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Abstract 

Background: Manual screening of citation records could be reduced by using machine 
classifiers to remove records of very low relevance. This seems particularly feasible for 
update searches, where a machine classifier can be trained from past screening decisions. 
However, feasibility is unclear for broad topics. Aim: To evaluate the performance and 
implementation of machine classifiers for update searches of public health research. 
Methods: Two case studies. The first study evaluates the impact of using different sets of 
training data on classifier performance, comparing recall and screening reduction with a 
manual screening 'gold standard'. The second study uses screening decisions from a review to 
train a classifier that is applied to rank the update search results. A stopping threshold was 
applied in the absence of a gold standard. Time spent screening titles and abstracts of 
different relevancy-ranked records was measured. Results: Study one: Classifier performance 
varies according to the training data used; all custom-built classifiers had a recall above 93% 
at the same threshold, achieving screening reductions between 41% and 74%. Study two: 
applying a classifier provided a solution for tackling a large volume of search results from the 
update search, and screening volume was reduced by 61%. A tentative estimate indicates 
over 25 hours screening time was saved. Conclusions: Custom-built machine classifiers are 
feasible for reducing screening workload from update searches across a range of public health 
interventions, with some limitation on recall. Key considerations include selecting a training 
dataset, agreeing stopping thresholds and processes to ensure smooth workflows.  

Keywords –Information retrieval; Supervised machine learning; Systematic Reviews as 
Topic; Update search;  

Introduction 

Identifying research for inclusion into systematic reviews and research registers with a wide 
public health intervention focus can involve sensitive searching to retrieve a high recall of a 
wide range of literature1,2. This also entails screening thousands of irrelevant citation records, 
which takes considerable time if undertaken manually. Machine learning is a possible way of 
reducing workload as it can be used to rank the records by relevance so that those of very low 
relevance are not manually screened.3 Machine learning requires data from which to 'learn', 
so one promising use scenario is in the case of update searches, where previous screening 
decisions applied in the original review are available. This is particularly appealing for 
research topics where systematic literature searches yield many irrelevant records. 
 
The model of identifying studies for systematic reviews is based upon retrieving citation 
records identified from a literature search followed by screening their titles and abstracts for 
relevance against pre-defined eligibility criteria.Those that meet the criteria are screened 
again based on the full-text publication. In a traditional approach, humans screen all the 
records retrieved from a systematic search, within the time and resource available. The 
literature search strategy is designed in a way to achieve a manageable volume of records 
from the search results for human screening. Approaches to reduce the volume of records for 
screening include adjusting search terms and search syntax, the number of resources 
searched, or other parameters such as date limits. This approach is particularly challenging 
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where a search yields relatively high volumes of irrelevant citation records, and there is no 
way to modify the search strategy without reducing recall. Machine learning has the potential 
to help here by ranking the search results returned according to relevance, with those deemed 
highly likely to be irrelevant not requiring human assessment. In both systematic searching 
and machine learning, there is uncertainty around any research that is missed, and each 
approach requires judgements on implementation. 
 
In this paper, we present two case studies where custom-built machine classifiers (generated 
from project-specific datasets) were applied to update searches that aimed to identify a broad 
range of public health intervention research. We begin by briefly describing the custom-built 
classifiers and their application to update searches followed by the case studies. The first case 
study compares recall and screening reduction obtained when using different classifiers 
against gold standards of manual screening. The second study reflects on applying a classifier 
for a systematic review update search, and applying a stopping threshold to cease manual 
screening in the absence of a gold standard.  
 
Background: Developing and applying machine classifiers for update searches 
 
Machine classifiers are a type of 'supervised' machine learning which depend upon training 
data upon which to 'learn'. In our case studies, they are 'trained' using screening data 
generated from human screeners. A sufficiently large volume of screening data is needed to 
achieve a good classifier performance. Some machine classifiers have been developed from 
large sets of data to recognise certain characteristics such as study design. For example, a 
machine classifier for identifying randomised controlled trials (RCTs) has been developed 
from over 280,000 health-related citation records that were classified by humans in the 
Cochrane Crowd.4 By applying a threshold to remove records that are highly unlikely to be 
describing RCTs, at least 40% of records were able to be discarded from a typical search 
without undertaking manual screening, while achieving over 99% recall.4 However, as this 
classifier can only identify RCTs in health research, it cannot be used to identify other study 
designs5 or achieve similar recall of RCTs in other domains (e.g. we observed this from 
retrospectively applying it to RCTs in a systematic review of education research, where 
performance was unacceptably low).  
 
