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Abstract

In this paper, an optimisation-based framework is proposed for integrated produc-

tion and distribution planning of industrial gas supply chains. The main goal is to

minimise the overall cost, which is composed of raw material, product sourced from

external suppliers, production, truck, and rail-car costs, while satisfying customer de-

mands. The overall problem is formulated as a mixed integer linear programming

(MILP) model while a two-phase hierarchical solution strategy is developed to solve

the resulting optimisation problem efficiently. The first phase relies on truck scheduling

decisions being relaxed, whereas the second phase solves the original model at reduced

space by fixing product allocation as determined by phase one. Finally, an industrial-

size case study is used to illustrate the applicability and efficiency of the proposed

optimisation framework.
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1. Introduction

In today’s global market, making optimal and efficient supply chain management decisions

is a major concern in industrial gas operations. Industrial gas supply chains cover the full

spectrum, starting with the production of gases and liquids and ending with the distribution

of final products to customers. Typically, production management involves the planning of

raw material purchases and production processes, while distribution management includes

the planning of transportation for delivering the product to customers.

Historically, industrial gas supply chain problems in production and distribution activ-

ities were treated independently. First, from a production perspective, Ierapetritou et al. 1

focused on the operating scheduling of air separation plants by considering uncertainty in

energy prices. Karwan and Keblis 2 developed a mixed integer programming framework to

determine the optimal operation planning for industrial gas production with real-time pric-

ing for production inputs and electricity. Zhu et al. 3 developed a multi-period non-linear

mathematical model for the operation of air separation plants by considering uncertainty in

demand and electricity price. Manenti and Rovaglio 4 provided the peculiarities of industrial

gas manufacturing, which differ from the features in other areas. They also provided general

guidelines for optimising the industrial gas supply chains which account for the raw material,

power supply, market demand, and storage.

Second, from the distribution side, Raff 5 reviewed vehicle routing and scheduling prob-

lems. Ronen 6 and Desrochers et al. 7 provided a classification scheme to categorise vehicle

routing and scheduling problems based on the various properties of problems. Concerning

inventory routing problems, which consider vehicle routing and scheduling problems simul-

taneously, Campbell et al. 8 adopted existing solution methods to solve deterministic and

stochastic inventory routing problems. Campbell et al. 9 provided a two-stage solution ap-

proach for inventory routing problems. The solution from the first stage yields the customer’s

delivery allocation and delivery amount on each day, whereas the solution from the second

stage yields the detailed vehicle route and schedule to execute the delivery. Kleywegt et al. 10
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proposed a mathematical framework based on a Markov decision process. In their problem,

the direct delivery case was considered in which a customer received a delivery on each route.

They also introduced approximation methods to solve the problem within a reasonable com-

putational time. Campbell and Savelsbergh 11 aimed to find the optimal delivery schedule

for a route by maximising the total delivery amount. A linear time algorithm was developed

to solve the problem. Dong et al. 12 developed a mixed integer programming framework to

solve inventory routing problems in industrial gas supply chains by considering driver-related

regulations, and this research was extended to solve large-size instances by Dong et al. 13 .

In that study, they proposed a solution method based on a pre-processing algorithm and

decomposition method to reduce the problem size.

Examining the gas supply chain problem as two separate problems has the advantage

of reducing the complexity of the decisions. This approach can be used when production

decisions have little impact on distribution decisions.14 However, most modern industrial gas

companies operate across multiple facilities where those decisions are mutually correlated.15

Several authors address the importance of supply chain coordination. Chandra et al. 16

investigated the value stemming from coordinating production and distribution planning.

The scenario in their computational study concerned a single plant, multi-product distributed

by trucks. They proposed two solution procedures. The first procedure solved the production

and distribution problems within a single framework, while second solved the problems

separately. These two approaches were then tested using various data and the solutions

from each approach were compared. The authors found up to a 20% cost decrease using the

coordination approach. Thomas and Griffin 17 reviewed the literature on the coordination of

supply chain management by dividing it into three categories: buyer-vendor coordination,

production-distribution coordination, and inventory-distribution coordination. From the

review, they concluded that autonomous supply chain management achieves a significant

saving. Erengüç et al. 18 , Vidal and Goetschalckx 19 also identified the importance of jointly

considering production and distribution planning.
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Despite the importance of integrated supply chain management, however, only a few

works have investigated industrial gas applications. Glankwamdee et al. 20 studied the op-

timisation model for the integrated production and distribution of industrial gases. They

developed a simplified linear model, which they then extended to a minimax linear model

and stochastic model to consider uncertainty in customer demand and product availabil-

ity. Marchetti et al. 21 proposed a multi-period mixed integer linear programming (MILP)

formulation for optimal production and distribution coordination. The production model

considers multiple plants operating under different production modes by focusing on the

electricity cost. With respect to the distribution model, a combined model of vehicle routing

for trucks and inventory management was considered. The author analysed multiple indus-

trial cases with different levels of coordination and found that substantial cost savings were

realised when the degree of coordination was increased.

The coordinated planning and scheduling results in large-size problems with a large num-

ber of plants, intermediate storages, and customers when dealing with real-world supply

chains in industrial gas companies. Subsequently, the large-size problems involve a signifi-

cant number of constraints and variables which make the integrated models computationally

intractable. Therefore, solution techniques along with mathematical models must be de-

veloped to address the computational limitation.22 To handle the computational limitation,

there are widely used techniques such as Lagrangian decomposition,23–25 Benders decompo-

sition,26 bilevel decomposition,27 and rolling horizon decomposition.28

In addition to these standard techniques, tailored solution methods applied in integrated

production and distribution problems have been proposed. You et al. 29 developed an MILP

model which accounts for distribution and inventory decisions on industrial gas supply chain

planning simultaneously. They also proposed two approaches to solve large instances. The

first one is based on a two-level decomposition method and the second is based on a continu-

ous approximation method. These models and solution strategies were applied to industrial

case studies and the results showed that they have high computational effectiveness. Zamar-

4



ripa et al. 30 proposed a rolling horizon decomposition approach for a full-space optimisation

problem which coordinates production and distribution decisions. In the rolling horizon

approach, they investigated two aggregation strategies which rely on linear programming

relaxation for the binary variables and a simplified distribution model, respectively. Fur-

thermore, Zhang et al. 31 proposed an MILP model which includes two time grids and an

iterative heuristic approach for the multi-scale production routing problem which integrates

production, distribution, and inventory decisions.

