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ABSTRACT

Disentangled representation learning has undoubtedly benefited from objective
function surgery. However, a delicate balancing act of tuning is still required
in order to trade off reconstruction fidelity versus disentanglement. Building on
previous successes of penalizing the total correlation in the latent variables, we
propose TCWAE (Total Correlation Wasserstein Autoencoder). Working in the
WAE paradigm naturally enables the separation of the total-correlation term, thus
providing disentanglement control over the learned representation, while offering
more flexibility in the choice of reconstruction cost. We propose two variants
using different KL estimators and perform extensive quantitative comparisons on
data sets with known generative factors, showing competitive results relative to
state-of-the-art techniques. We further study the trade off between disentanglement
and reconstruction on more-difficult data sets with unknown generative factors,
where the flexibility of the WAE paradigm in the reconstruction term improves
reconstructions.

1 INTRODUCTION

Learning representations of data is at the heart of deep learning; the ability to interpret those
representations empowers practitioners to improve the performance and robustness of their models
(Bengio et al., 2013; van Steenkiste et al., 2019). In the case where the data is underpinned by
independent latent generative factors, a good representation should encode information about the data
in a semantically meaningful manner with statistically independent latent variables encoding for each
factor. Bengio et al. (2013) define a disentangled representation as having the property that a change
in one dimension corresponds to a change in one factor of variation, while being relatively invariant to
changes in other factors. While many attempts to formalize this concept have been proposed (Higgins
et al., 2018; Eastwood & Williams, 2018; Do & Tran, 2019), finding a principled and reproducible
approach to assess disentanglement is still an open problem (Locatello et al., 2019).

Recent successful unsupervised learning methods have shown how simply modifying the ELBO
objective, either re-weighting the latent regularization terms or directly regularizing the statistical
dependencies in the latent, can be effective in learning disentangled representation. Higgins et al.
(2017) and Burgess et al. (2018) control the information bottleneck capacity of Variational Autoen-
coders (VAEs, (Kingma & Welling, 2014; Rezende et al., 2014)) by heavily penalizing the latent
regularization term. Chen et al. (2018) perform ELBO surgery to isolate the terms at the origin of
disentanglement in β-VAE, improving the reconstruction-disentanglement trade off. Esmaeili et al.
(2018) further improve the reconstruction capacity of β-TCVAE by introducing structural depen-
dencies both between groups of variables and between variables within each group. Alternatively,
directly regularizing the aggregated posterior to the prior with density-free divergences (Zhao et al.,
2019) or moments matching (Kumar et al., 2018), or simply penalizing a high Total Correlation (TC,
(Watanabe, 1960)) in the latent (Kim & Mnih, 2018) has shown good disentanglement performances.

In fact, information theory has been a fertile ground to tackle representation learning. Achille & Soatto
(2018) re-interpret VAEs from an Information Bottleneck view (Tishby et al., 1999), re-phrasing it
as a trade off between sufficiency and minimality of the representation, regularizing a pseudo TC
between the aggregated posterior and the true conditional posterior. Similarly, Gao et al. (2019) use
the principle of total Correlation Explanation (CorEX) (Ver Steeg & Galstyan, 2014) and maximize
the mutual information between the observation and a subset of anchor latent points. Maximizing the
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mutual information (MI) between the observation and the latent has been broadly used (van den Oord
et al., 2018; Hjelm et al., 2019; Bachman et al., 2019; Tschannen et al., 2020), showing encouraging
results in representation learning. However, Tschannen et al. (2020) argued that MI maximization
alone cannot explain the disentanglement performances of these methods.

Building on the Optimal Transport (OT) problem (Villani, 2008), Tolstikhin et al. (2018) introduced
the Wasserstein Autoencoder (WAE), an alternative to VAE for learning generative models. Similarly
to VAE, WAE maps the data into a (low-dimensional) latent space while regularizing the averaged
encoding distribution. This is in contrast with VAEs where the posterior is regularized at each data
point, and allows the encoding distribution to capture significant information about the data while still
matching the prior when averaged over the whole data set. Interestingly, by directly regularizing the
aggregated posterior, WAE hints at more explicit control on the way the information is encoded, and
thus better disentanglement. The reconstruction term of the WAE allows for any cost function on the
observation space, opening the door to better suited reconstruction terms, for example when working
with continuous RGB data sets where the Euclidean distance or any metric on the observation space
can result in more accurate reconstructions of the data.

In this work, following the success of regularizing the TC in disentanglement, we propose to use the
Kullback-Leibler (KL) divergence as the latent regularization function in the WAE. We introduce
the Total Correlation WAE (TCWAE) with an explicit dependency on the TC of the aggregated
posterior. Using two different estimators for the KL terms, we perform extensive comparison with
succesful methods on a number of data sets. Our results show that TCWAEs achieve competitive
disentanglement performances while improving modelling performance by allowing flexibility in the
choice of reconstruction cost.

