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Mitochondrial-nuclear cross-talk in the human
brain is modulated by cell type and perturbed in
neurodegenerative disease
Aine Fairbrother-Browne1,2,3, Aminah T. Ali 3, Regina H. Reynolds 2, Sonia Garcia-Ruiz2,4, David Zhang2,4,

Zhongbo Chen 1,2, Mina Ryten 2,4,5✉ & Alan Hodgkinson 3,5✉

Mitochondrial dysfunction contributes to the pathogenesis of many neurodegenerative dis-

eases. The mitochondrial genome encodes core respiratory chain proteins, but the vast

majority of mitochondrial proteins are nuclear-encoded, making interactions between the two

genomes vital for cell function. Here, we examine these relationships by comparing mito-

chondrial and nuclear gene expression across different regions of the human brain in healthy

and disease cohorts. We find strong regional patterns that are modulated by cell-type and

reflect functional specialisation. Nuclear genes causally implicated in sporadic Parkinson’s

and Alzheimer’s disease (AD) show much stronger relationships with the mitochondrial

genome than expected by chance, and mitochondrial-nuclear relationships are highly per-

turbed in AD cases, particularly through synaptic and lysosomal pathways, potentially

implicating the regulation of energy balance and removal of dysfunction mitochondria in the

etiology or progression of the disease. Finally, we present MitoNuclearCOEXPlorer, a tool to

interrogate key mitochondria-nuclear relationships in multi-dimensional brain data.
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T issues of the central nervous system (CNS) are not only
highly energetically demanding, consuming 20% of the
body’s total energy supply1, but heterogeneous in their

requirements, with wide variation in energy demands across their
constituent cell types2,3. As such, matching energy supply to
demand is a tightly regulated process and dysfunction in these
processes has been linked to a wide range of neurodegenerative
diseases (NDs)4–6. Energy production in the CNS is largely
dependent on mitochondria, which have their own compact
genomes that code for proteins of the electron transport chain.
However, most of the proteins required for normal mitochondrial
function are encoded in the nucleus, making interactions between
the two genomes vital for key cellular processes such as mito-
phagy, calcium buffering, cellular signalling and apoptosis7.
Transcription of nuclear-encoded mitochondrial proteins occurs
in the nucleus and translation is carried out by cytoplasmic
ribosomes before the products are imported into mitochondria8.
Through these processes, the mitochondria are fully resourced to
fulfil their numerous and integral roles in the cell.

In neuronal cell types, the mitochondrial−nuclear relationship is
particularly complex. Neurons are highly dependent on oxidative
phosphorylation (OXPHOS), rendering them vulnerable to oxida-
tive stress induced by reactive oxygen species (ROS). Given that
OXPHOS components are bi-genomically encoded, while the
components of the ‘ROS defence system’ (RDS) are nuclear-enco-
ded, coordinated provision of these factors is required to maintain
both continuous ATP production and neuronal integrity9. Fur-
thermore, given that neurons are terminally differentiated cells, they
rely heavily on bi-genomically encoded autophagic pathways for
removal of dysfunctional organelles as well as misfolded and
aggregated proteins in order to maintain function throughout life10.
Additionally, neurons have a unique and highly specialised archi-
tecture, requiring them to ensure a consistent supply of nuclear-
encoded mitochondrial proteins to large quantities of mitochondria,
across many metres in some instances2,11.

Given the intricacy and scale of mitochondrial−nuclear coor-
dination required in human brain tissue, there is ample oppor-
tunity for dysfunction. In neurons, failure of coordinated
mitochondrial clearance and biosynthesis contributes to disease
pathogenesis. This can be seen in the aetiology of Parkinson’s
disease (PD), where mutations in PINK1 and PARK2 are asso-
ciated with autosomal-recessive PD and their protein products
have been implicated not only in mitophagy, but also mito-
chondrial biogenesis12,13. However, pathology of the mitochon-
drial biogenesis and quality control pathways is not unique to PD.
Analyses of brain samples from individuals with Alzheimer’s
disease (AD) have shown that levels of the mitochondrial bio-
genesis transcriptional ‘master-regulator’ PGC-1α in hippo-
campal tissues are reduced relative to control tissue, suggesting
that disruption of PGC-1α-dependent pathways contributes to
pathogenesis14. Collectively, this evidence points to a role for
dysfunction of the mitochondrial−nuclear relationship in NDs.

Despite this, the analysis of mitochondrial−nuclear cross-talk at
scale is mostly limited, focusing either on a small number of features,
or a small number of samples through the analysis of absolute RNA
expression values15, in vivo work involving single gene
knockdown16, or indirectly analysing mitochondrial function by
measuring metabolite output17. Larger studies that have looked at
cross-talk in multiple tissues include a population-level analysis of
expression quantitative trait loci (eQTLs) associated with the
expression of mitochondrially encoded genes, and a multi-tissue
analysis of nuclear and mitochondrial gene expression
correlations18,19. These studies support the complexity and func-
tional relevance of mitochondrial−nuclear relationships in the brain
but lack CNS-specificity and analysis of potential processes and
pathways most relevant to mitochondrial−nuclear coordination.

Here, we focus specifically on mitochondrial−nuclear rela-
tionships in CNS tissues using RNA sequencing data from a large
number of individuals from multiple cohort studies. We find that
across the CNS, there is regional variation in co-expression likely
modulated by cell-type-specific processes, reflective of functional
specialisation in the brain. We identify disease-specific patterns in
mitochondrial−nuclear relationships that are important for
understanding the aetiology of neurological disease.

Results
Since mitochondrial processes are important in brain tissue and
their perturbation is thought to have a role in ND, we aimed to
identify whether relationships between expression levels of
mitochondrial- and nuclear-encoded genes are variable across
brain regions, cell types and ND status. To do this, we calculated
pairwise Spearman correlation coefficients between all nuclear
and mitochondrial gene pairs, after regressing out covariates (see
‘Methods’). We leveraged data across 12 CNS tissues from the
Genotype-Tissue Expression (GTEx) project for analyses in
healthy tissue, and frontal cortex tissue from the Religious Orders
Study/ Memory and Aging Project (ROSMAP) AD dataset for
analyses in a case−control paradigm.

Correlations in mitochondrial−nuclear gene expression are
variable across the human CNS. In order to investigate correla-
tions in mitochondrial−nuclear gene expression across all CNS
regions, we calculated Spearman correlation coefficients for each
pair of nuclear and mitochondrial-encoded genes (15,001 and 13
genes respectively, making a total of 195,013 comparisons) in each
of the 12 GTEx CNS regions. Distributions of the correlation values
for each CNS region were visualised as density plots to facilitate
cross-CNS comparison (Fig. 1a). We observed that CNS regions
have distinct and varying mitochondrial−nuclear correlation dis-
tributions. While some regions showed Gaussian-like distributions
(cerebellar hemisphere, hypothalamus, substantia nigra) (Fig. 1c),
others showed dispersed distributions, containing more high mag-
nitude relationships, and fewer neutral correlations (caudate basal
ganglia, putamen basal ganglia) (Fig. 1b). Qualitative analysis
revealed mitochondrial−nuclear distribution similarity within
GTEx CNS tissues derived from the same broad regional classifi-
cation (fore-brain, mid-brain and hind-brain). We quantitatively
confirmed this through unsupervised Euclidean clustering of
regional correlation coefficients across all CNS tissues. This iden-
tified biologically meaningful clusters, whereby cortical regions and
distinct regions of the basal ganglia (putamen, nucleus accumbens
and caudate) were grouped together (Supplementary Fig. 1), which
appears to reflect functional specialisation in the human brain.