However, to the best of our knowledge, none of the developed mathematical models or

solution strategies provide rigorous production and distribution decisions for large-size in-

dustrial gas problems simultaneously. Marchetti et al. 21 and Zamarripa et al. 30 provided

an integrated production and distribution mathematical framework, but adopted a simpli-

fied distribution model which did not provide a detailed distribution schedule for real-size

instances. You et al. 29 focused on coordinated inventory and distribution planning without

considering detailed production planning. The model proposed by Zhang et al. 31 captured

the relatively rigorous production and distribution planning; however, it did not consider

secondary storage sites (depots) and the corresponding distribution network. Additionally,

none of them considered a detailed contract model for the raw material or product supply

or multi-modal transportation (rail-car and truck) in their models.

The aim of this work is to develop an MILP model that incorporates the production

and distribution decisions of industrial gas supply chains and a solution strategy to dealing

with industrial-scale problems. In the model, we consider four novel features non-existent

in recent works:21,29–31 (i) supply contracts for raw material and product; (ii) multimodal

transpiration (i.e., rail-car and truck); (iii) demand of pick-up customers; and (vi) periodic

planning. The production model is formulated by considering the supply contracts and

production based on multi-site plants. By contrast, rigorous scheduling for both rail-car and

truck, allocation between each location, and inventory management are taken into account

in the distribution model.
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Furthermore, because the integrated model with this high-level of detail is hard to solve

large-size problems due to the number of constraints and variables, we present an efficient

solution strategy relying on a two-phase hierarchical approach that allows finding high-

quality solutions within considerably reduced computational times.

The remainder of this paper is structured as follows. Section 2 describes the problem of

integrated planning in industrial gas supply chains. Section 3 introduces the mathematical

framework for the integrated supply chain problem and Section 4 develops the two-phase

hierarchical solution strategy. The efficiency and validity of the proposed mathematical

framework and solution strategy are evaluated with an industrial case study in Section 5.

Finally, Section 6 concludes.

2. Problem statement

This work considers an existing CO2 supply chain network which comprises raw material

(CO2 feedstock) suppliers, production plants, depots, third-party suppliers, and customers.

Figure 1 illustrates the overall network, highlighting both the production and the distribution

parts of the network.

Figure 1: Schematic of the industrial CO2 supply chain network

Within the production part network, each plant purchases the raw material from the
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external suppliers under its individual sourcing contacts. First, the purchased raw material is

transformed into a high purity CO2 product; then, the product is stored in an on-site storage

tank at each plant. The CO2 product can also be sourced from third-party suppliers, but

this is only considered when the plants cannot satisfy customer demand or when distribution

from the plants to the customer is restricted by any constraints related to transportation.

The distribution between locations to satisfy customer demand is guaranteed via rail-

cars or trucks. The rail-cars distribute the CO2 product from the plants/third parties to the

depots using the existing rail infrastructure, while the trucks travel from the plants, depots,

and/or third parties to the customers. All the rail-cars and trucks must return to their origin

after distributing the product to the depots and customers. Table 1 summarises the possible

connections and transportation modes between locations.

Table 1: Transportation modes between locations

destination
origin plant depot third party customer
plant no rail-car no truck
depot no no no truck

third party no rail-car no truck

The customers in this problem are classified into vendor-managed inventory (VMI) and

pick-up customers. The product inventories of VMI customers are operated under the VMI

paradigm, which is necessary to decide the time and amount of product delivery based on

their consumptions. Given the requirement to manage individual customers’ inventories

within certain set levels, the decision is to whether deliver products to a customer on any

day, and if the product is to be delivered on that day, what amount needs to be trucked. By

contrast, pick-up customers directly collect their demands at prespecified plants or depots;

therefore, no distribution decisions are considered.

Lastly, this problem also considers periodic planning, which means that the set of optimal

decisions over a given time horizon could be repeated in the next time horizon.

Overall, the problem can be stated as follows:
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Given:

• For each raw material supplier: plant allocation, maximum supply available, contract

type, and related costs;

• For each plant: location, production capacity, and corresponding costs;

• For each depot: location;

• For each third party: location, maximum supply available, contract type, and related

costs;

• For each customer: location and consumption of product;

• For each inventory of plants, depots, and customers: upper and lower bounds of the

capacity level, and

• For transportation: possible connections and transportation modes between locations,

lead time, loading capacity, maximum quantity, and transfer unit cost.

Determine:

• Production mode, production amount, and raw material purchasing amount at each

plant for each time period;

• Purchasing schedule of product sourced from each third-party supplier;

• Customer allocation to each plant/depot/third-party supplier;

• Depot allocation to each plant/third-party supplier, and

• Product amount and time to be delivered by rail-car and truck.

So as to:

Minimise the overall cost of CO2 supply chain planning.
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3. Mathematical framework

The overall problem is formulated as an MILP model which integrates supply contracts,

production scheduling, truck and rail-car scheduling, and inventory management under the

VMI paradigm. The indices, sets, parameters, and variables are listed in the nomenclature

section at the end of this paper.

3.1 Objective function

The proposed model aims to minimise the total operating cost of the CO2 supply chain:

min TCtotal (1)

TCtotal = TCraw + TCprod + TCst + TCos + TCrail + TCtruck (2)

where TCraw refers to the raw material cost, TCprod is the production cost, TCst is the

plant start-up cost, TCos is the pure CO2 purchasing cost sourced from third parties, and

TCrail and TCtruck refer to the transportation cost by rail-car and truck, respectively.

