk and Kk for Bk,η,S0 and SikHk and Kk for Bk,η,Sik
. For Bk,η,S0 we see that the

‖S0Hk‖L2(Γ)→L2(Γ) grows like k (as expected from Lemma 7.1) and dominates ‖Kk‖L2(Γ)→L2(Γ),
which grows just slightly slower than the k1/4 predicted by Theorem 3.1 (in this discussion we
ignore the log k terms in the bounds, since these are essentially impossible to see numerically).
For Bk,η,Sik

we see that ‖SikHk‖L2(Γ)→L2(Γ) is bounded independently of k (as expected from
Theorems 4.6 and 4.8) and Bk,η,Sik

is determined by ‖Kk‖L2(Γ)→L2(Γ).

Discussion of the norms of the inverses of Bk,η,S0
and Bk,η,Sik

Since S0 does not satisfy
Assumption 1.1, this paper does not prove any bounds on ‖(Bk,η,S0

)−1‖L2(Γ)→L2(Γ). However, for
all the considered Ω−, the norm of ‖(Bk,η,S0

)−1‖L2(Γ)→L2(Γ) grows with k at approximately at the
same rate as ‖(Bk,η,Sik

)−1‖L2(Γ)→L2(Γ).
For the curved domains (i.e., the circle and ellipse), the experiments show ‖(Bk,η,Sik

)−1‖L2(Γ)→L2(Γ)

growing approximately like k1/3, exactly as in the upper bound (2.4). The upper bound (2.5) for
general smooth nontrapping domains shows that ‖(Bk,η,Sik

)−1‖L2(Γ)→L2(Γ) grows at most like k2/3,
but the largest growth observed is k0.41 for both the moon and the kite.

Discussion of the experiments for the elliptic cavity. The left-hand plot of Figure 8.5
shows ‖Bk,η,S0‖L2(Γ)→L2(Γ) growing like k, which is as expected from the discussion above, and
‖Bk,η,Sik

‖L2(Γ)→L2(Γ) growing roughly like k1/6. The latter is the k-dependence one expects from
Theorem 3.1 for piecewise curved boundaries, even though Γ has two straight line segments, for
which the best existing bound is k1/4. The explanation is that the constants in these bounds (mul-
tiplying the algebraic powers of k) depend on the surface measure of these parts of the boundary
and thus we expect growth faster than k1/6 for large enough k.

Although Theorems 2.6 and 2.7 predict exponentially growth of ‖(Bk,η,S0)−1‖L2(Γ)→L2(Γ) and
‖(Bk,η,Sik

)−1‖L2(Γ)→L2(Γ) through k = kem,0, we do not see this in the right-hand plot of Fig-
ure 8.5. This feature is partially explained by the bound (2.6); indeed, this bound shows that
‖(Bk,η,Sik

)−1‖L2(Γ)→L2(Γ) is bounded polynomially in k for all k except an arbitrarily-small set,
demonstrating that the growth of ‖(Bk,η,Sik

)−1‖L2(Γ)→L2(Γ) is very sensitive to the precise value of
k. This result indicates that the exponential growth of ‖(Bk,η,Sik

)−1‖L2(Γ)→L2(Γ) through k = kem,0
is not captured in Figure 8.5 due to discretisation error; see [64] for further discussion and results
on this feature.

9 The choice of η: heuristic discussion and numerical exper-
iments

The bounds on ‖(Bk,η,R)−1‖L2(Γ)→L2(Γ) in Theorem 2.3 are proved under the assumption that η
is independent of k; the reason for this is that we only have upper bounds on ‖P−,η,RItD ‖L2(Γ)→L2(Γ)

for this choice of η (see Theorem 6.5).
The purpose of this section is to provide evidence that non-constant choices of η can give slower

rates of growth of the condition number and the number of GMRES iterations than constant η.
More specifically, we show the following.

