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ABSTRACT
We present VIVACE, the VIrac VAriable Classification Ensemble, a catalogue of variable stars extracted
from an automated classification pipeline for the Vista Variables in the Vía Láctea (VVV) infrared survey
of the Galactic bar/bulge and southern disc. Our procedure utilises a two-stage hierarchical classifier to first
isolate likely variable sources using simple variability summary statistics and training sets of non-variable
sources from the Gaia early third data release, and then classify candidate variables using more detailed light
curve statistics and training labels primarily from OGLE and VSX. The methodology is applied to point-
spread-function photometry for ∼ 490 million light curves from the VIRAC v2 astrometric and photometric
catalogue resulting in a catalogue of∼ 1.4million likely variable stars, of which∼ 39, 000 are high-confidence
(classification probability > 0.9) RR Lyrae ab stars, ∼ 8000 RR Lyrae c/d stars, ∼ 187, 000 detached/semi-
detached eclipsing binaries, ∼ 18, 000 contact eclipsing binaries, ∼ 1400 classical Cepheid variables and
∼ 2200 Type II Cepheid variables. Comparison with OGLE-4 suggests a completeness of around 90 per cent
for RRab and . 60 per cent for RRc/d, and a misclassification rate for known RR Lyrae stars of around
1 per cent for the high confidence sample. We close with two science demonstrations of our new VIVACE
catalogue: first, a brief investigation of the spatial and kinematic properties of the RR Lyrae stars within the
disc/bulge, demonstrating the spatial elongation of bar-bulge RR Lyrae stars is in the same sense as the more
metal-rich red giant population whilst having a slower rotation rate of ∼ 40 km s−1kpc−1; and secondly, an
investigation of the Gaia EDR3 parallax zeropoint using contact eclipsing binaries across the Galactic disc
plane and bulge.

Key words: stars: variables: general – stars: variables: RR Lyrae – binaries: eclipsing –
catalogues – surveys

1 INTRODUCTION

Algol, the prototypical eclipsing binary system, is thought to have
been discovered by the ancient Egyptians with markings in the
Cairo Calendar, dated to 1271-1163 B.C., assigning luck to days
with periodicity akin to the stars’ fluctuations (Jetsu et al. 2013;
Porceddu et al. 2018). Continued intrigue in stellar variability blos-
somed in the sixteenth century with a renaissance in precision as-
tronomy and has proved essential in our progress in understanding
the Universe. The periodicity of variable objects reflects under-
lying physical scales, from which sizes, luminosities, masses and
distances can be inferred. In turn, variable stars are essential in the
study both of stellar evolution and of structure within theMilkyWay
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and the local Universe (see Catelan & Smith 2014, for a review of
variable stars).

With the advent of large-scale multi-epoch photometric sur-
veys, the number of known variable objects has increased signifi-
cantly. Over the last 25 years, surveys such as theAll-SkyAutomated
Survey (ASAS, Pojmanski 1997), All-Sky Automated Survey for
SuperNovae (ASAS-SN, Kochanek et al. 2017), Massive Compact
Halo project (MACHO, Alcock et al. 1997), Hipparcos Catalogue
(Perryman et al. 1997), Optical Gravitational Lensing Experiment
(OGLE, Udalski 2003), Catalina survey (Drake et al. 2014), As-
teroid Terrestrial-impact Last Alert System (ATLAS, Heinze et al.
2018),WISE survey (Chen et al. 2018a), EROS-II variability search
(Derue et al. 2002) and Zwicky Transient Factory (ZTF, Chen et al.
2020) have steadily expanded the catalogue of variable sources.
Now in the era of Gaia, the number of variable sources is increasing
more rapidly with approximately half a million variables in Gaia
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DR2 (Gaia Collaboration et al. 2018) and ∼ 5 million periodic vari-
ables expected in the final Gaia data release (Eyer & Cuypers 2000).
With the imminent influx of data from the Vera Rubin Observatory
(Krabbendam & Sweeney 2010) providing high cadence observa-
tions of the southern sky, the possibility of extending catalogues of
variables in the Milky Way (and nearby Local Group galaxies) to
near completion has advanced.

With these increasingly large surveys, the demand for auto-
mated pipelines performing reliable extraction and identification of
variable objects has increased. Such a problem naturally lends itself
to machine-learning classification algorithms (Debosscher et al.
2007; Richards et al. 2011; Dubath et al. 2011; Kim et al. 2011;
Bloom et al. 2012) where typically a set of features are constructed
from photometric light curves and training labels are taken from
previous variable star catalogues, such as the General Catalogue of
Variable Stars (GCVS, Samus’ et al. 2017) which has been continu-
ously compiling these objects since 1946. Similar procedures have
been employed recently for the ASAS-SN data (Jayasinghe et al.
2018, 2019), for Gaia DR2 (Rimoldini et al. 2019), for EROS-II
light curves (Kim et al. 2014) and for discovering microlensing
events (Husseiniova et al. 2021). This supervised learning approach
requires large sets of pre-classified variable objects which span the
range of objects observed by a new survey. Any biases in the train-
ing set are naturally reflected in the outputs of the classifier, and
can often be inherited from an initial human classification. Unsu-
pervised learning algorithms, e.g. clustering, are more agnostic and
are able to find natural structure within datasets as well as detect
unusual objects (Brett et al. 2004; Eyer & Blake 2005; Sarro et al.
2009). An iterative combination of supervised and unsupervised al-
gorithms is potentially the only way to handle and comprehend the
ever increasing datasets and to extract important variable sources.

One goal of hunting for variable objects within large photo-
metric surveys of the Milky Way is to utilise them in the map-
ping of Galactic structure. The poster child for precision distance
measurement from variability is the classical Cepheid variable
(Leavitt & Pickering 1912; Riess et al. 2019). Although they have
been used with great success to understand the Milky Way’s spi-
ral arms (e.g. Skowron et al. 2019), warp (Chen et al. 2019) and
nuclear stellar disc (Matsunaga et al. 2011), Cepheid variables are
associatedwith young stellar populations and relatively rare,making
their use as a widespread Galactic structure tracer limited. Signifi-
cantly more numerous are eclipsing binary systems and RR Lyrae
stars, both of which trace different populations within the Galaxy.
Traditionally, RR Lyrae stars have been used to trace the more
metal-poor older populations either from in-situ early Milky Way
star formation or arising from accreted substructure (see chapter 6
of Catelan & Smith 2014), whilst eclipsing binaries are more ag-
nostic of specific stellar population and as such make better tracers
for the entire Milky Way’s evolutionary history (Duchêne & Kraus
2013; Chen et al. 2016).

Eclipsing binaries are typically classified according to the
distribution of each stellar component within a critical two-lobed
figure-of-eight equipotential, known as the Roche lobes. Following
the GCVS convention, there are three main eclipsing binary types:
contact (EW), semi-detached (EB) and detached (EA). In contact
binaries, such as the archetypalWUrsae Majoris, both components
overflow their respective Roche lobe and share a common envelope,
placing the stars in contact and thermal equilibrium. EW binaries
are known to follow a tight period-luminosity relations in the infra-
red on account of their common envelope evolution (Chen et al.
2018b). This, and their low bias with age and metallicity of a popu-

lation, makes them numerous precise tracers of local Galactic disc
and bulge structure.

