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Abstract

We present an economic model for decisions on competing cyber-security and cyber-insurance investment based on the Gordon-
Loeb model for investment in information security. We consider a one-period scenario in which a firm may invest in information
security measures to reduce the probability of a breach, in cyber-insurance or in a combination of both. The optimal combination
of investment and insurance under the assumptions of the Gordon-Loeb model is investigated via consideration of the costs and
benefits of investment in security alongside purchasing insurance at an independent premium rate. Under both exponential (constant
absolute risk aversion) and logarithmic (constant relative risk aversion) utility functions it is found that when the insurance premium
is below a certain value, utility is maximised with insurance and security investment. These results suggest that cyber-insurance
is a worthwhile undertaking provided it is not overly costly. We believe this model to be the first attempt to integrate the Gordon-
Loeb model into a classical microeconomic analysis of insurance, particularly using the Gordon-Loeb security breach functions to
determine the probability of an insurance claim. The model follows the tradition of the Gordon-Loeb model in being accessible to
practitioners and decision makers in information security.
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1. Introduction

The rapid growth in information technology, especially the
internet, during the second half of the twentieth century revo-
lutionised communication between firms and society, particu-
larly the speed with which information can be exchanged. An
individual can now undertake banking transactions, shop and
correspond with friends and family almost simultaneously on
a hand-held device; this set of tasks might have occupied an
entire morning just over 20 years ago. However, this speed
of interaction has a downside: those with a malicious agenda
can undertake nefarious activities as rapidly. Electronic inter-
actions generate a huge amount of data. Any good with value
is a potential target for theft1 and data is no exception. Con-
sumer personal data have value to cyber-criminals looking to
perpetrate fraud and such data are now stored or processed by a
wide variety of online retailers or service providers. The risks to
consumers are recognised by regulations such as the EU Gen-
eral Data Protection Regulation, which can impose significant
financially penalties on businesses for data breaches.

The confidentiality-integrity-availability (CIA) triad is a pop-
ular framework in information security for understanding risks
and identifying potential solutions. It is particularly useful in
understanding the risks around data and potential related de-
fences. Certain data needs to be kept confidential - accessible
only to the right people at the right time. This might be per-
sonal data protected by law as already described, or informa-
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1For an interesting discussion of the impact of theft on efficiency, see Usher
(1987)

tion of significant commercial or strategic value. Integrity is
also important; a crude cyber-attack might aim at corrupting
data and thereby cripple either businesses or infrastructure. If
appropriate backups are unavailable, or even paper hard copies,
corruption or addition of false data could be catastrophic for an
organisation. Finally, availability is also critical for maintain-
ing business operations - if an airline cannot access its baggage
system, then it would surely be unable to operate properly. The
fields of information security and operational research (particu-
larly business continuity) cover these areas; tangible risks aris-
ing might be mitigated via either investment in security or in-
surance.

The field of computer and network security is already ad-
dressed by a vast body of literature; Anderson (2001) provides
an accessible introduction, tackling the problem from an eco-
nomic perspective. A wide variety of technical solutions exist
covering defence, monitoring and reporting as well as frame-
works and policies designed to minimise risks associated with
human interaction with technology (such as users’ choices of
password, access control mechanisms and automated enforce-
ment of security policies). A detailed assessment of the trade-
offs associated with these measures is beyond the scope of our
work, which aims to address the issue of security investment
from a ‘top down’ rather than ‘bottom up’ perspective. It is
worthwhile considering the nature of the threat, however, albeit
one that we will simplify considerably. The view of a ‘hacker’
in the popular media historically was often of a lone individ-
ual operating alone from their own residence, sometimes with
significant success2. Nowadays, a lone attacker would proba-

2A prominent example of this type is Scottish systems administrator, Gary
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bly struggle to enumerate all the possible attack surfaces of the
systems of a competent organisation without detection and re-
sultant defensive action. However, cyber-attacks have increased
in sophistication and complexity with some believed to be state
sponsored3. With these resources, it is possible to develop cus-
tom exploits that have a degree of stealth making them harder
to detect and prevent. The idea of cyber-insurance becomes ap-
pealing when assessing the risks of compromise via unknown
vectors. We make the assumption in this work that a cyber-
insurance policy will pay out with certainty in the event of a
claim; it should be noted that the alleged involvement of a state
entity can complicate matters as an insurer may attempt to ar-
gue that such an attack is an ‘act of war’ and therefore not eligi-
ble for a claim. A modern cyber-insurance policy will typically
cover not just potential financial losses associated with a cyber-
attack but also the costs of forensic computer experts to help
assess the extent of any breach. This acts as an inducement to
the insurance buyer as forensic expertise would be expensive to
retain on a company payroll if it was expected that their services
would be only occasionally required.

Gordon and Loeb (2002) proposed a model for decisions on
information security investment, in which the probability of a
security breach occurring reduces with investment according
to a specified function. Under such a framework, a rational
decision maker will aim to maximise the expected net ben-
efit of investment in information security. Gordon and Loeb
consider two classes of security breach function and show that
for these functions, the optimum security investment will al-
ways be less than (1/e) times the expected loss. The Gordon
and Loeb model is well suited to the type of Marshallian cost-
benefit analyses undertaken by decision-makers in firms as it
is intuitive, adaptable and does not require advanced Mathe-
matical knowledge. This work addresses the research question
of whether the Gordon-Loeb model can form the foundations
of a classical expected utility maximisation problem to inves-
tigate some of the trade-offs between security investment and
cyber-insurance. Following a literature review of the fields of
insurance economics, security economics and cyber-insurance,
we present a single period, two-state model where the utility of
an insurance buyer is maximised subject to a number of con-
straints. We assume that decisions around information security
may be framed solely based on economic considerations, which
results in a model that is fairly abstract compared with reality.
However, we believe that the model yields useful insights on
cyber-insurance pricing and provides the foundations for fur-
ther work and development in this field.

2. Literature Review

The model presented in this work draws on the theory of
competitive insurance markets. The formal discipline of insur-

McKinnon, who was indicted (US Department of Justice (2002)) on charges of
compromising almost 100 US military computer systems in the early 2000s

3Sanger (2019) and Greenberg (2019) provide interesting and highly read-
able accounts of alleged activities of this nature. These are journalistic accounts
rather than works of scholarship, but make useful contributions given the au-
thors’ access to government sources.

ance economics was arguably established by the work of Borch,
Pratt, Arrow and Mossin in the 1960s, following the seminal
contributions by von Neumann and Morgenstern on expected
utility theory. This was followed by key developments in the
1970s with regard to asymmetric information, particularly the
celebrated contributions of Akerlof, Spence and Rothschild &
Stiglitz. A literature detailing the theory of insurance supply
also subsequently developed. The coverage of insurance eco-
nomics in this paper aims to inform or remind the reader of
some notable contributions to the literature and does not claim
to provide a complete survey of a diverse and well-established
field. Having provided a summary of relevant literature specif-
ically covering insurance, the Gordon-Loeb model of informa-
tion security investment is then presented, which forms the ba-
sis of the model introduced in this work. The body of derivative
literature around the Gordon-Loeb model is also surveyed, in-
cluding criticisms and extensions to the model. Finally, specific
cyber-insurance literature useful for comparison with the results
of the model developed in this paper is discussed.