• Under the assumption that ‖P−,η,RItD ‖L2(Γ)→L2(Γ) . |η|−1 (which is plausible because of
Lemma 6.6), the bounds in §2 indicate that cond(Bk,η,R) (defined by (2.11)) is smaller for
certain choices of |η| that decrease with k than for |η| ∼ 1. This is confirmed by numerical
experiments for the kite domain of Figure 8.1c.

• For the kite domain, when GMRES is applied to M−1Bk,η,R, the number of iterations grows
more slowly for certain non-constant choices of η than for constant η.

These observations are particularly interesting because (as recalled in Remark 2.4) [19, 17]
advocated that choosing η constant leads to a “small number”/“nearly optimal numbers” of GMRES
iterations.
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Figure 8.2: The computed norms for the circle and ellipse

Bounding the condition number assuming ‖P−,η,RItD ‖L2(Γ)→L2(Γ) ≤ C|η|−1.

Lemma 9.1. Assume that there exists k0 > 0 and C > 0 such that ‖P−,η,RItD ‖L2(Γ)→L2(Γ) ≤ C|η|−1

for all k ≥ k0. Then there exists k1 > 0 and C ′ > 0 such that for all k ≥ k1

cond(Bk,η,R) ≤ C ′
(
|η|
(
‖Kk‖L2(Γ)→L2(Γ) + 1

)
+ log k

)(
k
∥∥P+

NtD

∥∥
L2(Γ)→H1

k(Γ)
+

1

|η|

)
. (9.1)

Proof. ‖Bk,η,R‖L2(Γ)→L2(Γ) is bounded by a k- and η-independent multiple of the terms in the first
set of brackets on the right-hand side of (9.1) by the definition ofBk,η,R, Corollary 3.7, and Theorem
4.6. Furthermore, ‖B−1

k,η,R‖L2(Γ)→L2(Γ) is bounded by a multiple of the terms in the second set of
brackets on the right-hand side of (9.1) by (7.4), the assumption ‖P−,η,RItD ‖L2(Γ)→L2(Γ) ≤ C|η|−1,
Corollary 3.7, and the equality of norms (5.1).
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Figure 8.3: The computed norms for the moon obstacle

The k-dependence of |η| that minimises the upper bound in (9.1). Observe that
(
a|η|+ log k

)(
b+ |η|−1

)
= |η|ab+ a+ b log k + |η|−1 log k

achieves its minimum over |η| > 0 of

2(ab log k)1/2 + a+ b log k when |η| =
(

log k

ab

)1/2

.

Therefore, the upper bound in (9.1) is minimised when

|η| ∼
(

log k

k‖P+
NtD‖L2(Γ)→H1

k(Γ) ‖Kk‖L2(Γ)→L2(Γ)

)1/2

(9.2)

with this minimum equal

2
(
k log k

∥∥P+
NtD

∥∥
L2(Γ)→H1

k(Γ)
‖Kk‖L2(Γ)→L2(Γ)

)1/2

+‖Kk‖L2(Γ)→L2(Γ)+k log k
∥∥P+

NtD

∥∥
L2(Γ)→H1

k(Γ)
.

(9.3)
From here on, we ignore all factors of log k (i.e, we set each occurrence of log k to 1) and

assume that the bounds on
∥∥P+

NtD

∥∥
L2(Γ)→H1

k(Γ)
in Theorem 5.2 are sharp; recall that the bounds

on ‖Kk‖L2(Γ)→L2(Γ) in Theorem 3.1 are sharp modulo the factors of log k by [43, §3] and [47, §A].
When Ω− is a ball, inputting the bounds ‖P+

NtD‖L2(Γ)→H1
k(Γ) ∼ k−2/3 and ‖Kk‖L2(Γ)→L2(Γ) ∼ 1

into (9.2) and (9.3), we see that the optimal |η| is |η| ∼ k−1/6 and the corresponding right-hand
side of (9.1) ∼ k1/3. This is the same k-dependence of this right-hand side when |η| ∼ 1.