Unfortunately, large quantities of high quality training data are not available for many use 
scenarios. Machine learning can still be useful though, and in the case of update searches, can 
utilise the screening data generated from the original search(es). We describe these as 
'custom-built' classifiers, as they are trained on use-specific data, and are not intended to 
generalise beyond their specific project. While they tend not to have the scale of training data 
that was available in, for example the RCT Classifier above5 (and so might not be as 
accurate), they have the potential to be more tailored for the task in hand; for example, in our 
use cases, they can cover a wider range of study designs.  
 
When applied to 'unseen' records, a machine classifier can output a score for each record 
indicating how relevant it is to the class of interest (e.g. an RCT classifier will rank a record 
on how likely it is to describe an RCT). The score output is on a continuous scale rather than 
a binary decision of relevance. This score can then be converted into a binary decision by 



 
 

applying a 'threshold', below which the citation records will not be screened. Applying a 
threshold is a key challenge when using any machine classifier in order to maximise recall 
and reduce manual workload. Decisions might be informed by user-assessment, heuristics or 
statistical approaches6.  
 
Using a machine classifier for an update search is feasible where the scope of the update 
search is unchanged from the original search, and where there is no shift in terminology used 
in the research field, and if the training data seems 'large enough'7. This approach may be less 
feasible where the data from the original search have a different scope to the update, such as 
in cases where there is a 'concept drift' from changes in the research team, the searches, and 
aspects of the review question.3,8  
 

There are a variety of different methods for machine classification 3,9 for example, support-
vector machine (SVM), Naïve Bayes, neural networks and ensemble methods. Convolutional 
neural networks (CNNs) have been shown to have a marginally better performance than 
SVM for classifying RCTs though this also depends on the model parameters chosen, the 
data available, and the threshold used to determine likely relevance.4 It is not the intention in 
this paper to evaluate these different methods though, and their performance can depend on 
context. Wallace et al.7 suggest using a ten-fold cross validation analysis to assess the 
performance of a classifier model before applying it to an update search. They suggest the 
training data are split so that 90% trains a classifier that is then tested on the remaining 10%, 
with the process repeated ten times. Performance is estimated as the average of results across 
the ten tests.  
 
Shekelle et al.10 used machine classifiers for three systematic review updates compared with a 
manual screening approach. The authors trained the classifier based on inclusion decisions in 
the final report, and found that two studies were missed in three reviews, and that the volume 
of citation records for screening was reduced by between 67% and 83%. They suggest that 
the two studies missed did not alter the review conclusions or the strength of the evidence. 
Wallace et al.7 estimated a screening reduction of between 70-90% for four update searches, 
and one study was missed.These studies show that machine learning is a promising approach 
especially where the volume of records needing to be screened might otherwise be 
prohibitive. Large reductions in screening are inevitably related to the precision of the search 
results in individual cases. As systematic review searches within health research have an 
estimated precision of 3% at full-text inclusion,11 there is an opportunity for time savings 
from not screening irrelevant citation records in this field. For public health reviews the 
precision of searches may be lower, due to the language used and the comparatively lower 
use of technical jargon. For example, one of the case studies presented in this paper is a 
systematic map of public health interventions by community pharmacies12 . The precision of 
the original search was 1%, based upon 21,329 records screened to locate 255 relevant 
papers. The interventions are each are described by a wide range of terminology (i.e. they are 
described by many different words which may not be distinctive to a particular context), and 
the low precision partly relates to the broad scope of the research considered relevant, the 
diffuse terminology used to describe it, and its broad classification within information 
systems.  
 
Applying machine classifiers to update searches on public health interventions is appealing, 
because of the large numbers of citation records retrieved, though there are few available 
evaluations so their performance on diffuse topics is uncertain. Questions on their utility 



 
 

include determining an optimal quantity of training data, assessing recall performance, and 
the workload saved within a given stopping threshold. Questions on implementation include 
practical considerations in applying the tool and reporting a transparent workflow of study 
identification. 
 
In the remainder of this paper we present two case studies that utilise machine classifiers to 
identify interventions in public health that can inform the above research gaps. The case 
studies have specific and different purposes. The first case study compares the utility of 
custom-built classifiers and the RCT classifier developed from the Cochrane Crowd dataset 
for identifying controlled trials in public health. It uses manually-screened citation records as 
gold standards. The second case study considers both the utility and implementation of using 
machine classifiers in an update search in the absence of a gold standard and where a 
threshold for stopping manual screening was developed and applied. We present each study 
separately, followed by a combined discussion and conclusion.  
 