2 IMPORTANCE OF TOTAL CORRELATION IN DISENTANGLEMENT

2.1 TOTAL CORRELATION

The TC of a random vector Z ∈ Z under P is defined by

TC(Z) ,
dZ∑
d=1

Hpd(Zd)−Hp(Z) (1)

where pd(zd) is the marginal density over only zd and Hp(Z) , −Ep log p(Z) is the Shannon
differential entropy, which encodes the information contained in Z under P . Since

dZ∑
d=1

Hpd(Zd) ≤ Hp(Z) (2)

with equality when the marginals Zd are mutually independent, the TC can be interpreted as the
loss of information when assuming mutual independence of the Zd; namely, it measures the mutual
dependence of the marginals. Thus, in the context of disentanglement learning, we seek a low TC of
the aggregated posterior, p(z) =

∫
X p(z|x) p(x) dx, which forces the model to encode the data into

statistically independent latent codes. High MI between the data and the latent is then obtained when
the posterior, p(z|x), manages to capture relevant information from the data.

2.2 TOTAL CORRELATION IN ELBO

We consider latent generative models pθ(x) =
∫
Z pθ(x|z) p(z) dz with prior p(z) and decoder net-

work, pθ(x|z), parametrized by θ. VAEs approximate the intractable posterior p(z|x) by introducing
an encoding distribution (the encoder), qφ(z|x), and learning simultaneously θ and φwhen optimizing
the variational lower bound, or ELBO, defined in Eq. 3:

LELBO(θ, φ) , E
pdata(X)

[
E

qφ(Z|X)
[log pθ(X|Z)]−KL

(
qφ(Z|X) ‖ p(Z)

)]
≤ E
pdata(X)

log pθ(X)

(3)
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Following Hoffman & Johnson (2016), we can decompose the KL term in Eq. 3 as:

1

Nbatch

N∑
n=1

KL
(
qφ(Z|xn) ‖ p(Z)

)
= KL

(
q(Z,N) ‖ q(Z)p(N)

)
︸ ︷︷ ︸

i index-code MI

+ KL
(
q(Z) ‖ p(Z)

)
︸ ︷︷ ︸

ii marginal KL

(4)

where p(n) = 1
N , q(z|n) = q(z|xn), q(z, n) = q(z|n)p(n) and q(z) =

∑N
n=1 q(z|n) p(n). i

refers to the index-code mutual information and represents the MI between the data and the latent
under the join distribution q(z, n), and ii to the marginal KL matching the aggregated posterior to
the prior. While discussion on the impact of a high index-code MI on disentanglement learning is
still open, the marginal KL term plays an important role in disentanglement. Indeed, it pushes the
encoder network to match the prior when averaged, as opposed to matching the prior for each data
point. Combined with a factorized prior p(z) =

∏
d pd(zd), as it is often the case, the aggregated

posterior is forced to factorize and align with the axis of the prior. More specifically, the marginal KL
term in Eq. 4 can be decomposed the as sum of a TC term and a dimensionwise-KL term:

KL
(
q(Z) ‖ p(Z)

)
= TC

(
q(Z)

)
+

dZ∑
d=1

KL
(
qd(Zd) ‖ pd(Zd)

)
(5)

Thus maximizing the ELBO implicitly minimizes the TC of the aggregated posterior, enforcing the
aggregated posterior to disentangle as Higgins et al. (2017) and Burgess et al. (2018) observed when
strongly penalizing the KL term in Eq. 3. Chen et al. (2018) leverage the KL decomposition in Eq. 5
by refining the heavy latent penalization to the TC only. However, the index-code MI term in Eq. 4
seems to have little to no role in disentanglement (see ablation study of Chen et al. (2018)), potentially
arming the reconstruction performances (Hoffman & Johnson, 2016).

3 WAE NATURALLY GOOD AT DISENTANGLING?

In this section we introduce the OT problem and the WAE objective, and discuss the compelling
properties of WAEs for representation learning. Mirroring β-TCVAE decomposition, we derive the
TCWAE objective.