2.1. Insurance Economics

2.1.1. Expected Utility and the theory of insurance demand
The economic concept of utility, essentially the mathemati-

cal formulation of preferences or behaviours, is fundamental to
a quantitative analysis of insurance markets. Expected utility
was first introduced by Bernoulli in the 18th century. In clas-
sical economics, expected utility is usually descriptive rather
than normative4. von Neumann et al. (1944) introduced an ax-
iomatic version of Expected Utility Theory. The essence of
their argument is that it is particularly hard to describe utility
as a number and they assume that “the aim of all participants in
the economic system... is money”. In rudimentary terms, their
proposition is similar to a notion in physics that while certain
fundamental properties of nature such as mass and charge can
be readily defined in theoretical terms, their properties are most
apparent and readily understood in an experimental sense. The
axioms they propose for a system of abstract utilities are shown
to be interpretable as one of numbers up to a linear transfor-
mation. Von Neumann-Morgenstern utility functions form the
basis of the theory of insurance demand. It should be noted
that the expected utility hypothesis is not universally accepted:
the Allais (1953) and Ellsberg (1961) paradoxes provide noted
counterexamples. One of the most famous critiques of expected
utility theory known as prospect theory was introduced by Kah-
neman and Tversky (1979). The core idea of prospect theory is
that “choices among risky prospects exhibit several pervasive
effects that are inconsistent with the basic tenets of utility the-
ory.” In particular, Kahneman and Tversky argue that people
underweight outcomes that are merely probable in comparison
with those that are obtained in certainty; they develop a theory
that assigns value to gains and losses rather than to final as-
sets and in which probabilities are replaced by decision weights.
The additional versatility of prospect theory is likely to prove

4A normative model is one which dictates rather than describes the be-
haviour of an agent
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important in modelling cyber-insurance, where the loss func-
tion is still primarily monetary but has an additional dimension
in the form of loss of information. This adds additional com-
plexity to the problem.

Borch (1967) proposed a key distinction that the ends or
objectives of an economic analysis of insurance ought not to
be subservient to the means of analysis available. Borch ar-
gued initially that insurance be considered using the principle
of equivalence, from which the insurance premium an agent is
willing to pay should be equal to the sum of expected claim
payments and administrative costs. He then expands the simple
principle of the equivalence model to multiple contracts, sug-
gesting that the choice of market premium ultimately implies a
choice of profit distribution. This choice of premium is a sub-
jective decision and depends on the objectives of the insurance
company. Formalising the developed ideas, Borch assumes the
insurance company has a complete preference ordering over the
set of all profit distributions. Framing the problem in terms of
utility, Borch reformulates the original problem reducing the
task to maximizing a mathematical expression. Finally, Borch
discusses some of the issues involved in applying traditional
economic analysis to insurance. He proposes an equilibrium
price in which total insurance supply equates to total insurance
demand. He goes on to provide a critique of the application of
classical market theory in relation to insurance, as there is no
natural unit of insurance cover from which to define a price.
However, he posits that Pareto-optimality is readily defined for
insurance which naturally leads to a Game Theory approach to
the problem.

Pratt (1964) introduced r(x) = −u′′(x)/u′(x) as a measure of
local risk aversion, where u(x) is a utility function for money;
this is often known as Arrow-Pratt risk aversion given contem-
poraneous work by Arrow. Mossin (1968) analysed four differ-
ent problems in terms of the wealth effect on the propensity to
take insurance coverage: the maximum acceptable premium for
full coverage, optimal reinsurance quota, the optimal coverage
at given premium, and the optimal amount of deductible. These
are foundational to the theory of insurance demand and are col-
lectively sometimes called the Mossin Theorem. Arrow (1974)
considered optimal insurance and generalized deductibles. He
demonstrated that a risk averse buyer will prefer a policy offer-
ing complete coverage beyond a deductible (an amount of loss
below which no claim is paid by an insurer). This form of con-
tract effectively places a cap on the loss of wealth an individual
may incur.

2.1.2. Information asymmetry, adverse selection and moral
hazard

A key development in modern economics is models incorpo-
rating asymmetric or imperfect information, which allow for a
more realistic and versatile depiction of many real world prob-
lems. For insurance markets, adverse selection and moral haz-
ard are two widely studied problems in this domain. In simple
terms, adverse selection is the risk that an insurance buyer takes
advantage of their personal knowledge of their circumstances
to which the insurere is not privy; moral hazard is the risk that
possessing insurance encourages risky behaviour.

One of the most important contributions in understanding
asymmetric information is The Market for Lemons by Akerlof
(1970). Akerlof introduced a structure for determining the eco-
nomic costs of dishonesty, which provides the foundation for
analysis of adverse selection in insurance. Akerlof’s model
relied upon linear utilities to avoid algebraic complication but
also to allow clear focus on the asymmetry of information rather
than endogenous factors such as the treatment of risk aversion
inherent in a concave utility function. The analysis of the used
car model Akerlof uses to illustrate his theory highlights the
connection between price and quality: if a market contains suf-
ficient inferior goods of lower price, and the buyer is willing
only to pay the lower price for fear of being sold an inferior
goods at a higher price, the inferior goods drive out the supe-
rior good. Akerlof uses the example of the over-65 health in-
surance market arguing that this group has difficulty in buying
health insurance, but that the price does not rise to match the
risk. The reason given for this is that as the price rises, only
those in need of the insurance will take it out; that is, the qual-
ity of the applicant moves in inverse proportion with the price.
This has the potential result that no sale may take place at any
price. This principle is readily applicable to many insurance
markets, and has clear relevance for cyber-insurance. Spence
(1973) introduced the idea of signalling within the context of
the job market. His idea was that job candidates will possess
certain characteristics such as a college degree, which signals
to employers that they have a capacity to learn. Any candidate
could claim that capacity to learn, but there is then an informa-
tion asymmetry between candidate and prospective employer;
the college degree acts as a signal to resolve the information
asymmetry. This concept is particularly valuable in the context
of cyber-insurance where the poorly protected might claim oth-
erwise to try to lower insurance costs; however, clear evidence
of preventative measures such as firewalls or information secu-
rity policies might act as a signal in this instance.

Rothschild and Stiglitz (1976) consider competitive markets
in which the “characteristics of the commodities exchanged are
not fully known to at least one of the parties to the transaction.”
The key insight from this paper is that when a competitive equi-
librium does exist, they may have strange properties compared
with a more traditional sense of equilibrium. In an insurance
market, a consumer is not offered a price at which they can buy
all the insurance they desire; rather, they are offered a quantity
and a price. Rothschild and Stiglitz argue that high risk individ-
uals cause an externality as low risk individuals are generally
worse off as insurance consumers than they would be in the ab-
sence of the high-risk group. However, the high-risk group are
indifferent to the existence of the low-risk group. Rothschild
and Stiglitz are able to show that under some circumstances, a
competitive insurance market may have no equilibrium. Wilson
(1977) also found that no stationary equilibrium may exist if all
firms have static expectations with regard to the policy offers of
other firms. However, under a different policy rule in which any
policy is immediately withdrawn that become unprofitable after
that firm makes its own policy offer, the equilibrium is found to
exist.

Moral hazard as it relates to the improvement of contracts
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has been studied by Hölmstrom (1979). He argues that by cre-
ating additional information systems or by using other avail-
able information about the agent’s action or the state of na-
ture, contracts can generally be improved. A particular relevant
point for further analysis raised in this work is that in a long-
term relationship, the propensity for moral hazard is decreased
as if an agent repeatedly behave recklessly, their insurer will
soon recognise this and their premiums will commensurately
increase upon renewal. Lee (1992) considers how the prob-
lem of moral hazard might be solved by provision of a loss-
preventative good. For cyber-insurance, an example would be
the government providing anti-malware software to the popula-
tion.