Case study 1: Comparing performance of classifiers 

Background 

The Trials Register of Promoting Health Interventions (TRoPHI)13 contains citations 
describing randomised and non-randomised controlled trials of health promotion and public 
health. Since 2004, the register has been populated from routine searches and from research 
obtained while conducting systematic reviews. Its purpose is to facilitate the gathering of 
evidence in health promotion research. As of December 2020, the database contains over 
14,000 citation records that meet the register's eligibility criteria. The eligibility criteria are 
applied to the title and abstract citation record by one human screener. Records that describe 
health promotion effectiveness reviews are assessed for inclusion in a separate database, 
Database of Promoting Health Effectiveness Reviews (DoPHER)14. 

Aim 

To compare the performance of machine classifiers developed from different training sets in 
terms of highest recall and highest screening reduction. The results inform which classifier to 
use for update searches for the TRoPHI database of public health interventions.  

Methods 
 
This case study compares the performance of four classifiers: the RCT Classifier described 
above that was built from data generated by Cochrane Crowd; and three custom-built 
classifiers that were built from data previously generated within the TRoPHI register. For the 
three custom-built classifiers, training and test datasets of human-coded citation records 
screened using the TRoPHI register eligibility criteria were used as a gold standard. These 
records (n= 19,759) were from searches undertaken between January 2012 and June 2013, 
and had been manually assigned to one of multiple options relating to exclude and include 
(Table 1). The three classifiers were trained from the same dataset of records, but differed in 
terms of which parameters (screening decisions) informed the training for inclusion as 
follows: Custom 1: meets topic and any study design; Custom 2: meets topic and study 
design is either a controlled trial or intervention effectiveness review; Custom 3 meets topic 
and is a controlled trial. (see Table 2, column 2). We refer to the three custom-built classifiers 
as Custom 1, Custom 2, and Custom 3, respectively. 
 



 
 

These were built within the machine classifier function available within EPPI-Reviewer 4.15 
This classifier utilises the popular 'sci-kit-learn' machine learning library and is written in 
python and deployed on the Azure Machine Learning platform. The decisions made in text 
preparation can often have a bigger impact on classifier performance than the selection of any 
particular algorithm. Different options for text preprocessing were evaluated when it was 
initially developed, and it was found that a "bag-of-words" approach using tri-grams without 
word stemming provided the most consistently high and generalisable performance. Stop 
words listed in the PubMed stop-word list are removed. In our use case, this permits the 
classifier to recognise "randomized controlled trial" as a specific term, something which 
would be lost if uni-or bi-grams were chosen. The lack of stemming is helpful too, in that it 
enables the model to be 'aware' of the difference between records that describe "randomized 
controlled trials" and a single "randomised controlled trial" – a distinction that would be lost 
if words were stemmed. This of course helps the model to distinguish between discussions of 
multiple trials – for example in systematic reviews – and presentations of the results of a 
single trial. The approach we used in these case studies was to use the 'SGDClassifier', which 
can be used to implement logistic regression and SVM models. In our case, we used the 
logistic regression model and multipled the output probabilities by 100 to give the relevance 
scores presented in this paper.16 

 
The above four classifiers were evaluated by applying to three separate datasets of records, 
which were generated from searches carried out during 2008, 2010 and between July 2013 
and 2015. These datasets are referred to as 'A', 'B', and 'C'. Table 1 describes the datasets and 
shows the distribution of the exclude and include codes within the training and test sets. 
Duplicate-checking was undertaken between each dataset to avoid overlap of samples. The 
classifiers generated a relevance ranking score for each citation in the test set of between 0 
and 99, where 99 is highly relevant. A threshold was applied to exclude those that ranked as 
having 'very low relevance', between 0-10. Precision and recall of RCTs and non-randomised 
controlled trials (non-RCTs) in the test set and screening reduction was calculated as defined 
in Box 1.  
 
Box 1 Definitions of the performance parameters 

Precision = relevant items found with relevance score >10 /total number of items with score 
>10 

Recall = relevant items found with relevance score >10/all relevant items that exist 

Screening reduction = % of items with a relevance score 0- 10 

Results  

Table 2 shows the performance of the classifiers for the controlled trials on the test sets. The 
RCT classifier achieved at least 99% recall across all samples, Custom 1 had marginally 
better recall of RCTs for two of the three test sets. All classifiers achieved at least 98% recall 
of RCTs. For recall of non-RCTs, the custom-built classifiers performed better than the RCT 
classifier, with at least 93% recall. This is as expected, as the RCT classifier as it was not 
designed for this purpose.  