3.1 WAE

The Kantorovich formulation of the OT between the true-but-unknown data distribution PD and the
model distribution Pθ, for a given cost function c, is defined by:

OTc(PD, Pθ) = inf
Γ∈P(PD,Pθ)

∫
X×X

c(x, x̃) γ(x, x̃) dxdx̃ (6)

where P(PD, Pθ) is the space of all couplings of PD and Pθ; namely, the space of joint distributions
Γ on X × X whose densities γ have marginals pD and pθ. Tolstikhin et al. (2018) derive the WAE
objective by restraining this space and relaxing the hard constraint on the marginal using a soft
constraint with a Lagrange multiplier (see Appendix A for more details):

WD,c(θ, φ) , E
pD(x)

E
qφ(z|x)

E
pθ(x̃|z)

c(x, x̃) + λD
(
q(Z) ‖ p(Z)

)
(7)

where D is any divergence function and λ a relaxation parameter. The decoder, pθ(x̃|z), and the
encoder, qφ(z|x), are optimized simultaneously by dropping the closed-form minimization over the
encoder network, with standard stochastic gradient descent methods.

Similarly to the ELBO, objective 7 consists of a reconstruction cost term and a latent regularization
term, preventing the latent codes to drift away from the prior. However, WAE explicitly penalizes
the aggregate posterior. This motivates, following Section 2.2, the use of WAE in disentanglement
learning. Rubenstein et al. (2018) have shown promising disentanglement performances without
modifying the objective 7. Another important difference lies in the functional form of the reconstruc-
tion cost in the reconstruction term. Indeed, WAE allows for more flexibility in the reconstruction
term with any cost function allowed, and in particular, it allows for cost functions better suited to
the data at hand and for the use of deterministic decoder networks (Tolstikhin et al., 2018; Frogner
et al., 2015). This can potentially result in an improved reconstruction-disentanglement trade off as
we empirically find in Sections 4.2 and 4.1.
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3.2 TCWAE

In this section, for notation simplicity, we drop the explicit dependency of the distributions to their
respective parameters.

Following Section 2.2 and Eq. 5, we chose the divergence function, D, in Eq. 7, to be the KL diver-
gence and assume a factorized prior (e.g. p(z) = N (0dZ , IdZ )), obtaining the same decomposition
than in Eq. 5. Re-weighting each term in Eq. 5 with hyper-parameters β and γ, and plugging into
Eq. 7, we obtain our TCWAE objective:

WTC , E
p(xn)

E
q(z|xn)

[
E

p(x̃n|Z)
c(xn, x̃n)

]
+ βKL

(
q(Z) ‖

dZ∏
d=1

qd(Zd)
)

+ γ

dZ∑
d=1

KL
(
qd(Zd) ‖ pd(Zd)

)
(8)

Given the positivity of the KL divergence, the TCWAE in Eq. 8 is an upper-bound of the WAE
objective of Eq. 7 with λ = min(β, γ).

Eq. 8 can be directly related to the β-TCVAE objective of Chen et al. (2018):

−Lβ−TC , E
p(xn)

E
q(z|xn)

[
− log p(xn|Z)

]
+ βKL

(
q(Z) ‖

dZ∏
d=1

qd(Zd)
)

+ γ

dZ∑
d=1

KL
(
qd(Zd) ‖ pd(Zd)

)
+ αIq

(
q(Z,N); q(Z)p(N)

)
(9)

As already mentioned, the main differences are the absence of index-code MI and a different
reconstruction cost function. Setting α = 0 in Eq. 9 makes the two latent regularizations match but
breaks the inequality in Eq. 3. Matching the two reconstruction terms would be possible if we could
find a ground cost function c such that Ep(x̃n|Z)c(xn, x̃n) = − log p(xn|Z).

3.3 ESTIMATORS

While being grounded and motivated by information theory and earlier works on disentanglement,
using the KL as the latent divergence function, as opposed to other sampled-based divergences
(Tolstikhin et al., 2018; Patrini et al., 2018), presents its own challenges. Indeed, the KL terms are
intractable, and especially, we need estimators to approximate the entropy terms. We propose to use
two estimators, one based on importance weight-sampling Chen et al. (2018), the other on adversarial
estimation using the denisty-ratio trick (Kim & Mnih, 2018).

TCWAE-MWS

Chen et al. (2018) propose to estimate the intractable terms Eq log q(Z) and Eqd log qd(Z) in the
KL terms of Eq. 8 with Minibatch-Weighted Sampling (MWS). Considering a batch of observation
{x1, . . . xNbatch}, they sample the latent codes zi ∼ q(z|xi) and compute:

E
q(z)

log q(z) ≈ 1

Nbatch

Nbatch∑
i=1

log
1

N ×Nbatch

Nbatch∑
j=1

q(zi|xj) (10)

This estimator, while being easily computed from samples, is a biased estimator of Eq log q(Z).
Chen et al. (2018) also proposed an unbiased version, the Minibatch-Stratified Sampling (MSS).
However, they found that it did not result in improved performances, and thus, as Chen et al. (2018),
we chose to use the simpler MWS estimator. We call the resulting algorithm the TCWAE-MWS.
Other sampled-based estimators of the entropy or the KL divergence have been proposed (Rubenstein
et al., 2019; Esmaeili et al., 2018). However, we choose the solution of Chen et al. (2018) for 1) its
simplicity and 2) the similarities between the TCWAE and β-TCVAE objectives.

