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Two-dimensional periodic interfacial gravity waves travelling between two homogeneous6

fluids of finite depth are considered. A boundary integral equation method coupled with7

Fourier expansions of the unknown functions is used to obtain highly accurate solutions.8

Our numerical results show excellent agreement with those already obtained by Maklakov9

& Sharipov using a different scheme (J. Fluid Mech., vol. 856, 2018, pp. 673–708). We10

explore the global bifurcation mechanism of periodic interfacial waves and find three types11

of limiting wave profiles. The new families of solutions appear either as isolated branches or12

as secondary branches bifurcating from the primary branch of solutions.13

1. Introduction14

It is well known that two-dimensional periodic surface gravity waves have a limiting15

configuration characterised by a sharp 120◦ angle at their crests. This is known as the16

Stokes highest wave. However, periodic interfacial gravity waves between two homogeneous17

fluids exhibit more complex limiting configurations. A local analysis indicates that the18

configuration of the Stokes highest wave in a two-fluid system inevitably results in an infinite19

velocity, and hence is not allowed (see, for example, Meiron & Saffman 1983). It was20

Holyer (1979) who first obtained solutions with a vertical tangent on the interface based21

on the Stokes expansion and Padé approximations. Subsequently, Saffman & Yuen (1982),22

Meiron & Saffman (1983), Pullin & Grimshaw (1983a,b), and Turner & Vanden-Broeck23

(1986) extended Holyer’s results and found Ω-shaped profiles (multivalued solutions).24

Meiron & Saffman (1983) further asserted that these overhanging waves would develop25

into a self-intersecting profile as the limiting configuration but they did not compute them.26

Grimshaw & Pullin (1986) investigated the two-fluid system in the Boussinesq limit (i.e.27

the two fluids are of nearly equal density), when the lower layer is of infinite depth and the28

upper layer has a mean depth h and a constant vorticity ω. They found mushroom-shaped29

solutions and proposed a limiting configuration that features a closed bubble of heavier30

fluid on top a 120◦ angle (see Figure 1a). As h → ∞ and ω → 0, they suggested a second31

limiting configuration which consists of two inverted Stokes highest waves with a half-period32

phase shift and separated by a region of stagnant fluid (see Figure 1c). This would come33

about as the periodic wave profile self intersected at four points in each period, effectively34

forming a four-layer system with two stagnant fluid regions cut off from the outer flow by35

the folded interface. When h is finite but relatively smaller than the wavelength, there is a36

third possibility. Although it was not indicated clearly by Grimshaw & Pullin (1986), some37

of their numerical results suggest the limiting configuration shown in Figure 1(b), a closed38

bubble of lighter fluid underneath a downward 120◦ angle (i.e. the inversion of 1a). For39

convenience, the limiting configurations shown in Figure 1 are hereafter termed type I, type40

II, and type III limits, from left to right, respectively. Although these results were obtained41
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Figure 1: Three limiting profiles. We refer to them from left to right as type I, type II, and
type III.

under special assumptions (infinite depth and non-zero constant vorticity), it turns out that42

they are valid in more general cases. For example, Maklakov & Sharipov (2018) developed a43

highly accurate numerical method based on the piecewise-analytical function theory, which44

provides solid numerical evidence for the existence of the type I limit when both layers are45

irrotational and infinitely deep.46

In the present paper, periodic interfacial gravity waves in a two-layer system of finite depth47

are investigated numerically. The motion is assumed to be irrotational in each layer. We take48

a frame of reference moving with the wave, so that the flow is steady. Using the Cauchy49

integral formula and Fourier series, we obtain highly accurate numerical solutions which50

provide strong evidence for the existence of all three types of limiting configurations shown51

in Figure 1. In the Boussinesq limit, we confirm the assertion of Grimshaw & Pullin (1986)52

on the type III solution by following the branch arising from a uniform flow (referred to as53

the primary branch), on which a secondary bifurcation point is found leading to type I and54

type II limits. The new branch isolates from the primary branch and gradually shrinks to zero55

when the density ratio is decreased from 1. Surprisingly, this novel bifurcation mechanism,56

i.e. the co-existence of three limiting types in one bifurcation diagram, can also be found in57