RR Lyrae variables are single pulsating stars, which occupy
the helium-burning, horizontal branch of the Hertzprung-Russell
(HR) diagram. Typically RR Lyrae stars are subdivided into types
based upon their pulsation mode which is reflected in the shape of
their light curves: RR Lyrae type a or b stars (RRab) oscillate in
the radial fundamental period whereas RR Lyrae type c stars (RRc)
oscillate at the radial overtone period. A combination of the two
exist in the form of RR Lyrae type d stars (RRd), which oscillate
simultaneously with both periods. Typically, RR Lyrae stars are
tracers of old, metal-poor components of the Galaxy (Dékány et al.
2013a; Kunder et al. 2016; Du et al. 2020). This makes them ideal
for studying the very early stages of the formation of the Milky
Way, and for the identification of accretion events in the Galaxy
(Iorio & Belokurov 2019). Recently, it has been noticed that many
RR Lyrae stars appear to be on disc-like orbits (Marsakov et al.
2019; Iorio & Belokurov 2020; Prudil et al. 2020) indicating that
the traditional viewpoint is incomplete and alternative channels for
RR Lyrae star production, possibly through binary evolution, are
possible. A variable star catalogue then allows the construction
of samples of different stellar populations with precise distances
and low contamination, tracing different evolutionary stages in the
Galaxy.

One limitation of studying the variable sky is the depth and cov-
erage of different surveys, which can introduce biases and hinder
the study of certain populations. Currently Gaia (Rimoldini et al.
2019) is the only all-sky variability survey from which a relatively
unbiased magnitude-limited census can be constructed (although
Gaia’s observing window and cadence still produces on-sky varia-
tions). However, Gaia is limited by operating in the optical so will
crucially miss many important variables in the inner disc and bulge
shrouded by dust. For example, Clementini et al. (2019) present
catalogues of Gaia DR2 Cepheids and RR Lyrae stars of which
there are 69 and 7541 respectively in the VVV bulge footprint. As
a complement, the two decade long OGLE survey (Udalski 2003)
has observed in the I (and V) bands producing deeper catalogues
of eclipsing binaries (Soszyński et al. 2016) and RR Lyrae stars
(Soszyński et al. 2019) in the inner bulge and disc, although again
extinction limits the coverage within a few degrees of the Galactic
mid-plane.

The deep near-IR (0.9 − 2.5µm) Vista Variables in the Viá
Laćtea survey (VVV, Minniti et al. 2010) is a perfect complement
to both optical and near-IR variability surveys, such as Gaia and
OGLE respectively, with Soszyński et al. (2019) reporting 44, 183
RR Lyrae stars in the VVV bulge footprint. VVV provides multi-
epoch photometry in the Ks band over approximately a ten year
baseline for a 300 deg2 bulge region and a portion of the south-
ern disc. As such it is able to reach through the dust of the inner
Galaxy to previously undiscovered variables. As a result, catalogues
of RR Lyrae stars along the Southern Galactic Plane (Dékány et al.
2018), inner bulge (Dékány & Grebel 2020), outer bulge (Gran et al.
2016) and 100 arcmin from the Galactic Centre (Minniti et al. 2016;
Contreras Ramos et al. 2018) have been compiled for analysis. Sim-
ilarly, VISTA Variables in the Vía Láctea infrared variability cat-
alogue (VIVA, Ferreira Lopes et al. 2020) provides a near com-
plete variability census for the Galactic Bulge, whilst Herpich et al.
(2021) have presented an analysis of previously known variable
sources in VVV. These catalogues paired with preliminary re-
sults on the RR Lyrae star distribution (Cabral et al. 2020), novae
(Saito et al. 2013) and the composite bulge structure of the Milky
Way (Dékány et al. 2013b) have all shown the far-reaching scien-

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stab3116/6414542 by C

atherine Sharp user on 03 N
ovem

ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Variable star classification with VVV 3

tific merit of the VVV project. However, as yet, there has been no
published catalogues performing a homogeneous, specialised clas-
sification of all potential periodic sources across the entire VVV
footprint. This is the goal of our work, in which we forfeit absolute
completeness in order to produce a catalogue with highly reliable
classifications.

In this paper we carry out an automated classification of all
sources in VVV using a two-stage hierarchical scheme. We first
carry out an initial identification of likely variable sources through
reference to a sample of non-variable sources, which are subse-
quently assigned a detailed classification into their variable type. In
Section 2 we describe the dataset of VVV light curves used and the
set of training data employed from the literature. In Section 3 we
outline the construction and performance of our hierarchical classi-
fier, discussing the features employed for classification. In Section 4
we describe the results of applying our classifier to the VVV data,
before briefly touching on some basic science applications using our
newVIVACE catalogue in Section 5.We close with our conclusions
in Section 6.

2 LIGHT CURVES AND THE TRAINING SET

Our approach requires a set of photometric light curves taken from
the VVV survey, of which a subset have pre-existing classifications
or labels from other (variable) catalogues. We begin by describing
the set of VVV light curves, before going on to discuss the construc-
tion of the training set from various variable catalogues. We close
the section by presenting a method to establish unbiased constant
source classes, using Gaia photometry, to augment the training set.

2.1 VVV photometric dataset

The VISTA Variable in the Vía Láctea (VVV) public ESO (Euro-
pean Southern Observatory) project is an ongoing survey which has
been performing near-infrared observations of the Galactic bulge
and inner disk since 2010 (Minniti et al. 2010; Saito et al. 2012).
The VVV photometric observations were taken from the Cerro
Paranal Observatory, in Chile, using the 4m “wide-field” VISTA
telescope. The VIRCAM detector (Dalton et al. 2006), consisting
of sixteen 2048×2048 pixel arrays, was mounted on the telescope,
allowing for a combined image of the sky covering a 1.5× 1.1 deg2

tile. The detector was equipped with 5 broad-band filters ZY JHKs

and two narrow-band filters centred at 0.98 and 1.18 µm. The VVV
survey used the 5 broad band filters spanning 0.84 to 2.5 µm. The
full on-sky area spanned by the survey is 562 deg2 discretised
into 348 tiles, 196 tiles in the bulge (−10.0◦ ≤ l ≤ +10.4◦ and
−10.3◦ ≤ b ≤ +5.1◦) and 152 in the disk (294.7◦ ≤ l ≤ 350.0◦
and −2.25◦ ≤ b ≤ +2.25◦). A single observation of a tile is com-
posed of six VIRCAM pawprints resulting in between one and six
detections per source per tile observation. Here we work with the
individual pawprint detections. In Fig. 1 we display the footprint
and source density of the survey. The original VVV survey con-
cluded in 2015, but from 2016 the survey was granted a five-year
extension (VVVX) to extend both the baseline of observations of
the original VVV footprint and the spatial coverage of the survey.
Here we consider observations (both VVV and VVVX) only within
the original VVV footprint.

The principal data product of VVV is multi-epoch Ks-band
photometry taken across a ∼ 10 year baseline from which vari-
able objects can be identified and classified. The number of Ks-
band observations is typically 130 − 230 in the disc region and

170 − 320 in the bulge region, except in high-cadence bulge tiles
(+2.417◦ ≤ l ≤ +6.807◦ and−3.138◦ ≤ b ≤ −2.043◦) where there
are 660 − 1250 observations. The high-cadence region is visible as
a darker rectangular overdensity in Fig. 1 as a result of the increased
visibility of sources. The Ks band photometry is complemented
by several ZY JH observations allowing for sparsely sampled time-
series analysis in these bands.