TCWAE-GAN

A different approach, similar in spirit to the WAE-GAN originally proposed by Tolstikhin et al.
(2018), is based on adversarial-training. While Tolstikhin et al. (2018) use the adversarial training
to approximate the JS divergence, Kim & Mnih (2018) use the density-ratio trick and adversarial

4



(a) Rec. (b) Latent reg. (c) Rec. vs latent reg. (d) Rec. vs MMD

Figure 1: Reconstruction and latent regularization terms as functions of β for the NoisydSprites data
set. (a): reconstruction error. (b): latent regularization term (MMD for WAE, KL for TCWAE). (c):
reconstruction error against latent regularization. (d): reconstruction error against MMD. Shaded
regions show ± one standard deviation.

training to estimate the intractable terms in Eq. 8. The the density-ratio trick (Nguyen et al., 2008;
Sugiyama et al., 2011) estimates the KL divergence as:

KL
(
q(z) ‖

dZ∏
d=1

qd(zd)
)
≈ E
q(z)

log
D(z)

1−D(z)
(11)

where D plays the same role than the discriminator in GANs and ouputs an estimate of the probability
that z is sampled from q(z) and not from

∏dZ
d=1 qd(zd). Given that we can easily sample from q(z),

we can use Monte-Carlo sampling to estimate the expectation in Eq. 11. The discriminator D is
adversarially trained alongside the decoder and encoder networks. We call this adversarial version
the TCWAE-GAN.

4 EXPERIMENTS

We perform a series of quantitative and qualitative experiments, starting with an ablation study on
the impact of using different latent regularization functions in WAEs followed by a quantitative
comparison of the disentanglement performances of our methods with existing ones on toy data sets
before moving to qualitative assessment of our method on more challenging data sets. Details of
the data sets, the experimental setup as well as the networks architectures are given in Appendix B.
In all the experiments we fix the ground-cost function of the WAE-based methods to be the square
Euclidean distance: c(x, y) = ‖x− y‖2L2

.

4.1 QUANTITATIVE ANALYSIS: DISENTANGLEMENT ON TOY DATA SETS

Ablation study of the latent divergence function We compare the impact of the different latent
regularization functions in WAE-MMD (Tolstikhin et al., 2018), TCWAE-MWS and TCWAE-GAN.
We take β = γ in the TCWAE objectives, with β ∈ {1, 2, 4, 6, 8, 10}, and report the results Figure 1
in the case of the NoisydSprites data set (Locatello et al., 2019). As expected, the higher the
penalization on the latent regularization (high β), the poorer the reconstructions. We can see that
the trade off between reconstruction and latent regularization is more sensible for TCWAE-GAN,
where a relatively modest improvement in latent regularization results in an important deterioration
of reconstruction performances while TCWAE-MWS is less sensible. This is better illustrated in
Figure 1c with a much higher slope for TCWAE-GAN than for TCWAE-MWS. WAE seems to
be relatively little impacted by the latent penalization weight. We note in Figure1b the bias of the
MWS estimator (Chen et al., 2018). Finally, we plot the reconstruction versus the MMD between the
aggregated posterior and the prior for all the models in Figure (1d). Interestingly, TCWAEs actually
achieved a lower MMD (left part of the plot) even if they are not being trained with that regularization
function. However, as expected given that the TCWAE do not optimized the reconstruction-MMD
trade off, the WAE achieved a better reconstruction (bottom part of the plot).
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Table 1: Reconstruction and disentanglement scores (± one standard deviation) for the different data
sets.

Method MSE MIG factorVAE SAP

TCWAE MWS (β = 6) 34.95 ± 0.90 0.323 ± 0.04 0.77 ± 0.01 0.072 ± 0.004
TCWAE GAN (β = 10) 11.39 ± 0.28 0.181 ± 0.01 0.76 ± 0.03 0.074 ± 0.003
Chen et al. (2018) (β = 6) 14.30 ± 2.43 0.235 ± 0.03 0.81 ± 0.03 0.070 ± 0.006
Kim & Mnih (2018) (γ = 10) 8.17 ± 0.86 0.24 ± 0.06 0.78 ± 0.03 0.077 ± 0.011