Regional cell-type composition contributes to distinct regional
mitochondrial−nuclear correlation distributions in the CNS.
We hypothesised that regional differences in cell-type composi-
tion may be contributing to regional differences in mitochondrial
−nuclear correlation profiles. To test this, we considered whether
cell-type markers were enriched at the positive and negative
extremes of the correlation coefficient distributions. This analysis
was performed for each GTEx CNS region using the Expression
Weighted Cell-type Enrichment (EWCE) method, which tests
whether a given set of genes is expressed more highly in a cell-
type of interest than might be expected by chance20. Cell-type
specificity data were derived from two human brain snRNA-seq
experiments, the first of which used middle temporal gyrus
nuclei21, and the second used hippocampus and prefrontal cortex
nuclei22. The input to this method was nuclear-encoded genes
derived from gene pairs in the highest 5% of positive correlations
and highest 5% of negative correlations for each region.
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We found that genes with a high specificity for neuronal cell-
types (GABAergic and glutamatergic) were significantly enriched
(P < 0.05, Bonferroni-corrected for regions and gene sets) in
negative mitochondrial−nuclear gene pairs across CNS regions
(Fig. 2). In contrast, genes with a high specificity for non-
neuronal cell-types (astrocytes, microglia) were significantly
enriched in positive mitochondrial−nuclear gene pairs (P < 0.05
in 6/12 regions for astrocytes; P < 0.05 in 5/12 regions for
microglia, Bonferroni-corrected for regions and gene sets), the
exception to this being oligodendrocytes (Fig. 2). A strong cross-
CNS signal for oligodendrocyte marker enrichment was observed
in negatively correlated pairs (P < 0.05 in 10/12 regions,
Bonferroni-corrected for regions and gene sets), coupled with
no significant enrichment detected in positively correlated pairs.
For astrocytes and microglia, we observed a trend towards marker
enrichment in positive pairs over negative pairs across the CNS.
Reassuringly, we note that related regions display similar cell-type
enrichment profiles, indicative of biological functionality being
reflected in these enrichments. For example, GTEx-defined23

technical sample replicates (the cortex and frontal cortex, and
cerebellum and cerebellar hemisphere) as well as regions closely
biologically associated such as the basal ganglia (putamen,
nucleus accumbens and caudate), demonstrate consistent patterns
of cell-type enrichment.

To further test our hypothesis, we used published cell-type
proportion estimates24 to determine whether correcting GTEx
expression data for the effect of cell-type proportions would result
in more homogenous cross-CNS mitochondrial−nuclear correla-
tion profiles. To this end, we included five GTEx regions (see
‘Methods’) for which we determined the cell-type proportions to
be most representative (Supplementary Fig. 2A, B), and compared
the distributions of cross-regional Spearman correlation variances
per mitochondrial−nuclear gene pair with and without correction
for cell-type proportions. Applying this approach, we find that the
distributions of variances are significantly different to each other
(two-sample Wilcoxon signed rank test, P < 2.2e−16), but the
medians of both distributions are also significantly higher than 0
(one-sample Wilcoxon signed rank test, P < 2.2e−16 for mito-
chondrial−nuclear distributions derived from both correction
strategies) (Supplementary Fig. 2C, D). As such, we conclude that
cell-type proportion is a modulator of cross-CNS variation in
mitochondrial−nuclear correlations, but note that regional
specialisations still exist after correcting for cell-type proportions.

Post-synaptic processes are enriched in mitochondrial−nuclear
gene pairs that are highly variable across the CNS. Having
established the importance of cell-type composition in driving
variation in mitochondrial−nuclear correlation profiles in the CNS,
we aimed to identify biological processes associated with this

Fig. 1 Distributions of mitochondrial−nuclear correlation coefficients (⍴) in GTEx CNS regions. aMitochondrial−nuclear ρ distributions for 12 GTEx CNS
regions. b Panel to show ρ distributions of the putamen basal ganglia and caudate basal ganglia regions overlaid. c Panel to show distributions of the
cerebellar hemisphere, hypothalamus, and substantia nigra regions overlaid.
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Fig. 2 EWCE-derived cell-type enrichments for 12 GTEx CNS regions. The left-hand y axis refers to the GTEx CNS region, while the right-hand facet
labelling refers to the cell-type. For each cell-type in each region, the metric for enrichment is shown as the number of standard deviations from the
bootstrapped mean (SD from mean, indicated by the colour bar). A dark green colour indicates a higher number of standard deviations from the mean,
while lighter green indicates fewer standard deviations from the mean. The x axis indicates which scRNA-seq dataset the underlying cell-type specificity
matrix was derived from. For each association, the following asterisks are overlaid to indicate the multiple test correction threshold passed: *0.05/
12 < P < 0.05; **0.05/12*6 < P < 0.05/12; ***P < 0.05/12*6.
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variation. To this end, we calculated the variance of Spearman
correlation coefficients of each mitochondrial−nuclear gene pair
across the 12 GTEx CNS regions, and assigned correlation direc-
tionality to each pair (see example in Fig. 3a). To reduce redun-
dancy, aggregation of mitochondrial genes was performed, taking
the median cross-CNS variance of 13 mitochondrial genes as the
representative value for each nuclear gene (Supplementary Fig. 3B).
Using this methodology, four gene sets were defined: (1) ‘high
variance positive’: top 5% nuclear genes with the most variable
relationships with the mitochondrial genome across brain regions
(N= 605); (2) ‘high variance negative’: top 5% nuclear genes with
the most variable relationships with the mitochondrial genome
across brain regions (N= 145); (3) ‘low variance positive’
(N= 387); (4) ‘low variance negative’ (N= 387). These gene sets
were used as input for the gene ontology enrichment tool gProfiler2
to derive enriched pathways25.