non-Boussinesq cases.58

2. Mathematical Formulation59

Consider two-dimensional periodic interfacial waves propagating at a constant speed c60

between two incompressible, inviscid, irrotational, and immiscible fluids that are bounded61

above and below by horizontal solid walls (see the schematic in Figure 2). We denote by h j62

and ρj ( j = 1,2) the depth and density in each fluid layer, where subscripts 1 and 2 refer63

to fluid properties associated with the lower and upper fluid layers, respectively. Assuming64

that the waves are symmetric, we choose a frame of reference moving with the wave and65

introduce a Cartesian coordinate system with the x-axis on the undisturbed interface and the66

y-axis on a line of symmetry (for example, a vertical line through a crest). The only restoring67

force under consideration is gravity which acts in the negative y-direction. It is convenient68

to choose ρ1, h1, and c to be the units of density, length, and velocity. Since the flow is69

irrotational in each fluid layer, we can introduce the velocity potentials φ1 and φ2 satisfying70

the Laplace equation71

φ1,xx + φ1,yy = 0, −1 < y < η , (2.1)72

φ2,xx + φ2,yy = 0, η < y < h , (2.2)73

where η stands for the displacement of the interface and h = h2/h1 is the depth ratio. On the74

interface, the kinematic and dynamic boundary conditions read75

φ1,y − φ1,xηx = φ2,y − φ2,xηx = 0 , (2.3)76

R|∇φ2 |2 − |∇φ1 |2 + 2(R − 1)η/F2
= B , (2.4)7778
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Figure 2: Schematic of the flow configuration. Here only one wavelength of the wave is
sketched.

where R = ρ2/ρ1 < 1 is the density ratio, F2
= c2/gh1 the square of the Froude number,79

and B the Bernoulli constant.80

3. Numerical methods81

3.1. Boundary integral equations82

We introduce a complex variable ζ = e−ikz , where k is the wavenumber and z = x + iy. This83

transformation maps the physical flow domain [−π/k,π/k]× [−1, h] onto an annular region84

in the complex ζ−plane (see, for example, Papageorgiou & Vanden-Broeck 2004). Since the85

complex velocity w = u − iv is an analytic function, the Cauchy integral formula gives86

w(ζ) =
1

iπ

∮

C

w(ζ ′)
ζ ′ − ζ

dζ ′ , (3.1)87

where C represents the boundary of the upper or lower layer and ζ denotes a point on C.88

We can express w in terms of the velocity modulus q and the inclination θ as w = qe−iθ .89

Note that the relation between θ and the arclength parameter s takes the formula of eiθ
=

dz
ds

.90

Using these notations, (3.1) can be rewritten as91

w(ζ) = −
k

π

∮

C

q

1 − ζ/ζ ′
ds . (3.2)92

Let Y+ = y(σ) + y(s), Y− = y(σ) − y(s), X+ = x(σ) + x(s), and X− = x(σ) − x(s). Applying93

the Schwarz reflection principle to (3.2) for both fluid layers and taking the real part of94

equations, one then obtains95

πq1(σ)x ′(σ)/k =96

−
∫ α

0

(

q1(s)(1 − ek(Y++2) cos(k X−))
1 + e2k(Y++2) − 2ek(Y++2) cos(k X−)

−
q1(s)(1 − ekY− cos(k X−))

1 + e2kY− − 2ekY− cos(k X−)

)

ds97

−
∫ α

0

(

q1(s)(1 − ek(Y++2) cos(k X+))
1 + e2k(Y++2) − 2ek(Y++2) cos(k X+)

−
q1(s)(1 − ekY− cos(k X+))

1 + e2kY− − 2ekY− cos(k X+)

)

ds , (3.3)98

πq2(σ)x ′(σ)/k =99

−
∫ α

0

(

q2(s)(1 − ekY− cos(k X−))
1 + e2kY− − 2ekY− cos(k X−)

−
q2(s)(1 − ek(Y+−2h) cos(k X−))

1 + e2k(Y+−2h) − 2ek(Y+−2h) cos(k X−)

)

ds100

−
∫ α

0

(

q2(s)(1 − ekY− cos(k X+))
1 + e2kY− − 2ekY− cos(k X+)

