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Abstract—Objective: Recognizing retinal vessel abnormity is 

vital to early diagnosis of ophthalmological diseases and cardio-

vascular events. However, segmentation results are highly influ-

enced by elusive vessels, especially in low-contrast background 

and lesion region. In this work, we present an end-to-end synthetic 

neural network, containing a symmetric equilibrium generative 

adversarial network (SEGAN), multi-scale features refine blocks 

(MSFRB), and attention mechanism (AM) to enhance the per-

formance on vessel segmentation. Method: The proposed network 

is granted powerful multi-scale representation capability to ex-

tract detail information. First, SEGAN constructs a symmetric 

adversarial architecture, which forces generator to produce more 

realistic images with local details. Second, MSFRB are devised to 

prevent high-resolution features from being obscured, thereby 

merging multi-scale features better. Finally, the AM is employed 

to encourage the network to concentrate on discriminative fea-

tures. Results: On public dataset DRIVE, STARE, CHASEDB1, 

and HRF, we evaluate our network quantitatively and compare it 

with state-of-the-art works. The ablation experiment shows that 

SEGAN, MSFRB, and AM both contribute to the desirable per-

formance. Conclusion: The proposed network outperforms the 

mature methods and effectively functions in elusive vessels seg-

mentation, achieving highest scores in Sensitivity, G-Mean, Pre-

cision, and F1-Score while maintaining the top level in other met-

rics. Significance: The appreciable performance and computa-

tional efficiency offer great potential in clinical retinal vessel 

segmentation application. Meanwhile, the network could be uti-

lized to extract detail information in other biomedical issues. 

 
Index Terms—Retinal vessel segmentation, symmetric adver-

sarial architecture, refine blocks, attention mechanism. 

 

I. INTRODUCTION 

etinal vessel morphology is valuable indicator for oph-

thalmological and cardiovascular diseases, such as diabe-
tes, hypertension, and arteriosclerosis [1], [2]. Retinal vessel 

segmentation provides various morphological vessel features, 

which may provide a reliable reference required for quantita-

tive analysis of such diseases [3]. However, manual segmenta-
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tion only by Human observer is tedious and time-consuming. In 

this case, automatic vessel segmentation plays an increasingly 

important role in disease recognition and prevention [4]. In 

recent years, lots of researchers conduct novel work on im-

proving the performance on vessel segmentation. Basically, the 

related approaches could be divided into two categories, su-

pervised and unsupervised. 

Unsupervised methods, requiring no manual annotation, 
mainly include matched filtering, vessel tracking, morpholog-

ical transformations, and model-based algorithms.  Rangayyan 

et al. [5] present a vessel tracking method by employing a 

Gabor filters to extract the vessels. Mendonca et al. [6] detect 

vessel ridges with multiple structuring elements. Neto et al. [7] 

develop a course-to-fine algorithm, relying on the mathematical 

morphology, spatial dependency and curvature. Zhao et al. [8] 

present an infinite active contour model by using hybrid region 

information. Zhang et al. [9] use a matched filter with 

first-order derivative of a Gaussian filter to segment vessels. 

Ali-Diri et al. [10] make use of two pairs of contours to locate 

vessel edge. Fraz et al. [11] use the first-order derivative of 
Gaussian filter for centerlines extraction with a morphological 

operator for morphology calculation. Roychowdhury et al. [12] 

present an adaptive thresholding method to complete iteration 

vessel segmentation. Salazar-Gonzalez et al. [13] first carry out 

a pre-processing for the image by adaptive histogram equali-

zation and robust distance transform. Yin et al. [14] propose a 

segmentation method using hessian matrix and thresholding 

entropy, using post-processing to eliminate noise and the cen-

tral light reflex. Fathi and Ahmad [38] vessel propose an vessel 

enhancement method based on complex continuous wavelet 

transform. Zhang et al. [40] present a robust and fully automatic 
filter-based approach for retinal vessel segmentation. 

Supervised segmentation methods utilize ground truth vessel 

data to train a classifier in discriminating whether a pixel is 

vessel or non-vessel. Specifically, certain approaches need 

handcrafted features for segmentation, including K-nearest 

neighbor (KNN) [15], support vector machine (SVM) [16] and 

others. Ricci and Perfetti [17] employ line operators as feature 

vectors and SVM for pixel classification. Fraz et al. [18] use an 

ensemble classifier of boosted and bagged decision trees to 

construct supervised method for retinal image analysis. Roy-

chowdhury et al. [19] reduce the pixels under classification by 
eliminating the major vessels that are detected as regions 

common to threshold versions of high-pass filtered images to 

save time. Lupascu et al. [20] employ different scale filters to 

extract 41D features for encoding information on local intensity 

structure, spatial properties, and geometry. With the rapid de-

velopment of deep neural network, Li et al. [21] propose a wide 

and deep neural network that needs no artificially designed fea- 
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Fig. 1.  The retinal fundus vessel segmentation results with U-Net [25]. From 

left to right, the four columns are fundus image from DRIVE, local patches in 

challenging situation, ground truth, and segmentation image with U-Net. 

According to local observation, the detail vessel information is lost, especially 

in regions with exudates (3), low contrast (1) and (2). 

 

ture and preprocessing step, thereby reducing the impact of 

subjective factors. Wu et al. [22] present a multi-scale network 

followed network model to help segment the blood vessels, 

particularly the capillaries. Orlando et al. [23] put forward a 

discriminatively trained segmentation model on the base of 

fully connected conditional random fields, this model better 

distinguish the desired structures than the local neighbor-

hood-based approach. Yan et al. [24] propose a new seg-
ment-level loss that emphasizes the thickness consistency of 

thin vessels in the training process, when considering highly 

imbalanced pixel ratios between thick and thin vessels in fun-

dus images. Wang et al. [42] propose two encoders to preserve 

the spatial information and semantic information, and introduce 

a feature fusion module for vessel segmentation. Lyu et al. [39] 

propose a method utilizing separable spatial and channel flow 

and densely adjacent vessel prediction to capture maximum 

spatial correlations between vessels. Wu et al. [43] design an 

efficient inception residual convolutional block and introduce 

four supervision paths to preserve the multi-scale features. 
With these studies on the vessel segmentation, the perfor-

mance of vessel pixel classification has been increasingly im-

proved, and the majority of vessels are able to be recognized. 

Several metrics such as the accuracy (Acc), specificity (Sp) and 

area under curve (AUC) are considerably increased. However, 

Sensitivity (Se), which is the proportion of actual vessel pixels 

that are correctly identified, is relatively low. Considering the 

definition of Se, the ratio of true vessel being detected is limited 

in low level. This situation results from the imbalanced distri-

bution in a retinal fundus image. In recent work, even if some 

vessels are ignored in segmentation, the Acc and Sp still obtain 

high score as there are much more non-vessel pixels in the 
fundus image. Concentrating only on the Sp and Acc would lead 

to much loss during elusive vessels extraction. Thus, we need to 

achieve a trade-off between Se, Sp, and other comprehensive 

metrics, such as AUC, G-Mean, and F1-Score. By reviewing 

the previous research, there are few algorithms that achieve 

satisfied score on Se, which shows the elusive vessel is the huge 

obstacle influencing the performance of retinal vessel seg-

mentation. As shown in Fig. 1, the U-Net developed by 

Ronneberger et al. [25] shows weak performance on the elusive 

vessels, especially in complex environment backgrounds, such 

as lesion and low-contrast surroundings. Elusive thin vessel 
pattern is significant in disease analysis, for instance, the first 

manifestations of diabetic retinopathy (DR) include tiny vessel 

dilations, known as microaneurysms (MA) and exudates [26]. 