Overall, the distribution of variances was highly skewed towards
zero, demonstrating that the vast majority of mitochondrial−nuclear
pairs are stably correlated across all CNS regions (Fig. 3b). In gene
pairs that showed consistency across brain regions, we observed
enrichment for VEGF ligand−receptor interactions in the positive
correlation set (set 3 above, P= 8.12e−04, corrected for multiple
tests), whereas RNA processing (set 4 above, P= 7.72e−3, corrected

for multiple tests) was enriched in the negative correlation set
(Fig. 3d). Amongst the nuclear genes with the most variable
relationships to the mitochondrial genome across brain regions, we
observed enrichment of phosphodiesterases in neuronal function as
the only significant term for the positive (set 1 above) and synaptic
terms in the negative set (set 2 above), with the most significant term
being glutamatergic synapse (P= 1.42e−06, corrected for multiple
tests) (Fig. 3d). To explore this enrichment further, we utilised
SynGO, a specialist synapse ontology enrichment tool26 and found
significant enrichment in the high variance negative list only. This set
was highly significantly enriched for postsynaptic terms (P= 3.4558e
−20, FDR-corrected) with 3/5 of the most significant terms relating
to this structure (Fig. 3c). Of the 28 significant terms, 13 related to
‘postsynaptic’ structures or processes and 5 related to ‘presynaptic’
(Supplementary Table 1). Overall, this analysis identified sub-cellular
specificity in mitochondrial−nuclear correlations across the CNS.
More specifically, variable mitochondrial−nuclear relationships
highlighted genes associated with postsynaptic processes.

Correlation magnitude, directionality and cell-type enrichment
replicate in an independent dataset. To determine whether
patterns of mitochondrial−nuclear correlation observed in GTEx

Fig. 3 Visualisation of cross-CNS gene pair variances in GTEx data and the processes enriched in four variance-defined gene sets. a Schematic to
visualise generation of cross-CNS variances. For each mitochondrial−nuclear gene pair, a variance is taken of its per-tissue Spearman’s ρ values. The pair is
assigned a directionality (sign) based on the majority directionality of its ρ values. b. Density plot of the distribution of cross-CNS mitochondrial−nuclear
gene pair variances. The left-hand dotted line enclosing the shaded red area is the cut-off for ‘low variance’ gene pairs, the right-hand dotted line enclosing
the blue shaded area is the cut-off for ‘high variance’ gene pairs. c SynGO (synaptic gene ontology) output showing the top five enrichments for the high
variance negative nuclear gene set. P values are FDR-adjusted. d gProfiler2-derived enrichments for four nuclear gene sets: high variance negative, high
variance positive, low variance negative and low variance positive. The dotted line indicates a 5% significance cut-off. P values were corrected using the
gProfiler g:SCS method, optimised for enrichment analysis P value correction.
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brain data were robust, we considered mitochondrial−nuclear
gene expression correlations in neurological control samples from
the ROSMAP dataset. Since ROSMAP data are derived from
dorsolateral prefrontal cortex tissue, we compared the findings to
those generated from the GTEx frontal cortex tissue only.

Overall, Spearman’s ⍴ values for all mitochondrial−nuclear gene
pairs showed high correlations between GTEx and ROSMAP
control data (Spearman’s ⍴= 0.59, P < 2e−16, for 13,640 nDNA
genes that were expressed in both datasets), highlighting the
consistency of mitochondrial−nuclear relationships in the brain
(Fig. 4b). Visual inspection of correlation distributions across the
two datasets revealed greater similarity at high Spearman’s ⍴
magnitudes, likely due to the greater accuracy associated with those
correlation magnitudes (Fig. 4b). Next, we analysed the replicability
of the top 5% (ranked by Spearman correlation magnitude)
positively and negatively correlated gene pairs. We found that 817
nuclear genes were in the top 5% of negative pairs for both datasets,
and 588 nuclear genes were found in the top 5% of positive pairs for
both datasets (Fig. 4b). As such, 36% (top 5% positive) and 52%
(top 5% negative) of the GTEx-derived gene sets are composed of
the same genes when derived from ROSMAP data.

Given these findings, we extended replication analyses to look
for evidence that the cell-type-specific enrichments identified in
GTEx frontal cortex are robust across datasets. Repeating the
EWCE analysis (see ‘Methods’) using the top 5% positive and
negative gene lists generated from the ROSMAP control data
(Fig. 4c), we find near-identical patterns of cell-type enrichment
to GTEx data. We observed significant enrichment of genes with
high neuronal specificity in negatively correlated mitochondrial
−nuclear pairs (P < 0.05, Bonferroni-corrected for regions and
gene sets) (Fig. 4c). There was also significant enrichment of
genes with high specificity to astrocytes (P < 0.05, Bonferroni-
corrected for regions) and microglia (P < 0.05, Bonferroni-
corrected for regions and gene sets) amongst positively correlated
mitochondrial−nuclear pairs. Enrichment of oligodendrocyte
marker genes in negative pairs was also replicated in the
ROSMAP frontal cortex data (P < 0.05, Bonferroni-corrected for
regions and gene sets) (Fig. 4c). Thus, we see robust replication of
EWCE cell-type enrichments in the ROSMAP data, where
neuronal enrichment in the negative mitochondrial−nuclear
space, and glial enrichment in the positive space are highly
reproducible.

Fig. 4 Replication of the mitochondrial−nuclear correlation values and cell-type enrichments discovered in GTEx frontal cortex in an independent
frontal cortex dataset (ROSMAP control samples). a Density-contour plot to show all mitochondrial−nuclear gene pairs commonly expressed in both
datasets (177,320). ROSMAP ρ values are plotted on the x axis, and GTEx ρ values are plotted on the y axis. The Spearman correlation for the overall bi-
dataset correlation and corresponding P value for the r statistic is given in the top right of the plot (Spearman’s ρ= 0.59, P < 2e−16). b Upset plots to show
numbers of unique nuclear genes found in the top 5% positive (left-hand plot) and top 5% negative correlations in the two datasets, and the overlap size of
these gene sets. 817 nuclear genes were found in the top 5% of negative pairs for both datasets, and 588 nuclear genes were found in the top 5% of
positive pairs for both datasets. Thus, 52% and 36% of unique nuclear genes from negative and positive mitochondrial−nuclear pairs discovered in GTEx
replicate in the ROSMAP control dataset. c EWCE-derived cell-type enrichments for GTEx frontal cortex and ROSMAP frontal cortex. The y axis denotes
the RNA-seq source. For each association, the following asterisks are overlaid to indicate the multiple test correction threshold passed: *0.05/
12 < P < 0.05; **0.05/12*6 < P < 0.05/12; ***P < 0.05/12*6.
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Nuclear genes strongly implicated in ND have non-random
relationships with the mitochondrial genome. Given the robust
nature of mitochondrial−nuclear relationships and their asso-
ciation with specific cell types in CNS tissue, we aimed to
investigate whether genomic cross-talk is relevant to the aetiology
of NDs. To this end, we tested whether mitochondrial−nuclear
correlation distributions for genes implicated in NDs were sig-
nificantly different to distributions generated using random sets
of matched genes (Fig. 5).