Raw material cost. The production plants produce pure CO2 by transforming, purify-

ing, and liquefying the raw CO2 supplied by external sources. The raw material purchasing

cost is charged by considering the discount contract type. Under the discount contract, the

price is reduced when the total cumulative purchasing amount over a time horizon exceeds

the break points, as illustrated in Figure 2.

The mathematical formulation of the discount contract follows the model published by

Park et al. 32 In their formulation, the selection of the cost region is represented by a binary

variable which apart from depending on the cost region depends on the time, since the

discount is applied in every period. In our problem, the discount is applied by considering the

total purchasing amount, which allows us to reformulate the contract model by considering
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Figure 2: Representation of the discount contract cost model

a non-time-dependent binary variable as follows:

TCraw =
∑
i

∑
n

Craw
in Fin (3)

∑
n

Fin =
∑
t

Rit ∀i (4)

(λin − λi,n−1 |n>1) yi,n+1 ≤ Fin ≤ (λin − λi,n−1 |n>1) yin ∀i, n < N (5)

yin ≥ yi,n+1 ∀i, n < N (6)

Fin ≤M yin ∀i, n = N (7)

Eq. 3 calculates the total cost of the raw material which depends on the purchased

amount in cost region n (Fin) and the corresponding cost (Craw
in ). Eq. 4 indicates that the

sum of amount of the raw material corresponding to each cost region is equal to the sum of the
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purchased amount over the time horizon. Eq. 5 determines the amount corresponding to each

cost region; namely, yin is equal to 1 when the total purchased amount
∑

tRit exceeds the

break point λi,n−1. Eq. 6 is a logical relationship which avoids the selection of intermediate

cost regions and Eq. 7 restricts the amount in the last cost region (n=N); in other words,

Fin has to be lower than the big M value. For more comprehensive understanding of the

reformulated contract model, assume one break point, which results in two cost regions

(N=2). If the total purchased amount at plant i over the time horizon (
∑

tRit) exceeds

the break point λi,n1, the binary variable yi,n2 is equal to 1 and consequently, yi,n1 is also 1

according to Eq. 6. The corresponding amount in the first cost region (Fi,n1) is equal to the

break point (λi,n1) based on the Eq. 5 and the binary variables, and this is purchased at

cost Craw
i,n1 . Finally, the second amount (Fi,n2) which exceeds the break point (λi,n1) can be

any value less than the big M parameter; however, it must be equal to
∑

tRit − Fi,n1 based

on Eq. 4.

Production cost. The production cost is calculated based on the production mode and

the production amount as follows:

TCprod =
∑
i

∑
t

µiP
max
i wit +

∑
i

∑
t

νiPit (8)

The first term of Eq. 8 shows the fixed cost of production for each time period, while the

second term represents the production cost, which is linear to production amount Pit. Here,

µi is the unit fixed cost and νi is the unit production cost. wit is a binary variable coded 1

when plant i produces products at time t (on-mode).

Plant start-up cost. There is a cost of transitioning from the off-mode to the on-mode

when each plant starts to operate. This plant start-up cost is taken into account in the total

cost and is given by:
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TCst =
∑
i

∑
t

Cst
i uit (9)

where Cst
i is the start-up cost of each plant and uit is the binary variable coded 1 when the

production mode switches from the off-mode to the on-mode.

Purchasing cost from third parties. The product CO2 supply can be sourced from

third-party suppliers either when the produced amount at each plant cannot meet customer

demand or when it is more cost effective than producing at each plant. The third-party

supply also relies on the business contract. The discount contract type is regarded as the

same as the contract model for the raw material supply:

TCos =
∑
m

∑
n

Cos
mnSmn (10)

∑
n

Smn =
∑
t

Omt ∀m (11)

(λmn − λm,n−1 |n>1) zm,n+1 ≤ Smn ≤ (λmn − λm,n−1 |n>1) zmn ∀i, n < N (12)

Smn ≤M zmn ∀m,n = N (13)

zmn ≥ zm,n+1 ∀i, n < N (14)

where Omt is the amount of product purchased from the third party m in time period t,

Smn is the amount corresponding to cost region n, and zmn is the binary variable which is

12



equal to 1 when the amount of product purchased over the time horizon,
∑

tOmt, is in cost

region n.

Transportation cost. The total rail-car cost is calculated as follows:

TCrail =
∑
i

∑
j∈Ji

∑
t

Crail
ij NRijt +

∑
m

∑
j∈Jm

∑
t

Crail
mj NRmjt (15)

Here, the sets Ji and Jm denote the depots pre-allocated to each plant and third-party

supplier by considering the existing rail infrastructure. Here, Crail
ij and Crail

mj are the trans-

portation costs between the locations for each rail-car, while NRijt and NRmjt are the integer

variables, which are the number of rail-cars used to transfer the product from the plant and

third party to the depot, respectively

TCtruck =
∑
i

∑
k∈Ki

∑
v

∑
t

Ctruck Lik Aikvt

+
∑
j

∑
k∈Kj

∑
v

∑
t

Ctruck Ljk Ajkvt

+
∑
m

∑
k∈Km

∑
v

∑
t

Ctruck Lmk Amkvt (16)

Eq. 16 calculates the total truck cost, and each term represents the transportation cost

of trucks which depart the plants, depots, and third-party suppliers, respectively. Similar to

the sets presented in Eq. 15, Ki, Kj, and Km represent the VMI customers initially allocated

to each plant, depot, and third party by their geographical location. The total truck cost

depends on the unit transfer cost per distance (Ctruck), round-trip distance between each

location (Lik, Ljk, and Lmk), and number of trips each truck performs (Aikvt, Ajkvt, and

Amkvt) during a period t.
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3.2 Constraints

Production constraints. As mentioned earlier, each plant is operated based on two modes,

the on- and off-modes. If a plant decides to produce the product (on-mode), its production

cannot exceed certain limits. In other words, the production during each time period is

bounded between the minimum and maximum production capacities:

Pmin
i wit ≤ Pit ≤ Pmax

i wit ∀i, t (17)

where wit is the binary variable used to select the operation mode. wit is equal to 1 when

plant i is under the on-mode at time period t.

wit − wi,t−1 |t>1≤ uit ∀i, t (18)

Constraint 18 is the logical constraint for the plant start-up. This enforces that the binary

variable uit appearing on the right-hand side is equal to 1 when each plant’s operation mode

switches from the off-mode (wi,t−1 = 0) to the on-mode (wit = 1).