Such manifestations may provide an early indication of the risk 

of the type I diabetes. 

For further improving vessel segmentation effects, especially 

on elusive vessel recognition, we firstly propose Symmetric 
Equilibrium Generative Adversarial Networks (SEGAN), 

which utilizes the characteristics of U-Net and Generative 

Adversarial Network (GAN) [27]. In contrast to the conven-

tional GAN, which only uses advanced structures as generator 

(G), such a VGG [28], Res-Net [29], U-Net, and Google-Net 

[30], we construct symmetric equilibrium architecture by em-

ploying U-Net as baseline both in the G and discriminator (D). 

Specifically, this structure eliminates the imbalance in inborn 

capability between G and D. The D shares the same U-Net 

structure with G so that they are in well-matched game. Second, 

we present the multi-scale feature refine blocks (MSFRB) to 

optimally merge the different scale features. MSFRB preserves 
high-resolution features with high-semantic ones simultane-

ously, aiming at keeping the multi-scale representation inde-

pendent and refining much better local detail information. 

Finally, the attention mechanism (AM) is employed. By dis-

tributing larger weights, it highlights the discriminative feature 

maps rather than the inconsequential ones. In this case, the 

distinguishable features could be further strengthened. 

Basically, this paper presents three contributions on the ret-

inal vessel segmentation based on the present research.  

 

1.    We propose SEGAN for precise retinal vessel segmenta-
tion by utilizing adversarial principle to strengthen the G 

(i.e., U-net) capability. In addition, we build a symmetric 

adversarial architecture which allows D thoroughly dis-

tinguishes detail difference between output of G and 

ground truth, thereby forcing G to fake the details perfectly 

and enhancing the recognition ability for elusive vessels. 

2.    The MSFRB are presented to fully utilize the shallow-layer 

features which are high resolution but low semantic. In 

combination with deep-layer features. The multi-scale in-

formation is effectively merged, which avoids convolution 

confusion occurred in the traditional skip connection. 

 The lightweight structure ensures the high efficiency for 
retinal vessel segmentation. 

3.    AM is employed in the MSFRB to train the network in 

allocating weights to different channels and concentrating 

on informative feature maps while ignoring valueless ones. 

Additionally, two extra weighted segmentation loss func-

tions, namely, binary cross-entropy loss (BCE) and mean 

absolute error (MAE), have been included besides the 

conventional GAN loss function. It constructs an opti-

mized objective function to spare more attention on pix-

el-level segmentation task. 

 
The rest of this paper is organized as follows. We detail elab-

orate on the proposed method in Section II. In Section III, we 

describe the datasets used in the experiment and evaluation 

metrics. In Section IV, we present the abundant experiment 

results and compare our approach with other state-of-the-art 

methods. We then analyze the importance of SEGAN, MFSRB 

and AM by the ablation studies. Discussion is illustrated in 

Section V. Finally, we conclude this paper in Section VI. 



 
 
Fig. 2.  Structure of SEGAN. Blue part represents G and green part indicates D. 

The running schedule is from left to right, indicated by top gray arrow. The 

black arrows in the G and D are skip-connections used for multi-scale features 

fusion. Each block denotes a stage and the channel number is listed below the 

block. The output of D is a map with the same size of retinal image, and value 

of each pixel represents the possibility of being ground truth vessel. 

 

II. METHODS 

A. Symmetric Equilibrium Architecture 

In vessel segmentation, adversarial training in GAN [27] 

could be utilized to improve the G capability. Let FG refers to 

the function from fundus image fundus to vessel image vessel, 

and FD is function from (fundus, vessel) to binary classification 

(0, 1). Then the conventional loss function is defined as follow. 
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where 
G

 and 
D

 represent the parameters in the G and D re-

spectively. The D is trained to maximize the objective function 

(i.e., FD(fundus, vessel)≈1 and FD(fundus, FG(fundus))≈0). By 

contrast, G is trained to minimize the objective function, that is, 

FG(fundus) is extremely indistinguishable with vessel. 

The motivation is that, in traditional methods, some net-

works such as U-Net [25], are employed in G to achieve 

FG(fundus)≈vessel. U-Net is a powerful feature extraction 

network, especially in biomedical image analysis. However, 

research on the D structure is scarce. Supposing that discrimi-

nator is weak, FD(fundus, FG(fundus)) will approximate a value 
of 1, even if FG(fundus) is imperfect. In more specific, although 

D does not segment vessels directly, it requires a strong capa-

bility to recognize the detail difference between FG(fundus) and 

vessel, otherwise the FG(fundus) which losses lots of elusive 

vessels would be regarded as true vessel. In this case, the 

training on the G gains no ideal result with the weak adversarial 

environment. 

In order to grant the G stronger capability to extract the high 

resolution information, we propose the symmetric equilibrium 

architecture by using U-Net as baseline both in G and D of 

GAN. The overall network of SEGAN is concisely shown in 

Fig. 2, without any pre-processing and post-processing. The 
two sides of the network are symmetric. The left side is G 

which takes the retinal fundus image as input and outputs the 

vessel probabilistic map of retinal vessels. The vessel proba-

bilistic map is then concatenated with retinal image and deliv-

ered to the D for evaluation. The D contains five stages in the 

down-sampling process to obtain high semantic information. 

Each stage consists of two convolution layers, two batch nor-

malizations, two activations and one max-pooling layer for 

deep feature extraction. After the five stages, the high semantic 

feature map proceeds to up-sampling to recover to the original 

size. Five stages that include 2x up-sampling also exist. In each 
stage, the feature map from shallow layers is concatenated with 

the up-sampling feature map through skip connection, combing 

the low semantic but high-resolution features with high se-

mantic but low-resolution ones. Being different with the tradi-

tional D, the output of presented D is a possibility map which 

has the same size as retinal image, which means it discriminate 

the FG(fundus) and vessel in each pixel. This structure endows 

D the capability to recognize the detail difference. Accordingly, 

the D re-emphasizes the significance of not only thick vessel 

trunk, but also elusive vessels which is full of detail information. 

In this well-matched setting, adversarial training is strength-

ened to force the G segment more realistic vessel images (i.e., 

FG(fundus)≈vessel). 

 

B. Multi-Scale Features Refine Block 

In traditional up-sampling process of G, the high resolution 

features from the shallow layers are concatenated with high 

semantic ones. The concatenated layers are then delivered to 

the next convolution, as shown in Fig. 3(a). The convolutional 
computation is efficient to extract discriminative features, but it 

sacrifices the high resolution details. Although the traditional 

multi-scale merging process recognizes local details to a certain 

degree, the high resolution features are confused with high 

semantic ones by convolution operation, lacking representation 

preservation. This phenomenon hinders the vivid reconstruc-

tion of elusive thin vessels. Consequently, we propose MSFRB 

to refine the two types of features and advance the merging 

process, as shown in Fig. 3b. 

The features at stage s in down-sampling and up-sampling 

are denoted by 
d

s
x  and 

u

s
x ,  1,2,..., d or us N . In U-Net, 

dN and uN  are both equal to 5. The 
1

u

s
x


 can be calculated as 

follow. 

 

1 1MSFRB( , , )u u d d
s s sx x x x                        (2) 

 

where MSFRB() contains six steps. The inputs are high reso-

lution features 
d

s
x , 

1

dx  and high sematic feature 
u

s
x . First, it 

completes a convolution operation for the previous stage output 
u

sx  and the first feature map 1

dx . 