Screening reduction across the classifiers ranged from 41-65% for the test sample A, and 
from 44-73% across test samples B and C. For the custom-built classifiers there is a trade-off 
between higher screening reductions and lower recall, and this trend is more marked for non-



 
 

RCTs, Furthermore, there is variation between the results of the test sets for each classifier, 
particularly in identifying non-RCTs. It is possible this is owing to the wide variation in 
terminology of non-RCTs combined with the relatively small number of studies that are non-
RCTs in the training and test sets. The classifiers were trained on 220 non-RCTs, compared 
with 892 RCTs. The RCT classifier had a lower precision of RCTs, and lower screening 
reduction compared with Custom 2 and 3, indicating the influence of subject domain in 
contributing to performance. 

Since this analysis, the Custom 2 classifier has routinely been applied to update searches of 
the trials register. While the recall is less than Custom 1, it achieves a higher screening 
reduction. It may be possible to boost performance by training a new classifier using citation 
records with screening data generated since this study was undertaken.  

Case study 2: Implementing a machine-classifier within a systematic review workflow 

Background 

An 18-month update search was undertaken for a systematic map of public health service 
provision by community pharmacies, prior to publication12. The map summarises research 
studies that examine the effectiveness and appropriateness of community pharmacies in 
providing public health services to local populations. An update search was considered 
necessary as we anticipated a growth of research in this area. The update search yielded 
23,208 additional records after an initial removal duplicate records that had been 
identified in the original review. This search yield was higher than obtained for the 
original search (21,329 records). The search yield contained many irrelevant items, 
though there was no clear way to reduce the number of records it generated to lie within 
the resources available for manual screening. One option was to re-construct and test the 
entire search to try to reduce the yield, and another option was to train and apply a 
machine classifier in order to reduce manual screening. Both options required decisions 
on setting limits, either setting limits around the searches or setting limits on when to 
cease screening. We considered the latter approach as the most feasible.  

Locating literature on community pharmacy public health provision is challenging. The 
literature search was based on two concepts: 'community pharmacy' and 'public health', and 
each are described by diffuse terminology. For example, retail pharmacies located on 
shopping streets or in supermarkets may not be labelled as a community pharmacy, and they 
provide a variety of services within the remit of public health. Public health in this context 
concerns many interventions to promote a healthy lifestyle, including services for diabetes 
and cardiovascular health, immunisations, sexual health, substance misuse and antimicrobial 
resistance awareness, among others. These services include capacity-building interventions, 
such as providing health champions to engage with service providers and local communities, 
and individually-delivered interventions such as health education to promote a healthy 
lifestyle or reduce specific health conditions. Prior to the update, the original database search 
was checked against relevant studies that were identified from outside the database search to 
assess why they were not located from the database searches. This informed an expansion of 
the update search by searching additional sources (Emerging Sources Citation Index, 
International Pharmaceutical Abstracts and additional websites) and removing certain 
database limits that were originally applied in some of the health database searches in order 
to reduce the volume of results. Therefore, the search was updated with the entire timeframe 



 
 

of the review, from 2000 to 2017. The scope of the review, the search concepts, search 
terms and syntax remained unchanged from the original search.  

Aims  

1) To describe the issues encountered, decisions and results from applying machine 
classifiers to facilitate prioritised relevance screening against the eligibility criteria for the 
map, and to assess the screening saved from not screening search results with a low 
relevancy score. 2) To estimate the time saved from not screening citation records with a 
low relevancy score. 3) To consider the implementation of the process within the 
systematic review workflow. 

Methods 

1) Selecting a classifier 

Two custom-built classifiers were developed using the machine classifier function within 
EPPI-Reviewer 4 (with the same characteristics as described in the previous methods 
section).15 The classifiers were trained on the screening decisions from the original map 
and applied to the search results of the database update searches. The first classifier was 
trained on the screening decisions of citation records at the title and abstract stage, using 894 
titles and abstracts as the basis of an include decision, and 20,435 title and abstracts as 
excludes. A second classifier was trained on the title and abstracts recordsfrom the full-text 
includes and relevant systematic reviews (n=261) as the basis of an include decision, and the 
remaining records as the basis of an exclude decision (n=21,068). The EPPI-Reviewer 4 
interface provides a bar chart showing the distribution of the citation records across the 
relevance scores, and this was used to indicate the suitability of each classifier (presented in 
the results section). At this point, the first classifier was determined as not suitable, and the 
second classifier was applied to the update search. 

The second classifier was retrospectively tested using a stratified five-fold cross-validation 
analysis using the gold standard data, by training on a 90% sample of the original training 
dataset and testing on the remaining 10% of the training dataset to check the ranking scores 
of the known relevant records. The sets were generated from random samples of the 261 
includes and 21,068 excludes in the training data, repeated to obtain five sets of training and 
test sets with recall being the statistic evaluated. 