The amount of the raw material purchased at each plant and in each time period must

not exceed the maximum limit:

Rit ≤ Rmax
i ∀i, t (19)

where Rit denotes the amount of the raw material purchased at each plant in time period

t, and Rmax
i is the maximum amount which each plant can buy in each period.

The relationship between the amount of the raw material and production amount is given
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as:

Rit = αiPit ∀i, t (20)

Here, αi is the given coefficient to relate the production amount and the raw material amount.

Third-party supplier constraints.

Omt ≤ Omax
m ∀m, t (21)

Omt =
∑
j∈Jm

QRC
mjt +

∑
k∈Km

QTR
mkt ∀m, t (22)

Constraint 21 limits the amount of product purchased from each third-party supplier in each

time period (Omt) by the given parameter (Omax
m ) and constraint 22 states that the amount

purchased from third-party supplier m in time period t (Omt) must be equal to the total

amount delivered from the third-party supplier to any depots by rail-cars (
∑

j∈Jm Q
RC
mjt) and

to any customers by trucks (
∑

k∈Km
QTR
mkt) in that time period.

Truck constraints. Considering the truck schedule, it is assumed that each truck must

return to its origin after visiting the customer:

∑
k∈Ki

θik Aikvt ≤ ∆t ∀i, v, t (23)

∑
k∈Kj

θjk Ajkvt ≤ ∆t ∀j, v, t (24)
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∑
k∈Km

θmk Amkvt ≤ ∆t ∀m, v, t (25)

Constraints 23–25 set the travel time limitation for each truck. The total travel time of

truck v during the time period t from each source to the customers cannot be greater than

the length of each time period ∆t, where θik, θjk, and θmk are the round-trip times between

each location; these are formed as a proportion of the time period. Aikvt, Ajkvt, and Amkvt are

the integer variables which denote the number of round-trips that truck v performs between

each source and each customer in a time period.

QTR
ikt ≤

∑
v

Aikvt Cap
truck
i ∀i, k ∈ Ki, t (26)

QTR
jkt ≤

∑
v

Ajkvt Cap
truck
j ∀j, k ∈ Kj, t (27)

QTR
mkt ≤

∑
v

Amkvt Cap
truck
m ∀m, k ∈ Km, t (28)

Constraints 26-28 pose the delivery amount based on the number of deliveries to each cus-

tomer and the truck capacity. The variables QTR
ikt , QTR

jkt , and QTR
mkt indicate the delivery

amount from plant i, depot j, and third party m to each customer k by any trucks stationed

at each plant, depot, and third party, respectively. Thus, the variables must be less than

summation of the number of deliveries multiplied by the truck capacity over truck v.

Rail-car constraints. The maximum number of rail-cars can be used simultaneously

in a time period is given by:
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∑
i

∑
j∈Ji

2τij−1∑
t′=0

NRijπ(t−t′) +
∑
m

∑
j∈Jm

2τmj−1∑
t′=0

NRmjπ(t−t′) ≤ NRmax ∀t (29)

where τij and τmj are the transportation time between the locations based on one-way

trip. Constraint 29 implies that if rail-cars leave plant i or third parity m for depot j, the

rail-cars are not available for other depots during its round-trip. Here, π(·) is the wrap-

around time operator. The concept of wrap-around was considered by Shah et al. 33 and

Papageorgiou and Pantelides 34 . This wrap-around operator allows that execution of tasks

starting within periods in the planning horizon extends across its boundaries into the next

planning horizon.

The wrap-around operator is defined as follows:

π(t) = t if t ≥ 1,

π(t) = π(t+ T ) if t ≤ 0 (30)

where T is the number of time period. For example, if T = 30, then π(−2) = π(−2 + 30) =

π(28).

The amount of product transported by rail-cars in each period is bounded by the capacity

of one rail-car (Caprail) multiplied by the number of rail-cars used for each delivery (NRijt

and NRmjt):

QRC
ijt ≤ Caprail NRijt ∀i, j ∈ Ji, t (31)

QRC
mjt ≤ Caprail NRmjt ∀m, j ∈ Jm, t (32)
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Inventory mass balance.

Iit = Ii,t−1 |t>1 +I inii |t=1 +Pit −
∑
j∈Ji

QRC
ijt −

∑
k∈Ki

QTR
ikt −

∑
k∈KP

i

DPik ∀i, t (33)

Ijt = Ij,t−1 |t>1 +I inij |t=1 +
∑
i:j∈Ji

QRC
ij,π(t−τij) +

∑
m:j∈Jm

QRC
mj,π(t−τmj)

−
∑
k∈Kj

QTR
jkt −

∑
k∈KP

j

DPjk ∀j, t (34)

Ikt = Ik,t−1 |t>1 +I inik |t=1 +
∑
i:k∈Ki

QTR
ikt +

∑
j:k∈Kj

QTR
jkt

+
∑

m:k∈Km

QTR
mkt −Dk ∀i, j, k /∈ KP

i ∪KP
j , t (35)

Constraints 33–35 correspond to the mass balance of the product inventory at each plant,

depot, and customer, respectively. where, Iit, Ijt, and Ikt are the inventory levels of the

plant, depot, and customer at the current time period; I inii , I inij , and I inik are the given initial

inventory levels of the plant, depot, and customer; DPik and DPjk are the pick-up customer

consumption in each time period, which are collected at the plant and depot; and Dk is the

consumption of VMI customer k in each period. Here, the wrap-around operator presented

in constraint 30 is also adopted in the variables which are the product amounts delivered by

rail-cars (QRC
ij,π(t−τij) and QRC

mj,π(t−τmj)
). It is important to note that t − τij and t − τmj may

take a zero or negative value corresponding to the product being arrived at depot j in the

current planning horizon by deliveries that actually started during the previous one.