(a) dSprites
Method MSE MIG factorVAE SAP

WAE (λ = 2) 982.51 ± .20 0.019 ± .00 0.40 ± .09 0.011 ± .005

TCWAE MWS (β = 2) 998.17 ± 3.82 0.118 ± .08 0.57 ± .07 0.011 ± .005
TCWAE GAN (β = 4) 986.77 ± .48 0.055 ± .03 0.58 ± .04 0.017 ± .005
Chen et al. (2018) (β = 8) 998.67 ± 3.71 0.101 ± .06 0.53 ± .11 0.015 ± .007
Kim & Mnih (2018) (γ = 25) 988.10 ± .81 0.066 ± .03 0.52 ± .07 0.019 ± .008

(b) NoisydSprites
Method MSE MIG factorVAE SAP

WAE (λ = 6) 24.40 ± .43 0.014 ± .01 0.41 ± .04 0.010 ± .004

TCWAE MWS (β = 2) 39.53 ± .24 0.322 ± .00 0.73 ± .01 0.067 ± .001
TCWAE GAN (β = 8) 33.57 ± .57 0.158 ± .02 0.67 ± .04 0.039 ± .009
Chen et al. (2018) (β = 6) 43.64 ± .28 0.261 ± .11 0.67 ± .14 0.053 ± .020
Kim & Mnih (2018) (γ = 25) 33.23 ± .53 0.256 ± .07 0.69 ± .09 0.066 ± .013

(c) ScreamdSprites
Method MSE MIG factorVAE SAP

WAE (λ = 2) 3.85 ± .0.03 0.010 ± .000 0.38 ± .02 0.008 ± .004

TCWAE MWS (β = 2) 11.48 ± .26 0.029 ± .003 0.44 ± .03 0.017 ± .002
TCWAE GAN (β = 2) 6.87 ± .10 0.030 ± .007 0.46 ± .02 0.015 ± .001
Chen et al. (2018) (β = 4) 10.34 ± .06 0.030 ± .001 0.46 ± .02 0.016 ± .001
Kim & Mnih (2018) (γ = 100) 8.60 ± .15 0.038 ± .00 0.47 ± .02 0.015 ± .003

(d) smallNORB

Disentanglement performances We compare our methods with β-TCVAE (Chen et al., 2018),
FactorVAE (Kim & Mnih, 2018) and the original WAE-MMD (Tolstikhin et al., 2018) on the dSprites
(Matthey et al., 2017), NoisydSprites (Locatello et al., 2019), ScreamdSprites (Locatello et al., 2019)
and smallNORB (LeCun et al., 2004) data sets whose ground-truth generative-factors are known
and given in Table 3, Appendix B.1. We use three different disentanglement metrics to assess
the disentanglement performances: the Mutual Information Gap (MIG, Chen et al. (2018)), the
factorVAE metric (Kim & Mnih, 2018) and the Separated Attribute Predictability score (SAP, Kumar
et al. (2018)). We follow Locatello et al. (2019) for the implementation of these metrics. We use the
Mean Square Error (MSE) of the reconstructions to assess the reconstruction performances of the
methods. For each model, we use 6 different values for each parameter, resulting in thirty-six different
models for TCWAEs, and six for the remaining methods (see Appendix B.1 for more details).

Mirroring the benchmark methods, we first tune γ in the TCWAEs, regularizing the dimensionwise-
KL, subsequently focusing on the role of the TC term in the disentanglement performances. The
heat maps of the different scores for each method and data set are given Figures 5, 6, 7 and 8 in
Appendix C. As expected, while β controls the trade off between reconstruction and disentanglement,
γ affects the range achievable when tuning β. Especially, for γ > 1, better disentanglement is
obtained without much deterioration in reconstruction.

Table 1 reports the results, averaged over 5 random runs, for the four different data sets. For each
method, we report the best β taken to be the one achieving an overall best ranking on the four
different metrics (MSE, MIG, FactorVAE and SAP). Note that the performances of WAE on the
dSprites data set, both in term of reconstruction and disentanglement where significantly worse and
meaningless, thus, in order to avoid unfair extra tuning of the parameters, we chose not to include
them. TCWAEs achieve competitive performances across all the data sets, with top scores in several
metrics. Especially, the square Euclidean distance seems to improve the trade off and perform better
than the cross-entropy with color images (NoisydSprites, ScreamdSprites) but less so with black and
white images (dSprites). See Appendix C for more results on the different data sets.
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As a sanity check, we plot Figure 2 the latent traversals of the different methods on the smallNORB
data set. More specifically, in each sub-plot, we encode different observations (rows) and reconstruct
the latent traversals (columns) when varying one latent dimension at a time. Visually, all methods,
with the exception of WAE, learn to disentangle, capturing four different factors in line with the
ground-truth generative factors. More latent traversals plots as well as the models reconstructions
and samples for are given in Appendix C.