 
2) Applying the classifier to the update search 

Out of the 23,208 citation records from the database searches, 21,420 contained titles and 
abstracts and were ranked by relevance using the second classifier. A bar chart showing the 
distribution of records across the relevance scores informed the development of an algorithm 
to set a threshold below which screening would cease. We intended to cease screening after a 
predetermined interval where no further relevant records were identified. However, if this 
interval was not achieved, screening would cease after a specified number of records in 
agreement with the review team. The algorithm comprised of the following three rules: 1) 
Do not screen records with a score of 10 or less; 2) Manually screen records with a score of 
20 or more; 3) Manually screen records with a score of 11-19 in batches of 500, starting from 
those with a score of 19; 4) Screen a further 1,000 records after the last include. During the 



 
 

process of manual screening, a modification to rule 4 was imposed: to only screen the batches 
of 500 until score 13 as the interval of 1,000 was not achieved.  

3) Evaluating performance 

The performance of the second classifier on the update search results was retrospectively 
assessed on 21,403 citations. Total screening reduction was calculated, based on the 
number of citation records that were not screened. The precision of the relevance scores for 
the relevant records was determined. As all records were not screened it is not possible to 
calculate recall. Comparisons of the included studies by search precision and publication date 
with records that were screened manually from: the original searches, records that were title-
only (n=1,788) and those retrieved from searching and browsing websites (n=15) were 
screened manually. Reflection on implementing the process into the review update workflow 
was undertaken throughout.  

4) Time analysis 

We measured the time taken by one reviewer to screen forty abstracts (eight samples of five 
abstracts) in a set of references with relevance scores between 13-19. This was compared 
with the time taken to screen forty abstracts across sets of references with higher relevance 
score between 20-99 (eight samples of five abstracts across this range). The time taken to 
screen each abstract was measured in seconds by one reviewer using a digital stopwatch. The 
stopwatch was started the when the reviewer's eyes first met the screen and stopped when the 
reviewer reached a decision on the exclude code. There were 14 exclude codes that the 
reviewer could choose from, or an include code. Exclude codes consisted of study design, 
publication type or date, country, and specific topic exclusions. The screening was 
undertaken in conjunction with a 'show terms' feature in EPPI-Reviewer 4 that highlights 
terms pre-determined by the user as relevant in green and those that are irrelevant in red (the 
relevant and irrelevant terms were determined during the original screening, prior to the 
update search). The reviewer had screened a significant number of studies from the original 
review and so had a high level of familiarity with the types of abstracts that would be 
encountered in the screening and the criteria used for each of the exclusion and inclusion 
codes. 

Results 
 
1) Selecting a classifier 

Figure 1 shows the bar charts of the two classifiers. The second classifier was considered 
suitable, as it showed the highest number of citations were within the lower relevance score 
range, and a marked decrease in the higher relevance rankings from 20-99. Classifier 1 did 
not display this same trend as there were less citations marked as of very low relevance (0-9) 
than scores of (10-29) and therefore seemed less precise. This was not surprising as the 
training data for classifier 1 was based on inclusion decisions at title and abstract. When the 
studies were screened at full-text a series of additional exclusion criteria were applied, and 
these stricter criteria informed the training of Classifier 2 (for example, these criteria included 
medication management except for antimicrobial resistance, all process evaluations and 
views studies outside UK settings).  



 
 

The five-fold cross-validation analysis of the second classifier showed an average recall of 
99% (range 100 - 96%, based on 26 or 27 included studies per set) using a threshold score of 
above 14: across two tests one included study had a relevance score of 9 and another study 
scored 14.. 

2) Applying the classifier to the update search 

Out of the 23,208 citations from the searches, 21,455 were eligible for the machine 
classifier. This was reduced to 21,403 following further identification of duplicates during 
manual screening. It was noticed that some citations contained abstracts in the notes field 
rather than in the abstract field, including 5,786 records from one database. These were 
checked and edited within a citation management tool prior to applying the classifier. All the 
records to be screened were labelled and distributed between two reviewers for single-
screening. The reviewers had both screened for the original review and had experience in 
screening from other systematic reviews on public health topics. This labelling was 
particularly crucial for applying the stopping rules, as records with a score of under 19 were 
screened in order of relevance ranking in order to inform when to stop screening. The 
screening was undertaken in batches of 500 at relevance scores of 19 and lower, until those at 
score 13 and under remained. In the last manually-screened batch of 500 citations, of which 
some were score 13, one citation was identified as relevant on title and abstract, but on full-
text retrieval was considered irrelevant. Although the original algorithm was designed to help 
to inform when to stop manual screening, it was still too inclusive without modification,due 
to some ambiguous abstracts.  