2.1.3. Insurance supply and pricing
A key contribution in explaining the supply of insurance was

made by Raviv (1979), who noted that in the earlier model
proposed by Arrow(1974), it is unclear whether the optimal
insurance policy with a deductible is due to risk neutrality of
the insurer, non-negativity of insurance coverage or loading on
the premium. Raviv proposed a solution to this question via a
general formulation of the insurance problem, which embedded
previous models such as those proposed by Borch and Arrow.
Raviv found that the cost of insurance could be shown to be the
driving force behind the deductible results proposed by Arrow.
He showed that the Pareto optimal insurance policy involves a
deductible and coinsurance of losses above the deductible. The
key result from this analysis is that if the cost of providing in-
surance is independent of the insurance contract, then the Pareto
optimal contract does not have a deductible.

Borch (1981) developed a model to investigate regulation and
supervision of insurance companies, finding that if a company
is interested solely in making a short-term quick profit, then
regulation is needed. However, if the management of the com-
pany take a long-term view, no regulation should be necessary.
Borch also shows there are limits to what a government can
achieve by regulation of private insurance companies which op-
erate in a free economy. Munch and Smallwood (1981) exam-
ine the case for solvency regulation in the property and casualty
insurance industry, noting that the case for solvency regulation
derives from the difficulty of a policyholder establishing the fi-
nancial soundness of alternative firms. However, firm owners
are also at risk as they may lose their entire equity in a firm
whereas the insurance buyer may just receive partial coverage.
Finsinger and Pauly (1984) argue that beyond an assumption of
consumer ignorance of risk of insurance company default two
further assumptions are necessary to justify regulation: if not
regulated, firms will hold reserves below the socially optimum
level and regulators can determine and enforce a level of re-
serves that is closer to the social optimum than the unregulated
level.

2.2. Security investment models

2.2.1. The Gordon-Loeb Model and some alternatives
Gordon and Loeb (2002) introduced an economic model that

determines that optimal amount to invest to protect a given set

of information. The Gordon-Loeb (henceforth GL) model is
discussed in full detail in the following section of this paper,
but its most important contributions are presented here for com-
parison with other relevant literature. The key result of the GL
model is that investment should not exceed more than 37% of
the expected loss. Gordon and Loeb introduce the concept of a
security breach function with three key assumptions: 1) If the
information set is completely invulnerable, it will remain per-
fectly protected for any security investment; 2) if there is no
investment in information security, the probability of a secu-
rity breach is the inherent vulnerability of the information set;
3) as investment in security increases the information is made
more secure but at a decreasing rate. The GL model is con-
ditioned using security breach functions (SBFs) that are linear
(class I) and exponential (class II) in the inherent vulnerabil-
ity of the dataset. The GL model laid the foundations for a
rigorous quantitative structured analysis of information secu-
rity investment problems. The two types of breach function
introduced are intuitive to understand and fairly simple to ma-
nipulate, which is a distinct advantage of the model. Boehme
(2010) gives a good summary of security investment models,
their terminology and parameters. Huang and Behara (2013)
likewise provide an excellent summary of the various security
models and derive similar security breach functions to Gordon
and Loeb, albeit via a mathematically more sophisticated route.
While this approach might be regarded as superior by the more
mathematically inclined, it is not necessarily superior to the ap-
proach taken by Gordon and Loeb as the GL model is arguably
more intuitively accessible to a broader audience.

2.2.2. Criticisms of the Gordon-Loeb Model
There have been examples in the literature of attempts to

disprove the Gordon-Loeb optimal security investment. The
first of these is due to Hausken (2006) who provides a counter-
example via the use of a logistic function but with quite a few
changes to the original Gordon-Loeb assumptions. Willemson
(2006) disproves the conjecture by also showing investment up
to 50%; upon relaxation of the original requirements he shows
that with the Gordon-Loeb framework, levels of close to 100%
investment can be achieved. With any simple mathematical
model, it is relatively straightforward to engineer a counter-
example and these prove useful in understanding the limitations
of the Gordon-Loeb model. The key advantage of the Gordon-
Loeb model is the balance it strikes between rigour and simplic-
ity while offering useful insights into how to consider security
investment. Baryshnikov (2012) aims to counter the assertion
made by some critiques of the GL model that the 1/e rule of
investment does not hold in generality.

2.2.3. Extensions of the Gordon-Loeb Model
A body of literature has developed evaluating potential em-

pirical uses of the Gordon-Loeb model and the calibration of
its parameters. Matsuura (2009) proposes a productivity space
of information security, specifically considering a productiv-
ity regarding threat reduction and a productivity involving vul-
nerability reduction. In essence, this might be regarded as
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an extension of the original Gordon-Loeb model to a two-
dimensional case. Tatsumi and Goto (2010) add a timing di-
mension to the original Gordon-Loeb model using a real op-
tions approach. Lelarge (2012) shows that the Gordon and
Loeb 1/e limit holds under log-convex security functions, and
extends the G-L model to a security game where agents con-
sider the implications of their actions on the network with the
interesting result that the fulfilled equilibrium is not socially ef-
ficient. Gordon et al. (2014) extend the original Gordon-Loeb
model to include costs associated with the externalities of se-
curity breaches rather than just the firm’s private costs. The
revised model is sometimes referred to in the literature as the
GLLZ model. Farrow and Szanton (2016) propose extensions
to the Gordon-Loeb and GLLZ models, based on mathemati-
cal equivalency with a generalized homeland security model.
Gordon et al. (2016) explain how the Gordon-Loeb model can
be used in a practical setting and the intuition underpinning the
model’s parameters. Young et al. (2016) use the Gordon-Loeb
as the foundation for setting up an insurance problem involv-
ing minimising a linear combination of expected loss, security
investment and insurance premium. This work is the closest
example we have seen to our approach in the literature and is
discussed in detail in Section 3.1.2. Naldi and Flamini (2017)
provide a thorough investigation of the productivity parameters
in both classes of Gordon-Loeb security breach functions and
propose estimators for these parameters. Mazzoccoli and Naldi
(2020) expand upon the work of Young et al. (2016) by pro-
viding closed form solutions to the same problem; this work is
covered in detail in Section 3.1.

2.3. Cyber-insurance

For a topic of apparent significant commercial and intellec-
tual interest, the literature on cyber-insurance appears relatively
underdeveloped. The field can be broadly classified into: eco-
nomic modelling, frameworks and policy, game theory, law
and surveys and empirical analysis. However, a search of the
ISI Web of Science finds fewer than 100 relevant papers on
cyber-insurance. We briefly cover some key papers that in our
view make a useful contribution to the literature. Our work
contributes primarily to the literature on the economic aspects
of cyber-insurance, and therefore give papers in this discipline
greatest critical focus.

2.3.1. Economic modelling
An early contribution in this area is by Bojanc and Jerman-

Blazic (2008) who outline a variety of different economic tech-
niques that could be used for information security risk man-
agement; they discuss cyber-insurance as a potential solution
to the problem but cite the work of Majuca et al. (2006) as
cause for concern that some cyber policies may not pay out. Pal
et al. (2010) investigate the problem of self-defense investments
in the Internet under full and partial insurance coverage mod-
els, finding that cooperation among users results in more effi-
cient self-defence investments and that partial insurance moti-
vates non-cooperative internet users to invest efficiently in self-
defense mechanisms. There is some agreement in the literature

that cyber-insurance does not necessarily improve network se-
curity from a theoretical perspective, though user welfare gen-
erally improves (Shetty et al. (2010), Pal et al. (2014) and Mar-
tinelli et al. (2018)). Khalili et al. (2017) suggest that an insur-
ance company can increase profit by insuring both a primary
and associated party and that this reduces collective risk. This
seems a counter-intuitive result unless the purchase of cyber-
insurance encourages better security, which is at odds with the
findings of other papers; this work is expanded in Khalili et al.
(2018).