We first tested four gene sets: two sets derived from AD27 and
PD28 GWASs respectively (implicating genes through analyses of
common variants), a gene set from the Genomics England
PanelApp containing genes implicated in rare Mendelian forms of
adult onset neurodegenerative disease, and a second PanelApp list,
intracerebral calcification disorders29, as a negative control. These
were largely independent sets, with very little overlap in the genes
included (for visualisation of gene set overlaps, see upset plot in
Supplementary Fig. 4A). We found that genes associated with AD
through GWAS analyses had mitochondrial−nuclear correlations
which were nominally different (did not pass multiple test
correction) from random gene sets in cortex (P= 0.0206) and
substantia nigra tissues (P= 0.0273) (Fig. 5a). Similarly, a
nominally significant distribution shift was observed in hypotha-
lamus tissue using the gene set implicated in sporadic PD
(P= 0.0163). In contrast to this, we found that genes associated
with adult onset ND had highly significant differences in
mitochondrial−nuclear correlations in the majority of CNS
regions (P < 0.05, Bonferroni-corrected for regions and gene sets).

To test whether these findings were specific to a subset of NDs,
we also investigated mitochondrial−nuclear correlations among
genes implicated in intracerebral calcification disorders (ICDs).
This disease gene set was used as a negative control since, unlike
AD and PD, ICD-induced neurodegeneration is caused by
calcium deposition in the brain’s vasculature or parenchyma.
We found no significant difference between this gene set and
empirical distributions in any CNS tissues. In light of the cell-type
enrichment data, in which neurons were enriched in negative
pairs, this may reflect the presence in these lists of nuclear-
encoded genes involved in neuronal processes.

The PanelApp adult onset ND gene set is an umbrella set,
incorporating genes in the smaller and more specific ‘early onset
dementia’ and ‘PD and complex PD’ PanelApp gene sets (for
visualisation of overlaps, see upset plot in Supplementary Fig. 4b).
As such, we aimed to look at whether these more specific disease-
related subsets also had significant relationships to the mitochon-
drial genome. We subsequently expanded the analysis to include
these gene sets, and set more stringent significance cut-offs to
consider the increased number of tests. We found that genes
implicated in Mendelian forms of PD (PanelApp ‘PD and
complex PD’) showed significant differences in mitochondrial
−nuclear correlations in 7/12 brain regions (P < 0.05, Bonferroni-
corrected for regions and gene sets), including the basal ganglia
(P < 0.05 for putamen, caudate and nucleus accumbens basal
ganglia, Bonferroni-corrected for regions and gene sets) which are
among the most disease-relevant tissues (Supplementary Fig. 4c).
Similarly, genes associated with early onset dementia were found
to have significant differences in mitochondrial−nuclear correla-
tions in the majority of regions (P < 0.05, Bonferroni-corrected
for regions and gene sets).

We note that in all cases, the ND-associated nuclear genes had
more negative correlations with mitochondrial gene expression
than would be expected by chance. Interestingly, we observed that
among the ND-implicated genes with the strongest mitochondrial
−nuclear correlations was APP (in the top 1%, ranked 54/5898 of
the negative mitochondrial-nuclear pairs), which encodes the
precursor protein whose proteolysis generates amyloid beta (Aβ),

the primary component of amyloid plaques. As well as this, we
note that highly significant mitochondrial−nuclear relationships
were observed for some genes confidently associated with
complex PD28, such as PSAP (Supplementary Fig. 5b). Interest-
ingly, in PSAP knockout iPSC lines ROS production was seen to
increase compared to controls30. As such, our identification of
high mitochondrial-PSAP association lends support to this gene
being important in core mitochondrial processes such as ROS-
production.

Taken together, we conclude that expression levels of genes
causally implicated in a subset of NDs show stronger relation-
ships with mitochondrial gene expression than expected by
chance. This analysis can be performed with a user-specified gene
list using our accompanying tool available at https://
ainefairbrotherbrowne.shinyapps.io/MitoNuclearCOEXPlorer/.

Synaptic processes are enriched in mitochondrial−nuclear
pairs that display correlation disparities between AD and
control samples. Finally, we analysed mitochondrial−nuclear
correlations in post-mortem brain samples originating from
individuals with Alzheimer’s disease and from matched neurolo-
gical controls. The data were covariate corrected in the same way
as above, but with the addition of Scaden-derived cell-type pro-
portions to account for disease-induced changes in cell-type
density. We then calculated the difference in the correlation values
between cases and controls for each mitochondrial−nuclear gene
pair to produce case−control delta scores (Δ⍴) (Fig. 6a).

High levels of consistency between case and control mitochon-
drial−nuclear correlation values were observed, with 76% of pairs
displaying a Δ⍴ of <0.1 (Fig. 6b). However, we noted the presence
of gene pairs displaying high delta scores, where co-expression of
a pair had shifted in AD samples relative to controls (Fig. 6b).
Given that we had corrected for changes in cell-type proportions,
these shifts likely represent disease-associated disruptions in
mitochondrial−nuclear co-expression that have the potential to
drive to AD pathogenesis. To understand whether nuclear genes
involved in specific biological processes were represented
amongst mitochondrial−nuclear gene pairs with high delta
scores, we applied Gene Set Enrichment Analysis (GSEA). First,
gene pairs were split by their mitochondrial−nuclear correlation
directionality, with the intuition that positive and negative
correlations are representative of distinct transcriptional control
mechanisms. Notably, 1.1% of significant shifts were observed
among genes that switched directionality (Fig. 6a), and as such
these were excluded from the analysis. This yielded two gene sets
(−Δ⍴ and +Δ⍴ scores), which were then ranked by their absolute
Δ⍴ score (Fig. 6a).

In the negative correlation set, using fGSEA we detected
55 significant enrichments. The three most significant terms were
synapse (P= 3.5e−04, Bonferroni−Hochberg (BH) corrected),
neuron to neuron synapse (P= 4.6e−03, BH-corrected) and cell
projection organisation (P= 4.6e−03, BH-corrected), detected
among gene pairs that display stronger relationships in case
samples compared with controls. Three of the 55 enrichments
(vacuolar lumen, and lysosomal lumen and lipoprotein metabolic
process) were detected among gene pairs with negative
mitochondrial−nuclear correlations that show weaker association
in AD samples compared with controls. Within these sets,
individual genes of specific interest for AD showed particularly
large absolute Δ⍴ scores. First, MTLN (rank 69/14,327 gene pairs
with mean correlation taken across 13 mitochondrial genes,
ranked in the top 0.5% of Δ⍴ values) encodes a protein product
that is known to localise to the mitochondrial inner membrane,
where it influences protein complex assembly and modulates
respiratory efficiency, impacting on respiration rate, Ca2+

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02792-w ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1262 | https://doi.org/10.1038/s42003-021-02792-w |www.nature.com/commsbio 7

https://ainefairbrotherbrowne.shinyapps.io/MitoNuclearCOEXPlorer/
https://ainefairbrotherbrowne.shinyapps.io/MitoNuclearCOEXPlorer/
www.nature.com/commsbio
www.nature.com/commsbio