3) Evaluating performance 

Out of the 21,403 title and abstract records, 8,449 were manually screened, corresponding to 
a screening reduction of 61%. Of the title and abstract records screened, 62 records, reporting 
55 studies, were i included in the systematic map. Figure 2 shows the distribution of relevant 
records per references screened. The machine classifier ranked 61 (98%) of these citations 
within the first 21% citations for screening, and these had a relevance score of between 20-
99. The remaining citation that was included in the systematic map had a score of 14. 
Seventeen references (27%) were identified between the mid-ranking relevance scores 40-49 
to the low-relevance score of 13. Figure 3 shows the precision of the relevance scores of 
citations included in the systematic map based on the total citations within each relevance 
score range. As expected, the higher precision was achieved at higher relevance scores, than 
at the lower scores from 13 - 49, though these lower scores were clearly important for 
identifying 27% of references.  

The study that had a relevance score of 14 related to compliance with antibiotic therapy.17 
Antimicrobial resistance is one of the priority areas identified by the funder of the systematic 
map12 and only one study on antibiotic therapy was in the original map. Three studies on 
antimicrobial resistance were found from the update search, one each from the expedited title 
and abstract screening.17 one from the screen of citations without abstracts18 and one from the 
website searching19.  

The inclusion rate (precision) of titles and abstracts from the relevance screening process was 
0.73%. All citation records that did not contain abstracts were manually screened (n=1,788) 
to yield a further seven studies for inclusion in the map, which equates to 0.39% precision. A 



 
 

further 12 studies were included in the map that were identified from website searches. 
Figure 4 shows the contribution of these three groups of citations to the overall set of studies, 
arranged by publication year.  

4) Time analysis  
 

Table 3 presents the minimum, maximum and mean time taken to screen a single record, 
based on screening five records per relevance score range. Figure 5 shows the distribution of 
mean screening time for studies by relevance score. Overall, there is a trend for longer times 
to screen records with high relevance scores compared with those of lower relevance. 12,954 
titles and abstracts were not screened by the reviewers. Based on the mean time of 7 seconds 
to screen the records with a low relevance score of 13, this equates to an estimated 25 hours 
of screening time saved. 

Discussion  

1) Developing and testing classifiers 

In the first case study, testing the precision and recall provided confidence in selecting a 
classifier and applying it to update searches, though the variation in performance across the 
test sets highlight limitations in achieving recall. There are also decisions around how 
inclusive the training dataset should be. When using screening data generated from human 
screeners who adopt a hierarchical screening process it may be possible to evaluate and select 
from a number of inclusion and exclusion criteria, which may have different implications for 
classifier performance. In case study one, although the Custom 3 classifier was trained to be 
more specific to the study design of interest than Custom 1 and 2, Custom 3 had lower 
precision and recall for non-RCTs and slightly lower recall of RCTs than Custom 2.  

In the second case study, post-hoc testing of the chosen classifier achieved a high recall 
though could still potentially miss some studies. There will inevitably be some uncertainty in 
the development and suitability of custom-built classifiers owing to the relatively small 
datasets they are based on, and possible variations in the parameters applied. Observing a bar 
chart, such as shown in Figure 1, showing the distribution of the relevance scores from 
applying a classifier helps reviewers assess the suitability of the classifier. Cross-validation 
analyses provide a quantitative indication of recall performance. Applying a series of 
stopping rules informs performance, though this occurs during the screening process, once 
the classifier has been selected and applied.  

2) Applying the classifier 

Case study one had the benefit of comparison with a gold standard. The variation in recall 
across datasets between 93-98% for non-RCTs shows there are challenges in identifying non-
randomised controlled trials. From our experience it can sometimes be difficult to label a 
record as non-RCT from reading an abstract alone, and this was also observed by Hausner et 
al.20 as part of obtaining gold standards for search filter development for this study type 
(which achieved 92% sensitivity21). The recall level from a reduction in screening is 
sufficient for the purposes of the TRoPHI register, which is to support the efficient 
identification of controlled trials in health promotion, rather than functioning as a single 
source.  



 
 

In the second case study it was important to discuss and justify the process of applying a 
classifier with the review team and the funder of the review. The alternative option of 
developing a more specific search strategy was not viable, as there was no clear way to 
restrict the search strategy without losing relevant records. While constructing a precise 
search would have provided greater transparency than utilising a machine-learning approach, 
it seemed less desirable in reaching the goal of mapping the literature. A more precise search 
would have reduced the possibility of locating relevant studies from a range of contexts or 
publications or that offer different findings. Evaluating the original search strategy with the 
results of the original map helped support decisions around the update search and the 
approach taken. 
 