The literature on pure cyber-insurance modelling is fairly
limited: Pal et al. (2011) introduce a cyber-insurance model,
Aegis, in which a user accepts a fraction of loss recovery on
themself and transfers the rest of the loss recovery to a cyber-
insurance agency. Bodin et al. (2018) provide a model for se-
lecting the optimal set of cyber-security insurance policies by
a firm, given a finite number of policies being offered by one
or more insurance companies. Bandyopadhyay and Mooker-
jee (2019) build a model to capture the impact of secondary
loss in structuring the use of cyber-insurance and then combine
the backward analysis of myriad breach scenarios to derive the
overall optimal decision to purchase cyber-insurance. This ap-
pears an area where there is significant opportunity for further
work.

The literature on theoretical pricing of cyber-insurance ap-
pears particularly sparse and underdeveloped. Saini et al.
(2011) attempt to produce a model for deriving utility func-
tions for cyber-insurance, using a university network as an ex-
ample. Determining the optimal utility function to describe in-
surance buyer and supplier behaviour is fundamental in devel-
oping a sound pricing model, making this a useful contribu-
tion. Fahrenwaldt et al. (2018) introduce a polynomial approx-
imation of claims together with a mean-field approach that al-
lows to compute aggregate expected losses and prices of cyber-
insurance. However, the limited data publicly available around
cyber-insurance would make such a model difficult to validate.
Piromsopa et al. (2017) propose a rudimentary cyber-insurance
scoring model, which can incorporate existing security stan-
dards - this is most applicable to enterprise risk management.
Xu and Hua (2019) propose a three component model based
on the epidemic mode, loss function and premium strategy and
study the dynamic bounds for infection probability based on
Markov and non-Markov models and propose a simulation ap-
proach to compute the premium for cybersecurity risk. This
is an interesting approach, although the cyberattack model is
somewhat simplistic relative to the variety of overall threats.

2.3.2. Frameworks and policy
The literature concerning frameworks and optimal cyber-

insurance policy is rather better developed than that on the eco-
nomics of cyber-insurance. The four step decision plan of Gor-
don et al. (2003) is one of the earliest contributions specifically
on cyber-insurance we have identified in the literature. The dif-
ficulties surrounding potential risk correlation are well studied:
Bohme and Kataria (2006) investigate the potential limits of
cyber-insurance in the context of the high correlation of poten-
tial risks, which Opadhyay et al. (2009) develop arguing that
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cyber-insurance tends to be overpriced as insurers cannot esti-
mate the potential secondary losses of customers. Ogut et al.
(2011) find that firms invest less than the socially optimal level
when risks are correlated but that the appropriate social inter-
vention policy to induce a firm to invest at these levels depends
on whether insurers can verify a firm’s self-protection levels.
How the latter would be achieved in practice would depend on
regulation.Shackelford (2012) argues that firms should take a
proactive stance toward managing cyber attacks implicitly cau-
tioning against over-reliance on cyber-insurance; this perspec-
tive is somewhat countered by Laszka and Grossklags (2015)
who suggest that insurance providers taking a role in helping
improve software security can lead to a more profitable cyber-
insurance market.

In terms of papers describing the field, Linton et al. (2014)
and Keegan (2014) summarise research in the cyber-security
chain while Elnagdy et al. (2016) outline the taxonomy of
cyber-risks for cyber-security insurance of the financial industry
in cloud computing. There are a few recent papers which pro-
pose frameworks for cyber-insurance: Gai et al. (2016), Pavlik
and Ieee (2018) and Khalili et al. (2018) who investigate cloud
based insurance for big data, organisation insurance and pre-
screening and security interdependence respectively. As with
economic modelling, contract and cyber-insurance design is an
important field for developing a functioning market and likely
merits further work. However, the field remains underdevel-
oped and as such critical evaluation of the existing output is
difficult.

2.3.3. Game Theory
A reasonable number of papers have attempted to analyse

cyber-insurance from a game theoretic perspective. One partic-
ularly relevant contribution is from Massaccia et al. (2017) who
critique the emergent narrative that insurance companies act as
a clearing house for information and then provide guidance on
appropriate security investment to firms seeking liability cover-
age. Their modelling framework demonstrates that this view of
cyber-insurance as a delegated policy tool is unlikely to yield
the anticipated coordination benefits and may in fact erode the
aggregate level of security investment undertaken by targets.
This is a similar result to that identified within the economic
modelling strand of the literature.

Johnson et al. (2011a) find that equilibria with a joint in-
vestment in protection and self-insurance may exist in a one-
shot security game. This somewhat contradicts the narrative
that cyber-insurance does not improve network security, though
the work involves significant simplifying assumptions. The key
conclusion of the analysis is that full market insurance should
only be chosen when it is cheaper than an option involving
a combination of protection and insurance or full protection
against risks (though full protection is arguably unachievable
in the real world).

Yang and Lui (2012) and Yang and Lui (2014) investigate
cyber-insurance as part of a Bayesian network game analysis on
security investment. They argue that when insurance is offered
at the actuarially fair price (highly unlikely in practice) that the
optimal insurance is full coverage. Pal and Hui (2013) propose

Bonacich/Eigenvector centralities of network users as an appro-
priate parameter for differentiating insurance clients. Hayel and
Zhu (2015) and Zhang et al. (2017) deploy a game-in-games
framework where a zero-sum game is nested within a moral-
hazard game problem to model cyber-insurance. Martinelli
et al. (2017) investigate how a drop in security investments for
non-competitive cyber-insurance markets might be prevented.
Rios Insua et al. (2018) model a number of cyber-insurance
problems as a network and offer decision making models for
cyber-insurance, but the models are not solved or analysed in
detail making their merits inconclusive. Woods and Simpson
(2018) investigate how aggregated claims data impacts invest-
ments in information security using Monte Carlo methods to
simulate an extended iterative weakest link model.

2.3.4. Law
The literature treating cyber-insurance from a legal perspec-

tive is surprisingly sparse considering that contracts are an in-
tegral to insurance. Economics informs the optimal pricing of
and decision making around insurance, but whether the con-
tract pays out or not on a claim is open to legal interpretation,
especially in complex cases. Nieuwesteeg et al. (2018) pro-
vide the first contemporary legal analysis of cyber-insurance
contracts we are aware of focused on the Netherlands. Their
results suggest that there are two current options for insurers:
a strategy of rigorous market penetration with easily accessible
and attractive insurance products, or a strategy of significant
hedging of correlated risks that reduces the potential of cyber-
insurance. Talesh (2018) conducts an analysis contributing to
two literatures on organisational compliance: new institutional
organisational sociology studies of how organisations respond
to legal regulation and sociolegal insurance research on how in-
stitutions govern through risk. Talesh concludes that insurers
act as de facto compliance managers for organisations dealing
with cyber security threats via the provision of risk management
services. Heath (2018) explores theories of torts and insurance
in driving efficient management of risk and addresses the pos-
sibilities and limiations of both fields in developing effective
deterrence of risk.

2.3.5. Surveys and empirical analyses
The final category of the cyber-insurance literature we review

is concerned with surveys (largely of individual corporate deci-
sion makers) and empirical analyses of the state of the cyber-
insurance market. Biener et al. (2015) emphasise the distinct
characteristics of cyber risks compared with other operational
risks including highly interrelated losses, lack of data and se-
vere information asymmetries based on an analysis of almost
1000 cyber risk incidents. The lack of business and economics
literature on cyber-insurance has been identified by Eling and
Schnell (2016), who concur with this review in describing the
lack of data and modelling approaches in the cyber-insurance
literature. Tondel et al. (2016) explore the challenges insurance
companies face in assessing risk including from interviews with
insurers; they propose two options for improvement: basing
analysis on reusable sector-specific risk models, and including
managed security service providers in the value chain. Marotta
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et al. (2017) undertake a highly comprehensive survey of cyber-
insurance, albeit analysing only a small number of insurance
firms. Their characterisation of risks via a ’heat map grid’
type analysis is particularly pertinent and helps elucidate the
range of technical challenges associated with and complexity
of cyber-insurance.