Fig. 5 Visualisation of ND gene set associations with the mitochondrial genome. a Heatmap to show P values associated with the median of four ND-
related gene sets being more extreme than that of 10,000 random gene sets in 12 GTEx CNS regions. Raw P values (below P < 0.05) are represented by the
colour scale, with the following asterisks overlaid to indicate which multiple test correction thresholds are passed: *0.05/12 < P < 0.05; **0.05/
12*4 < P < 0.05/12; ***P < 0.05/12*4. Grey squares indicate associations for which P > 0.05. b Visualisation of the results in part a, for the AOD target set
only. The target gene set distribution is shown in blue and the distribution of 10,000 random size-matched gene sets is shown in green. Vertical dotted
lines represent the medians of the target gene set (blue) and the central median of the 10,000 bootstrap sets (green). This figure was produced using the
MitoNuclearCOEXPlorer tool.
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retention capacity and ROS31,32, making it of particular interest
in a disease context. Second, PSAP (max Δ⍴= 0.13, mean
Δ⍴= 549/4653 ranked in the top 12% of decreasing −Δ⍴ values)
is a leading-edge gene for the lysosomal lumen enrichment and
also displays highly significant mitochondrial−nuclear relation-
ships across brain regions (Supplementary Fig. 5). This gene is of
interest in the context of AD due to its known anti-inflammatory
and neuroprotective roles33, as well as its identification as a
biomarker of preclinical AD cases, enabling discrimination from
control samples34. No enrichments reaching BH significance were
detected in the positive correlation list.

Discussion
In this work, we investigate mitochondrial−nuclear coordination
in CNS tissue across the human brain. We find that CNS regional
cell-type composition contributes to regional variation in co-
expression, reflecting functional specialisation, specifically at
synapses. Using an independent frontal cortex dataset, we show
high replicability of mitochondrial−nuclear correlation distribu-
tions and cell-type-specific correlation profiles. We find that

nuclear genes causally implicated in Parkinson’s and Alzheimer’s
disease (AD) show much stronger relationships with the mito-
chondrial genome than expected by chance, and that mitochon-
drial−nuclear relationships are highly perturbed in AD cases,
particularly those involving synaptic and lysosomal genes.

A key finding of this study was the identification of cell-type as
a contributor to the distinct patterns of mitochondrial−nuclear
co-expression across CNS regions. Neuronal markers were enri-
ched in negative mitochondrial−nuclear correlations, in contrast
to glial (astrocytic and microglial) markers which were enriched
in positive correlations. Additionally, we observed a reduction of
cross-CNS variation in mitochondrial−nuclear correlations when
correcting for cell-type proportions, indicating that depletion of
cell-type-specific signals reduces the regional specificity of mito-
chondrial−nuclear relationships. Notably, correction for cell-type
significantly, but not entirely, depletes cross-regional variation,
indicating that although cell-type is a significant contributor,
there are additional drivers of cross-regional variation in mito-
chondrial−nuclear relationships.

The finding that cell-type significantly contributes to regional
variation in mitochondrial−nuclear association could be

Fig. 6 ROSMAP case−control analysis of ⍴ value differences (Δ⍴). a Schematic to show generation of the case−control Δρ values, splitting of the data
into positive and negative Δρ values and subsequent ranking strategy applied prior to GSEA analysis. b Density plot to show the distribution of
mitochondrial−nuclear case−control Δρ in ROSMAP frontal cortex data. The red curve represents negative Δρ and the blue curve represents positive Δρ
values. c Table to show the distinct groups of case−control Δρ values arising from the ROSMAP frontal cortex case−control data. d fGSEA pathway
enrichments passing P < 0.05 (BH-corrected) for the negative correlation space, whereby gene pairs with −ρ have been ranked by their case−control Δρ.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02792-w ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1262 | https://doi.org/10.1038/s42003-021-02792-w |www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


explained by cell-type-specific mitochondrial specialisation. Our
analysis assays a proxy for the nuclear association with ATP
synthesis, and so captures a single aspect of mitochondrial
function. In fact, mitochondria have many other important roles
in cells, such as calcium buffering, which may vary across dif-
ferent cell types. As such, the division of mitochondrial−nuclear
correlation directionality between cell types could be the result of
divergent functionality among the mitochondria of these cell
types. This is a view supported by proteomic cell-type-specific
profiling of brain mitochondria. Recent work has revealed notable
molecular and functional diversity of mitochondria across cell
types, with astrocytic mitochondria found to perform the core
cellular functions of long-chain fatty acid metabolism and cal-
cium buffering with greater efficiency than mitochondria in
neural cell types35. Another linked explanation for cell-type-
specific correlation directionality is that it is driven by core dif-
ferences in energy management strategies between cell types. In
energetically demanding cell types such as neurons, anti-
correlation could reflect the need for tighter OXPHOS regula-
tion to protect against excessive ROS production, with post-
transcriptional processes perhaps being used to manage local,
flexible regulation of energy supply. Interestingly, oligoden-
drocytes are the exception among glia, displaying neuron-like
enrichment in negative mitochondrial−nuclear correlations. In
this context, it is worth noting that while oligodendrocyte
metabolism is poorly understood, their central role in myelin
sheath production is highly energy intensive, mirroring the high
energy requirements of neurons36,37.

The synapse is the site of greatest energy expenditure in the
neuron38. To match energy supply and demand, the mitochon-
dria in synaptic compartments display structural, biochemical
and spatial plasticity38. To achieve this necessitates equally flex-
ible maintenance of the mitochondrial proteome, the exact
mechanisms of which are not known38. Our analysis reveals
variable mitochondrial−nuclear relationships being highly sig-
nificantly enriched for synaptic marker genes, meaning that
nuclear-encoded synaptic gene expression and mitochondrial-
encoded gene expression are differentially associated across the
CNS. We considered the possibility that we may simply be tag-
ging variability in regional mtDNA expression; however, residual
TPM values for the 13 mtDNA genes demonstrate consistent
cross-CNS expression (Supplementary Fig. 2A), suggesting that
this is not a core driver of the regional specificity of mitochondrial
−nuclear correlation profiles. It could be that we are indirectly
observing mitochondrial plasticity by capturing neuronal
subtype-specific variation in nuclear and mitochondrial expres-
sion. It is known that neuronal subtypes are energetically
specialised39, and that CNS tissues have differential neuronal
subtype compositions40,41. Sub-cell-type-specific expression
modulation as a mechanism to manage local energy requirements
at synapses is supported by work finding that heterogenous
energy requirements across CNS regions and cell types may
necessitate bespoke mitochondrial proteomes38. Further to this,
molecular evidence shows that several nuclear-encoded mito-
chondrial genes involved in processes key to mitochondrial
plasticity (mitochondrial transcription, fission and trafficking)
have been found to exhibit distinct patterns of expression in the
neuronal subtypes42. Recent work using engineered MitoTag
mice coupled with an isolation approach to profile tagged mito-
chondria from defined cell types has demonstrated profound cell-
type-specific mitochondrial biology serving homoeostatic needs
to preserve essential functions in cells35. And yet, without
directional information and cell-type or sub-cell-type-specific
data, it is difficult to make a firm assertion as to whether the
underlying mechanism is anterograde modulation of the mito-
chondrial genome from the nucleus, or retrograde modulation of

the nuclear genome by the mitochondria, or perhaps a feedback
loop involving both.