−
q2(s)(1 − ek(Y+−2h) cos(k X+))

1 + e2k(Y+−2h) − 2ek(Y+−2h) cos(k X+)

)

ds , (3.4)101
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where α denotes the total arclength of the interfacial wave in half period and the assumed102

symmetry property of waves has been used.103

3.2. The Fourier method104

Due to the periodicity and symmetry of the computed waves, we can express the unknown105

functions as Fourier series. For convenience, we introduce a normalised arclength parameter106

τ = s/α and write the Fourier expansions as107

q1(τ) =
∞
∑

n=0

an cos(nπτ) , q2(τ) =
∞
∑

n=0

bn cos(nπτ) ,108

x(τ) = c0τ +

∞
∑

n=1

cn

nπ
sin(nπτ) , η(τ) = d0 −

∞
∑

n=1

dn

nπ
cos(nπτ) .109

Truncating these series after N terms gives 4N unknowns, namely an, bn, cn, and dn
(n = 0,1, · · · ,N − 1). Putting them together with F, B, and α, there are eventually 4N + 3
unknowns to be found. We evaluate (3.3) and (3.4) over the interval [0,1] at N equally spaced
mesh points

τj =
j − 1

N − 1
, j = 1, · · · ,N .

To avoid the singularity in the Cauchy integral formula, we introduce another set of mesh
grids

τmj =
τj + τj+1

2
, j = 1, · · · ,N − 1 ,

and calculate the integrals by applying the midpoint rule. The Bernoulli equation and the110

arclength equation111

Rq2
2 − q2

1 + 2(R − 1)η/F2
= B , (3.5)112

x ′2
+ η′2 = α2 , (3.6)113

are satisfied at the mesh points τj . Since the x−axis is fixed on the undisturbed interface114

level, we impose115

∫ 1

0

η(τ)x ′(τ) dτ = 0 ⇒
N−1
∑

n=1

cndn

2πn
+ c0d0 = 0 . (3.7)116

To close the system, we also need to give a definition of the wave amplitude H117

H = η(0) − η(1) , (3.8)118

and prescribe the wave speed c (which has been scaled to unity). There are different ways119

to define c. Following a widely used condition in surface gravity waves, we define c as the120

averaged velocity in the lower fluid121

k

π

∫ π/k

0

u1(x, y = const.) dx = −1 , (3.9)122

where y = const. is an arbitrary horizontal line within the lower layer. The negative sign123

reflects the fact that the background current is from right to left in the moving frame of124

reference. (3.9) can be rewritten in terms of q1 by using the irrotationality condition125

αk

π

∫ 1

0

q1(τ) dτ = −1 ⇒ a0α = −
π

k
. (3.10)126
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In addition, a similar condition for q2 is necessary for solving the problem127

b0α = −
π

k
. (3.11)128

Although it is beyond the scope of this paper, it should be pointed out that the right-hand side129

of (3.11) can be an arbitrary constant, which can be thought of as giving different background130

current in each layer. Note that there are some extra conditions due to the symmetry of waves131

x(0) = 0 , η′(0) = 0 , η′(1) = 0 , (3.12)132

which are automatically satisfied owing to their Fourier representations. It is not difficult to133

verify that c0 = π/k due to the spatial periodicity of waves. Finally, we have 4N +4 equations134

(3.3)–(3.8) and (3.10)–(3.11) with only 4N + 2 unknowns. Therefore, we choose to drop the135

equations of (3.3) and (3.4) at τ = 1, and perform the Newton iteration to solve the system136

for given values of R, k , h, and H. The iteration process is repeated until the maximum137

residual error is less than 10−10. At first glance it seems dangerous to abandon two integral138

equations. However, our numerical results show that the maximum residual error of these139

two equations (denoted as δ hereafter) is of the order of 10−11 in most cases. Based on our140

numerical experience, N = 600 usually gives accurate enough results and thus is used in141

most computations. For almost limiting solutions, however, typically 1200 Fourier modes142

are necessary to maintain appropriate accuracy and to ensure δ < 10−4.143

4. Numerical Results144

4.1. Validation145

In Table 1, we present results for R = 0.1 and compare them with the works of146

Saffman & Yuen (1982) and Maklakov & Sharipov (2018). Since their results were147

obtained in the case when both layers are infinitely deep, we let h = 1 and k ) 1 to achieve148

a good approximation of their results, and after many tests it was found that k = 100 is large149

enough to provide an excellent agreement. Note that these authors used a different length150

scale,
√

g/k, so their dimensionless wave amplitude reads kH. The dimensionless wave151

speed defined by Saffman & Yuen (Cs) and Maklakov & Sharipov (Cm) can be expressed as152