 

Conv2d( , ( ))u u d
s s c sx x n x                       (3) 

 

1 1Conv2d( , ( ), ( ))u u d d
c s s sx x n x n x                 (4) 

 

where Conv2d() represents 2D convolution operation, and 

( )d
c sn x , ( )d

s sn x  are the parameter of Conv2d function, which 

defines the convolution kernel channel and size. 
u
sx  and 1

dx  

denote the result of convolution, which has the same size and  



 
 

Fig. 3.  The process graphs of the multi-scale features refine blocks (MSFRB). 

(a) Conventional fusion process, (b) Features fusion process with proposed 

MSFRB, (c) With MSFRB and AM module. 

 

channel as 
d

sx  

    Then, it concatenates 
u

sx , 1
dx , and 

d

sx  with function Con-

ca(). This step combines high resolution features with high 

semantic ones. 

 

1Conca( , , )c d u d

s s sx x x x                          (5) 

 

Subsequently, we divide the algorithm schedule into two 

parts: main road and branch road, as shown in Fig. 3(b). These 

two parts are separately defined as follows. 

 
_ _ _

2
Stage( ) Iteration(ReLu(BN(Conv2( ))))c m c m c m

s s s
n

x x x


    (6) 

 
_ Re( , ) Conca(r( ), r( ))c b u d u d

s s s s sx x x x x          (7) 

 

where 
_c m

sx  represents the component of the main part and 

_c b

sx  notes the value of the branch part. The Stage() function 

expresses the operation conducted in the main road, which 

includes two iteration rounds containing Convolution Conv2(), 

BatchNormalization BN(), and ReLu Activation ReLu(). In the 

branch part, Re() is a significant function in maintaining high 

resolution and semantic feature representations and consists of 

channel sum function r() and Conca(). Letting a=[a1, a2,…, an], 

the definition of r() is as follow 

 

1 2 /

1

r( ) [ , ,..., , ]

[1, / ]

n k

k

z zk i

i

a a a a a

a a z n k



    

   ，
                    (8) 

In this function, the adjacent k channels sum up to squeeze 

the channel, so that 
_c b

sx  has appropriate channel number to be 

merged with 
_c m

sx . The 
_c b

sx  avoids the convolution opera-

tion for the high resolution features, thus keeping the detail 

information from being obfuscated. Meanwhile, the 
d

sx  and 

u

sx , as inputs of Re(), are independently squeezed, which 

means the high resolution features and high semantic features 

are not confused together, occupying their room separately. 

We sum up the main part element 
_c m

sx  and branch part 

element 
_c b

sx , and use the up-sample function Ups () to obtain 

the output of this stage. 
 

_ _ _

1 +c s c b c m

s s sx x x                              (9) 

 
_

1 1Ups( )u c s

s sx x                               (10) 

 

In MSFRB, the output feature map is composed of two parts, 

multi-scale features convolution fusion 
_c m

sx  and independent 

multi-scale features 
_c b

sx , which refine the segmentation per-

formance in high resolution and semantic. Meanwhile, it in-

troduces the highest resolution feature 
1

dx  in the module so that 

the detail information could be supplemented in large degree. 

 

C. Attention Mechanism 

Attention can be interpreted as a means of biasing the allo-

cation of available computational resources toward the most 

informative components of a signal [31], [32].  

During the MSFRB, some discriminative feature maps are 

added in, while a number of insignificant ones are also intro-

duced. For highlighting the representation capability in vessel 

segmentation, the AM is utilized to focus on feature maps being 

beneficial to task. 

As shown in Fig. 3(c), the attention module consists of global 

average pooling and activation. The application position is on 
the branch part in MSFRB, and the formula can be listed as 

follow. 

 
_

1 2
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1 1 1 1 1 1
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[ , ,..., ] / ( )

u b

s N

w h w h w h
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Sigmoid( )Atten L                            (12) 

 

where GAP() indicates the global average pooling function; w 

and h represent the width and height of image respectively, and  
pixel is the intensity of image pixel. The following activation 

Sigmoid() controls the attention matrix value at [0, 1], thereby  



 
 

Fig. 4.  The overall structure of proposed synthetic network, including SEGAN, MSFRB and AM. 

 

avoiding gradient explosion in training process, simultaneously 

introducing non-linear representation in the attention module. 

    The former value of branch part 
_c b

sx  is ameliorated by the 

Atten, which is computed by formula (11) and (12). And 

corresponding output features of stage s could be revised as 

follows. 
_ _ _c b a c b

s sx Atten x                          (13) 

_ _ _

1 +u c b a c m

s s sx x x                           (14) 

 

In comparison with the non-attention result, the attention 

matrix emphasizes the discriminative feature maps instead of 

dispersing concentration evenly on all channels. This case 

ensures that pixel classification behave much better with 

valuable information. 

 

D. Overall Network and Objective Loss Function 

MSFRB together with AM are employed on the G, pre-

serving multi-scale representation when allocating additional 

weights on informative feature channel, as shown in Fig. 4.  

 

The objective loss function is vital to network training 

performance. Considering that our task is vessel segmentation 

(i.e., pixel classification), we define our objective loss function 

as follows. 

 

_ _SEG BCE SEG MAEGAN                   (15) 

 

where  contains three components, namely, GAN loss 

function GAN , BCE 
_SEG BCE

, and MAE 
_SEG MAE

.  ,  , and 

  are hyperparameters used to allocate weights.  

_SEG BCE
and 

_SEG MAE
 are used to solve the tiny vessels 

detection challenge, as they directly evaluate the distance 

between ground truth and prediction. And their definition are 

briefly listed below. 

 

( , )_ , ~
log ( ) (1 ) log(1 ( ))

data x ySEG BCE x y p
y G x y G x       (16) 

( )_ , ~
( )

data x,ySEG MAE x y p
y G x                  (17) 

 

All the components are devised for enhancing the detail in-

formation learning capability of retinal vessel segmentation, so 

that the elusive vessel pixels, which are easily ignored by ex-

isting methods, are able to be recognized with the proposed 

symmetric network. 

 

III. MATERIALS AND EVALUATION 

A. Datasets 

We complete experiments on the four public dataset DRIVE [7], 

STARE [33], CHASEDB1 [34], and HRF [35] to evaluate the 

retinal vessel segmentation effect. DRIVE dataset includes 40 

color retinal fundus images with a resolution of (565, 584). 

Usually these images are divided into two parts. The first one is 
training set with 20 images containing one annotation per im-

age, while the other one is test group which has 20 images with 

two labeled vessel images per image. One is used as ground 

truth and the other one as second human observer. STARE 

contains 20 retinal fundus images, and each image resolution is 

700×605. Several studies used “leave one out” strategy to train 

19 images and test on one image [6], [24]. We adopt the same 

strategy for fair comparison. CHASEDB1 dataset consists of 28 

retinal fundus images with a resolution of 999×960 pixels. As 

normal, we divide it into a training set containing 20 images 

and a test set with 8 images. Additionally, the FOV mask in 

STARE and CHASEDB1 are not given in original set. So we 

separately use the STARE mask built in [36] and CHASEDB1 

mask obtained in [23]. For HRF dataset, the resolution is 3504

×2336. It has three subsets healthy, diabetic retinopathy, and 

glaucomatous, and each subset has 15 images. Like the [23] and 
[24], we employ the first 5 images in every subset as training 

dataset, and the left images as test dataset. 