WAE TCWAE-MWS TCWAE-GAN β-TCVAE FactorVAE

Figure 2: Latent traversals for each model on smallNORB. The parameters are the same than the
ones reported in Tables 1 and 7. Each row i corresponds to latent zi and are order by increasing
KL
(

1/Ntest
∑
testset q(zi|x) ‖ p(zi)

)
.

Finally, we visualise the reconstruction-disentanglement trade off by plotting the different disen-
tanglement metrics against the MSE in Figure 3. As expected, when the TC regularization weight
is increased, the reconstruction deteriorates while the disentanglement improves up to a certain
point. Then, when too much penalization is put on the TC term, the poor quality of the recon-
structions prevents any disentanglement in the generative factors. Reflecting the results of Table 1,
TCWAE-MWS seems to perform better (top-left corner represents better reconstruction and dis-
entanglement). TCWAE-GAN presents better reconstruction but slightly lower disentanglement
performances (bottom left corner).

Figure 3: Disentanglement versus reconstruction on the ScreamdSprites data set. Annotations at each
point are values of β. Points with low reconstruction error and high scores (top-left corner) represent
better models.

4.2 QUALITATIVE ANALYSIS: DISENTANGLEMENT ON REAL-WORLD DATA SETS

We train our methods on 3Dchairs (Aubry et al., 2014) and CelebA (Liu et al., 2015) whose generative
factors are not known and qualitatively find that TCWAEs achieve good disentanglement. Figure 4
shows the latent traversals of four different factors learned by the TCWAEs, while Figures 16 and
18 in Appendix D show the models reconstructions and samples. Visually, TCWAEs manage to
capture different generative factors while retaining good reconstructions and samples. This confirms
our intuition that the flexibility offered in the construction of the reconstruction term, mainly the
possibility to chose the reconstruction cost function and use deterministic decoders, improves the
reconstruction-disentanglement trade off. In order to assess the quality of the reconstructions, we
compute the MSE of the reconstructions and the FID scores (Heusel et al., 2017) of the reconstructions
and samples. Results are reported in Table 2. TCWAEs indeed beat their VAEs counterparts in both
data sets. It is worth noting that, while the performances of FactorVAE in Table 2 seem good, the
inspection of the reconstructions and samples in Appendix D shows that FactorVAE in fact struggle
to generalize and to learn a smooth latent manifold.
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Figure 4: Latent traversals for TCWAE-MWS and TCWAE-GAN. Each line corresponds to one input
data point. We vary evenly the encoded latent codes in the interval [−4, 4].

Table 2: MSE and FID scores for the different data sets. Details of the methodology is given in
Appendix B

3D chairs CelebA

Method MSE Rec. Samples MSE Rec. Samples

TCWAE-MWS 45.8 ± 4.72 1.227 1.821 147.5 ± 33.58 1.204 1.264
TCWAE-GAN 29.8 ± 3.46 0.518 0.362 129.8 ± 34.45 1.003 0.975
Chen et al. (2018) 43.0 ± 4.85 1.346 1.845 180.8 ± 51.1 1.360 1.411
Kim & Mnih (2018) 42.1 ± 7.58 0.895 0.684 201.4 ± 51.84 1.017 0.982

5 CONCLUSION

Leveraging the surgery of the KL regularization term of the ELBO objective, we design a new
disentanglement method based on the WAE objective whose latent divergence function is taken to be
the KL divergence between the aggregated posterior and the prior. The WAE framework naturally
enables the latent regularization to depend explicitly on the TC of the aggregated posterior, quantity
previously associated with disentanglement. Using two different estimators of the KL terms, we show
that our methods achieve competitive disentanglement on toy data sets. Moreover, the flexibility in
the choice of the reconstruction cost function offered by the WAE framework makes our method
more compelling when working with more challenging data sets.
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A WAE DERIVATION

We recall the Kantorovich formulation of the OT between the true-but-unknown data distribution PD
and the model distribution Pθ, with given cost function c:

OTc(PD, Pθ) = inf
Γ∈P(PD,Pθ)

∫
X×X

c(x, x̃) γ(x, x̃) dx dx̃ (12)

where P(PD, Pθ) is the space of all couplings of PD and Pθ:

P(PD, Pθ) =

{
Γ
∣∣∣ ∫
X
γ(x, x̃) dx̃ = pD(x),

∫
X
γ(x, x̃) dx = pθ(x̃)

}
(13)

Tolstikhin et al. (2018) first restrain the space of couplings to the joint distributions of the form:

γ(x, x̃) =

∫
Z
pθ(x̃|z) q(z|x) pD(x) dz (14)

where q(z|x), for x ∈ X , plays the same role as the variational distribution in variational inference.