One of the most important contributions in the cyber-
insurance literature is by Romanosky et al. (2017) who collect
and analyse over 100 cyber-insurance policies filed with state
insurance commissioners in the United States. This is an im-
portant paper, as it exploits insurance regulation in the US that
requires the filing of policies and as such is superior to a survey
in so far as the content is less likely to be biased. They find
that policies were generally classified as property and casualty
lines and that cyber-insurance is generally not covered under a
single line of business. Regarding pricing, they found that the
firm’s asset value base rate rather than specific technology or
governance controls, was the single most important factor used
in policy pricing.

There has been a recent trend towards surveys becoming
more targeted. Woods et al. (2017) present the first systematic
analysis of cyber-insurance proposal forms, suggesting that to
avoid adverse selection the number of controls that proposal
forms include should be in alignment with two key information
security controls: ISO/IEC27002 and the CIS Critical Security
Controls. de Smidt and Botzen (2018) provide an analysis of
individual perceptions of cyber risks among professional deci-
sion makers; they find that the probability of a successful cyber
attack is overestimated in general and the financial impact un-
derestimated. A reluctance to insure cyber risks is noted com-
pared against expected value-based decision making, which
supports a notion that some may believe that cyber-insurance is
unlikely to pay out. Eling and Zhu (2018) analyse the relation-
ship between corporate characteristics and the writing of cyber-
insurance in the US property and casualty insurance industry; a
key finding is that insurers writing cyber-insurance policies use
more reinsurance to transfer their risk. Nurse et al. (2020) in-
vestigate the types of data used in pricing cyber-insurance via a
qualitative study of professional practitioners including under-
writers and actuaries. Their analysis sheds useful light on the
trade-offs faced by insurance suppliers, though their interview
sample size is relatively small and the paper acknowledges sup-
port from a sole insurer; it is not clear whether the individuals
interviewed came just from this individual firm.

3. Model

3.1. Related Work

3.1.1. Key results from the Gordon-Loeb model
Some key results and assumptions underpinning the Gordon-

Loeb (henceforth GL) Model are briefly summarised here,
which have relevance for the model developed in this research.
Gordon and Loeb assume that an information set may be char-
acterised by three parameters: l, τ and v which represent the loss
conditioned on a breach occurring, the probability of a threat
occurring and the vulnerability (the probability that a threat

once realised would be successful). In the GL model, τ and
l are assumed to be constant. The expected loss from a breach
event if no investment is made is then E[L] = τvl. This loss
may be reduced by an investment in security z, which the model
accommodates via the introduction of a security breach proba-
bility function, S (v, z). The GL model makes three assumptions
about S (v, z):

A1: S (z, 0) = 0 for all z
A2: For all v, S (0, v) = v
A3: For all v ∈ (0, 1) and all z, S z(z, v) < 0 and S zz(z, v) > 0

where S z and S zz are the first and second partial derivatives
of the security breach probability function with respect to
z.

The expected benefit of investment in information security
(EBIS) may be defined as:

EBIS (z) = [v − S (z, v)]τl (1)

This is the reduction in the expected loss as a result of the in-
vestment z. Subtracting the investment, z, then yields the ex-
pected net benefit of investment in information security (EN-
BIS):

ENBIS (z) = [v − S (z, v)]τl − z (2)

ENBIS neatly encapsulates the cost-benefit trade-off of security
investment and should be strictly positive for a rational decision
maker investing in security measures. As the security breach
probability function is strictly convex in z by definition, ENBIS
is accordingly strictly concave in z, meaning that an interior
maximum z∗ > 0 is given by the first order condition:

−S z(z∗, v)τl = 1 (3)

The GL model proposes two classes of security breach func-
tion: S I(z, v) = v

(az+1)β and S II(a, v) = vαz+1. α and β are param-
eters for the productivity5 of information security. The optimal
level of investment in defence for a particular information set
are then easily obtained for the two classes of security breach
functions:

zI∗(v) =
(vβαlτ)1/(β+1) − 1

α
(4)

zII∗(v) =
ln(1/ − αvlτ(ln v))

α ln v
(5)

Gordon and Loeb show that for either of these forms of S ,
z∗(v) < (1/e)vτl. The GL security breach functions are illus-
trated in Figure 1 for vulnerability v = 0.65 and the correspond-
ing ENBIS for these breach functions.

3.1.2. Critique of the approach of Young et al (2016) to com-
bining the Gordon-Loeb model and Cyber-insurance

Young et al. (2016) adopt a similar conceptual approach
to the model introduced in this paper in terms of setting up
an optimisation problem incorporating parameters from the
Gordon-Loeb model. They propose minimising the expression

5In economics, productivity is a measure of the efficiency of an input
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Figure 1: Example Gordon-Loeb security breach functions

S (z, v)τl + z + P with the constraints that the cost of security
investment and insurance premium cannot exceed the security
budget and that coverage should be fixed at l. For the pre-
mium, they assume a base premium rate of 8% which is then
discounted in a linear fashion based on the Gordon-Loeb Se-
curity breach function for levels of investment. Their model
is solved using a commercial solver add-in to Microsoft Excel.
While empirically pragmatic, this lacks mathematical rigour.
Furthermore, this minimisation is only reliable to specific prac-
tical examples where one is assured of the appropriateness of
the chosen parameters. The approach taken by Young et al has
merit for use in an enterprise situation (for example by a risk
department) where a quick calculation is required for analytical
approaches, but falls short of the rigour and theoretical consis-
tency provided by a formal economic model such as the GL
model.

3.1.3. Mazzoccoli and Naldi (2020) on mixed insur-
ance/investment cyber-risk management

Mazzoccoli and Naldi (2020) have recently produced a valu-
able contribution to the literature on cyber-insurance by pursu-
ing a similar approach to Young et al (2016). A central feature
of the Mazzoccoli and Naldi approach is their inclusion of a
Gordon-Loeb type security breach function in the premium cal-
culation that might be charged by an insurance company. This
differs subtly, but importantly, from the approach in the model
presented in this paper of treating the Gordon and Loeb secu-
rity breach function as governing the probability of a breach oc-
curing from the perspective of the insurance buyer, rather than
the insurance supplier, who is treated as exogenous6. Help-

6In less formal terms, the insurance supplier is treated as an independent

fully, Mazzoccoli and Naldi incorporate the possibility of vari-
able coverage and deductibles, which give their model signifi-
cant real world relevance. Their analysis ultimately focuses on
the optimal investment allocation for any given vulnerability
level, which provides a useful comparison for our model re-
sults. However, our approach aims to provide extensive insight
into the implications of variation in the full gamut of relevant
parameters on the expected utility of an insurance buyer. We
believe the most important contribution of our model is that in-
vestment dynamically reduces the breach probability and thus
the amount of risk a buyer would wish to insure. We view
our work as complementary to the approach of Mazzoccoli and
Naldi, though, rather than contradictory.

3.1.4. Return on Security Investment (ROSI)
Sonnenreich et al. (2006) propose a measure for calculating

the value of security expenditure, the return on security invest-
ment (ROSI):

ROSI =
(RiskExposure ∗%RiskMitigated) − SolutionCost

SolutionCost
(6)

This measure is broadly similar to ENBIS in the Gordon-
Loeb Model (Equation 2), but is defined in percentage rather
than monetary terms. This metric is potentially very useful in
a real-world context, the parameters of risk exposure and per-
centage risk mitigated are extremely difficult to estimated as
noted by Sonnenreich et al. (2006). This is an area, therefore,

input to the model
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where theoretical economic models of security investment may
be able to make a useful contribution by providing some ini-
tial quantitative inputs that could then be refined based on real
world experience. This is a common approach in insurance,
where expected loss distributions might be initially simulated
but then refined based on losses and claims experienced.