 
 
Fig. 5.  Exemplar segmentation results on DRIVE (row 1, 2), STARE (row 3, 

4),CHASEDB1 (row 5 to 6), and HRF (row 7, 8). The four columns from left to 

right: fundus images, ground truth, possibility map, and binary segmented 

vessel. The binary map is obtained with OSTU algorithm [41]. Better view with 

zoom in.  

 

B. Evaluation Metrics 

We quantitatively analyze our experiment results and 

compared them with the label ground truth vessel. Based on the 

number of true positive TP, true negative TN, false positive FP, 

and false negative FN, seven metrics are employed. 
The metrics computation formulas are as follows. 

, ,

2
, 1

TP TN TP
Se Sp Pr

TP FN TN FP TP FP

Pr Re
G Se Sp F

Pr Re

TP TN
Acc

TP FN TN FP

  
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 
  






  

      (17) 

 

Se represents the ability of correctly recognizing vessel pix-

els, which directly reflects the vessel segmentation ability. It is 

an appropriate metric to evaluate the improvement on elusive 

vessel pixels segmentation. Sp measures the capability on de-

tecting non-vessel parts. Precision (Pr) indicates the proportion 

of pixels classified as vessels that are accurately identified. Acc 

is frequently employed to evaluate classifier performance. 

Additionally, we make use of two more indicators, G-Mean (G) 
and F1-Score (F1), for overall performance. F1 is the harmonic 

mean of precision and recall, which owns the property of better 

characterizing quality when the data are imbalanced. G refers to 

the geometric mean of two most important metric Se and Sp, 

comprehensively estimating the pixel classification effects. The 

receiving operator characteristic (ROC) curve is computed 

with the Se versus (1－Sp) with respect to a varying threshold. 

The area under the ROC curve (AUC) is calculated for quality 

evaluation. All these metrics are equal to 1 under ideal condi-

tions, while being 0 in worst classification. 
 

C. Implementation Details 

In order to relax the computational stress and be convenient 

for subsequent cross-training experiments, we firstly 

down-sample the HRF and CHASEDB1 images (except for the 

ground truths in test dataset) using a factor of 4 and 2 respec-

tively. Then we stipulate a fixed resolution (880, 608) for whole 

four datasets, except for the ground truths in test dataset. The 

training images are unified in size through padding operation. It 

is worth noting that the vessel images generated from test im-
ages are recovered to the original size and the padding zero are 

removed by mask, thus the evaluation results are fair to make 

comparison with the other methods. We believe that a large 

training image size is profitable for a network learning global 

semantic representation. Meanwhile, a large training image size 

avoids the problem of erroneous recognition of huge vessels as 

background in small patch training [22]. Data augmentation is 

supposed to expand the amount of images by rotation and 

flipping for network robustness and training performance. 

After augmentation, DRIVE and CHASEDB1 contains 2400 

images in training set. STARE has 2280 images for training and 
HRF has 1800 images. 

Apart from the initial normalization, no preprocessing or 

postprocessing is necessary. The entire training process is 

end-to-end. Learning rate is fixed at 0.0002, and the batch size 

is two. Fig. 2 shows the channel setting. The hyperparameters 

 ,  , and   are set at 0.08, 1.1, and 0.5 respectively. As the 

vessel segmentation is pixel classification task, we adopt 

‘Sigmoid’ activation in the last output layer of G and D to 

obtain probability maps with a range of [0, 1]. In the other parts 

of network, activation functions are universally “ReLu”, which 
provides fast converge efficiency without saturation area. The 

Adam with beta1=0.5 is employed for the optimizer. We define 

one round as an iteration of all training images, and in practice 

we conduct 10 rounds and average the metric value of the final 

5 rounds to achieve stable results. 
 

IV. EXPERIMENT RESULTS 

A. Vessel Segmentation 

Intuitive vessel segmentation results are drawn in Fig. 5, in-

cluding DRIVE, STARE, CHASEDB1, and HRF. The seg-

mentation maps are of little difference with the ground truths.  



 
 

Fig. 6  Elusive vessel segmentation performance compared with Yan et al work [24].Examples comes from the test results on the four datasets. The first and fourth 

rows shows the global pixels distribution, and local detail segmentation maps are displayed in row 2, 3, 5, and 6. The images from column 1 to 3 are original fundus 

images, segmentation pixels statistic results with [24], and statistic results with the proposed method. Green indicates TP, blue represents FP and red means FN. 

 

Table Ⅰ provides the quantitative performance and compari-

son calculated with our network and state-of-the-art methods. 

In the DRIVE dataset, Se ranks first, with a significant im-

provement of 0.0256 compared with the previous highest score 

in the work of Wu et al. [42]. The Sp shows a slight decrease of 

0.0062 compared with that in Lupascu et al.’s method [22] 

whereas Se is 0.1566 higher. The results AUC is optimal, being 
at 0.9830. The Acc is close to the highest level (i.e., difference 

of 0.0018). Meanwhile, the G surpasses the second position 

over 0.0145, and our network occupies leading position in 

terms of Pr and F1-Score. It is worth noting that we compete 

with different state-of-the-art methods, and our network dis-

plays multi best result and strongest comprehensive capability.  

In STARE dataset, the method of Liskowski and Krawiec 

[37] shows powerful effects in Sp, Acc, AUC, and other metrics. 

However, such method requires complex preprocessing steps 

including global contrast normalization, zero-phase component 

analysis, geometric transformations and gamma corrections. 

Our network needs no complex schedule and achieves 0.8812 

in Se and 0.9283 in G-Mean. Furthermore, we still rank first in 

Pr and F1-Score with dramatic advantages. In conclusion, it is 

a matched rival for our method with [37] in STARE, outper-

forming other methods to a large degree, but our network is 

more efficient in the retinal vessel segmentation, as elaborated 

in the E. Computation Efficiency. 
As for CHASEDB1 dataset, the results are shown in Table 

Ⅱ. Se achieves 0.8435, ranking first place with superiority of 

0.0303. The Sp is only 0.0083 lower than the best score in Lyu 

et al method [39] while Se is 0.0557 higher. The Acc is 0.0034 

lower than the best score. In the rest four metrics (AUC=0.9872, 

G =0.9083, F1 =0.8218 and Pr=0.8013), our network out-

performs all other algorithms. Especially in Pr, G and F1, 

significant enhancements in the performance are observed. 

Considering the performances on the three traditional datasets, 

the proposed network simultaneously works well. It always 

occupies the first position in Se, G, Pr and F1, and occasionally 



TABLE I 

COMPARATIVE PERFORMANCE OF THE PROPOSED NETWORK WITH EXISTING WORKS ON THE DRIVE AND STARE DATASETS, TOGETHER WITH THE ABLATION 

EXPERIMENT RESULTS, INCLUDING NETWORK STRUCTURE ABLATION AND LOSS FUNCTION ABLATION 

 (W/O REPRESENTS WITHOUT, G INDICATES GENERATOR AND D MEANS DISCRIMINATOR)  

 DRIVE  STARE 

Methods (year) Se Sp Pr Acc AUC G F1 Se Sp Pr Acc AUC G F1 

2nd Human observer 0.7760 0.9724 0.8066 0.9472 - 0.8686 0.7910 0.8951 0.9387 0.6424 0.9349 - 0.9166 0.7401 

Unsupervised               

Fathi [38] (2013) 0.7768 0.9759 0.7559 0.9581 0.9516 0.8706 0.7662 0.8061 0.9717 0.7027 0.9591 0.9680 0.8850 0.7508 

Zhao [8] (2015) 0.7420 0.9820 - 0.9540 0.8620 0.8536 - 0.7800 0.9780 - 0.9560 0.9740 0.8734 - 