Uniquely to the field of mitochondrial−nuclear cross-talk, we
look at its genome-wide relevance with respect to a range of
neurodegenerative diseases. Testing the association of ND-
implicated genes with the mitochondrial genome demonstrated
significant non-random correlations between mitochondrial gene
expression and ND-implicated nuclear genes. While genes
implicated in PD and AD through GWAS analyses showed
nominally significant associations with the mitochondrial gen-
ome, it should be noted that there are likely to be inaccuracies in
variant-gene assignments within these sets which weaken the
analysis. Interestingly, this view is supported by high confidence
enrichments of mitochondrial−nuclear association in nuclear
gene sets associated with Mendelian forms of the same diseases.
Mendelian AD and PD genes displayed highly significant shifts
from random, all of which were towards higher negative corre-
lation magnitudes, and highlighted particularly strong correla-
tions among important ND genes. In fact, APP, the first gene to
be causally implicated in AD, ranked in the top 3% of all pairs
with negative associations.

Given these findings, we postulated that analysing changes in
mitochondrial−nuclear correlations in the context of AD would
provide important disease insights. To do this, we leveraged the AD
case−control ROSMAP dataset. After correcting for cell-type pro-
portion, we observed an enrichment of synaptic terms among
nuclear genes which were negatively correlated with mitochondrial
gene expression and which had stronger relationships in the context
of AD than in control samples (i.e. high case−control correlation
difference, Δ⍴, gene pairs). Given the close relationship between
synapses and mitochondria, with multiple lines of evidence pointing
not only to synaptic function being dependent on mitochondria,
but to mitochondrial regulation of synaptic plasticity43–45, the
tightening co-expression here could represent a drive to recover
energetic homoeostasis at damaged synapses and increase their
efficiency. In support of this, we see that the mitochondrial effi-
ciency enhancing gene MTLN31 is in the top 1% of increasing
negative associations. In particular the MTLN-MTCYB gene pair
displayed a striking Δ⍴, where in control samples the pair had a
non-significant correlation (⍴=−0.008, P= 0.93), but shifted to a
highly significant association with a considerably higher negative
magnitude in case samples (⍴=−0.27, P= 3.01e−05).

Interestingly, we also observed enrichment of lysosome-related
terms (lysosomal lumen, vacuolar lumen) in negatively correlated
gene pairs that weaken in case samples relative to controls (Fig. 6d).
Lysosomes are essential for the removal of dysfunctional mito-
chondria as well as other organelles and proteins, and there is
growing evidence to suggest that lysosomal dysfunction contributes
to the pathogenesis of AD46,47, as well as PD48. Perhaps decoupling
of nuclear genes in these pathways from mitochondrial gene
expression represents a reduction in the efficacy of dysfunctional
mitochondria clearance, thus augmenting the pathology.

These results provide more evidence for the role of mito-
chondria in neurological disorders, and identify particular path-
ways and processes that may be more relevant to the aetiology of
disease. As such, targeting these routes to dysfunction may be
particularly fruitful for the treatment of specific neurological
disorders.

Methods
GTEx data. Raw RNA-sequencing data from 12 histologically normal CNS regions
were obtained from the Genotype-tissue Expression project (GTEx, V6p)49. Pro-
cessing was carried out as per ref. 18. Briefly, adapter sequences, low-quality terminal
bases and poly-A tails (>4) were trimmed and subsequently aligned to the 1000G
GRCh37 reference genome using STAR. Strict filtering was applied to avoid mis-
alignment of NUMT sequences, and to retain only properly paired and uniquely
mapped reads. Post-mapping processing included exclusion of samples with: <10 K
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reads mapping to the mitochondrial genome, <5 million total mapped reads, >30%
of reads mapping to intergenic regions, >1% total mismatches or >30% reads
mapping to ribosomal RNA using custom scripts as well as RNAseQC. HTseq was
used to quantify transcripts, before converting raw counts to TPMs using version 19
of the Gencode gene annotation. The final per-brain-region sample (n) numbers
and number of genes expressed are shown in Supplementary Table 2.

ROSMAP data. The ROSMAP dataset is composed of dorsolateral prefrontal
cortex samples derived from autopsied individuals from the Religious Orders Study
(ROS) and the Rush Memory and Aging Project (MAP)50. Data were obtained
through application to the data access committee, permitting access to pre-mapped
FPKM data (for QC and mapping details see ref. 42). Each ROSMAP sample is
associated with a cognitive diagnosis. We used samples labelled ‘AD’ (n= 254) and
‘no cognitive impairment’ (n= 201), referred to as ‘case’ and ‘control’, respectively.
Samples with missing metadata and duplicates were removed, reducing the number
of cases to 251. Prior to further processing, FPKMs were converted to TPMs.

Generating mitochondrial−nuclear correlation matrices. For both datasets, the
same custom pipeline was applied to generate mitochondrial−nuclear gene
expression correlation matrices from gene counts. First, TPM matrices were filtered
for genes with TPM > 0 in all samples, and samples with TPM= 0 in all genes were
removed. TPMs were then log10 and median normalised. Expression outliers,
defined as TPM values three interquartile ranges below the lower quartile or above
the upper quartile for a gene, were masked.

Covariates for data correction were selected by performing principal component
analysis (PCA) on the expression matrices. Spearman correlations between the largest
axes of variation (first ten principle components, capturing 98.41% of the variation for
GTEx and 99.43% for ROSMAP) and known covariates were calculated
(Supplementary Fig. 6). For ROSMAP, the following covariates were selected: PMI,
RIN, library batch, race, sex, study, age at death, age at last visit. For GTEx, the
following covariates were selected: RIN, four batch variables (type of nucleic acid
isolation batch, nucleic acid isolation batch ID, genotype or expression batch ID, date
of genotype or expression batch), centre, age, gender and cause of death.

Following this, multiple linear regression was applied to regress out covariates.
TPM values were included as predictor variables and covariates as response
variables in a linear model. Predicted TPMs were calculated following model
fitting, and residuals were calculated by subtracting predicted from observed,
yielding residual TPMs. To generate mitochondrial−nuclear correlation matrices,
Spearman correlation coefficients were calculated between protein-coding
mitochondrial genes (13) and nuclear genes (for GTEX: 15,001 genes expressed in
all CNS tissues; for ROSMAP all nuclear genes expressed).

Analysing mitochondrial−nuclear correlation variance across CNS regions. To
understand the extent to which the relationships between mitochondrial−nuclear
gene pairs vary across the CNS, we leveraged 12 GTEx CNS regions, calculating a
cross-CNS variance of correlation coefficients for every mitochondrial−nuclear
gene pair (see tabular method schematic in Fig. 3b). We then calculated the var-
iance of these 12 coefficients as a measure of variation in the relationship between
the expression of these two genes across CNS regions. We repeated this for all
mitochondrial−nuclear gene pairs. Nuclear genes expressed in all 12 CNS regions
were used, equating to 15,001 nuclear genes and 195,013 mitochondrial−nuclear
pairs. To reduce redundancy of the dataset, aggregation of mitochondrial genes was
performed, the intuition being that the correlation of a nuclear gene with the 13
mitochondrial genes was found to be largely consistent (Supplementary Fig. 3B).
The median cross-CNS variance of 13 mitochondrial genes was taken as the
representative value for each nuclear gene.