When Ω− is nontrapping, inputting the bounds ‖P+
NtD‖L2(Γ)→H1

k(Γ) ∼ k−1/3 and ‖Kk‖L2(Γ)→L2(Γ) ∼
k1/4 into (9.2) and (9.3), we see that the optimal |η| is |η| ∼ k−11/24 and the corresponding right-
hand side of (9.1) ∼ k2/3. However, under the choice |η| ∼ 1 the right-hand side of (9.1) ∼ k11/12,
which is larger.

In summary, these arguments indicate that the condition number of Bk,η,R may grow slower
with k for choices of η that decrease with k than for the standard choice that η ∈ R \ {0} is
independent of k. We now investigate this numerically for the specific example of the kite of
Figure 8.1c.
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Figure 8.4: The computed norms for the kite and the square

Computation of the condition number for the kite with varying η. Figure 9.1 plots the
computed condition number for η = 0.5, η = 0.5k−1/6, η = 0.5k−1/3, and η = 0.5k−1/2 for k ∈
(5, 640) (where the set up for these numerical experiments is as described in §8.2). In particular, the
condition numbers for both η = 0.5k−1/6 and η = 0.5k−1/3 are smaller than those for η = 0.5, and
they also grow with k at a slower rate; the condition number for η = 0.5k−1/2 grows at the same rate
with k as the condition number for η = 0.5. These results may seem surprising, since the arguments
above indicate that the optimal |η| for generic nontrapping Ω− is |η| ∼ k−11/24. However, these
arguments were based on the assumption that the bound ‖P+

NtD‖L2(Γ)→H1
k(Γ) . k−1/3 is sharp. The

fact that the computed growth of ‖(Bk,η,Sik
)−1‖L2(Γ)→L2(Γ) in Figure 8.1c is lower than expected

from Theorem 2.3 (see Table 8.3) indicates that ‖P+
NtD‖L2(Γ)→H1

k(Γ) for the kite may be smaller
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than k−1/3; this would mean that (from (9.2)) the optimal |η| is larger than k−11/24, which is
consistent with Figure 9.1.

Number of GMRES iterations for the kite with varying η. The left-hand plot in Figure
9.2 shows the number of iterations when GMRES is applied to M−1Bk,η,R for the kite with
η = 0.5k−α, for α = 0, 1/6, 1/3, 1/2, with k ∈ (5, 1280) and incoming plane wave at angle π to
the horizontal (i.e., â in §1.2 equals (−1, 0)). We apply GMRES to M−1Bk,η,R, i.e., the Galerkin
matrix preconditioned with the mass matrix, rather than Bk,η,R itself, since the former better
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inherits properties of the operator Bk,η,R at the continuous level; see Lemma 8.2. The number of
iterations is smallest for η = 0.5, although the rate of growth with k is smallest for η = 0.5k−1/6

over the range of k considered.
In the right-hand plot, we show the number of iterations for η = 0.5, η = 0.5k−1/6, η = k−1/6,

and η = 2k−1/6. Of these choices of η, the number of iterations is now lowest for η = k−1/6 for
64 ≤ k ≤ 1280 (observe that when k = 64, k−1/6 = 0.5) and the rate of growth of the number of
iterations for η = k−1/6 is lower than that for η = 0.5 for 64 ≤ k ≤ 1280.
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Figure 9.1: The computsed norms and condition number of Bk,η,R for the kite with different η

A Recap of layer potentials, jump relations, and Green’s in-
tegral representation

The single-layer and double-layer potentials, Sk and Kk respectively, are defined for φ ∈ L1(Γ) and
x ∈ Rd \ Γ by

Skϕ(x) =

∫

Γ

Φk(x, y)ϕ(y) ds(y) and Kkϕ(x) =

∫

Γ

∂Φk(x, y)