Azzopardi [3] (2015) 0.7655 0.9704 - 0.9442 0.9614 0.8618 - 0.7716 0.9701 - 0.9497 0.9563 0.8651 - 

Zhang [40] (2016) 0.7743 0.9725 - 0.9476 0.9636 0.8677 - 0.7791 0.9758 - 0.9554 0.9748 0.8719 - 

Supervised               

Lupascu [20] (2010) 0.6728 0.9874 - 0.9597 0.9561 0.8150 - - - - - - - - 

Li [21] (2016) 0.7569 0.9816 - 0.9527 0.9738 0.8619 - 0.7726 0.9844 - 0.9628 0.9879 0.8720 - 

Liskowski [37] (2016) 0.7811 0.9807 - 0.9535 0.9790 0.8752 - 0.8554 0.9862  0.9729 0.9928 0.9184 - 

Orlando [23] (2017) 0.7897 0.9684 0.7854 - - 0.8744 0.7857 0.7680 0.9738 0.7740 - - 0.8648 0.7644 

Wu [22] (2018) 0.7844 0.9819 - 0.9567 0.9807 0.8776 - - - - - - - - 

Yan [24] (2018) 0.7653 0.9818 - 0.9542 0.9752 0.8668 - 0.7581 0.9846 - 0.9612 0.9801 0.8639 - 

Lyu [39] (2019) 0.7940 0.9820 - 0.9579 0.9826 0.8830 - - - - - - - - 

Wu [42] (2019) 0.8038 0.9802  0.9578 0.9821 0.8876 - - - - - - - - 

Wang [43] (2019) 0.7940 0.9816  0.9567 0.9772 0.8828 0.8270 - - - - - - - 

Proposed Method 0.8294 0.9812 0.8397 0.9563 0.9830 0.9021 0.8345 0.8812 0.9781 0.7952 0.9671 0.9863 0.9283 0.8359 

w/o AM 0.8261 0.9793 0.8297 0.9540 0.9741 0.8939 0.8278 0.8652 0.9739 0.7870 0.9661 0.9814 0.9126 0.8296 

w/o MSFRB&AM 0.7955 0.9823 0.8345 0.9521 0.9711 0.8839 0.8145 0.8364 0.9813 0.8083 0.9586 0.9790 0.9059 0.8221 

Only U-Net in G 0.7886 0.9719 0.8043 0.9486 0.9705 0.8754 0.7963 0.7780 0.9835 0.7841 0.9633 0.9784 0.8747 0.7810 

Only U-Net in D 0.6232 0.9792 0.7451 0.9333 0.9143 0.7811 0.6787 0.5904 0.9764 0.7640 0.9412 0.9408 0.7592 0.6660 

w/o GAN Loss 0.7667 0.9685 0.7424 0.9319 0.9645 0.8617 0.7543 0.7572 0.9765 0.7704 0.9609 0.9752 0.8598 0.7637 

w/o MAE& BCE 0.1349 0.9110 0.1747 0.8119 0.4383 0.3505 0.1522 0.2216 0.7967 0.1076 0.7374 0.3901 0.4201 0.1448 

w/o MAE 0.8063 0.9782 0.8396 0.9575 0.9784 0.8881 0.8226 0.8544 0.9817 0.7848 0.9682 0.9868 0.9158 0.8181 

 
 

TABLE Ⅱ 

COMPARATIVE PERFORMANCE OF THE PROPOSED NETWORK WITH EXISTING WORKS ON THE CHASEDB1 AND HRF DATASETS, TOGETHER WITH THE ABLATION 

EXPERIMENT RESULTS, INCLUDING NETWORK STRUCTURE ABLATION AND LOSS FUNCTION ABLATION 

 (W/O REPRESENTS WITHOUT, G INDICATES GENERATOR AND D MEANS DISCRIMINATOR)  

 CHASEDB1 HRF 

Methods (year) Se Sp Pr Acc AUC G F1 Se Sp Pr Acc AUC G F1 

2nd Human observer 0.7760 0.9724 0.8066 0.9472 - 0.8686 0.7910 - - - - - - - 

Unsupervised               

Azzopardi [3] (2015) 0.7585 0.9587 - 0.9387 0.9487 0.8527 - - - - - - - - 

Zhang [40] (2016) 0.7626 0.9661  0.9452 0.9606 0.8583 - 0.7978 0.9717  0.9556 0.9608 0.8804 - 

Supervised               

Li [21] (2016) 0.7507 0.9793 - 0.9581 0.9716 0.8574 - - - - - - - - 

Liskowski [37] (2016) 0.7816 0.9836 - 0.9535 0.9823 0.8768 - - - - - - - - 

Orlando [23] (2017) 0.7277 0.9712 0.7438 - - 0.8406 0.7332 0.7874 0.9584 0.6630 - - 0.8687 0.7158 

Wu [22] (2018) 0.7538 0.9847 - 0.9637 0.9825 0.8615 - - - - - - - - 

Yan [24] (2018) 0.7633 0.9809 - 0.9610 0.9781 0.8652 - 0.7881 0.9592 0.6647 0.9437 - 0.8694 - 

Lyu [39] (2019) 0.7878 0.9865 - 0.9664 0.9865 0.8815 - - - - - - - - 

Wu [42] (2019) 0.8132 0.9814  0.9661 0.9860 0.8876 - - - - - - - - 

Wang [43] (2019) 0.8074 0.9821  0.9661 0.9812 0.8904 0.8037 - - - - - - - 

Proposed Method 0.8435 0.9782 0.8013 0.9630 0.9872 0.9083 0.8218 0.8310 0.9730 0.8115 0.9559 0.9693 0.8992 0.8211 

w/o AM 0.8392 0.9760 0.7966 0.9619 0.9834 0.9050 0.8173 0.8297 0.9702 0.8119 0.9542 0.9631 0.8972 0.8207 

w/o MSFRB&AM 0.8258 0.9788 0.7617 0.9675 0.9765 0.8990 0.7924 0.8185 0.9757 0.7896 0.9503 0.9625 0.8890 0.8037 

Only U-Net in G 0.7934 0.9706 0.7575 0.9625 0.9726 0.8775 0.7750 0.7763 0.9647 0.7609 0.9527 0.9620 0.8653 0.7685 

Only U-Net in D 0.3650 0.9548 0.4404 0.9021 0.8092 0.5903 0.3991 0.2130 0.9635 0.3128 0.9388 0.8543 0.4530 0.2534 

w/o GAN Loss 0.7755 0.9660 0.7531 0.9589 0.9654 0.8655 0.7641 0.7524 0.9639 0.7709 0.9483 0.9555 0.8516 0.7615 

w/o MAE&BCE 0.1254 0.9021 0.1290 0.8248 0.5075 0.3363 0.1271 0.1844 0.9326 0.2235 0.7918 0.7147 0.4146 0.2020 

w/o MAE 0.8387 0.9738 0.7803 0.9625 0.9841 0.9037 0.8084 0.8298 0.9719 0.7919 0.9534 0.9649 0.8980 0.8104 