To derive the periodic scheduling, each inventory level at the end of the time horizon has
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to be equal to the given initial level:

Iit = I inii ∀i, t = T (36)

Ijt = I inij ∀j, t = T (37)

Ikt = I inik ∀i, j, k /∈ KP
i ∪KP

j , t = T (38)

The inventory level in each time period is bounded by the minimum and maximum capacities:

Imini ≤ Iit ≤ Imaxi ∀i, t (39)

Iminj ≤ Ijt ≤ Imaxj ∀j, t (40)

Imink ≤ Ikt ≤ Imaxk ∀i, j, k /∈ KP
i ∪KP

j , t (41)

Multiple sourcing constraints. There is a multiple sourcing constraint on the number

of plants, depots and third-parties that each customer can be supplied the product over a

time horizon, and this is given by:

∑
i:k∈Ki

xik +
∑
j:k∈Kj

xjk +
∑

m:k∈Km

xmk ≤ NS ∀i, j, k /∈ KP
i ∪KP

j (42)

Constraint 42 indicates that each customer demand can be fulfilled by at most NS sources
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among the plants, depots, and third-party suppliers. The binary variables xik, xjk, and xmk

represent the selection of sources for customer k.

QTR
ikt ≤Mxik ∀i, k ∈ Ki, t (43)

QTR
jkt ≤Mxjk ∀j, k ∈ Kj, t (44)

QTR
mkt ≤Mxmk ∀m, k ∈ Km, t (45)

Constraints 43-45 impose that each customer can be served the product from the plant,

depot, or third party only when the sources are selected to be supplied.

4. Hierarchical solution strategy

The proposed mathematical framework for the multiple integrated decisions taken on the

production and distribution planning of industrial gas supply chains requires an extensive

computational cost, and could even be intractable when dealing with large-scale problems.

For instance, the problem taking into account over 30 of plants/depots/third-parties and over

700 customers results in 250,740 equations, 138,275 continuous variables, and 632,239 discrete

variables. Therefore, an efficient two-phase solution strategy on a hierarchical approach is

presented in this section.

The first phase of the proposed solution strategy focuses on finding the optimal allocation

of depots into plants and third parties and allocation of customers into plants, depots, and

third parties. In this phase, the decisions on the exact truck scheduling are disregarded. The

truck cost is estimated, and all the integer variables associated with the trucks are relaxed
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into continuous variables. Section 4.1 describes the relaxed MILP model used in this phase.

In the second phase, the problem is solved using the original MILP model in Section 3, but

the model size is reduced by fixing the optimal allocation result obtained in the previous

phase.

Throughout the paper, the original model which considers the full-space problem is re-

ferred to as MS, the relaxed MILP model used in the first phase as MR, and the reduced

MILP model as MH .

4.1 Relaxed MILP model (MR)

The mathematical framework of the first phase encompasses exactly the same equations as

the original MILP model except for the equations related to the rigorous truck scheduling

(Eq. 16 and constraints 23-28). Therefore, only the relaxed formulation for trucks is stated

in this section.

TCtruck =
∑
i

∑
k∈Ki

∑
t

QTR
ikt

Captrucki

Lik C
truck

+
∑
j

∑
k∈Kj

∑
t

QTR
jkt

Captruckj

Ljk C
truck

+
∑
m

∑
k∈Km

∑
t

QTR
mkt

Captruckm

Lmk C
truck (46)

Eq. 46 is the relaxed formulation for calculating the estimated transfer cost of trucks

departing plant i, depot j, and third party m. Since each vehicle can perform multiple de-

liveries to each customer, the information was represented using the integer variables (Aikvt,

Ajkvt, and Amkvt) in the original MILP model. Here, the integer variables are relaxed to

continuous variables by adding the delivery amount/truck capacity ratio (QTR
ikt /Captrucki ,

QTR
jkt/Cap

truck
j , and QTR

mkt/Cap
truck
m ). This ratio approximates the number of multiple deliv-

eries to the customer.
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∑
k∈Ki

QTR
ikt

Captrucki

θik ≤ NTmaxi ∆t ∀i, t (47)

∑
k∈Kj

QTR
jkt

Captruckj

θjk ≤ NTmaxj ∆t ∀j, t (48)

∑
k∈Km

QTR
mkt

Captruckm

θmk ≤ NTmaxm ∆t ∀m, t (49)

Constraints 47-49 are the relaxed formulation used to limit both the total amount of

the product transferred and the total travel time of trucks during each period. Here, the

terms appearing on the left-hand side of constraints 47-49, namely, the summation of the

delivery amount/capacity ratio multiplied by the duration of the round-trip to the customers,

calculate the total travel time completed by trucks during the period. The total travel time

must be bounded by the length of each time period (∆t) and number of trucks available

at each plant, depot, and third party (NTmaxi , NTmaxj , and NTmaxm ). These constraints

also imply that the total delivery amount is restricted by truck capacity and the number of

available trucks.

As a result, by introducing the delivery amount/capacity ratio, not only can all the

integer variables be relaxed, but also the constraints for both capacity and time limitations

can be combined.