3.2. Expanding the Gordon-Loeb model to include cyber-
insurance

We introduce a simple model following Rees and Wambach
(2008) to describe the microeconomic analysis of a firm aim-
ing to determine its optimal level of cyberinsurance cover. For
convenience, this model will be referred to as the Gordon-Loeb
with cyber-insurance (GLCI) model. The GLCI model consid-
ers the decisions of an individual (for example a Chief Informa-
tion Security Officer) charged with allocating an annual cyber-
security budget, which is treated initially as analogous to the
wealth of an individual in a traditional analysis of insurance.
A simple model for insurance demand may be formulated in
terms of maximising the expected utility7 of an insurance buyer
where there are two states, no-loss and loss:

E[U] = (1 − S (v, z))u(Bsec − z − P(C))
+S (z, v)u(Bsec − z − P(C) − τlS (z, v) +C)

(7)

The probability of the loss state is given by a Gordon-Loeb
security breach function, S (z, v) - thus, investment in security
measures reduces the probability of a loss. The maximum ex-
pected loss is τlS (z, v). The introduction of the GL model SBFs
into the utility function of an insurance buyer is, to the best
of the author’s knowledge, the first example of their use in a
classical economic analysis of insurance. C represents the cash
coverage of the insurance policy. The case C = τlS (z, v) thus
implies full cover but depending on the cost of the premium,
it may be optimal for the insurance buyer to only take partial
cover and accept some residual financial risk. Bsec is the se-
curity budget (analogous to wealth in the classical insurance
model), P(C) is a cash premium, assumed to be a function of
cash cover C, which is allowed to vary. u(.) is a von Neumann-
Morgenstern utility function8, which is increasing and strictly
concave implying that the individual is risk averse. The form of
the utility function is described in Section 3.3.

The expected utility is a function of two states: one where a
breach does not occur and one where a breach occurs. In both
states it is assumed that an investment z is made; this invest-
ment is allowed to vary but for simplicity, timing effects9 and
the decision process around that investment10 with respect to
the system are both excluded. This leaves the model relatively

7In economics, the concept of utility aims to describe a set of preferences
using mathematical functions

8Such a utility function is one that conforms to the four axioms proposed in
von Neumann et al. (1944)

9Timing effects in an economic model where the unit of measure is money
would require treatment of the time value of money and assumptions on interest
rates. This would increase the model complexity without yielding significant
insights relevant to the research question

10This could be a fruitful area of potential further research work

abstract11 in relation to a real-world example of security invest-
ment and defence, although its one-period nature is arguably
comparable to the annual budgeting and investment cycle un-
dertaken by many organisations both in government and indus-
try. Further, the estimation and attribution of economic losses
from cybersecurity incidents is a live area of research and there
is no reason why the loss parameters in the model could not be
expanded as required for a specific use case. The GL model
arguably suffers the same limitations as the model in this paper
and these simplifying assumptions still allow for a useful eco-
nomic analysis of the interaction between security investment
and insurance as is evidenced by the enduring popularity of the
GL model and the significant body of subsequent literature that
has developed. The expected utility maximisation problem then
becomes:

max
C≥0

ū = (1 − S (v, z))u(Bsec − z − P(C))

+S (z, v)u(Bsec − z − τlS (z, v) +C − P(C))
(8)

subject to the constraints P(C) = pC where p represents a per-
centage premium (as is conventional in insurance) and z+ pC ≤
vτl
e . The value vτl

e is the maximum potential value of optimal
security investment in the Gordon-Loeb model. The choice of
cash constraint is likely in reality to be dictated by a the bud-
getary preferences of a firm and the Gordon-Loeb maximum
potential investment is used as a convenient assumption rather
than one that can be rigorously proved as in the GL model.
Under the simplifying assumption that p is constant and de-
termined by the insurance supplier, the insurance buyer is faced
with the decision as to how much cover to take at that premium.
Substituting the first constraint into equation 8 yields:

ū(C, z) = (1 − S (v, z))u(Bsec − z − pC)
+S (z, v)u(Bsec − z − τlS (z, v) +C(1 − p))

(9)

In this formulation, the level of cover C and defensive security
investment z are the only variables in the problem; the vulner-
ability v is an inherent property of the information set as are τ
and l. The Lagrangian12 for the problem depicted in equation 8
is:

Z = U + λ(
vτl
e
− pC − z) (10)

where U = ū(C, z) The Karush-Kuhn-Tucker conditions13 are
(where Zx denotes the partial derivative of Z with respect to x):

ZC = UC − pλ ≤ 0 C ≥ 0 C.ZC = 0
Zz = Uz − λ ≤ 0 z ≥ 0 z.Zz = 0

Zλ =
vτl
e
− pC − z ≥ 0 λ ≥ 0 λ.Zλ = 0

(11)

11The same observation applies to economic models used in decision making
in a range of fields; for example, models of the economy used by Central Banks
to inform monetary policy.

12A Langrangian is a function used in mathematical optimisation for finding
the maxima or minima of a function subject to an equation being satisfied by
chosen values of certain variables.

13These are the conditions under which an optimal solution to a non-linear
programming problem such as the one in the model proposed in this paper may
be found - see, for example, Gass and Fu (2013) for a formal definition. As the
form of the utility function is variable, it is important not to lose generality at
this stage.
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The third constraint implies that for λ , 0, the solution would
imply a commitment of capital up to the Gordon-Loeb maxi-
mum. In the case where both cover and investment are non-
zero, by conditions 1 & 2, we assume ZC = Zz = 0 then:

λ =
Uz − UC

1 − p
(12)

This then implies that the fair premium is given by

p =
UC

Uz
(13)

This set of conditions specify the conditions under which a lo-
cal maximum may exist. However, there is no guarantee that
under all sets of conditions that it will. Furthermore, depend-
ing on the nature of utility function chosen, solving the sys-
tem of equations in (11) has the potential to become a difficult
non-linear programming challenge in general terms. Our pri-
mary focus is to ascertain whether the model provides useful
insights that can guide behaviour towards security investment.
This can likely be deduced via the appropriate use of graphical
methods to evaluate the model in the first instance to guide an
optimisation strategy for model cases rather than producing a
closed-form solution ab initio that is algebraically intractable
and unintuitive to interpret.

3.3. The utility function in relation to insurance
As has been demonstrated, it is possible to make useful

judgements regarding the formulation of the optimal secu-
rity investment/insurance problem without stipulating a precise
form for the utility function. As elegantly described by Gollier
(2001), however, “It is often the case that problems in the eco-
nomics of uncertainty are intractable if no further assumption is
made on the form of the utility function.”. The optimal form of
utility function is of great importance for solving problems and
forms a significant branch of literature in its own right. For the
purposes of this analysis, a von Neumann-Morgenstern utility
function is needed that allows for an analysis broadly consistent
with the two different forms of security breach function in the
GL model but is also able to capture the preferences of different
types of firms.

It is worth considering the risk tolerance of a firm considering
investments in information security. The firm should be risk
averse; if it were totally risk tolerant, it would be willing to risk
the costs of a breach. It should also be aiming to maximise its
wealth as a rational actor. Together, these preferences imply
U′ > 0 and U′′ < 0. There are three key properties in relation
to the utility function that are usually considered, absolute risk
aversion:

A(z) = −
u′′(z)
u′(z)

(14)

prudence:

P(z) = −
u′′′(z)
u′′(z)

(15)

and relative risk aversion:

R(z) = −
zu′′(z)
u′(z)

= zA(z) (16)

There are two particular classes of utility function that have
properties of constant absolute risk aversion (CARA):

u(z) =
1 − e−az

a
(17)

or constant relative risk aversion (CRRA):

u(z) =

z(1−γ)/(1 − γ) if γ , 1
ln(z) if γ = 1

(18)

As noted by Johnson et al. (2011b), CRRA is an established
choice within the cyber-insurance literature though examples
of CARA are also found. For completeness, we examine the
properties of both CRRA and CARA utility functions in the
following simulations of the GLCI model.