There is a conceptual and cultural barrier around not screening studies that are identified from 
literature searches. Undertaking partial screening creates uncertainty over the number of 
items to screen for review teams, though this can be estimated to some extent at the outset for 
update searches. Information management processes are needed to ensure smooth workflow 
of the items to be screened and to implement a stopping criterion. In case study two, stopping 
rules needed to be developed and modified within the process to manage the workload of 
screening, and were also informed from feedback while screening was taking place. The 
finding of one relevant study with a relevance score of 14 shows the importance of screening 
to a relatively low threshold for broad topics or where studies are not well represented in the 
original dataset. With hindsight, testing could have been undertaken on the remaining 
unscreened references to check if there were relevant references (for example, using 
unsupervised clustering, or applying a classifier trained using different parameters). In the 
future we hope to utilise other approaches to determining stopping thresholds from ongoing 
research within our research centre. Finally, it is important to note that the scores are a 
relative concept of relevance, and the reported scores used in this study are not intended to be 
used as thresholds that can be applied in other situations. This point is supported by 
Weightman et al 22.who used the same classifier function within EPPI-Reviewer 4 to 
retrospectively observe performance compared with manual screening for two update 
searches on social care topics; they found they would have obtained 100% retrieval, if they 
had only screened to threshold scores of 22 and 43, respectively.  
 
 
3)  Performance of the classifiers 

In both case studies the classifiers enabled a reduction in the number of irrelevant records that 
needed to be screened. Case study one also shows the influence of subject domain in 
contributing to performance, and a benefit of custom-built classifiers over generic classifiers 
to decrease screening volume. While the workload in screening is inevitably reduced, the 
time savings are less clear. In case study two we made a modest attempt to consider to 
indicate type of time savings that the workload reduction could produce.  

 

4) Screening time analysis 

The Cochrane Handbook suggests a "conservatively estimated reading rate" of 30 to 60 
seconds for abstracts of health interventions, or approximately 500–1000 over an 8-hour 
period23. Przybyła et al.6 observed lower screening times at the later stages of a prioritised 
screening process. We also observed a corresponding relationship between relevance score 
and screening time; however our data indicate this is not constant for all citation records 



 
 

(based on a low sample size). The time needed to screen abstracts with the highest relevance 
scores in our study was between 15 to 320 seconds. This variation reflects our experience that 
some abstracts can be quickly discarded by reading only a title, and others require more 
processing time to both read and understand the abstract and to also consider how it matches 
with the eligibility criteria. There is also the possibility that reviewer experience with the 
screening improves speed6. With priority screening, the records with lower relevance scores 
were much quicker to screen, with a range of 3 to 30 seconds. An estimate of the time saved 
by not screening 12,954 citations extrapolates to 25 hours based on 7 seconds per record (the 
mean screening time of the lowest ranked study for screening just five records). However, we 
expect this time saving to be greater in practice as it does not consider screening at scale, and 
the need for rest breaks. Other variables that could influence time needed to screen include: 
concentration level and screening fatigue, internet and computer speeds, reading speed, 
abstract length, and overall environment in which screening is undertaken. Undertaking a 
time analysis on larger samples of records, and with more than one screener, would provide a 
more accurate estimate of time savings.  

Limitations 

For case study two, the reported precision of the title and abstract screening may be 
marginally higher than reported. Conference abstracts were included in the update searches 
though removed early on in the screening process. However, we estimate that without this, 
precision would still be under 1%. Duplicates are a challenge for any search across multiple 
resources, and particularly for update searches as the search has been undertaken at more than 
one timepoint. For case study two, the duplicates were removed at the outset of the process, 
and when identified during screening. We expect there will be some duplicate records that 
have been missed, particularly those classed as not relevant. The time analysis in case study 
two is based on a low sample size.  