4.2 Reduced MILP model (MH)

As aforementioned, the mathematical framework presented in Section 3 is used in the second

phase. However, the model size is reduced, as it solves the problem by considering only the

optimal depot and customer allocations gained from the first-phase process. Additionally,
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the equations for the multiple sourcing constraints (constraints 42-45) and related binary

variables (xik, xjk, and xmk) can be disregarded since the optimal allocation result is deter-

mined by taking account of the constraints. The procedure for fixing the optimal allocation

to reduce the model size is carried out by updating Ki, Kj, and Km, which represent the

initial customer allocation to the plant, depot, and third party, respectively and Ji and Jm,

which are the depots pre-allocated to the plant and third party. Algorithm 1 describes the

detailed procedure used to update these sets and Figure 3 presents the flow diagram of the

overall solution procedure.

Figure 3: Flow diagram for the proposed hierarchical solution strategy
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Algorithm 1: Updating procedure for the allocation sets

1 Solve the relaxed MILP model (MR), and obtain the optimal values of QRC
ijt , QRC

mjt,

QTR
ikt , QTR

jkt , and QTR
mkt

2 The values are denoted as QRC∗
ijt , QRC∗

mjt , and QTR∗
ikt , QTR∗

jkt , QTR∗
mkt , respectively

3 for Sets for depot allocation do

Input: QRC∗
ijt , QRC∗

mjt

Output: Ji, Jm

4 Ji = Ø, Jm = Ø

5 if total delivery amount from plant i to depot j,
∑

tQ
RC∗
ijt > 0 then

6 add j to Ji

7 if total delivery amount from third party m to depot j,
∑

tQ
RC∗
mjt > 0 then

8 add j to Jm

9 for Sets for customer allocation do

Input: QTR∗
ikt , QTR∗

jkt , QTR∗
mkt

Output: Ki, Kj, Km

10 Ki = Ø, Kj = Ø, Km = Ø

11 if total delivery amount from plant i to customer k,
∑

tQ
TR∗
ikt > 0 then

12 add k to Ki

13 if total delivery amount from depot j to customer k,
∑

tQ
TR∗
jkt > 0 then

14 add k to Kj

15 if total delivery amount from third party m to customer k,
∑

tQ
TR∗
mkt > 0 then

16 add m to Km

24



5. Case study

To demonstrate the applicability of the proposed mathematical framework and developed

solution strategy, a case study of the industrial gas supply chain network in the United States

is conducted. Most of the input data are unavailable for confidentiality reasons.

The existing industrial gas supply chain network consists of:

• Over 30 plants, depots, and third-party suppliers;

• Over 750 VMI and pick-up customers;

• Over 300 rail-cars, and

• Over 100 trucks.

The problem considers a one-month planning horizon and the time discretisation is one

day. The developed MILP model and solution strategy were implemented in GAMS 26.1

software and solved using Gurobi 8.1.0 on an Intel 3.60 GHz, 16 GB RAM computer.

Table 2 shows the problem size, optimal objective value, and computational performance

under both the full-space and the hierarchical approaches.

Table 2: Optimal solution and computational performance

full-space approach hierarchical approach
model MS MR MH

equations 252,229 137,266 54,127
continuous variables 138,275 138,275 48,976
discrete variables 632,239 5,389 155,221
total cost (M$) 5.78 5.27 5.80
optimality gap (%) 5 1 5
CPU time 79 hr 239 s 4 hr

The full-space model MS includes 632,239 discrete variables and requires 79 hours to reach

an optimal solution with a 5% optimality gap. By contrast, the CPU time can be reduced

significantly when the problem is solved using the hierarchical approach. The relaxed model

MR in the first phase is solved in 239 seconds, as all the integer variables associated with
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the truck scheduling are relaxed into continuous variables, resulting in only 5,389 discrete

variables. In the second phase, the original problem is reduced to 155,221 discrete variables

by fixing the optimal allocation result gained from the relaxed model MR.

Table 3 presents the number of binary variables and integer variables associated with the

rail-car and truck scheduling. In the full-space problem, 660 and 626,850 integer variables are

involved in the rail-car and truck scheduling, respectively. These values are reduced to 180

and 153,915 by fixing the optimal allocation results from the relaxed model, which allows

us to solve this large-scale problem in a reasonable time. This proves that the proposed

hierarchical approach has benefit in reducing the number of discrete variables, which enables

the model to handle a large-scale problem by reducing computational time dramatically.

Table 3: The number of binary and integer variables involved in model MS and MH

MS MH

binary variables 4,729 1,126
integer variables
(rail-car scheduling)

660 180

integer variables
(truck scheduling)

626,850 153,915

total 632,239 155,221

Figure 4: Percentage of the breakdown cost obtained from (A) model MS; (B) model MR

and (C) model MH
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Table 4: Optimal breakdown cost

full-space
approach

hierarchical
approach

model MS MR MH

TCraw (M$) 1.45 1.45 1.45
TCprod (M$) 1.07 1.06 1.07
TCst (M$) 0.09 0.07 0.08
TCoc (M$) 0.14 0.14 0.14
TCtruck (M$) 2.66 2.19 2.70
TCrail (M$) 0.37 0.36 0.36
TCtotal (M$) 5.78 5.27 5.80

Figure 4 provides the breakdown of the total costs gained from the full-space model

MS, relaxed model MR, and reduced model MH to compare the solutions quantitatively.

In the figure, each breakdown cost obtained from the models accounts for almost the same

percentage. According to the result from model MH , the truck cost represents the highest

percentage of the total cost (47%), followed by the raw material cost (25%) and produc-

tion cost (19%). The purchasing cost of the CO2 product from third-party suppliers and

plant start-up cost show the lowest percentages of the total cost (2% and 1%, respectively).

Looking at the breakdown costs in Table 4, model MS and model MH have similar optimal

solutions, showing only a 0.3% difference in the total cost.

It is noticeable that the relaxed model MR used in the first phase also has the capability

of predicting optimal costs (see Figure 4 and Table 4). The most affected one is the truck

cost, which is estimated by relaxing the associated integer variables. However, the other

costs yield similar solutions with a 3% difference at most.

The ability of the relaxed model to find the optimal allocation is depicted in Figure 5,

which compares the customer demand allocated to plants, depots, and third parties over the

time horizon. Total customer demand is scaled for confidentiality reasons.