Cs = F
√

k

√

1 + R

1 − R
, Cm = F

√
k . (4.1)153

Increasing N up to 300, we have nine correct decimals in comparison with Maklakov & Sharipov154

(2018) in most cases except for a few solutions very close to the limiting configuration.155

Though not explicitly shown in Table 1, for most solutions δ = O(10−11), which demonstrates156

the validity of our numerical method. Even when δ increases to O(10−6), seven correct157

decimals can be guaranteed with N = 300.158

4.2. Bifurcations and profiles159

For any R ∈ (0,1), there is a branch of solutions bifurcating from infinitesimal periodic160

waves, which always leads to overhanging solutions. When h ! 1, the limiting profiles161

of these branches are of type I and their geometry relies on the values of k and R. From a162

physical point of view, overhanging waves and associated limiting profiles would presumably163

suffer different instabilities (Kelvin-Helmholtz, Rayleigh-Taylor, etc.) and thus are difficult164

to be observed in experiments. However, our main concern here is the existence of limiting165

shapes which is separate from the question of instability. In Figure 3, we show typical speed-166

amplitude bifurcation curves and related almost limiting profiles for h = 1. The bubble167
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kH Cs(S&Y) Cs(M&S) Cs(N = 200) Cs(N = 300)
0.1 1.0010433 1.001043327 1.001043327 1.001043327
0.3 1.0093851 1.009385147 1.009385147 1.009385147
0.5 1.0260381 1.026038075 1.026038075 1.026038075
0.7 1.0509243 1.050924313 1.050924313 1.050924313
0.9 1.0839603 1.083960270 1.083960271 1.083960271
1.10 1.125454 1.125454593 1.125454593 1.125454593
1.20 1.149904 1.149903889 1.149903889 1.149903889
1.30 1.177 1.177754503 1.177754503 1.177754503
1.32 - 1.183901408 1.183901408 1.183901408
1.34 - 1.190327567 1.190327567 1.190327567
1.36 - 1.197125838 1.197125838 1.197125838
1.38 - 1.204514662 1.204514662 1.204514662
1.39 - 1.208645838 1.208645838 1.208645838
1.39 - 1.213326106 1.213326105 1.213326106
1.38 - 1.210675485 1.210675484 1.210675485
1.36 - 1.204401123 1.204401182 1.204401123
1.34 - 1.197369928 1.197369998 1.197369929
1.32 - 1.189740717 1.189740717 1.189740717
1.30 - 1.181506483 1.181506847 1.181506483
1.28 - 1.172510673 1.172523419 1.172510684

Table 1: Cs versus kH for R = 0.1, h = 1, and k = 100. The second and third columns are
the results of Saffman & Yuen (1982) and Maklakov & Sharipov (2018), respectively.

features a half-lens shape and becomes horizontally long and vertically thin when the value168

of k is gradually decreased for a fixed R. Note that to compare the profiles with different169

wavelengths, we rescale the horizontal and vertical coordinates by multiplying k , as shown170

in Figure 3(b). On the other hand, for a given wavenumber k , the bubble enlarges when the171

value of R is increased, which is clearly demonstrated by Figure 3(d). For general sets of172

parameters, bifurcation curves, along which almost limiting profiles that are either of type I173

or of type II can be found. They appear qualitatively similar to those shown in Figures 3(a)174

and 3(c). Guan et al. (2021) proposed a local model for the limiting configuration of type I175

for a small density ratio and calculated numerically profiles of the closed bubble. The almost176

limiting profiles computed with the primitive equations when both layers are deep (h = 1,177

k = 100) and solutions of the simplified model are shown in Figure 4. For comparison178

purpose, we make sure they match at the wave crest and flat bottom. The density ratios are179