The initial VVV data reduction and pre-processing was exe-
cuted via the VISTA Data Flow System (Emerson et al. 2004), by
a collaboration of the Cambridge Astronomy Survey Unit (CASU)
and UK Wide-Field Astronomy Unit (WFAU). The catalogue em-
ployed here consists of the unpublished 2nd version of the VVV
Infrared Astrometric Catalogue (VIRAC, Smith et al., in prep), an
upgrade to the original VIRAC catalogue (Smith et al. 2018). The
primary purpose of the VIRAC project was to provide astrometry
(parallaxes and proper motions) from the multi-epoch VVV ob-
servations. VIRAC v2 provides improved astrometry and a new
photometric reduction, which utilises point-spread-function pho-
tometry using a version of DoPhot (Schechter et al. 1993) modified
byAlonso-García et al. (2012). In total, 1.14×1011 sourceswere de-
tected by DoPhot across all images. The initial photometry was then
calibrated using the CASU calibration (González-Fernández et al.
2018). As part of VIRAC v2, an SDSS-like ubercal has been carried
out on the photometry, where a time and pixel-dependent zeropoint
for each chip was fitted using a pool of 2MASS reference sources. A
pool of astrometric reference sources observed by Gaia (DR2) were
used to calibrate the astrometry of each image. A source catalogue
was then formed from first grouping nearby detections, performing
astrometric fits, and then iteratively reassessing the source match-
ing using the astrometry. The final VIRAC v2 catalogue we utilise
contains all non-duplicate sources (groups of sources within 0.339”
are labelled duplicates if they don’t have the most detections of the
group or if more than 20 per cent of detections are shared by another
grouped source) detected in more than 20 per cent of observations
and with a five-parameter astrometric solution. This results in a set
of 539, 845, 118 sources equipped with ZY JHKs photometric ‘light
curves’, with the majority of the detections in Ks .

For each Ks light curve, there is a set of quality indi-
cators for individual detections which are useful for remov-
ing low quality or spurious data. Each detection is assigned a
non-zero ambiguous_match flag if it is shared by more than
one non-duplicate source. The astrometric residual chi-squared
(ast_res_chisq) gives a measure of whether a detection is likely
spurious based on the corresponding source’s astrometric fit. All
of our light curves are ‘cleaned’ by ensuring ambiguous_match=
0, ast_res_chisq< 11.829 (approximately equivalent to a 3σ
boundary) and photometric point spread function fit chi-squared
chi< 5 for bright detections (Ks < 13.2). We further only re-
tain photometric light curves with number of Ks epochs > 20 and
11.5 ≤ mean(Ks) ≤ 17. The magnitude boundaries were included
to avoid saturation errors for bright stars and high observational er-
rors associated with faint stars. The restriction on number of epochs
was put in place in order to ensure reliable period recovery and
limit the appearance of extremely unevenly sampled sources. This
further set of cuts reduces our considered dataset to approximately
490 million sources. Of these, ZY JH light curve analysis was only
able to be performed for sources with more than one detection in
each auxiliary band
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Figure 1. The on-sky density of the VVV source catalogue (with a square-root stretch) along with contours (5, 10, 80 per cent of peak density) showing the
distribution of two training samples (RR Lyrae ab stars and EA/EB eclipsing binaries), primarily taken from OGLE.

2.2 Variable star training sets

To construct our hierarchical classifier, we require a comprehen-
sive set of accurately classified variable stars with corresponding
VVV light curves. We considered all periodic variable types with
sufficiently high-amplitude variations and with significant repre-
sentation in our dataset: detached/semi-detached (EA/EB), con-
tact (EW) and ellipsoidal (Ell) eclipsing binary stars, fundamental
mode (RRab), overtone (RRc) and double-mode (RRd) pulsating
RR Lyrae stars, classical (CEP) and Type II (T2CEP) Cepheid vari-
ables and long period variables (LPV) formed ofMira, semi-regular
and OGLE small-amplitude variables. δ-Scuti stars (DSCT) were
included in early tests but the quality of the VVV data did not allow
for their confident separation from non-variable sources. Further-
more, we don’t include young stellar objects (YSOs) in our training
set. These are typically intrinsically red objects and can show a
range of stochastic and quasi-periodic variability. Although our al-
gorithm is designed to target periodic variables, we antipicate some
level of contamination from YSOs in the LPV class as seen by
Mowlavi et al. (2018).

The primary source of our classification labels is the Optical
Gravitational Lensing Experiment (Udalski 2003, OGLE). OGLE
has monitored the brightness of roughly 2 billion stars in both the
V and I bands over a 2750 deg2 footprint covering the Galactic
plane and bulge. The VVV footprint has excellent overlap with the
bulge/disc component of OGLE as shown in Fig. 1. The lack of
representation of the Galactic mid-plane in OGLE when compared
to VVV is also apparent. OGLE has provided ∼ 450, 000 ellip-
soidal and eclipsing binary star classifications towards the Galactic
bulge (Soszyński et al. 2016), of which 80.0 per cent were position-
ally cross-matched to our previously defined VVV dataset within
1 arcsec. Similarly, Soszyński et al. (2019) have provided a cata-
logue of ∼ 78, 000 RR Lyrae stars in the Galactic bulge and disc
using OGLE data. A previous version of the RR Lyrae star cata-
logue containing ∼ 38, 000 RR Lyrae stars was used for this work
(Soszyński et al. 2014), of which 90.8 per cent hadmatches toVVV
within 1 arcsec. It was found that a sufficient number of RR Lyrae
stars were included to fully represent the narrow clustering of the
class in feature space, such that the diminished subset of RR Lyrae
stars considered did not hamper the accuracy of the classification.
We chose to combine overtone and double-mode RR Lyrae stars
into a single class (RRcd), as their light curves are for the most part
indistinguishable. Long-period variable and Cepheid variable train-
ing samples were taken from corresponding OGLE variable cat-
alogues (Soszyński et al. 2013; Udalski et al. 2018). This yielded
291 CEP, 673 T2CEP and 837 LPV variables cross-matched within

Table 1. Training set of variable sources in VVV (predominantly from the
OGLE andVSX variable catalogues) as used in both stage 1 (N1) and stage 2
(N2) of the hierarchical classifier. Period mismatch rate gives the percentage
of sources with Lomb-Scargle false alarm probability < 1 × 10−10 which
don’t have VVVperiodsmatching the corresponding literature period within
10 per cent.

Class N1 N2

Period
mismatch
( per cent)

Contact Ecl. (EW) 67 926 40 116 1.71
Detached Ecl. (EA/EB) 281 480 109 744 2.74
Ellipsoidal (Ell) 18 055 11 263 1.61
RR Lyrae ab (RRab) 24 837 22 419 0.56
RR Lyrae c/d (RRcd) 10 661 6 679 3.64
Classical Cep. (CEP) 332 306 0.66
Type II Cep. (T2CEP) 673 644 1.09
Long period (LPV) 1 562 753 32.00
δ-Scuti (DSCT) 160 n/a n/a
Total 405 686 191 924

1 arcsec to our VVV dataset. We supplemented this set using the
AAVSO International Variable Star Index1 (VSX, accessed October
2020,Watson et al. 2006) catalogue with DSCT, additional long pe-
riod variables labelled as M, SRV, SRA, SRB or SRS and classical
Cepheids labelled asCEP,DCEPorDCEP(B).We found 160DSCT,
52 LPV and 41 CEP variables in our light curve set, removing any
duplicates found in OGLE.