Overall, the results show that the proposed approach can solve the problem without a

significant degradation of the solution quality. Since the full-space model MS and reduced

model MH provide similar optimal solutions, only the result from the reduced model MH is
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Figure 5: Result of the customer demand allocation

presented in the remainder of the paper.

Figure 6: Result of the discount contract model (A) plant i1 and (B) plant i4

Figure 6 displays the result from the discount contract model for plant i1 and plant i4.

The contract model for plant i1 has one break point (λi1,n1=1,000) and two cost regions

(N = 2). The total amount of plant i1 purchased over the time horizon is 7,142 tons. As

shown in the figure, 1,000 tons of the raw material, corresponding to the cost region n1, are

bought at the original cost (Craw
i1,n1) and 6,142 tons of the raw material in the cost region n2

are purchased at the reduced cost (Craw
i1,n2). On the contrary, the total amount of product

purchased by plant i4 is 3,716 tons, all purchased at the original cost (Craw
i4,n1), as the total

purchased amount does not exceed the break point (λi4,n1).

Figure 7 illustrates the optimal production schedule. The coloured cell represents that

the plant is under the on-mode and the value represents the production utilisation rate in

each period, which is defined as the production amount divided by the maximum production
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Figure 7: Optimal production schedule

Figure 8: Inventory profile for plant i16

capacity. As observed, when the plant decides to operate, it tends to maintain the operation

mode as much as possible to avoid the plant start-up cost. This trend can be captured more

clearly with the inventory profile of the plant (see Figure 8). Plant i16 starts to produce the

CO2 product after its inventory hits the minimum level on day 4 and keeps the operation

mode until it meets the physical constraint of the tank capacity on day 12.

Figure 9 shows the Gantt chart for part of the optimal rail-car schedule. The solid cells

represent a one-way trip, whereas the vertical striped cells represent a return trip. As can

be seen, the proposed model captures the wrap-around effect spanning the rail-car schedule

in successive planning time horizons. For instance, rail-cars which arrive at depot j2 on day

3 depart plant i15 on day 30 in the previous month. Similarly, those that depart plant i15

on day 30 return to the origin on day 7 of the next month.
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Figure 9: Gantt chart for the rail-car schedule

Figure 10: Rail-car resource usage profile

Figure 10 provides the number of rail-cars in transition during each period. The maximum

number of rail-cars required for the distribution in each period is 74, while the maximum

available number of rail-cars is over 300.
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Figure 11: Inventory profile for customer k242

Figure 12: Inventory profile for customer k246

Finally, Figures 11 and 12 provide the inventory profiles for two VMI customers, k242 and

k246, which have the same tank capacity but different product consumptions. Information on

their consumptions, tank capacities, minimum levels, and product amounts fed into the tanks

are included in the figures. As can be observed, the frequency and replenishment amount

fulfilled by trucks differ depending on their consumptions. Because the consumption of

customer k242 is smaller than its tank capacity, it needs only two replenishments over a given

time horizon, while customer k246 needs 21 replenishments owing to its high consumption.
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Testing the proposed hierarchical solution strategy

To illustrate the applicability and efficiency of the proposed hierarchical solution strategy,

we solve the six additional realistic instances, with 80 trucks, over 30 plants/depots/third

parties, 750 customers, and planning horizons of 1-6 weeks, which are derived from the

original case study presented above. The optimality gap is set to 5% for the model (MS)

in the full-space approach and set to 1% and 5% for the relaxed and reduced models (MR

and MH) in the hierarchical approach, respectively. Additionally, the computation time is

limited to 150,000 s. The results and problem sizes of instances are reported in Table 5.

Table 5: Computational results of the full-space and hierarchical approaches

instance approach equations
continuous
variables

discrete
variables

CPUb s
optimality
gap (%)

total cost
(M$)

1-week
full-space 62,561 35,810 98,631 373 4.97 1.58
hierarchicalb 12,848 15,267 22,845 86 3.02 1.60

2-week
full-space 119,793 66,995 181,791 1,475 4.99 2.80
hierarchicalb 24,769 26,361 45,728 169 4.91 2.83

3-week
full-space 177,025 98,180 264,951 10,439 3.40 4.07
hierarchicalb 36,718 37,501 68,779 3,930 3.50 4.13

4-week
full-space 234,257 129,365 348,111 13,389 4.95 5.39
hierarchicalb 48,709 48,664 91,438 4,305 2.67 5.37

5-week
full-space 291,489 160,550 431,271 15,000 -c -c

hierarchicalb 60,637 59,757 113,726 12,063 5.00 6.78

6-week
full-space 348,721 191,735 514,431 15,000 -c -c

hierarchicalb 73,405 71,792 140,074 14,268 5.00 8.07
a reduced problem in the second phase of the hierarchical approach
b total CPU time for each approach
c a feasible solution has not been found within the time limitation (15,000 s)

For the 1- and 2-week instances, the proposed hierarchical approach can find the optimal

solutions that are almost the same as the solutions from the full-space model within only 86

s and 169 s, respectively. In the 3- and 4-week cases, we can observe that the CPU time has

been increased exponentially for both full-space and hierarchical approaches. However, the

proposed approach can still find the solutions within significantly reduced time (4,305 s),

while the full-space model takes more than 37,500 s to find the solutions. It should be noticed

that despite the solutions by the full-space approach are slightly better than the solutions

32



from the hierarchical approach, the differences between the solutions are within only 1.5%.

These results trend becomes more apparent when dealing with very large problems. For the

5- and 6-week instances, the full-space model cannot even find any feasible solution in the

time limit, while the proposed approach can provide optimal solutions that have less than

5% optimality gap.

This comparison allows us to demonstrate the efficiency and necessity of the proposed

solution strategy, especially when solving large-size problems.