TABLE Ⅲ 

RESULTS OF THE CROSS-TRAINING EXPERIMENT D REPRESENTS DRIVE, S 

MEANS STARE, C INDICATES CHASEDB1, AND H IS HRF DATASET 

Test  Train Method Se Sp Acc AUC 

D 

S 

Li [21] 0.7273 0.9810 0.9486 0.9677 

Yan [24] 0.7292 0.9815 0.9494 0.9599 

Proposed 0.7412 0.9830 0.9519 0.9643 

C 
Li [21] 0.7307 0.9811 0.9484 0.9605 

Proposed 0.7457 0.9865 0.9480 0.9661 

H Proposed 0.8462 0.9640 0.9432 0.9671 

S 

D 

Li [21] 0.7027 0.9828 0.9545 0.9671 

Yan [24] 0.7211 0.9840 0.9569 0.9708 

Proposed 0.8334 0.9764 0.9613 0.9718 

C 
Li [21] 0.6944 0.9831 0.9536 0.9620 

Proposed 0.8137 0.9765 0.9605 0.9785 

H Proposed 0.8661 0.9599 0.9518 0.9664 

C 

D 
Li [24] 0.7118 0.9791 0.9429 0.9628 

Proposed 0.8134 0.9750 0.9547 0.9758 

S 
Li [24] 0.7240 0.9768 0.9417 0.9553 

Proposed 0.7950 0.9743 0.9485 0.9699 

H Proposed 0.8364 0.9712 0.9582 0.9733 

H 

D Proposed 0.8003 0.9779 0.9465 0.9541 

S Proposed 0.8140 0.9785 0.9451 0.9579 

C Proposed 0.8174 0.9710 0.9525 0.9509 

 

achieves highest score in AUC. 

    In the challenging high resolution dataset HRF, the quanti-

tative result with proposed network outperforms the 

state-of-the-art methods, as shown in Table Ⅱ. Compared with 

second highest scores, there are markable enhancement in Se, 

Pr, G, AUC, and F1, respectively increased by 0.0332, 0.1468, 

0.0188, 0.0085, and 0.1053. The Sp and Acc also take the first 

place with moderate improvement. The proposed method 

works well and maintains the outperforming performance as in 

the STARE, DRIVE, and CHASEDB1. 

B. Ablation Studies  

For examining the benefits brought by SEGAN, MSFRB, 

and AM. We devise several ablation experiments to verify their 

functions. The whole results are contained at the bottle of Table 

Ⅱ and Table Ⅰ.  

1) Validation of SEGAN: We retain the SEGAN structure to 
compare with two non-SEGAN networks, namely, “U-Net only 

in G” and “U-Net only in D”. “U-Net only in G” includes a 

U-Net in G and a three-stage fully convolution network in D, 

while the other one swaps the network in G and D. The “U-Net 

only in D” works poorly which proves that the G must be a 

powerful network. Comparing the ‘w/o MSFRB&AM’ with 

“U-Net only in G”, all metrics have been improved. The most 

attractive highlight includes improvements in Se, Pr, G, and F1 

with average values of 0.0349, 0.0218, 0.0212, and 0.0279 on 

DRIVE, STARE, CHASEDB1, and HRF datasets. In conclu-

sion, the G structure needs to be powerful in multi-scale fea-
tures learning to segment vessels well. The equilibrium D 

structure extracts multi-scale features to exert high pressure to 

G so that G could be trained better. 

2) Validation of MSFRB: From the result between group‘w/o 

AM’ and ‘w/o MSFRB&AM’. It is obviously that MSFRB ma- 

 
 
Fig. 7  Segmentation possibility map and segmented vessel of only GAN loss 

(column 2 to 3), and GAN loss together with BCE (column 4 to 5). 

 
TABLE Ⅳ 

COMPARISON ON THE COMPUTATION EFFICIENCY 

Method Training time (h) Computation time per image(s) 

Liskowski [37] 8 92 

Lyu [39] 1 1.3 

Wu [22] 16 10 

Proposed 6 0.16 

 

inly contributes to the Se, with improvements of 0.0306, 0.0288, 

0.0134, and 0.0112 respectively on the four datasets, consistent 

with its theoretical function. By contrast, Sp slightly decreases 

in the four datasets. In other indicators, some fluctuations are 

observed, such as a declination of 0.0168 in Pr in DRIVE and a 

growth of 0.0349 in CHASEDB1. Although the MSFRB in-

troduces a branch path in merging process, the structure re-

quires limited extra trainable parameters and the added tensors 

are light, which will be elaborated in part E. Computation Ef-
ficiency. 

3) Validation of AM: As seen in result, the AM raises the 

network overall performance, with more or less enhancement in 

each metric. Most metrics are ameliorated to the first rank. For 

instance, Se achieves top scores, figuring at 0.8294, 0.8812, 

0.8435 and 0.8310 respectively on the four datasets, so are the 

metrics G, F1 and AUC. It is noting that this part needs no extra 

trainable parameter which is fully self-motivated. 

C. Elusive Vessel Recognition 

The detail information learning capability of the proposed 

symmetric network helps recognize the elusive vessels. As 

shown in Fig. 6, we compare the segmentation effect in more 

observable way. As the disturbance of lesion regions and 

low-contrast background, the original patches are extremely 

challenging to identify with the human eye. Compared the 

state-of-the-art method [24] with ours, the thick vessels are 

segmented well in two methods. However, the performances 
notably vary in the elusive vessels, especially in challenging 

situations. In our method, these challenging vessels are de-

tected with higher probability, which are marked with green 

lines. The existing methods could find the thick vessels well, 

but the performance on elusive vessel recognition is limited. 

Intuitively, our method achieves good performance on the 

elusive vessels. Actually, this explains the reason why there is 

remarkable improvement in the quantitative metric Se and Pr, 

as much more elusive pixels are recognized with our method.  

D. Cross-training Evaluation 

The practical extendibility of our network in diversity ap-

plication is evaluated. We conduct a similar cross-training stra- 



 
 
Fig. 8  Exemplar results on the challenging cases. The four columns are original 

patch, ground truth, segmentation possibility map, and binary segmentation 

map. The first two rows indicates the results of closely parallel vessels. The 

rows 3 and 4 are results when deal with images with lesions. The final row is 

the segmentation vessel in a background with gradient changing color. 

 

tegy to [24], training our network on one dataset and test on 

another one. Although a decline occurs in the performance, the 

results on cross-training experiment are still satisfactory and 

outperform other methods, as shown in Table Ⅲ.  

In DRIVE test, the network trained on STARE yields high 

scores simultaneously in Se, Sp and Acc (i.e., 0.7412, 0.9830,  

and 0.9519 respectively). As for the model trained on 
CHASEDB1, all the indicators, except for Acc, rank first in 

DRIVE test. The model trained on HRF achieves good per-

formance, especially with a high metric Se. In STARE test, the 

network trained on DRIVE achieves optima scores in Se, Acc, 

and G. Although Sp decays by 0.0076, the Se increases by 

0.1123, indicating high recognition ratio of vessel. The good 

performance in Acc (0.9605) and AUC (0.9785) imply the 

comprehensive capability although there is no comparison 

method. Considering the test on CHASEDB1, the three net-

works trained on DRIVE, STARE, and HRF show markable 

improvement in Se, exceeding Li et al. work [21] of 0.1016 and 

0.0710. Additionally, Acc and AUC have been increased ap-
proximately by 0.1, showing a strong general capability. For 

test on HRF, although there is no comparison group, the four 

metrics show satisfactory segmentation performance. 

 

E. Computation Efficiency 

The number of trainable parameters is about twice as much 

as one of U-net. The average training time of the proposed 

network for DRIVE dataset is 6 h with one NVIDIA Titan Xp 

GPU. After training, the processing time for an image only 

requires 0.16s. Firstly, the network could be trained end-to-end 

without complex preprocessing nor sub-processing. Second, 

the network only needs G to segment vessels from fundus 

image. Thus the network could drop approximate half weights 

after training, being light-weight and efficient (With our setting, 

there are about 8.6M trainable parameters in G, 10% heavier 

than traditional U-net structure). For quantitative comparison, 
we take a computation efficiency comparison with some 

methods, and the results are shown in Table Ⅳ.  