R = 0.1, 0.2, and 0.3 from top to bottom and, as expected, the smaller density ratio gives a180

better agreement.181

When R → 1, i.e. the Boussinesq limit, Grimshaw & Pullin (1986) predicted the existence182

of the type III solution. This is intuitively reasonable since gravity is negligible and the wave183

profile should be invariant after being turned upside down, if one omits the possible phase184

shift. Maklakov & Sharipov (2018) also supported this assertion but did not provide direct185

numerical evidence. In the top diagram of Figure 5(a), we display an almost limiting solution186

in the Boussinesq limit (R = 0.999999) where h = 1 and k = 100 are used to approximate187

the condition that both layers are of infinite depth. This solution features a wave steepness of188

0.1518π and a wave speed of 1.141 after being converted to the scaling of Grimshaw & Pullin189

(1986), which agree well with the corresponding values of 0.1411π and 1.0923 for the Stokes190

highest wave. It is also clear that the almost limiting profile tends to become self-intersecting191

at both x = 0 and x = ±π/k , hence yielding a limiting profile of type III. It is not surprising192

that the condition k ) 1 is unnecessary to lead to such solutions, since the mirror symmetry193
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Figure 3: Typical speed-amplitude bifurcation curves and related almost limiting profiles.
(a,b) R = 0.9, h = 1, and k = 1 (blue), k = 2 (red), k = 3 (yellow). (c,d) k = 3, h = 1, and

R = 0.2, 0.5, 0.9. The corresponding almost limiting profiles are plotted from top to
bottom.
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Figure 4: Comparisons between the almost limiting solutions (blue) and solutions of the
simplified model (red) from Guan et al. (2021). The parameters are chosen as h = 1,

k = 100, and R = 0.1, 0.2, 0.3 from top to bottom.

with a possible phase shift relies only on the conditions R → 1 and h = 1 (recalling that the194

lower layer has a unit depth).195

However, it is found that the type III solution is not the only possible limiting profile in the196

Boussinesq limit. Other branches of solutions can arise through the secondary bifurcation197

mechanism as shown in Figure 5(b). The blue curve is the primary branch bifurcating from198

infinitesimal periodic waves and the red circle denotes the almost limiting configuration of199

type III (see the top figure of 5a). We check the Jacobian matrix along the primary branch200

and the solution is picked up as a candidate for the secondary bifurcation point if the matrix201
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Figure 5: The bifurcation in the Boussinesq limit with h = 1, k = 100, and R = 0.999999.
(a) Three almost limiting profiles that correspond to type III, type I, and type II limits

from top to bottom. (b) A new speed-amplitude bifurcation branch (red) bifurcates from
the primary one (blue) at a secondary bifurcation point (black dot). The circle relates to

type III limit and the asterisk corresponds to type I and type II limits.
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Figure 6: Speed-amplitude bifurcation curves and related almost limiting profiles with
h = 1 and k = 100. (a) R = 0.999. (b) R = 0.99, 0.98, 0.96. (c) A series of new bifurcation
branches shrinking from left to right. The leftmost curve bifurcating from a uniform flow
corresponds to R = 0.92. (d) Almost limiting profiles with R = 0.92, 0.88, 0.86 from top

to bottom. Blue and red profiles correspond to dots and asterisks in (c), respectively.

becomes nearly singular (the interested readers are referred to Chen & Saffman 1980 for202

more details). It is shown in Figure 5(b) that a secondary bifurcation point is found to203

exist (black dot), from which two coincident branches of new solutions (red curve) arise204

terminating at the limiting profiles of type I and type II. The almost limiting profiles are205

labeled by the asterisk and plotted in the middle and bottom figures of 5(a). Therefore,206

limiting configurations of types I– III co-exist in the Boussinesq limit for h = 1.207

We take one of the secondary bifurcation branches as an example (the one which terminates208

at the type II limit say) to explore its behavior as R varies. If the value of R is slightly decreased,209

one can observe a separation of the secondary bifurcation curve from the primary branch210



9

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

F

0

0.1

0.2

0.3

0.4

0.5

0.6

|H
|

0.468 0.47 0.472 0.474 0.476 0.478

0.48

0.49

0.5

0.51

0.52

(a)