To determine processes enriched in gene pairs in different variance brackets,
four gene sets were defined. The ‘high variance set’ (highest 5% of variances,
n= 750), and the ‘low variance set’ (lowest 5% of variances, n= 750). These two
groups were then further split into positive and negative sub-groups, dependent on
the majority correlation directionality. This yielded the following gene sets: high
variance positive, n= 605; high variance negative, n= 145; low variance positive,
n= 363; low variance negative, n= 387.

To determine the processes and pathways enriched in these gene sets, the R
package gProfiler2 was used. Enrichments were tested against a custom
background of genes expressed in all GTEx CNS regions (n= 15,001). The queries
were ordered by correlation magnitude, and for multiple test correction, the ‘g:SCS’
method was applied. Enriched terms were visualised in barplots. To obtain a more
granular ontology analysis of the synaptic enrichment observed in the high
variance negative group, this list was used as input to the online tool SynGO26. The
same background list was used for SynGO as for gProfiler2.

EWCE analysis. Expression Weighted Cell-type Enrichment (EWCE) was used to
determine whether nuclear gene sets had higher expression within particular CNS
cell types than would be expected by chance20. EWCE leverages single-nuclear
RNA-seq (snRNA-seq) data in the form of specificity matrices. Specificity matrices
give, for each gene and each cell-type, the expression specificity a gene has in a cell-
type compared with all other cell types. Using this information, EWCE statistically
evaluates whether cell-type-specific markers have higher expression in a target list

than would be expected by chance (i.e. than the random distributions drawn from
the background).

Inputs to EWCE were target gene lists, a background gene set and a
specificity matrix. Aggregation over mitochondrial genes was then performed (as
above) to obtain a single consensus ranking for each nuclear gene. The target
gene lists used were generated by ranking mitochondrial−nuclear gene
correlation values for each GTEx CNS region with the largest positive and
negative values ranked separately. For each CNS region, the top 5% of positively
correlated nuclear genes and top 5% of negatively correlated nuclear genes were
then taken as region-specific target gene sets. The numbers of genes per region
are given in Supplementary Table 2. The background gene set was genes
expressed in all GTEx CNS regions (n= 15,001). Specificity matrices were
generated as per Skene et al.20 by estimating the specificity of each gene to each
cell-type. The specificity score represents the proportion of the total expression
of a gene found in one cell-type compared to all cell types. Data used to generate
specificity matrices for this work were derived from two brain snRNA-seq
experiments. (1) The Allen Brain Atlas: a dataset comprising 15,928 nuclei from
the middle temporal gyrus of 8 human tissue donors ranging in age from 24 to
66 years51. (2) Habib22: a dataset comprising 19,550 nuclei from the
hippocampus (4 samples) and prefrontal cortex (3 samples) from five donors.

The EWCE analysis was run with 10,000 bootstrap lists. Transcript length and
GC-content biases were controlled for by selecting bootstrap lists with equivalent
properties to the target list. P values were corrected for multiple testing using the
Benjamini−Hochberg method over all cell types and gene lists tested. We
performed the analysis with major cell-type classes (‘GABAergic’, ‘glutamatergic’,
‘astrocyte’, ‘microglia’, ‘oligodendrocyte’, ‘endothelial cell’).

Cell-type correction analysis. To further evaluate the contribution of cell-type to
heterogeneity of mitochondrial−nuclear correlation distributions in the CNS, we used
published cell-type proportion estimates24 to understand whether correcting the GTEx
expression data for the effect of cell-type proportions would result in more homo-
genous mitochondrial−nuclear correlation profiles across the CNS. To do this, we
compared the effect on mitochondrial−nuclear correlation distributions of two cor-
rection strategies, one which does not correct for cell-type, and one which does: (i)
standard correction (covariates: RIN, four batch variables (type of nucleic acid isolation
batch, nucleic acid isolation batch ID, genotype or expression batch ID, date of gen-
otype or expression batch), centre, age, gender and cause of death), (ii) standard+ cell-
type correction (covariates: as in (i) as well as the proportions of the following cell
types: astrocyte of the cerebral cortex, Bergmann glial cell, brain pericyte, endothelial
cell, neuron, oligodendrocyte and oligodendrocyte precursor cell). The sample set used
for the calculation of mitochondrial−nuclear correlations differed to that used for the
other analyses presented in the paper due to availability of cell-type proportion data
(sample numbers per tissue provided in Supplementary Table 3). Upon filtration for
these samples, the pipeline as described previously, was run, producing mitochondrial
−nuclear correlation matrices for both correction strategies.

This analysis relied on the assumption that the cell-type
proportions were representative of the cellular composition of GTEx CNS regions.
However, there are several factors that affect the accuracy of the proportion
estimates. Firstly, they were derived using murine brain scRNA-seq data, and so
there is a species mismatch here. Secondly, technical factors such as the dissection
protocol (excision order and resulting RNA degradation), the size of each target
region and the accuracy of tissue excision. Assignment of cell-type proportions to
the GTEx spinal cord tissue, which was not dissected from the mice, was present in
the cell type proportion data, and as such, these proportions cannot be considered
to accurately represent the cell-type composition of the spinal cord. Considering
these factors, we looked to select a subset of regions that were most accurately
represented by the cell-type proportion estimates. We calculated 20 axes of
variation from GTEx CNS RNAseq data using PEERv1.052 on all samples,
obtaining 20 PEER factors for each region. We correlated these with the cell-type
proportion estimates to understand whether the cell-type proportions represented
the cell-type composition of each GTEx CNS region. The underlying logic being
that larger axes of variation would correlate strongly with the cell-type proportion
estimates if those estimates accurately represented that tissue.