Due to many known LPVs being too bright and saturated in
VVV, we found that representation of the class within the training
set was inadequate. We therefore supplemented the training set with
∼ 1700Mira variables in the nuclear stellar disc (|` | < 1.5 deg, |b| <
1.5 deg) discovered from VIRAC v2 data (Sanders et al. , in prep.),
of which 673 are non-duplicates found in our photometric dataset.

In Table 1 we give the number of sources in each class used for
the different classification stages. In total there are 405, 686 known
variable sources with VIRAC-2 light curves satisfying our quality
cuts (primarily on magnitude and number of detections).

2.3 Gaia constant source reference set

To initially classify a source into variable vs. non-variable, we de-
fine a training set of likely non-variable sources (labelled CONST).
Although constant sources should in principle be easily identified,

1 https://www.aavso.org/vsx/
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there are cases where systematics (e.g. blending) give rise to spuri-
ous variability (occasionally periodic variability due to seasonal see-
ing variations). Furthermore, selecting non-variable sources from
VVV itself, using photometry statistics or by other means, would in-
troduce unwanted selection biases into our modelling, as the initial
classification would be based on these same statistics. Therefore,
to construct an unbiased sample we utilise photometry from the
Gaia Early Data Release 3 (EDR3, Gaia Collaboration et al. 2016,
2021). Gaia has a smaller point-spread function than VVV allowing
for cleaner separation of sources in crowded regions. For each Gaia
source, we compute the scatter in G (Belokurov et al. 2017) as

Gamp = log10

(√
Nobs

σ
IG

IG

)
, (1)

where Nobs is the number of observations, IG is the mean G-band
flux and σ

IG
is the error in the mean flux estimate. Due to the

continually changing brightness of variable stars, it is expected
that, in the absence of systematic issues, stars at a given magnitude
with larger Gamp are likely intrinsically variable. Consequently, we
use this statistic as a magnitude-dependent signal-to-noise proxy for
analysing variability in source light curves. For a set of Gaia sources
cross-matched to VVV within an angular separation of 0.4 arcsec
(accounting for the Gaia EDR3 and VVV epoch difference using
the Gaia proper motions) and satisfying the previously-mentioned
VVV epoch and magnitude selection criteria, we characterise the
typical G-band magnitude scatter as a function of G and identify
non-variable sources as those that lie beneath the median trend.
This method assumes that at a given magnitude the variable stars
are in the minority. Testing the procedure yielded clear placement
of known variables, taken as our VVV variable training set cross-
matched to Gaia in the same way, above the median trend of Gaia
sources as shown in Fig. 2. Using this procedure, sets of constant
VVV sources could be extracted for any Galactic region of interest.

3 TWO-STAGE HIERARCHICAL CLASSIFIER

With 490 million sources selected from VVV, the task of perform-
ing detailed analysis on each light curve is highly computationally
intensive. We therefore adopt an initial selection procedure to iden-
tify likely variable objects using computationally-cheap variability
indicators. This step makes up stage 1 of the hierarchy. The greatly
reduced sample of candidate variables is then further classified into
detailed variable types, stage 2 of the method, based on more com-
prehensive analysis of the light curves. In both stages we utilise su-
pervised machine learning algorithms. In particular, we view stage
1 as a binary and stage 2 as a multi-class classification problem.
The aim in either exercise is to determine sources which cluster, in
some feature space, equivalently to representative samples of gen-
eral variable objects for stage 1 and distinct variability classes for
stage 2.

Ensemble tree classifiers rank among the most efficient bi-
nary classification methods (Pashchenko et al. 2018) and have been
used to great effect in initial variable detection for the Gaia Vari-
ability Analysis pipeline (Eyer et al. 2017; Rimoldini et al. 2019).
Similar conclusions are noted for detailed variable classification
(Debosscher et al. 2007; Dubath et al. 2011; Richards et al. 2011),
which lead us to adopt these methods for our purposes. Ensemble
methods group large sets of weak classifiers with predictive ability
slightly above uniform chance. This grouping enables robust dis-
crimination between parent classes without overfitting. To construct
suchmodels we require (i) training set classes of stellar sources with

16 18 20 22
G [mag]
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Figure 2. Distribution of Gamp against G mean magnitude for samples of
known variable stars and random Gaia EDR3 sources (contours correspond
to 10, 20, 50 and 80 per cent of the peak density). The variable sample
consists of our compiled variable training set cross-matched to Gaia within
0.4 arcsec whilst the random sample depicts a representative subset of all
Gaia EDR3 data. The black dashed line highlights the median Gamp trend
for the random sample, below which constant sources are selected from the
red shaded area.

known (broad or specific) variability labels, (ii) a list of features, to
be extracted for each source, representing the differences between
classes. We give a brief description of the algorithms used in each
step before discussing the training set and feature spaces employed
in detail.

The initial variable/non-variable binary classification stage
uses a Random Forest (Breiman 2001, RF). This algorithm is well
suited to the problem in hand due to (i) the ability to model hid-
den underlying relations in large feature spaces, (ii) the ease with
which multiple class partitions are incorporated and (iii) the low
computational cost (Debosscher et al. 2007; Richards et al. 2011).
Given a training set, a decision tree is ‘grown’ through sequen-
tial splits of the feature space at nodes, in order to minimize the
statistical entropy of the resulting divided feature space. The tree
expands until splits are no longer beneficial, at which point each
path, along nodes, terminates in a leaf. The class attributed to a
leaf subspace is then defined in terms of the fraction of particular
class training examples populating the subspace. Decision trees of
this kind are grouped into ensembles forming Random Forests. RFs
reduce overfitting by utilising bootstrap aggregationwhere training
subsets, with randomly replaced features, are used in each tree and
random feature subspaces where only a random subset of features
are considered at each potential node.

The second stage detailed variable classification uses the gra-
dient boosting tree algorithm as implemented in XGBoost (eX-
treme Gradient Boosting, Chen & Guestrin 2016). This algorithm
sequentially constructs a series of decision trees, minimising the
loss function at each stage with the inclusion of a regularization
to reduce overfitting. The choice of XGBoost for our second stage
classifier was based on the increased speed of computation with the
greater number of features employed and also a small improvement
in performance on our test set.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stab3116/6414542 by C

atherine Sharp user on 03 N
ovem

ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

6 T. A. Molnar, J. L. Sanders et al.

We first describe the training classes and features for the
variable/non-variable RF classifier in Section 3.1 and the detailed
variable XGBoost classifier in Section 3.2. This discussion is fol-
lowed by an analysis of the performance of each classifier based on
k-fold cross validation of their training samples in Section 3.3.

3.1 Stage 1: variable/non-variable classification

The first stage of our classifier consists of selecting a list of candidate
variables from the full VVV survey. Here we describe the training
sets and feature spaces utilised to construct the binary classifiers
necessary for candidate extraction.