 

V. DISCUSSION 

A. Necessity of Optimized Loss Function 

Extensive research has been conducted to evaluate the sig-
nificance of combined loss function. We separately set several 

experiment groups, as shown in Table Ⅱ and Table Ⅰ. From 

the results, we learn that additional pixel classification loss 

functions are vital to highly enhance network performance 

because vessel segmentation belongs to the pixel classification 

task. The results with only GAN loss almost demonstrate no 

segmentation ability, as shown in Fig. 7. After combined with 

BCE, the results are extremely closed to the optimization level. 

The results indicate that supplemented segmentation loss 

functions are essential for granting a network optimal vessel 

pixel classification capability. When the GAN loss is removed, 

the overall performance evidently declines. In this case, the 

three components of the combined loss function are necessary 
in the proposed method. 

B. Performance on Challenging Cases 

Compared with former researches, we have verified the 

proposed method’s capability on overall vessel segmentation, 

based on Table Ⅰ and Table Ⅱ, especially for elusive retinal 

vessel segmentation, as shown in Fig. 6. Here we test the per-

formance on three kinds of difficult situations. The first one is 
the segmentation task in the presence of lesions disturbance, 

and the second one is the task in dealing with closely parallel 

vessels when processing densely distributed vessels. The last 

one is the background color changing in some fundus images. 

As shown in Fig. 8, the proposed method distinguishes the 

closely parallel vessels, which avoids the wrongly mix. The 

vessels disturbed by lesions and background are also recog-

nized well, which verify the capability of the proposed method 

in challenging cases. 

C. Improvement Room on the Specificity 

The proposed network considerably enhances the perfor-

mance on fundus vessel segmentation, especially in elusive 

vessels. However, Sp declines slightly compared with the 

highest score at present in the three of the four datasets 

( 0.0062Sp    in DRIVE, 0.0081Sp    in STARE, 

0.0083Sp    in CHASEDB1, and 0.0013Sp   in HRF), 

which show some non-vessel pixels are wrongly regarded as 



vessels. Specifically, the decay in Sp mainly originates from 

MSFRB (-0.0040 and -0.0074 in DRIVE and STARE, respec-

tively) and partly from segmentation loss function. MSFRB 

enhance the search on local detail information and high reso-

lution representation capability, while some indistinguishable 

details are classified as vessel pixels, which declines the sp. 
Although additional FP pixels exist, the branch structure and 

shape consisting of these pixels are approximately coincidence 

with TP pixels (i.e., the location and distribution of FP pixels 

usually follow the TP pixels, instead of random component 

distribution, as shown in Fig. 6). In this case, the disturbance of 

FP pixels brought by the presented network is markedly 

weakened. The future work could focus on restraining the FP 

pixels production based on implicit information extracted from 

fundus images and prior knowledge of vessel structure. 

VI. CONCLUSION 

In this work, we have presented a method to strengthening 

retinal vessel segmentation capability, especially on elusive 

vessels in low-contrast background and lesion regions. We 

refine the vessel detail information extraction by the proposed 

SEGAN and MSFRB, which highlight the multi-scale features 

learning and preserve the high resolution features with concise 

merging structure. The AM is also employed to distribute more 
attention on the discriminative feature, which improve overall 

performance. Through segmentation experiment, cross-training 

experiment, and ablation study, we verify the satisfactory ves-

sel segmentation capability of our method. With it, much elu-

sive vessel pixels are correctly classified, which is confirmed 

by the metrics Sp, Pr, G, F1 and binary segmentation map. The 

challenges in vessel segmentation are solved well. The high 

computation efficiency provides considerable potential in 

clinical application. Meanwhile, the detail information learning 

capability of this method could be employed in other biomed-

ical issues, not only in retinal vessel. 
 

REFERENCES 

[1]   M. D. Abramoff, J. C. Folk, D. P. Han, J. D. Walker, D. F. Williams, S. R. 

Russell et al., “Automated analysis of retinal images for detection of 

referable diabetic retinopathy,” JAMA Ophthalmol., vol. 131, pp. 

351-357, Mar. 2013. 

[2]   M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, 

C. G. Owen et al., “Blood vessel segmentation methodologies in retinal 

images—A survey,” Comput. Methods Progr. Biomed., vol. 108, pp. 

407-433, Oct. 2012. 

[3]   G. Azzopardi, N. Strisciuglio, M. Vento, N. Petkov, “Trainable COSFIRE 

filters for vessel delineation with application to retinal images,” Med. 

Image Anal., vol. 19, pp. 46-57, Feb. 2015. 

[4]   C. L. Srinidhi, P. Aparna, J.Rajan, “Automated Method for Retinal 

Artery/Vein Separation via Graph Search Metaheuristic Approach,” IEEE 

Trans. Imag. Proc., vol. 28, no. 6, pp.2705-2718, Jun. 2019. 

[5]   R. Rangayyan, F. Oloumi, F. Oloumi, P. Eshghzadeh, F. J. Ayres, “De-

tection of blood vessels in the retina using gabor filters,” Proc. Canadian 

Conf. Electr. Comput. Eng., pp. 717–720. 2007. 

[6]   A. M. Mendonca and A. Campilho, “Segmentation of retinal blood 

vessels by combining the detection of centerlines and morphological re-

construction,” IEEE Trans. Med. Imag., vol. 25, no. 9, pp. 1200–1213, 

Sep. 2006. 

[7]   L. C. Neto, G. L. B. Ramalho, J. F. Neto, R. M. S. Veras, F. N. S. 

Medeiros, “An unsupervised coarse-to-fine algorithm for blood vessel 

segmentation in fundus images”, Expert Sys with Applic., vol. 78, no. c, 

pp. 182–192, Jul. 2017. 

[8]   Y. Zhao, L. Rada, K. Chen, S. P. Harding, Y. Zheng, “Automated vessel 

segmentation using infinite perimeter active contour model with hybrid 

region information with application to retinal images,” IEEE Trans. Med. 

Imag., vol. 34, no. 9, pp. 1797–1807, Mar. 2015. 

[9]   B. Zhang, L. Zhang, L. Zhang, F. Karray, “Retinal vessel extraction by 

matched filter with first-order derivative of Gaussian,” Comput. Biol. 

Med., vol. 40, no. 4, pp. 438–445, 2010. 

[10]   B. Al-Diri, A. Hunter, D. Steel, “An active contour model for segmenting 

and measuring retinal vessels,” IEEE Trans. Med. Imag., vol. 28, no. 9, 

pp. 1488–1497, Sep. 2009. 

[11]   M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uy-

yanonvara et al., “An approach to localize the retinal blood vessels using 

bit planes and centerline detection,” Comput.Methods Programs Biomed., 

vol. 108, no. 2, pp. 600–616, 2012. 

[12]   S. Roychowdhury, D. D. Koozekanani, K. K. Parhi, “Iterative vessel 

segmentation of fundus images,” IEEE Trans. Biomed. Eng., vol. 62, no. 

7, pp. 1738–1749, Jul. 2015. 

[13]   A. Salazar-Gonzalez, D. Kaba, Y. Li, X. Liu, “Segmentation of the blood 

vessels and optic disk in retinal images,” IEEE J. Biomed. Health In-

format., vol. 18, no. 6, pp. 1874–1886, 2014. 