While the marginal constraint on x (first constraint in Eq. 13) in Eq. 14 is satisfied by construction,
the second marginal constraint (that over x giving pθ in in Eq. 13) is not guaranteed. A sufficient
condition is to have for all z ∈ Z: ∫

X
q(z|x) pD(x) dx = p(z) (15)

Secondly, Tolstikhin et al. (2018) relax the constraint in Eq. 15 using a soft constraint with a Lagrange
multiplier:

Ŵc(PD, Pθ) = inf
q(Z|X)

[ ∫
X×X

c(x, x̃) γ(x, x̃) dx dx̃+ λD
(
q(Z) ‖ p(Z)

)]
(16)

where D is any divergence function, λ a relaxation parameter, γ is defined in Eq. 14 and q(Z) is the
aggregated posterior as define in Section 2. Finally, they drop the closed-form minimization over the
variational distribution q(z|x), to obtain the WAE objective, as defined in Section 3.1:

WD,c(θ, φ) , E
pD(X)

E
qφ(z|x)

E
pθ(x̃|z)

c(x, x̃) + λD
(
q(Z) ‖ p(Z)

)
≈ E
p(xn)

E
qφ(z|xn)

E
pθ(x̃n|z)

c(x, x̃n) + λD
(
q(Z) ‖ p(Z)

)
(17)

B IMPLEMENTATION DETAILS

B.1 EXPERIMENTAL SETUP

We train and compare our methods on four different data sets, two with known ground-truth generative
factors (see Table 3): dSprites (Matthey et al., 2017) with 737,280 binary, 64 × 64 images and
smallNORB (LeCun et al., 2004) with 48,600 greyscale, 64 × 64 images; and two with unknown
ground-truth generative factors: 3Dchairs (Aubry et al., 2014) with 86,366 RGB, 64× 64 images and
CelebA (Liu et al., 2015) with 202,599 RGB 64× 64 images.

Table 3: Ground-truth generative-factors of the dSprites and smallNORB data sets.

data set Generative factors (number of different values)

dSprites and variations Shape (3), Orientation (40), Position X (32), Position Y (32)
smallNORB categories (5), lightings (6), elevations (9), azimuths (18)

We use a batch size of 64 in Section 4.2, while in the main experiments of Section 4.1, we take
a batch size of 100. In the ablation study of Section 4.1, we use a bigger batch size of 256 in
order to reduce the impact of the bias of the MWS estimator (Chen et al. (2018) however show that
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Table 4: Hyper parameters values ranges used in the different Sections.

Method Section 4.2 Section 4.1

TCWAE-MWS {1, 2, 4, 6, 8, 10}2 {1, 2, 5, 10, 15, 20}2
TCWAE-GAN {1, 2, 4, 6, 8, 10}2 {1, 2, 5, 10, 20, 50}2
β-TCVAE {1, 2, 4, 6, 8, 10} {1, 2, 5, 10, 15, 20}
FactorVAE {1, 10, 25, 50, 75, 100} {1, 2, 5, 10, 20, 50}

there is very little impact on the performance of the MWS when using smaller batch size). For all
experiments, we use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.0005, beta1
of 0.9, beta2 of 0.999 and epsilon of 0.0008 and train for 300,000 iterations. For all the data sets
of Section 4.1, we take the latent dimension dZ = 10, while we use dZ = 16 for 3Dchairs and
dZ = 32 for CelebA. We use Gaussian encoders with diagonal covariance matrix in all the models
and deterministic decoder networks when possible (WAE-based methods). We follow Locatello et al.
(2019) for the architectures in all the experiments expect for CelebA where we follow Tolstikhin
et al. (2018) (details of the networks architectures given Section B.2). We use a (positive) mixture of
Inverse MultiQuadratic (IMQ) kernels and the associated reproductive Hilbert space to compute the
MMD when it is needed (WAE and ablation study of Section 4.1).

The different parameter values used for each experiment are given Table 4. In Section 4.1, we use
a validation run to select the parameters values and report the MSE and FID scores on a test run.
MSE are computed on a test set of size 10,000 with batch size of 1,000, while we follow Heusel et al.
(2017) for the FID implementation: we first compute the activation statistics of the features maps on
the full test set for both the reconstruction, respectively samples, and the true observations. We then
compute the Frechet distance between two Gaussian with the computed statistics.

B.2 MODELS ARCHITECTURES

The Gaussian encoder networks, qφ(z|x) and decoder network, pθ(x|z), are parametrized by neural
networks as follow:

pθ(x|z) =

{
δfθ(z) if WAE based method,
N
(
µθ(z),σ2

θ(z)
)

otherwise.

qφ(z|x) =N
(
µφ(x),σ2

φ(x)
)

where fθ , µθ , σ2
θ , µφ and σ2

φ are the outputs of convolutional neural networks. All the experiments
use the architectures of Locatello et al. (2019) except for CelebA where we use the architecture
inspired by Tolstikhin et al. (2018). The details for the architectures are given Table 5.