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

F

0

0.1

0.2

0.3

0.4

0.5

0.6

|H
|

0.468 0.47 0.472 0.474 0.476

0.48

0.49

0.5

0.51

0.52

0.53

(b)

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

y

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

y

-1 -0.5 0 0.5 1 1.5 2 2.5 3

x

-0.2

0

0.2

y

(d)

Figure 7: Speed-amplitude bifurcation curves and related almost limiting profiles with
R = 0.5 and k = 3. (a) h = 0.3601. (b) h = 0.3602. (c) A sequence of new bifurcation

curves. (d) Three almost limiting profiles corresponding to the asterisk, the circle and the
dot in (a) from top to bottom.

as shown in Figure 6(a). The isolated branch connects two limiting profiles labeled by a red211

dot and an asterisk, both of which are of type II. Three curves for R = 0.99, 0.98, 0.96 are212

shown in Figure 6(b), from which one can see a growing distance between the isolated branch213

and the primary one as R is gradually decreased. Another striking feature is the shrinking214

tendency of these isolated curves as R decreases (see Figure 6c). For R < 0.86, the new215

branch almost becomes a point, which indicates that these new solutions can exist only in a216

specific range of parameters. Therefore, it is also expected that the difference between the two217

limiting profiles at opposite ends of the isolated curve should gradually diminish as shown218

in Figure 6(d), where blue and red curves correspond to dots and asterisks, respectively. It219

is worth mentioning that when the density ratio deviates from 1, the limiting configuration220

on the primary branch (labeled by a red circle) becomes type I, and the readers should not221

associate these markers (circle, dot, and asterisk) with any specific type of limit in general.222

As discussed above, the existence of the secondary bifurcation and of the branch separation223

phenomenon is found near the Boussinesq limit. One can then ask whether or not this novel224

bifurcation mechanism exists in other situations. We give a positive answer to this question225

based on the numerical results shown in Figure 7. For k = 3 and R = 0.5, it is found that there226

is a special depth ratio hs for which three types of limiting solutions co-exist and are linked227

via a secondary bifurcation point. Although the exact value of hs is not easy to determine,228

the numerical evidence shown in Figure 7(a,b) strongly suggests 0.3601 < hs < 0.3602229

in this case. As h deviates from hs , there are two types of branch separation depending230

on whether h is decreasing or increasing. There are three sub-branches arising from the231

secondary bifurcation point at h = hs . When h is slight below hs, as shown in 7(a) for232

h = 0.3601, the top sub-branch stays on the primary branch (blue line) while the bottom two233

sub-branches form a new curve with a sharp corner (red line) which isolates from the primary234

one. Figure 7(b) shows the result for h = 0.3602 where the top and bottom sub-branches form235
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a new curve (red line) breaking away from the primary branch (blue line). Note that although236

the two curves intersect at a common point in the parameter space as shown in 7(b), the two237

wave profiles at the intersection point are slightly different and this difference increases with238

h indicating the branch separation phenomenon. A sequence of new bifurcation curves for239

different values of h are plotted in 7(c) which clearly shows a transition near 0.36. Almost240

limiting waves akin to types I–III are labeled by the asterisk, circle, and dot in 7(a) for241

h = 0.3601, and corresponding typical profiles are plotted in 7(d) from top to bottom.242

5. Conclusion243

In the present paper, we have investigated the bifurcation mechanism and limiting con-244

figurations of periodic interfacial gravity waves. Highly accurate numerical solutions have245

been obtained by applying a boundary integral equation method together with the Fourier246

representation of the unknown functions on the interface. Strong numerical evidence has247

been provided to support the existence of three kinds of limiting configurations as shown248

in Figure 1. New branches of solutions, which are either isolated or connected to primary249

branches via secondary bifurcation points, have been discovered in both the Boussinesq and250

non-Boussinesq cases. The new bifurcation mechanism can be understood as follows. At251

some critical points in the parameter space (k, h,R) the secondary bifurcation occurs on the252

primary branch and three types of limiting configurations co-exist in the same bifurcation253

diagram. As the parameter set deviates from the critical point, the new branch breaks away254

from the primary branch and gradually shrinks until it vanishes completely as the parameter255

set further varies.256
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