We identified five CNS regions (anterior cingulate cortex, cortex, frontal cortex,
hippocampus, caudate basal ganglia) for which PEER factors explaining most
variance in the data were correlated with cell-type proportions. In these regions
there were fewer spurious correlations with cell types across the 20 PEER factors,
and PEER factors explaining most variance (PEER 1 and 2) were highly correlated
(⍴≥ 0.6) with cell types, indicating better representation of these regions by the
cell-type proportion data. To obtain a measure for cross-CNS variation of
mitochondrial−nuclear relationships, we calculated variances for each
mitochondrial−nuclear gene pair across these five regions. We did this for
correlation values produced by both correction strategies. Finally, to understand
whether the cell-type correction changed cross-CNS variation in mitochondrial
−nuclear correlation distributions, we performed a two-sample Wilcoxon signed
rank tests with the null hypothesis that the true location shift from standard to
standard and cell-type correction-derived distributions was < 0 (aka a negative shift
in variance, closer to a median of zero in the latter). We also performed one-sample
Wilcoxon tests for each correction strategy to test the null hypothesis that the
median of the distribution of variances was equal to zero.
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Testing disease implicated gene lists against a random background. The aim
of this analysis was to determine whether specific disease-relevant gene sets had
more extreme distributions of mitochondrial−nuclear gene expression correlations
than a random, equally sized, set of genes. To this end, we first analysed four gene
sets (sets 1, 2, 5 and 6 below), and then expanded our analysis to incorporate seven
gene sets to validate our findings and further test our hypothesis with smaller, more
specialised sub-lists of disease genes. The total catalogue of the seven sets used is as
follows: (1) A set of 35 AD-associated genes of interest were derived from a recent
AD GWAS27. This study analysed SNPs in clinically diagnosed 71.88K cases and
383.378K controls, identifying >20 AD-associated loci. (2) A set of 62 PD-
associated genes of interest were selected on the basis of eQTL data from a recent
PD GWAS28. This study analysed 7.8M SNPs in 37.7K cases, 18.6K UK Biobank
proxy-cases, and 1.4M controls, identifying 90 signals at genome-wide significance.
The Genomics England PanelApp tool gives sets of clinically curated genes asso-
ciated with disease through rare variants29. The following panels were downloaded
from this resource: (3) Early onset dementia (28 genes). (4) PD and complex PD
list (43 genes). This panel contains genes associated with early onset and familial
Parkinson’s disease as well as complex Parkinsonism. (5) Adult onset ND disorders
(110 genes). This panel is a super-set, including the early onset dementia and PD
PanelApp panels as well as genes from other ND-related panels wherein mutations
are known to cause ND. (6) Intracerebral calcification disorders (21 genes) used as
a negative control because the pathogenesis of these disorders is distinct from AD
and PD. (7) A set of genes curated by OMIM53, including genes associated with PD
phenotypes (Parkinson’s disease—PS168600) (24 genes). Again, we found a highly
significant shift compared to random in the OMIM set (Supplementary Fig. 4C).

For each GTEx CNS region, r, and each gene set, l, the median mitochondrial
−nuclear correlation value of l for r was calculated. The distribution of
mitochondrial−nuclear pairs was inclusive of all mitochondrial correlations for
each nuclear gene, making the size of the distribution (length l) × 13. To generate
empirical distributions, a random sample of nuclear genes of matching biotype and
length, l, was selected from the set of genes expressed in all GTEx CNS regions
(15,001) and all correlations with mitochondrial genes were included.

A two-tailed test was carried out to determine whether l had a more extreme
median mitochondrial−nuclear correlation value than could be expected by
chance. To this end, the median of l was compared to the medians of 10,000
randomly selected gene sets. P values were calculated as follows, where k is the
number of randomly selected sets, and n is the number of correlations more
extreme than the median of l:

P ¼ ðk± nÞ=k
A series of significance thresholds of increasing stringency were calculated to

reflect the number of tests that were performed, taking into consideration the
number of tissues and the number of gene sets analysed. The significance of results
was assessed against the following Bonferroni multiple-test corrected P value
thresholds: 0.05/12 < P < 0.05; 0.05/12*(number of gene sets) < P < 0.05/12;
P < 0.05/12*(number of gene sets).

Alongside this publication, we release a tool to enable performance of this
analysis with a user-specified gene list, along with single gene querying of the
correlation data. This tool can be found at https://ainefairbrotherbrowne.
shinyapps.io/MitoNuclearCOEXPlorer/ and the accompanying source code can be
found at https://github.com/ainefairbrother/MitoNuclearCOEXPlorer54.

Case−control analysis of ROSMAP data. To identify mitochondrial−nuclear
gene pairs that are modulated in disease states, we used the ROSMAP case−control
AD dataset. Due to cell-type proportion changes related to disease pathogenesis in
AD brain tissue, we corrected for cell-type proportion in addition to the previously
listed covariates using deconvolution-derived cell-type proportions55–57. The cell-
type proportion distributions for the case and control ROSMAP data can be seen in
Supplementary Fig. 7. To quantify changes in mitochondrial−nuclear co-expres-
sion, aggregation over mitochondrial genes was carried out for the case and control
data separately by taking the median Spearman’s ⍴ value for each nuclear gene. The
difference between these values was then calculated (control ⍴− case ⍴) for each
gene pair, giving case−control delta values, Δ⍴.

To identify pathways enriched in high Δ⍴ values (i.e. pairs with large case
−control disparities), we applied the GSEA method using the fGSEA R package58.
The inputs into fGSEA were gene lists ranked by Δ⍴ and split by directionality.
With a separate positive and negative correlation list, the sign of the Δ⍴ in each
case relates to whether a gene pair’s correlation magnitude has increased or
decreased in case in comparison to control. As such, any enrichments are
interpretable as being related to case−control shifts.

The fGSEA parameters used were as follows: GO as the annotation source,
minimum and maximum size of terms 15 and 2000 respectively. fGSEA was run
with the fgseaMultilevel function and output was visualised using the
plotGseaTable function.

Statistics and reproducibility. Statistics were performed in R Studio (R version
3.6.3) and Jupyter Notebooks (Python 3.7). Nuclear−mitochondrial correlation
matrices were derived from GTEx count matrices for 12 CNS tissues (range of
N= 43−89), which were TPM, log10 and median normalised. The normalised
TPM values were then corrected for covariates (see ‘Methods’) using linear
regression. The residual values were then used to generate Spearman correlation

matrices. P values for the Spearman correlations were FDR-corrected prior to
downstream analyses. The ROSMAP frontal cortex control dataset (N= 201) was
used for replication to ensure robust and reproducible analyses.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated and/or analysed during the current study are available through
the GTEx portal (https://gtexportal.org/home/datasets, GTEx V6p, dbGaP accession
phs000424.v6.p1) and the Synapse portal for ROSMAP data (https://adknowledgeportal.
synapse.org/Explore/Studies/DetailsPage?Study=syn3219045). Processed GTEx data
(per-tissue nuclear-mitochondrial correlation matrices) are available for download via
our MitoNuclearCOEXPlorer web tool (https://ainefairbrotherbrowne.shinyapps.io/
MitoNuclearCOEXPlorer/). All data behind the main figures are available on figshare
(https://figshare.com/projects/Figure_datatables_for_Mitochondrial-nuclear_cross-
talk_in_the_human_brain_is_modulated_by_cell-type_and_perturbed_under_neuro
degenerative_disease_status/122770).

Code availability
All code is written in R (version 3.6.3) and Python (version 3.7). The correlation matrix-
generating pipeline, written in both Python and R, is available on GitHub (https://
github.com/ainefairbrother/MitoNuclear_coexpression_pipeline)59. As is all code
underlying the MitoNuclearCOEXPlorer tool (https://github.com/ainefairbrother/
MitoNuclearCOEXPlorer)54.
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