4. Method

4.1. Simulation

The simulations of the Gordon-Loeb with Cyber-Insurance
(GLCI) model use the following parameters, adapted with slight
variations from Gordon et al. (2016) and Naldi and Flamini
(2017). We set l =$500,000 with the probability of a threat
occuring, τ = 0.8. Both of these parameters are constant in
the GL model, which gives an expected loss of $400,000 be-
fore any security investment, z. v is initially set at 0.65, which
as previously discussed represents the probability that a threat
is successful once realised. Finally, α = 1.5 ∗ 10−5 in Class I
and II breach functions and β = 1 for the Class I breach func-
tions. This choice of α was informed partially by the existing
literature, where α = 1 ∗ 10−5 is often used; this produced some
erratic behaviour within the Class II security breach function
whereas the slightly higher α provides well bounded results for
both classes of security breach function. The parameter values
used in the simulation give well-bounded results and allow for a
thorough examination of the model behaviour. Graphical anal-
ysis was generated using the Plots.jl package within the Julia
language.

The GLCI model simulations are presented using both loga-
rithmic and exponential utility functions in the form of plots of
the utility functions varying different model parameters. Ini-
tially, closed form14 solutions to the system of equations in
(11) were sought but it became clear that this approach was
unlikely to prove fruitful given the large number of variables
in the model and small number of constraints. Furthermore,
the choice of utility function could be varied depending on the
use case and consequently plotting the utility functions impos-
ing the relevant model constraints is sufficient for evaluating the
focal research question of this work.

14Equations produced using software to resolve the symbols contained within
the utility functions
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5. Discussion

5.1. Model Simulation

5.1.1. Optimal investment per the Gordon-Loeb model, vari-
able cover

We first consider the simple case where a firm invests the op-
timal amount recommended by the Gordon-Loeb model, z∗ and
then investigates the possibility of cyber-insurance with vary-
ing cover and different premium rates observable in the market.
To illustrate this case, we plot both logarithmic and exponen-
tial utility functions for Equation 9 in Figure 2. The logarith-
mic utility function is simply u(.) = ln(.) while the exponential
function is Equation 17 setting a = 10−5. These utility func-
tions will be used for the remainder of the simulations in this
work. A key model assumption is that the total cost of invest-
ment and insurance premia should not exceed (1/e)τvl. Hav-
ing invested an amount, z, the GL model states that there is a
commensurate reduction in the probability of a breach being
successful. Utility functions are therefore plotted up to cover
C = min(τlS (v, z∗), (1/e)τvl−z∗

p ). This ensures that the monetary
amount spent on security investment and insurance does not ex-
ceed the imposed constraint. The results broadly suggest that
utility is largely maximised at maximum coverage for most rea-
sonable insurance premium rates - the only counterexample in
the analysis is for p > 0.35 for the Class I SBF with logarithmic
utility. The conclusion that maximum coverage is optimal con-
curs with the game theoretic modelling work in Johnson et al.
(2011a) and Yang and Lui (2012).

5.1.2. Variable investment, maximum cover
Relaxing the assumption that the firm first invests the opti-

mal amount into protecting its information allows us to consider
the competing interaction between spend on insurance and in-
vestment. As in Section 5.1.1 the maximum cover an insurance
buyer would wish to take out is Cmax = τlS (v, z) with maximum
cover available respecting the cash constraint is then given by
C = (1/e)τvl−z

p .
Figure 3 shows the variation of maximum available cover

subject to the cash cost constraint with premium rates, along
with the optimal GL values of investment for reference and the
theoretical maximum cover at each value of z. For class I SBFs,
it is possible for an insurance buyer to obtain full coverage at
z∗ for premia less than 25% in our model setup. However, for a
corresponding class II SBF, only premia below about 10% offer
full cover under the terms of the model. Figure 4 illustrates the
utility functions in the case of variable investment. The rele-
vant optimum level of investment specified by the GL model is
plotted as a dotted vertical line. Under the cover decision we
have outlined, it is clear that insurance is usually preferable to
investment in our example model set-up at all but very high in-
surance premium rates. This is an interesting result as the utility
functions plotted incorporate the expected benefits of a reduc-
tion in breach probability. Economically this makes sense - if
the cost of insuring a risk is lower than the cost of reducing it
to a certain level then it makes sense to take out the insurance.

5.1.3. Premium versus vulnerability under optimal security in-
vestment

Thus far simulations have had fixed v = 0.65. It is interest-
ing to consider the effect of varying v, especially for the second
class of GL security breach functions, which are exponential
in v. To do so, it is assumed that the insurance buyer invests
the optimal amount recommended by the GL model. Figure 5
plots the variation of the highest premium at which full cover
can be achieved with v for both GL SBF classes and also how
the GL optimum investment, z∗ varies with v with the other
model parameters as specified previously. Figure 6 plots the
utility functions previously described for buying insurance at
the maximum coverage available (as described in section 5.1.2)
as a function of the vulnerability, v. The main use of this anal-
ysis is to demonstrate how the sensitivity of the utility to the
premium rate varies at different values of v.

Table 1 provides an alternative presentation of this analysis.
For each vulnerability, v, the maximum investment under the
GL model is calculated followed by the optimum for class I
and II SBFs. The expected probability of breach after the in-
vestment is then calculated. The maximum cash available to
the insurance buyer for insurance purchase is then calculated,
from which the maximum premium rate at which full relative
cover may be achieved is then calculated. For the class I SBF,
this is relatively high; however for Class II SBFs, the relatively
higher level of zII∗ compared with zI∗ means that it is difficult
to achieve full coverage. It should be noted that Class II SBFs
start to produce somewhat erratic results as v → 1 given the
form of zII∗(v).
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Figure 2: Utility as a function of cover assuming z = z∗
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Figure 3: Maximum available cover under the cash constraint at different levels of z
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Figure 4: Utility as a function of investment with maximum insurance coverage purchased
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Figure 5: Highest premium rate at which maximum cover may be obtained for vulnerability, v and variation of optimal GL investment with vulnerability, v
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Figure 6: Utility functions for different vulnerabilities assuming investment at the Gordon-Loeb optimum, z∗ and maximum coverage respecting the model cash
constraint
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v zmax($) zI∗($) zII∗($) S I(v, zI∗) S II(v, zII∗) PI
max($) PII

max($) pI
max(%) pII

max(%)

0.20 29,430 6,363 27,264 0.183 0.104 23,067 2,166 31.6 5.2
0.25 36,788 14,983 35,207 0.204 0.120 21,805 1,581 26.7 3.3
0.30 44,146 22,776 42,826 0.224 0.138 21,369 1,320 23.9 2.4
0.35 51,503 29,943 50,203 0.242 0.159 21,561 1,300 22.3 2.0
0.40 58,861 36,613 57,336 0.258 0.182 22,248 1,525 21.5 2.1
0.45 66,218 42,878 64,140 0.274 0.209 23,340 2,079 21.3 2.5
0.50 73,576 48,803 70,413 0.289 0.240 24,773 3,163 21.5 3.3
0.55 80,933 54,439 75,772 0.303 0.279 26,494 5,162 21.9 4.6
0.60 88,291 59,824 79,506 0.316 0.326 28,467 8,785 22.5 6.7
0.65 95,649 64,989 80,292 0.329 0.387 30,659 15,357 23.3 9.9
0.70 103,006 69,959 75,541 0.342 0.467 33,047 27,465 24.2 14.7
0.75 110,364 74,755 59,829 0.354 0.579 35,609 50,534 25.2 21.8