[14]   B. Yin, H. Li, B. Sheng, X. Hou. Y. Chen, W. Wu et al., “Vessel extrac-

tion from non-fluorescein fundus images using orientation-aware detec-

tor,” Med. Image Anal., vol. 26, no. 1, pp. 232–242, 2015. 

[15]   J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, G. B. Van, 

“Ridge-based vessel segmentation in color images of the retina,” IEEE 

Trans. Med. Imag., vol. 23, no. 4, pp. 501–509, Apr. 2004. 

[16]   X. You, Q. Peng, Y. Yuan, Y. Cheung, J. Lei, “Segmentation of retinal 

blood vessels using the radial projection and semi-supervised approach,” 

Pattern Recognit., vol. 44, no. 10, pp. 2314–2324, 2011. 

[17]   E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line 

operators and support vector classification,” IEEE Trans. Med. Imag., 

vol. 26, no. 10, pp. 1357–1365, Oct. 2007. 

[18]   M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, 

C. G. Owen et al., “An ensemble classification-based approach applied to 

retinal blood vessel segmentation,” IEEE Trans. Biomed. Eng., vol. 59, 

no. 9, pp. 2538–2548, Sep. 2012. 

[19]   S. Roychowdhury, D. D. Koozekanani, K. K. Parhi, “Blood vessel seg-

mentation of fundus images by major vessel extraction and subimage 

classification,” IEEE J. Biomed. Health Informat., vol. 19, no. 3, pp. 

1118–1128, May 2015. 

[20]   C. A. Lupascu, D. Tegolo, E. Trucco, “Fabc: retinal vessel segmentation 

using adaboost,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 5, pp. 

1267–1274, Sep. 2010. 

[21]   Q. Li, B. Feng, L. Xie, P. Liang, H. Zhang, T. Wang, “A cross-modality 

learning approach for vessel segmentation in retinal images,” IEEE 

Trans. Med. Imag., vol. 35, no. 1, pp. 109–118, Jan. 2016. 

[22]   Y. Wu, Y. Xia, Y. Song, Y. Zhang, W. Cai, “Multiscale Network Fol-

lowed Network Model for Retinal Vessel Segmentation,” In: A. F. Frangi 

et al. MICCAI 2018, LNCS, vol. 11071, 2018, pp. 119-126. 

[23]   J. Orlando, E. Prokofyeva, M. B. Blaschko, “A discriminatively trained 

fully connected conditional random field model for blood vessel seg-

mentation in fundus images,” IEEE Trans. Biomed. Eng., vol. 64, no. 1, 

pp. 16–27, Jan. 2017. 

[24]   Z. Yan, X. Yang, K. T. Cheng, “Joint Segment-Level and Pixel-Wise 

Losses for Deep Learning Based Retinal Vessel Segmentation,” IEEE 

Trans. Biomed. Eng., vol. 65, no.9, pp.1912-1923, Sep. 2018. 



[25]   O. Ronneberger, P. Fischer, T. Brox, “U-net: Convolutional networks for 

biomedical image segmentation,” MICCAI 2015, Munich, Germany, vol. 

9351, 2015, pp. 234–241. 

[26]   D. S. S. Raja, S. Vasuki, “Performance analysis of screening diabetic 

retinopathy”. Journal of Scientific & Industrial Research., vol. 71, no. 12, 

pp. 804-809, Dec. 2012. 

[27]   I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. 

Ozair et al., “Generative adversarial nets,” in Neural Information Pro-

cessing Systems Conference, Montreal, Quebec, Canada, 2014. 

[28]   K. Simonyan and A. Zisserman, “Very deep convolutional networks for  

large-scale image recognition,” in International Conference on Learning 

Representations, San Diego, California, USA May 2015. 

[29]   K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image 

Recognition,” in IEEE Conference on Computer Vision and Pattern 

Recognition, Las Vegas, Nevada, USA, June. 2016. 

[30]   C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov et al, 

“Going deeper with convolutions,” in IEEE Conference on Computer 

Vision and Pattern Recognition, Columbus, Ohio, June. 2015. 

[31]   J. Hu, L. Shen, S. Albanie, G. Sun, E. Wu, “Squeeze-and-Excitation 

Networks,” in IEEE Conference on Computer Vision and Pattern 

Recognition, Salt Lake City, Utah, USA, 2018. 

[32]   A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez 

et al, “Attention is all you need,” in International Conference on Learning 

Representations, Long Beach, California, USA. 2017. 

[33]   A. Hoover, V. Kouznetsova, M. Goldbaum, “Locating blood vessels in 

retinal images by piecewise threshold probing of a matched filter re-

sponse,” IEEE Trans. Med. Imag., vol. 19, no. 3, pp. 203-210, 2000. 

[34]   C. G. Owen, A. Rudnicka, R. Mullen, S. Barman, D. Monekosso, P. 

Whincup et al., “Measuring retinal vessel tortuosity in 10-year-old chil-

dren: Validation of the computer-assisted image analysis of the retina 

(CAIAR) program,” Invest. Ophthalmol. Vis. Sci., vol. 50, no. 5, pp. 

2004–2010, 2009. 

[35]   B. Attila, B. Rüdiger, M. Andreas, H. Joachim, M. Georg, Robust Vessel 

Segmentation in Fundus Images, International Journal of Biomedical 

Imag., vol. 2013, 2013. 

[36]   D. Marin, A. Aquino, M. Gegundez-Arias, J. M. Bravo, “A new super-

vised method for blood vessel segmentation in retinal images by using 

gray-level and moment invariants-based features,” IEEE Trans. Med. 

Imag., vol. 30, no. 1, pp. 146–158, Jan. 2011. 

[37]   Liskowski, P and Krawiec, K., “Segmenting retinal blood vessels with 

deep neural networks,” IEEE Trans. Med. Imaging, vol. 35, no. 11, pp. 

2369-2380. 2016. 

[38]   A. Fathi and A. R. Naghsh-Nilchi, “Automatic wavelet-based retinal 

blood vessels segmentation and vessel diameter estimation,” Biomed. 

Signal Process. Control, vol. 8, no. 1, pp. 71–80, 2013 

[39]   J. Lyu, P. Cheng and X. Tang. “Fundus Image Based Retinal Vessel 

Segmentation Utilizing a Fast and Accurate Fully Convolutional Net-

work,” In: H. Fu et al. MICCAI 2019 Workshop, OMIA 2019, Shenzhen, 

China, LNCS 11855, pp. 112–120, 2019. 

[40]   J. Zhang, B. Dashtbozorg, E. Bekkers, J. P. W. Pluim, R. Duits, B. M. T. 

Romeny, “Robust retinal vessel segmentation via locally adaptive deriv-

ative frames in orientation scores,” IEEE Trans. Med. Imag., vol. 35, no. 

12, pp. 2631–2644, Aug. 2016 

[41]   N. Otsu, “A threshold selection method from gray-Level histograms,” 

IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62–66, Jan.1979. 

[42]   B. Wang, S. Qiu, H. He, “Dual Encoding U-Net for RetinalVessel Seg-

mentation,” In: D. Shen et al. MICCAI 2019, Shenzhen, China, LNCS 

11764, pp. 84–92, 2019 

[43]   Y. Wu, Y. Xia, Y. Song, D. Zhang, D. Liu, C. Zhang, W. Cai, “Ves-

sel-Net: Retinal Vessel SegmentationUnder Multi-path Supervision,” In: 

D. Shen et al. MICCAI 2019, Shenzhen, China, LNCS 11764, pp. 

264–272, 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