3.1.1 VVV tile training sets

Training set examples are given broad labels of either variable
(VAR) or non-variable (CONST). The VAR class consists of all
the variable star sets from Section 2.2 grouped together. As the ma-
jority of collected variables are taken fromOGLE, the variable class
footprint mirrors the OGLE footprint with a peak in source density
around 1 < |b| < 3 deg in the Galactic bulge (see Fig. 1). Though
morphological differences of light curves exist among variability
classes, continuous periodic magnitude variation is a common fea-
ture. We therefore employ variability summary statistics reflecting
this commonality to separate them from non-variable objects.

Observational cadence and intrinsic physical differences such
as stellar source density vary widely over the VVV footprint. This
can lead to irregular photometric data for distinct on-sky regions.
In particular, blending of multiple light sources increases dramat-
ically towards the crowded regions of the Galactic plane. As a
consequence, observations of a constant magnitude source within
a crowded region may differ from those of an isolated constant
source found at higher latitudes. If considered equivalently, the rel-
ative loss in accuracy of the former could be interpreted as a signal
for variability of the source. For this reason, we decide to construct
region specific binary classifiers. The natural tiling provided by the
VVV observational procedure is chosen to be of adequate size to
reflect near-homogeneous conditions for constant source extraction
(see Cabral et al. 2021, for a discussion of feature variation across
the VVV footprint). We therefore construct 348 binary classifiers,
one for every VVV tile, each with a unique constant (CONST) class
which we attempt to distinguish from the shared variable source
class. Splitting the variable class into tile-specific subsets is not
found to be vital as the intrinsic variability of these sources over-
whelms the effect of location dependent spurious detections. The
distinct CONST classes consist of Gaia-sampled constant sources,
extraction described in Section 2.3, limited to the respective tile
on-sky regions. We down-sample the constant training set in each
tile in order to have at least as many sources as the variable training
set (∼ 400, 000) with many tiles having fewer sources (50, 000 at a
minimum but 50 per cent of tiles with more than 300, 000).

Certain low scatter variables, predominantly detached binary
systems, exhibit minimal time-averaged flux variation from the
mean. This is due to their light curves showing near constant mag-
nitude, reflecting the brightness of the dominant source in the pair,
with brief sharp drops due to eclipses. This led to a small number
of known variable star contaminants within the non-variable sam-
ples. The mean contamination rate as a fraction of total constant
class size for the 348 binary classifiers is 0.05 per cent with varia-
tion over tiles shown in Fig. 3. Lack of completeness of the known
variable training set suggests these numbers are underestimates, as

many variable contaminants could be present which we have not
collected. However, contamination peaks at 0.23 per cent for tiles in
the OGLE complete region, where the majority of variables which
are not extinction limited are accounted for and hence should be
viewed as a minimal upper bound. We therefore remove any identi-
fied contaminants and construct each tile’s constant class from the
remaining sources.

3.1.2 Variability features

Having established the respective training samples to adopt, the
PSF photometry available from the VIRAC v2 catalogue is ex-
ploited to determine a set of easily computable variability indices.
These features are chosen to reflect the degree of variability present
in the magnitude observations of individual sources, typically the
scatter about the mean or correlation between time-ordered detec-
tions. Crucially for our purposes, their estimation must be com-
putationally scalable (for a review of possible variability indices
see Sokolovsky et al. 2017). We define the variability indices em-
ployed in the upper part of Table B1 in Appendix B. These in-
clude the median absolute deviation, standard deviation, higher
order moments such as the skewness and kurtosis, the von Neu-
mann ratio η (von Neumann 1941), the Stetson I, J and K indices
(Welch & Stetson 1993) as well as percentile ranges illustrating the
scatter of points in light curves. The Stetson I index computation
considered pairs of observations separated by less than 1 hour. Fol-
lowing Shin et al. (2009), the Stetson J and K indices used all pairs
of observations (note in the definition of Stetson J from Shin et al.
2009, there is no normalising factor for the number of pairs). We
supplement this feature list with error-weighted versions of the me-
dian absolute deviation, standard deviation and percentile ranges.
These features were computed on the full VIRAC-2 dataset using
all detections with no ambiguous_match flag, a looser quality cut
than that described in Section 2.1.

In Fig. 4, we show distributions of a subset of these indices
against magnitude for the VAR class and an example CONST class
sampled from the full VVV footprint. Separation between the sam-
ples is greatest for the time-correlated features Stetson I and von
Neumann η and is present to a lesser extent in the scatter fea-
tures. This follows expectations as the former describes light curve
smoothness present in variables with underlying periodicity and
absent in constant sources with uncorrelated datapoints on short
timescales.

3.2 Stage 2: detailed variable classification

The second stage in the hierarchical classifier involves detailed clas-
sification of identified candidate variable objects using a set of ad-
ditional features. The variable training set from Section 2.2 is taken
with the following separate labels: EA/EB, EW, Ell, RRab, RRcd,
CEP, T2CEP and LPV. In addition, a constant class, again labelled
CONST, is included as a comparative baseline. The creation of this
class follows the procedure outlined in the previous section with
sources chosen spanning the full VVV footprint, rather than be-
ing chosen from a particular Galactic region. The size of the class
was chosen to be a tenth of the full variable dataset to match the
approximate average size of the variable classes.

Aswith other large-scale variable source classification projects
(see Section 1), we carry out a periodic decomposition of our Ks-
band light curves, yielding Fourier components and period esti-
mates. The period of a source is an important feature for dis-
tinguishing different variable types, whilst light curve shape and
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Figure 3. Grid of 348 binary classifiers coloured by the contamination ratio of known variable sources within each tile’s non-variable training set. The
distribution mirrors the OGLE variable catalogue density as contamination correlates with known variable source density. Maximum contamination (bright
yellow) is noted in the OGLE complete region, where the majority of variable sources are identified by OGLE.
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Figure 4. Distribution of variability indices, used for initial variable/non-variable classification, for the full variable training set (VAR) and a constant class
sampled from the full VVV footprint (CONST). The contours correspond to 10, 20, 50 and 80 per cent of the peak density. Separation is significantly noticed
for log10 (Stetson I ) and von Neumann η (left panel) which quantify time-correlation of magnitudes and to a lesser extent for scatter features (right panel).

asymmetry allows separation of RR Lyrae stars and eclipsing bina-
ries, for example. Similarly, lack of periodicity of CONST sources
entails arbitrary periodic feature distributions which diverge from
the constrained distributions for variable stars.

We first describe our method for periodic feature extraction
before highlighting additional non-periodic features which have
proved useful for this stage. We then examine our period estimates
with respect to values quoted in OGLE and VSX. A comprehen-
sive list of the novel classifier features for stage 2 is shown in the
lower part of Table B1. Note these are employed in addition to the
previously considered stage 1 variability indices.