∂n(y)
ϕ(y) ds(y), (A.1)
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different η

where Φk(x, y) is the fundamental solution of the Helmholtz equation defined by

Φk(x, y) :=
i

4

(
k

2π|x− y|

)(d−2)/2

H
(1)
(d−2)/2

(
k|x− y|

)
=





i

4
H

(1)
0

(
k|x− y|

)
, d = 2,

eik|x−y|

4π|x− y| , d = 3,
(A.2)

where H(1)
ν denotes the Hankel function of the first kind of order ν. The fundamental solution of

the Laplace equation is defined by

Φ0(x, y) :=
1

2π
log
(
a|x− y|−1

)
, d = 2, :=

1

(d− 2)Cd|x− y|d−2
, d ≥ 3, (A.3)

where Cd is the surface area of the unit sphere Sd−1 ⊂ Rd and a ∈ R. If u is the solution to the
scattering problem (1.1), then Green’s integral representation implies that, for x ∈ Ω+,

u(x) = uI(x) +Kk
(
γ+u

)
(x)− Sk

(
∂+
n u
)
(x) = uI(x) +Kk

(
γ+u

)
(x); (A.4)

see, e.g., [25, Theorems 2.21 and 2.43]. The potentials (A.1) are related to the integral operators
(1.3) and (1.4) via the jump relations

γ±Sk = Sk, ∂±n Sk = ∓1

2
I +K ′k, γ±Kk = ±1

2
I +Kk, ∂±n Kk = Hk; (A.5)

see, e.g., [65, §7, Page 219]. We recall the mapping properties (see, e.g., [25, Theorems 2.17 and
2.18]), valid when Γ is Lipschitz, k ∈ C, and |s| ≤ 1/2,

Sk : Hs−1/2(Γ)→ Hs+1/2(Γ), Hk : Hs+1/2(Γ)→ Hs−1/2(Γ),

Kk : Hs+1/2(Γ)→ Hs+1/2(Γ), K ′k : Hs−1/2(Γ)→ Hs−1/2(Γ). (A.6)

B Geometric definitions
Definition B.1 (Nontrapping). Ω− ⊂ Rd is nontrapping if Γ is C∞ and, given R such that
Ω− ⊂ BR(0), there exists a T (R) < ∞ such that all the billiard trajectories (in the sense of
Melrose–Sjöstrand [67, Definition 7.20]) that start in Ω+ ∩ BR(0) at time zero leave Ω+ ∩ BR(0)
by time T (R).
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Definition B.2 (Smooth hypersurface). Γ ⊂ Rd is a smooth hypersurface if there exists Γ̃, a
compact, embedded, smooth, (d − 1)-dimensional submanifold of Rd, possibly with boundary, such
that Γ is an open subset of Γ̃, with Γ strictly away from ∂Γ̃, and the boundary of Γ can be written
as a disjoint union

∂Γ =

(
n⋃

`=1

Y`

)
∪ Σ,

where each Y` is an open, relatively compact, smooth embedded manifold of dimension d− 2 in Γ̃,
Γ lies locally on one side of Y`, and Σ is closed set with d − 2 measure 0 and Σ ⊂ ⋃nl=1 Yl. We
then refer to the manifold Γ̃ as an extension of Γ.

For example, when d = 3, the interior of a 2-d polygon is a smooth hypersurface, with Yi the edges
and Σ the set of corner points.

Definition B.3 (Curved). A smooth hypersurface is curved if there is a choice of normal so that
the second fundamental form of the hypersurface is everywhere positive definite.

Recall that the principal curvatures are the eigenvalues of the matrix of the second fundamental
form in an orthonormal basis of the tangent space, and thus “curved” is equivalent to the principal
curvatures being everywhere strictly positive (or everywhere strictly negative, depending on the
choice of the normal).

Definition B.4 (Piecewise smooth). A hypersurface Γ is piecewise smooth if Γ = ∪Ni=1Γi where
Γi are smooth hypersurfaces and Γi ∩ Γj = ∅.

Definition B.5 (Piecewise curved). A piecewise-smooth hypersurface Γ is piecewise curved if Γ
is as in Definition B.4 and each Γj is curved.
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