Conclusions  

Both case studies show that custom-built classifiers can achieve considerable reductions of 
screening for update searches in broad public health intervention topics. They are particularly 
useful where a yield of search results is difficult to reduce using conventional methods. Case 
study one demonstrates there is a domain influence in applying classifiers. A custom-built 
classifier may achieve higher screening reductions towards a specific domain than a generic 
classifier derived from larger datasets covering a broader domain. However, achieving high 
recall and high screening-reduction appear to be limited by the quality of the training 
dataQuestions on the utility of classifiers for update searches include: determining an optimal 
quantity of training data, assessing recall performance, and assessing workload saved within a 
stopping threshold. Owing to the customised nature of such classifiers, answers to these 
questions may vary across different cases. Case study two shows how this can be understood 
and implemented within the context of updating a systematic map. Our findings suggest that 
there is potential to significantly reduce time spent screening by applying custom-built 
machine classifiers and excluding studies of low relevance using appropriate stopping rules. 
Key considerations include selecting an appropriate the classifier, agreeing stopping rules and 
using appropriate information management to ensure smooth workflow.  
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Table 1 Description of the training and test sets 

Exclusion 
(Ex) and 
inclusion 
criteria for 
TRoPHI 

Training set 
(n=19,759)* 

Test set A 
(n=9,368) 

Test set B(n 
=7,185) 

Test set C (n = 
5,812) 

Description Searches 
between 
January 

2012 and 
June 2013 

Searches 
July 

2013- 
March 

2015 

Searches 
during 
2010, 

publication 
date 2009-

2010 

Searches 
during 
2008, 

publication 
date 2007-

2008 
Ex1: Focus is 
not on health 
promotion or 
public health 

16, 536 8,502 
 

6,796 5,351 

Ex2: Study is 
not a 
prospective 
evaluation of 
an 
intervention 

1799 

Ex3: Study 
has no control 
or 
comparison 
group 
Ex4: Item is a 
review 
(consider for 
Database of 
Promoting 
Health 
Interventions) 

312 

Include 1: 
non-
randomised 
controlled 
trial (non-
RCT)  

220 213 103 96 

 
Include 2: 
randomised 
controlled 
trial (RCT) 
[this includes 
a true 
randomised 
method, or 

892 653 286 365 



 
 

quasi-
randomisation 
such as 
alternate 
allocation] 

*Classifier was trained on 20,050 references, numbers adjusted following additional 
duplicate-removal 

Table 2 Performance of the classifiers on test set A (n=9,368), B (n=7,85), C (n=5,812) 

Classifier Training 
criteria* 

Set RCTs  Non-
RCTs 

 Screening 
reduction 

% Precision 
% 

Recall 
% 

Precision 
% 

Recall 
% 

RCT 
classifier 

Include 
RCT in any 
human 
health 
domain 

A 
B 
C 

12.3 99.7 3.4 85.9 43.3 
8.1 99.7 2.4 83.5 50.9 
11.1 99.2 2.6 87.5 43.6 

 Custom 1 Include any 
studies that 
are in the 
health 
promotion 
domain (all 
studies 
without Ex1 
code) 

A 11.7 99.1 3.8 99.5 40.9 
B 7.8 100% 2.8 100% 49.3 
C 13.6 99.5 3.5 96.9 54.2 

 Custom 2 Include any 
RCTs, non-
RCTs or 
reviews in 
the health 
promotion 
domain (all 
studies 
without 
Ex1, Ex2 or 
Ex3 codes) 

A 16.5 98.8 5.4 98.6 58.4 
B 12.2 99.3 4.3 97.1 67.6 
C 19.6 98.1 4.9 93.8 68.6 

Custom 3 Include any 
studies that 
are RCTs 
or non-
RCTs in the 
health 
promotion 
domain 
(all studies 
without 

A 19.7 98.0 6.3 96.2 65.4 
B 14.6 99.0 5.1 97.1 72.9 
C 23.2 97.8 5.8 92.7 73.5 



 
 

Ex1, Ex2, 
Ex3 or Ex4 
codes) 

 

*Ex1, Ex2, Ex3, Ex4 are described in Table 1. 

Table 3 Time taken to screen citation records at different relevance scores 

 

Screening time per record 
based on five per category 
(seconds)  

Relevance Score  Minimum Maximum Mean Total  
90-99 138 280 214.2 1071 
80-89 198 320 266 1330 
70-79 15 303 132.2 661 
60-69 30 132 78.4 392 
50-59 35 134 93.2 466 
40-49 10 222 62 310 
30-39 10 140 61.8 309 
20-29 8 130 59.8 299 
18-19 7 15 11.2 56 
17-18 5 17 12.2 61 
16-17 5 15 8.4 42 
16 3 18 11 55 
15-16 4 30 12.2 61 
14-15 5 15 9.4 47 
13-14 5 8 6.6 33 
13 3 15 7 35 

 

Figures 

Figure 1 Relevance scores of two classifiers (n=21,404) 

Figure 2 Relevant records per volume screened (n=8,449)  

Figure 3 Precision of the 62 relevant records within relevance ranking scores 

Figure 4 Contribution of all the studies shown by publication year (N=336)  

Figure 5 Screening time for records by relevance score (n=5, for each relevance score range) 
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