3.2.1 Periodic features

Higher-order Fourier models are necessary to accurately fit the
complex qualities of light curves under consideration, such as

sharp and uneven minima produced by detached binary sources.
However, computational expense increases linearly with the num-
ber of Fourier terms. Hence, we take advantage of the approxi-
mate sinusoidal nature of all variable sources by first employing
a floating-mean Lomb-Scargle periodogram (Lomb 1976; Scargle
1982; Zechmeister & Kürster 2009; VanderPlas 2018) to identify
a set of candidate frequencies which we can further process. The
Lomb-Scargle periodogram is equivalent to fitting the function

m(t |ω, θ) = c + a sin (ωt) + b cos (ωt), (2)

for a grid of trial frequencies ω and θ = (a, b, c), where a and b are
Fourier coefficients and c is an offset. Utilising the ‘fast’ implemen-
tation in Astropy (Astropy Collaboration et al. 2018), we compute
the Lomb-Scargle periodogram for light curves detrended using
a cubic polynomial (which accounts for variability on timescales
longer than the maximum considered period). A regular grid of
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frequencies is trialled between 6.67×10−4 day−1, corresponding to
a period of roughly half the baseline of the survey, and 20 day−1,
falling below the shortest period expected. The frequency spacing
for the trial grid is 0.2/(max(t)−min(t)) ensuring sufficient samples
around each peak (VanderPlas 2018). To form a list of candidate
frequencies, we select the top 30 local maxima, or ‘peaks’, in the
periodogram. Frequencies are then removed from this list if the
Lomb-Scargle power is less than the corresponding power in the
window function periodogram (where the magnitudes are replaced
with a constant and c = 0, VanderPlas 2018, giving an indication of
the power as result of observational cadence). Furthermore, we have
found that, if present, short frequencies fs can couple with the typi-
cal observational cadence (at some frequency fd) giving rise to beat
alias peaks at ( fd ± fs). This produces narrow peaks in the output
period distributions of the training set around multiples of a sidereal
day. In theory, for a single light curve, it is impossible to distinguish
between fs and its beat alias. However, it is much more probable for
a source to vary on long timescales than timescales very close to
the observational alias. We therefore choose to remove a frequency
f from the list if the window power at f ± fs is greater than the
Lomb-Scargle power at f . We define short frequencies as any peak
in our original list with f < ftol = 0.005 day−1. This procedure has
the effect of removing candidate frequencies within ftol of likely
observational aliases (identified by the window function), but only
if there is evidence of an accompanying significant long-term trend.
However, the procedure still allows the possibility of true periods
very close to a multiple of a sidereal day (which can be important
for RR Lyrae stars around 0.5 days). We supplement the final list of
candidate frequencies with half frequencies as binary sources tend
to have orbital frequencies half that of the sinusoidal fit frequency.

For each candidate frequency, f = ω/2π, we fit a multi-term
Fourier series with an extra quadratic component,

m(t |ω, θ) = θ0 + θ1t + θ2t2 +

N f∑
n=1

an sin (nωt) + bn cos (nωt), (3)

whereω and θ = (θ0, θ1, θ2, a1, b1, a2, b2, · · · ). The quadratic terms
account for any genuine or systematic long term trend. At each
candidate frequency, ω, the best-fitting coefficients are obtained by
minimising χ2 using linear least-squares (Palmer 2009). We also
adopt a regularization scheme described in Appendix A to penalize
highly oscillatory model fits. For each light curve we then vary
Nf between 4 and 10 and select the (ω, θ, Nf ) combination that
minimises the Akaike information criterion, AIC, χ2 + 2(2Nf + 3).
Nf = 4 was found to be adequate for the majority of the light curves,
although a greater Nf is favoured for light curves of EA/EB type
which can exhibit deep narrow minima.

Once the AIC-minimised results are obtained, a subroutine is
carried out for sources whose greatest amplitude is not associated
with the first Fourier terms. This is expected to occur when a har-
monic of the true physical frequency is taken as the fundamental
frequency and once again is mainly specific to binary systems. In
this case, harmonic multiples of the best fitting period are passed
through the spectral analysis again and taken as correct if the re-
sulting χ2 is further minimised. This can occur due to the discrete
frequency grid employed.

From the set of coefficients {an, bn}, we calculate amplitudes
Ai =

√
a2
i
+ b2

i
, phases Φi = arctan(−bn/an), amplitude ratios,

Ri j = Aj/Ai , and phase differences, Φi j = jΦi − iΦj , following
the conventions of Andreasen & Petersen (1987). We compute the
model amplitude Amodel as the maximum minus minimum mag-
nitude of the best-fitting Fourier model (ignoring the polynomial
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Figure 5. Distribution of best-fitting Fourier model periods for the variable
training set.

term) and the data amplitude Adata as the maximum minus mini-
mum magnitude of the data (similar to mags_p100_p0, defined in
Table B1, but using slightly different quality cuts). Furthermore, we
compute the difference in log likelihood per datapoint between a
constant source and the best fitting Fourier model, based on residu-
als when compared to the observed photometry, and the false alarm
probability (FAP) associated with the highest peak in the Lomb-
Scargle periodogram (Baluev 2008). Both quantities provide good
measures of the signal-to-noise ratio in the light curve and accuracy
of the model. We detail these in the lower part of Table B1.

The best-fitting Fourier model periods need somemodification
to match the definitions and conventions of a period for each source.
For all sources other than EA/EB and Ell, if An > A1 for n , 1 we
divide the period by n. For EA/EB and Ell, we double the periods if
A1 > A2. Finally, for EWwe double the resultant period, as a period
for a contact binary corresponds to a complete orbit. These correc-
tions cannot be performed for unclassified sources. To maintain
equivalence between our training set and general sources, we use
the best-fitting Fourier periods in our classification pipeline and ap-
ply the required modifications when classifications are finalised. All
periods quoted in upcoming feature distributions consist of unmod-
ified periods unless comparison to literature periods is performed,
for which we use modified periods. We show the period ranges for
the eight variable classes in Fig. 5.

Example phase folded light curves for each variable class, with
the best fitting Fourier model overlaid, are illustrated in Fig, 6. Two
full periods are depicted in each case. Below every light curve, we
show the Lomb-Scargle periodogram used for candidate frequency
extraction with the adopted period annotated. This period is equiv-
alent to the highest power period for intrinsic variables and is twice
that for eclipsing systems. The notable asymmetry of the RRab,
CEP, T2CEP light curves is quantified by the Fourier phase differ-
ences, for example Φ31 and Φ41, which we show differ in value
from symmetric variables (e.g. in the bottom row of Fig. 7). Class
differences are also clearly surmised in period-amplitude space (see
the upper left panel of Fig. 7) where narrow regions are populated
by each class.
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Figure 6. Example training set light curves for the eight variable classes. Each set of two panels shows the light curve points in grey with a Fourier model
fit in orange above a Lomb-Scargle periodogram with the period and half-period marked with grey lines. Above each set of panels, we give the classification
probability from cross-validation.
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Figure 7. Feature distributions for the full training set (contours correspond to 20, 50 and 80 per cent of the peak density). We have combined the EA/EB, EW
and ellipsoidal (Ell) classes into a single ‘Binary’ class. The top row shows the amplitude and unextincted (J − Ks ) colour against period, whilst the bottom
row shows the differences in Fourier phase Φi j = jΦi − iΦ j . The LPV distribution has been truncated at periods of 3.1 days for clarity of presentation.
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3.2.2 Period output comparison with source catalogues

We evaluate our period extraction procedure through comparison
with literature periods for our variable training set. Fig. 8 shows
the modified best-fitting Fourier periods plotted against literature
estimates for sources from each of the eight variable classes andwith
log10(FAP) < −10. Table 1 gives the percentage of sources with
periods matching within 10 per cent. Although a large fraction of
sources lie along the expected 1-to-1 relation, a fewper cent aremore
discrepant, primarily due to aliasing effects. In particular, we note
(i) observational aliases resulting from regular cadence of ground-
based observations appearing as horizontal lines at multiples of a
day or a year, (ii) beat aliases where the physical periodicity of
a source and observational aliases are combined, taking the form

Pobs,n =
(

1
Ptrue
+ n

Palias

)−1
where Ptrue and Pobs are the correct and

observed periods, Palias is an observational alias and n is an integer
(VanderPlas 2018), (iii) harmonic aliases for which multiples of the
anticipated period are found as shown by clustering along the 2:1
and 1:2 trends, and most apparent for the EA/EB class. We aimed
to limit inclusion of observational aliases in our procedure through
the means described in Section 3.2.1. However, complete removal
of alias and artificial periods is unfeasible.