All the discriminator networks, D, are fully connected networks and share the same architecture
given Table 5. The optimisation setup for the discriminator is given Table 6.
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Table 5: Networks architectures

Encoder Decoder Discriminator
Input: 64× 64× c Input: dZ Input: dZ
CONV. 4× 4× 32 stride 2 ReLU FC 256 ReLU FC 1000 ReLU
CONV. 4× 4× 32 stride 2 ReLU FC 4× 4× 64 ReLU FC 1000 ReLU
CONV. 4× 4× 64 stride 2 ReLU CONV. 4× 4× 64 stride 2 ReLU FC 1000 ReLU
CONV. 4× 4× 64 stride 2 ReLU CONV. 4× 4× 32 stride 2 ReLU FC 1000 ReLU
FC 256 Relu CONV. 4× 4× 32 stride 2 ReLU FC 1000 ReLU
FC 2× dZ CONV. 4× 4× c stride 2 FC 1000 ReLU

FC 2

(a) Locatello et al. (2019) architectures

Encoder Decoder Discriminator
Input: 64× 64× c Input: dZ Input: dZ
CONV. 4× 4× 32 stride 2 BN ReLU FC 8× 8× 256 BN ReLU FC 1000 ReLU
CONV. 4× 4× 64 stride 2 BN ReLU CONV. 4× 4× 128 stride 2 BN ReLU FC 1000 ReLU
CONV. 4× 4× 128 stride 2 BN ReLU CONV. 4× 4× 64 stride 2 BN ReLU FC 1000 ReLU
CONV. 4× 4× 256 stride 2 BN ReLU CONV. 4× 4× 32stride 2 BN Relu FC 1000 ReLU
FC 2× dZ CONV. 4× 4× c FC 1000 ReLU

FC 1000 ReLU
FC 2

(b) CelebA networks architectures

Table 6: FactorVAE discriminator setup

Parameter Value

Learning rate 1e−4 (Section 4.1) / 1e−5 (Section 4.2)
beta 1 0.5
beta 2 0.9
epsilon 1e-08
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C QUANTITATIVE EXPERIMENTS

HYPER PARAMETER TUNING

Figure 5: Heat maps for the different scores on dSprites.

Figure 6: Heat maps for the different scores on NoisydSprites.

Figure 7: Heat maps for the different scores on ScreamdSprites.

Figure 8: Heat maps for the different scores on smallNORB.
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Table 7: γ values for methods for each data set.

Method dSprites NoisydSprites ScreamdSprites smallNORB

TCWAE MWS 2 2 1 1
TCWAE GAN 1 1 10 2

DISENTANGLEMENT SCORES vs β

For each method, we plot the distribution (over five random runs) of the different metrics for different
β values.

Figure 9: Violin plots of the different scores versus γ on dSprites.
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Figure 10: Violin plots of the different scores versus γ on NoisydSprites.

Figure 11: Violin plots of the different scores versus γ on ScreamdSprites.
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Figure 12: Violin plots of the different scores versus γ on smallNORB.

RECONSTRUCTIONS AND SAMPLES
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(a) Reconstructions

(b) Samples

Figure 13: Samples and reconstructions for each model on the NoisydSprites. (a): Reconstructions.
Top-row: input data, from second-to-top to bottom row: WAE, TCWAE-MWS, TCWAE-GAN ,
β-TCVAE, FactorVAE. (b) Samples. From top to bottom row: WAE, TCWAE-MWS, TCWAE-GAN,
β-TCVAE, FactorVAE. Parameters are the ones reported in Tables 1 and 7
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(a) Reconstructions

(b) Samples

Figure 14: Same than Figure 13 but for ScreamdSprites.
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(a) Reconstructions

(b) Samples

Figure 15: Same than Figure 13 but for smallNORB.
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D QUALITATIVE EXPERIMENTS
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Figure 16: Reconstructions (left quadrants) and samples (right quadrants) for TCWAE-MWS (top
quadrants) and TCWAE-GAN (bottom quadrants).
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Figure 17: Reconstructions (left quadrants) and samples (right quadrants) for β-TCVAE (top quad-
rants) and FactorVAE (bottom quadrants).
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Figure 18: Same as Figure 16 for the CelebA data set.

23



β
-T

C
VA

E
(β

=
10

)

Reconstructions Samples

Fa
ct

or
VA

E
(γ

=
2
0)

Figure 19: Same as Figure 18 for β-TCVAE (top quadrants) and FactorVAE (bottom quadrants).
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