6. Concluding remarks

This paper presented an MILP model that considers supply contracts, production, inventory

management, and rail-car and truck scheduling simultaneously. Further, a two-stage hierar-

chical solution strategy was also developed to handle the complexity of solving the integrated

model. In the first stage, the problem was solved using a relaxed MILP model in which the

integer variables associated with the trucks were relaxed into continuous variables. In the

second stage, the problem size of the original full-space MILP model was reduced by fixing

the optimal allocation result obtained in the first stage.

The validity and efficiency of the proposed mathematical framework and strategy were

tested on a real-world industrial gas supply chain problems. The results showed that the

developed MILP model can incorporate multiple production and distribution decisions. Fur-

thermore, it was verified that the proposed approach can find good quality solutions with

modest computational effort.

Further work could be directed at considering other solution techniques (e.g. rolling

horizon strategy, bilevel decomposition, Benders decomposition, and dual problem) to en-

hance the computational efficiency of the proposed solution strategy for large-size industrial

problems.
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Nomenclature

Indices

i production plant

j depot

k customer

m third-party supplier

n cost region

t time period

v truck

Sets

Ji set of depots allocated to plant i

Jm set of depots allocated to third parties m

KP
i set of pick-up customers allocated to plant i

KP
j set of pick-up customers allocated to depot j

Ki set of VMI customers allocated to plant i

Kj set of VMI customers allocated to depot j

Km set of VMI customers allocated to third party m

Parameters

αi coefficient relates amount of raw material and product produced by plant i

∆t length of time period t, day
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λin amount of raw material corresponding to plant i and cost region n, ton

µi unit fixed production cost of plant i, $/ton

νi unit production cost of plant i, $/ton

σmn amount of product corresponding to third party m and cost region n, ton

τij transportation time of rail-cars between plant i and depot j based on one-way trip,

day

τij transportation time of rail-cars between third party m and depot j based on one-way

trip, day

θik transportation time of trucks between plant i and customer k based on round-trip,

day

θjk transportation time of trucks between depot j and customer k based on round-trip,

day

θmk transportation time of trucks between third party m and customer k based on round-

trip, day

Ctruck unit transportation cost for trucks, $/mile

Crail
ij transportation cost for each rail-car between plant i and depot j, $

Craw
in unit cost for raw material purchased by plant i corresponding to cost region n, $/ton

Cst
i plant start-up cost of plant i, $

Crail
mj transportation cost for each rail-car between third party m and depot j, $

Cos
mn unit cost for product purchased from third party m corresponding to cost region n,

$/ton
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Caprail loading capacity for each rail-car, ton

Captrucki loading capacity for each truck stationed at plant i, ton

Captruckj loading capacity for each truck stationed at depot j, ton

Captruckm loading capacity for each truck stationed at third party m, ton

Dk product consumption of VMI customer k in each time period, ton

DPik product consumption at plant i of pick-up customer k in each time period, ton

DPjk product consumption at depot j of pick-up customer k in each time period, ton

I invi initial inventory level at plant i, ton

I invj initial inventory level at depot j, ton

I invk initial inventory level at customer k, ton

Imaxi , Imini maximum and minimum inventory levels at plant i, ton

Imaxj , Iminj maximum and minimum inventory levels at depot j, ton

Imaxk , Imink maximum and minimum inventory levels at customer k, ton

Lik round-trip distance between plant i and customer k, mile

Ljk round-trip distance between depot j and customer k, mile

Lmk round-trip distance between third-party m and customer k, mile

M big number

NRmax maximum available rail-cars

NS maximum number of sources each customer can be served over a time horizon

NTmaxi maximum available trucks at plant i
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NTmaxj maximum available trucks at depot j

NTmaxm maximum available trucks at third party m

Omax
m maximum availability of product at third party m in each time period, ton

Pmax
i , Pmin

i maximum and minimum production capacities of plant i in each time period,

ton

Rmax
i maximum availability of raw material for plant i in each time period, ton

T number of time period

Integer Variables

Aikvt number of round-trips between plant i and customer k made by truck v during time

period t

Ajkvt number of round-trips between depot j and customer k made by truck v during time

period t

Amkvt number of round-trips between third party m and customer k made by truck v during

time period t

NRijt number of rail-cars departing plant i to depot j in time period t

NRmjt number of rail-cars departing third-party m to depot j in time period t

Binary Variables

uit 1 if production mode of plant i is switched from the off-mode to the on-mode at time

period t; 0, otherwise

wit 1 if production mode of plant i is the on-mode in time period t; 0, otherwise

xik 1 if customer k is served the product from plant i; 0, otherwise
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xjk 1 if customer k is served the product from depot j; 0, otherwise

xmk 1 if customer k is served the product from third party m; 0, otherwise

yin 1 if total amount of raw material purchased by plant i is in cost region n; 0, otherwise

zmn 1 if total amount of product purchased from third party m is in cost region n; 0,

otherwise

Continuous Variables

Fin amount of raw material purchased by plant i corresponding to cost region n, ton

Iit inventory level of plant i at time period t, ton

Ijt inventory level of depot j at time period t, ton

Ikt inventory level of customer k at time period t, ton

Omt product amount purchased from third party m during time period t, ton

Pit production amount at plant i during time period t, ton

QRC
ijt product amount delivered from plant i to depot j by rail-cars during time period t,

ton

QRC
mjt product amount delivered from third party m to depot j by rail-cars during time

period t, ton

QTR
ikt product amount delivered from plant i to customer k by trucks during time period t,

ton

QTR
jkt product amount delivered from depot j to customer k by trucks during time period

t, ton

QTR
mkt product amount delivered from third party m to customer k by trucks during time

period t, ton
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Rit amount of raw material purchased by plant i during time period t, ton

Smn amount of product purchased from third party m corresponding to cost region n, ton

TCos total product cost purchased from third parties, $

TCprod total production cost, $

TCrail total transportation cost by rail-cars, $

TCraw total raw material cost purchased by plants, $

TCst total plant start-up cost, $

TCtotal total operating cost, $

TCtruck total transportation cost by trucks, $
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