Fig. 9 displays the joint distribution of the ratio of our periods
to the literature periods and the Lomb-Scargle false alarm probabil-
ity for all stars in our variable set. We see that for high false alarm
probability the quality of period recovery significantly deteriorates.
This motivates us to only use sources in the variable training set
with log10 (FAP) < −10 as only these will have trustworthy Fourier
parameters allowing for reliable classification. Whilst ∼ 90 per cent
of the RRab and CEP training set are retained by this cut, only
40(60) per cent of EA/EB (EW/Ell/RRcd) are retained and in the
extreme only 25 per cent of LPVs. Nearly all sources in our constant
class fall short of this cut as depicted in the top section of Fig. 9.
A downside of the method is the artificially created bias towards
low FAP when applying the classifier in general. This suggests a
significant number of truly variable sources will be rejected. We
therefore forego completeness of our final catalogue in order to reli-
ably extract the clearest periodic stars with minimal contamination.

LPV periods range from 100 to 1000 days with 35 per cent of
the log10 FAP set having discrepant periods relative to the litera-
ture values (at the 10 per cent level). The majority of the mismatch
periods have VVV periods greater than the literature periods sug-
gesting a bias in our procedure towards long-term trends and an
inability to find shorter fluctuations in the light curves. This is par-
ticularly the case for semi-regular variables which exhibit strong
variation of light curve amplitude from period to period, which
can be interpreted as long-term periodicity. Whilst the mismatch
may be related to our procedure, there is the possibility the liter-
ature periods are in error (possibly due to aliasing). We find that
only 30 per cent of the mismatching LPVs have one of the top 30
peaks in the Lomb-Scargle periodogram within 20 per cent of the
literature period suggesting erroneous literature periods or incorrect
cross-matches/blending issues.

Phase folding light curves with improper periods (long-term
or observational aliases) leads to abnormal gaps in the phase space
coverage. We therefore compute both the maximum phase separa-
tion as well as the ratio of the difference between the maximum
and mean phase separation to the standard deviation of these sep-
arations. These quality features are included in the second stage
classifier and used for selection of well sampled light curves.

3.2.3 Eclipsing binary features

Detached eclipsing binary sources can differ visually in their light
curves due to a lack of symmetry between the two minima per or-
bital revolution. In the case of other binary systems, contact (EW)
and ellipsoidal (Ell), these minima are of nearly equal depth, al-
though detached eclipsing binary systems can also have equal depth
minima. We capture this potential difference through the ratio of
consecutive light curve minima depths. First we identify any sec-
ondary minimum in the best-fitting Fourier model. To do this, we
shift the phases of observations to place the primary model min-
imum at zero and search for any secondary model minima in the
phase range 0.35−0.65 with depth with respect to the neighbouring
maxima of greater than seven times the model uncertainty. This
phase range corresponds to eccentricities . 0.25. In the Galactic
bulge eclipsing binary sample of Devor (2005) only 3 per cent of
systems hadmore extreme eccentricities whilst in the second Kepler
Eclipsing Binary catalogue of Slawson et al. (2011) ∼ 6 per cent do.
Although this procedure will miss this minority of high eccentric-
ity systems, we anticipate such systems will be well classified by
their Fourier parameters. With a secondary minimum identified, we
compute rmodel as the ratio of the secondary to primary model mini-
mum relative to the maximum of the model light curve. If no second
minimum is found, this ratio is set to unity. As a complementary
feature, we also compute the minimum ratio more directly from the
data, rdata. For this, we instead measure the depth of the primary
and secondary minima using the inverse-variance-weighted mean
of measurements within 0.025 phase of the previously identified
model minima (the bin is broadened until at least 3 datapoints are
included in the mean computation) relative to the 1st percentile of
the light curve. If no secondary model minimum is found, every
other primary minima is treated as a secondary minimum. Orbital
eccentricity and inclination can produce eclipsing binarieswith only
one minimum per orbit which will be confused with equal depth
binaries with two observed minima per orbit. The majority of our
EA/EB class with noted secondary minima have rdata vastly below
unity, as featured in the second and third panels of Fig. 10. This ex-
emplifies the uneven light curve minima associated with detached
binary systems, which also tend to have greater periods than con-
tact binaries. In contrast, even minima EW and EA/EB without a
secondary minimum cluster towards unit rdata.

For sources with no secondary minimum, we compute an ad-
ditional set of amplitudes A∗i , phases Φ

∗
i , amplitude ratios, R∗i j ,

and phase differences, Φ∗i j called double-period features using a
Fourier model with period twice that of the previously best-fitting
Fourier period. For sources with a second minimum, these features
are taken as duplicates of the prior quantities. This puts all eclips-
ing binary features on an equal footing, irrespective of whether
our Fourier model has successfully distinguished between minima
of differing depths or not. In Fig. 10, we display the training set
of eclipsing binaries using these double-period features. As noted
by Rucinski (1993), EW binaries predominantly lie below the line
a∗3 = a∗1(0.125 + a∗1). However, we find there is also significant
contamination in this region from EA/EB type. In fact, the sub-
set of EA/EB for which we fail to identify a secondary minimum
show strong overlap with the EW class in all feature sub-spaces.
For example, Fig. 10 shows the similarity of the distributions in
the consecutive minimum ratios (rmodel and rdata), period and am-
plitude ratio, highlighted by Jayasinghe et al. (2019) as useful for
distinguishing binary types. This suggests that for many cases as-
sessing whether stars in a binary system are in contact or not is not
possible with our data. We therefore accept a grey zone where EW
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Figure 8.Comparison of the periods extracted from theVVV light curveswith the literature periods for our variable star training sample (with log10 FAP < −10).
Each panel shows a different variable class. Points are coloured by the logarithm of the density of points (yellow being high density). Common aliases and
period multiples are marked, and we display the percentage difference between the two periods in the lower panels. Note the different period ranges for each
plot.
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Figure 9. Row-normalised distribution of the logarithm of Lomb-Scargle
false-alarm probability against the relative difference of our periods and the
literature periods. The greyscale is logarithmic in the density. The false-alarm
cumulative probability distributions of the variable (VAR) and constant
(CONST) training sets are shown above. We only consider sources with
false alarm probability smaller than 1 × 10−10.

and EA/EB are practically indistinguishable in feature space. Note
that when faced with a similar issue, Jayasinghe et al. (2019) per-
formed a visual re-classification of 15,000 eclipsing binaries using
ASAS-SN data resulting in a much cleaner separation of the dif-
ferent classes in the feature sub-spaces of Fig. 10. Here we accept
that the classification of near-contact eclipsing binaries is poorer for
our sample than in OGLE, and suggest that any users interested in
forming more complete samples of contact eclipsing binaries could
utilise cuts in the fuller feature space illustrated in Fig. 10.