Table 1: Sample parameters for different vulnerabilities, v. τl = 400, 000. Pmax = zmax − z∗, i.e. the maximum cash available to pay an insurance premium after
investing at the optimal level given by the GL model. p is the highest premium rate at which coverage equal to the expected loss after investment, τlS (v, z∗), can be
achieved.
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5.2. Model limitations

We believe that the GLCI model meets the initial research
objective of assessing whether an expansion of the Gordon-
Loeb model can yield useful insights for cyber-insurance, as
it demonstrates that the Gordon-Loeb security breach func-
tions can be used within a classical two-state utility maximi-
sation model. In particular, the GLCI model offers insight into
the competing dynamics of purchasing insurance coverage ver-
sus investing in security. However, it is inherently abstract in
drawing on the Gordon-Loeb model and classical microeco-
nomic treatment of maximising expected utility. This abstrac-
tion brings advantages in terms of ease of use and adaptability
but this is at the expense of realism. In a real-life scenario,
the trade-offs between security investment and insurance are
likely to be more subtle and also not exogenous as our model
assumes. A specific example of this is the approach to the in-
surance premium, which is likely to be unique to each insur-
ance buyer and their specific circumstances. The model treats
the premium rate, p as an independent, market observed vari-
able. Further, the insurance premium for each utility curve is
static and the buyer has the choice of purchasing varying levels
of cover at that rate combined with an investment in security
subject to a cash constraint proportional to the ‘value’ of the
dataset. In reality, the baseline market observed premium is
likely to be a reducing function of the investment in security,
z, as the insurer is likely to account for the reduction in breach
probability effected by the client. The insurance problem has
been framed from the perspective of the insurance buyer (the
decision maker in the model) as this naturally follows from the
Gordon-Loeb model. However, a useful extension would be to
include a more sophisticated premium rate term. Unfortunately,
cyber-insurance premium data is extremely difficult to obtain in
the public domain as the inputs are of high commercial sensi-
tivity to insurance companies. A model with dynamic premia
would also further increase in complexity as an optimisation
problem, but the simulation approach in this paper would likely
yield useful insights.

A further problem is that the nature of loss introduced in the
Gordon-Loeb model is hard to reconcile with real world scenar-
ios in the context of insurance. The concept of loss for many
lines of insurance is relatively straightforward to understand;
if an individual’s vehicle is stolen for example, one motivation
(beyond the fact that in most countries it is a legal requirement)
is that the insurance should cover the cost of replacing the vehi-
cle as well as any damage inflicted by the driver on other vehi-
cles or persons. However, for data, what is the economic notion
of loss? One interpretation would be the regulatory costs of a
breach an organisation might suffer, but these cannot necessar-
ily be covered by insurance. One purpose of regulation such as
GDPR could be argued to be protecting consumers by provid-
ing a significant financial deterrent to firms from not investing
in appropriate security measures. This presents an issue of pos-
sible moral hazard around cyber-insurance; the fact that a firm
can recover some of its costs if data is stolen is of scant bene-
fit to consumers, for example, if their valuable personal data is
stolen. Where cyber-insurance does have a useful role to play

is in assisting firms with forensic computing resources to iden-
tify the extent of a breach once identified, to help patch any
vulnerabilities and to aid with system recovery in the event of
a ransomware attack, for example. These dynamics are rather
difficult to properly encapsulate in a the simple parameters of
loss and coverage. A further issue is that once data is stolen, it
can be duplicated, so differs from many conventional economic
goods in terms of potential recovery. There are also issues of
reputational damage to a firm that must be considered follow-
ing a data breach; these could provide some motivation for the
purchase of an annuity-type structure as part of an insurance
package as one would expect the effects of a data breach to
gradually fade from public memory over time.

The behaviours of those involved in attacking and defending
a set of information are also of interest, though perhaps are bet-
ter represented via a game theoretic treatment of the problem
rather than in a classical economic model. However, the notion
of a constant threat probability in the GL model is possibly one
of the more problematic assumptions in a real world sense. It is
helpful to treat attacks as arising from nature in an initial evalu-
ation of the problem, but it would equally be relatively straight-
forward to attempt to measure the frequency of general attacks
(e.g. via the use of a ‘honeypot’15 and then including a param-
eter to account for the risks of a firm being a specific target.
There is also the question of the behaviour of the defender (the
insurance buyer in our model). Ioannidis et al. (2019) discuss
the notion of a steward, who is able to intervene under certain
conditions to either slow the degradation of a system’s operat-
ing capacity (promoting sustainability) or return a system to its
intended state (resilience). Under the right circumstances, the
presence of a steward might help to turn a major data breach
into a minor one and thus reduce the tendency for loss. The
steward for an organisation might be its cyber-security team,
who if deemed capable by an insurer, would likely result in it
quoting a lower premium.

Thus far, we have negated the supply side of the insurance
market, which our model treats as a readily available commod-
ity at uncertain price. In reality, most insurance policies will
have a coverage limit and responsible insurers will have clearly
defined and enforced risk limits. A particular issue with cyber-
insurance is the ability to offset risk. A common strategy among
insurers appears to be offering consulting services as part of the
insurance package, which generates revenue that helps to form
a compensation pool in the event of an insurance claim while
also lowering the risk that such a claim will occur. There is an
issue of adverse selection inherent in cyber-insurance; a naı̈ve
view might be that the insurance buyer poses greater risk as
an insurer cannot know all the details of the insurance buyer’s
activities. However, in reality, the insurer likely has a great in-
formation advantage; there are only a limited number of cyber-
insurers who are likely to have proprietary pricing models and
datasets of breaches and vulnerabilities assembled from a mul-
titude of customers and sources. It is very difficult for firms in a

15For a survey of early work in this area, see Bringer et al. (2012). Moore
(2016) and Tsikerdekis et al. (2018) are also interesting examples of this area
of research.

18



sector to share such information, and indeed to do so might be
considered economically irrational (albeit potentially socially
responsible). There is no guarantee also that an insurer will
agree to provide coverage at an economically satisfactory level,
and the insurance buyer must be assured that the policy is likely
to pay out as it expects. The GLCI model helps to quantify
what the economically satisfactory level might be (see Figure
5 and Table 1). However, the model inherently assumes that in
the loss state with probability of breach given by the Gordon-
Loeb security breach functions, the policy will pay out with
certainty. This is difficult to parametrise a priori, but a distribu-
tion of cyber-insurance payouts might be obtained or modelled
to incorporate this uncertainty.

6. Conclusion

This work has demonstrated that the Gordon-Loeb model for
investment in information security can be used to build a model
for cyber-insurance based on maximising the expected utility of
an insurance buyer. This model suggests that when the Gordon-
Loeb recommended optimum is invested in security measures,
then utility is maximised at full coverage for reasonable insur-
ance premium rates subject to a cash constraint that the total
spend on security measures and insurance cannot exceed the
maximum amount stipulated by the Gordon-Loeb model. We
demonstrate that for each of the two classes of Gordon-Loeb
security breach function, there is a maximum premium rate at
which cover can be purchased equal to the maximum expected
loss from a breach after the investment has been made while
respecting an imposed cash constraint that the total spent on
security investment and insurance cannot exceed (1/e) of the
maximum total expected loss. The abstract nature of the model
means that it simplifies the intricate trade-offs and decisions of
a real-life security investment problem. Nevertheless, it estab-
lishes in a rigorous economic sense that cyber-insurance can be
a cost effective solution in addition to security investment.
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