3.2.4 Non-periodic features

Following work illustrating varying amplitudes of NIR filter band
light curves for RR Lyrae stars (Braga et al. 2018) and Cepheids
(Inno et al. 2015), we utilise variability in the VVV ZY JH bands
with respect to the Ks-band observations. We only perform this
analysis if more than one detection is available in any of the
bands. We compute XRMS/Ks,RMS as the ratio of the inverse-
variance-weighted root-mean-squared (RMS) of measurements in
band X = {Z,Y, J,H} to the RMS of the Ks Fourier model mag-
nitudes at the epochs of the X observations. Similarly, we find
the factors, Xscale, by which the Ks Fourier models need to be
scaled to fit the X band measurements. We show in Fig. 11 how
XRMS/Ks,RMS is of use in separating intrinsic variables, primarily
RR Lyrae stars and Cepheid variables, from extrinsic eclipsing bi-
nary classes. In general, intrinsic variables, particularly RRcd, show
increased variability in the shorter wavelength bands.

The classification feature space was further supplemented by
extinction-corrected colour information, in particular (H − Ks)
and (J − Ks) colours. Averaged values of J, H and Ks appar-
ent magnitudes were determined from VVV observations. Colours
were dereddened using colour excesses, here E(H − Ks)RC and
E(J−Ks)RC, calculated from red clump stars (Gonzalez et al. 2012)
over an adaptive nested Healpix grid in Galactic longitude and lati-
tude with around 25 red clump stars per pixel. Red clump giant stars
exhibit a clear peak in colour-magnitude space so are easily identi-

fiable and have a small range of intrinsic colours ((J −Ks)0 = 0.62,
(H − Ks)0 = 0.09). The colour excesses are only reliable for stars
located behind the same dust screen as the red clump tracers. This
assumption is strictly only valid at higher latitudes where the inter-
vening dust is primarily due to the nearby dust in the foreground
Galactic disc. However, we have found that the inclusion of colour
information is particularly important for separating the relatively
intrinsically blue RR Lyrae stars and red LPVs. Segregation in
colour space by class is seen in the upper right panel of Fig. 7. For
this reason, despite the shortcomings, the colour information was
considered in the final analysis.

3.3 Training the Classifier

We now describe the implementation and training of the two stage
classifier. To deal with inherent infinities and outliers in feature
distributions, due to erroneous computations, we undertake a pre-
processing routine for all training sets. We first take sine and cosine
components of the phase differences, Φi j and Φ∗i j , in stage 2. This
maps the values in the range [−1, 1] and removes the artificial dif-
ference between 0 and 2π values. The data in all features with a
large dynamic range is made to look more Gaussian-like through
the application of a feature-wise Yeo-Johnson power transformation
(Yeo & Johnson 2000). Both positive and negative infinities are then
replaced by NaN values, to be ignored during the computation of
distribution statistics. This is followed by a clipping program, where
a filter labels sources as outliers if one or more of their features are
located beyond 10 sigma of the median feature distribution value.
As an exception, we do not identify as outliers larger values of Stet-
son I, (J −Ks)0 and (H−Ks)0 as this would remove a large fraction
of LPVs. Outliers are removed from the training set decreasing the
size of the set by roughly 2 per cent. We replace the NaN entries
with the mean value of the 5 nearest neighbours found in the fea-
ture space through k-Nearest Neighbour imputation (implemented
in scikit-learn, Pedregosa et al. 2011). These steps ensured relia-
bility and robustness of the classifiers removing any irregular bias
towards our selected samples.

For stage 1, each binary classifier is generated using
the scikit-learn implementation of the RF ensemble method
(Pedregosa et al. 2011). Furthermore, the classifiers are initialised
with n_estimators=100 defining the number of decorrelated de-
cision trees in the ensemble, max_depth=8 pruning the size of each
tree, min_samples_split,min_samples_leaf=5 restricting the
number of samples required for a node split and leaf respectively,
max_features=sqrt defining the number of features considered
when deciding to split and class_weight=balanced_subsample
giving equal weight to each classification class. The best classifier
hyper-parameters were chosen based on a grid search including a
large array of possible parameters, with restriction placed on certain
parameters to avoid overfitting to the training set.

For stage 2, we create a gradient-boosting classifier using the
scikit-learn interface to XGBoost (Chen & Guestrin 2016) in-
stantiated with n_estimators=100, learning_rate=0.15 which
is the factor by which weights are updated after each learning epoch,
gamma=2 as minimum reduction in loss function required to split
a node, max_depth=8 as in the RF case, min_child_weight=3
defining the minimum sum of weights of all observations re-
quired in a child (equivalent effect to min_samples_leaf in
RF), subsample=0.8 outlining the fraction of observations con-
sidered in each tree, colsample_bytree=0.9 denoting the frac-
tion of features to be randomly sampled for each tree (equivalent
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Figure 10. Feature distributions for the eclipsing binary training set (contours correspond to 10, 20 and 80 per cent of the peak density). We split the sample into
three: detached EA/EB with a significant secondary minimum detected (green), detached EA/EB without a significant secondary minimum detected (orange),
and contact eclipsing binaries (EW, purple). The amplitude of the 3rd Fourier term, a∗3, relative to the 1st Fourier term, a∗1, (using the Fourier fits at double the
period where appropriate, see Section 3.2.4) allows separation between clearly detached (uneven minima) and contact. Rucinski (1993) propose the separating
line a∗3 = a∗1(0.125 + a∗1). The samples also separate in rdata, the ratio between consecutive minima depths, and the period. However, in general, there is
significant confusion between these classes and high-quality data is required to determine if the system is genuinely contact.
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Figure 11. Distribution of the training set in XRMS/Ks,RMS, the ratio of
the RMS of the X-band observations compared to the RMS of the Fourier
model evaluated at the epochs of the X observations (contours show 10, 50
and 80 per cent of peak density). Left panel shows the training set grouped
by ‘extrinsic’ variables (EA/EB, EW, Ell) and ‘intrinsic’ (RRab, RRcd, CEP,
T2CEP, LPV). The right panel shows a breakdown of three intrinsic classes:
RRab, RRcd and T2CEP. Note how extrinsic variables typically concentrate
around unity whilst intrinsic variables have a tendency for more variability
in shorter wavelength bands. This is particularly pronounced for the RRc
class.

to max_features in RF) and tree generator algorithm chosen as
tree_method=’hist’. We then guarantee uniform class balancing
through inversely scaling example weights by their parent class size
using the compute_sample_weight functionality.

We now discuss the accuracy of each stage of classification
and finalise the training phase of the hierarchical classifier.

3.3.1 Performance of classifier

Performance of the classifiers is examined by dividing each full
training set into a training and validation subset. This allows for the
construction of a classifier with the training portion, whose accuracy
can subsequently be tested through the classification of the valida-
tion set. The assessment procedure can be enhanced by increasing
the number of initial divisions to k “folds”. The process follows the

same steps with every combination of k − 1 folds compiled to form
the training subset, leaving the remaining fold in each iteration for
validation. The overall effectiveness of the classifier is then obtained
as the average performance over each fold. This process is referred
to as k-fold cross-validation. We choose k = 10.

Performance metrics for the validation tasks typically rely on
combinations of the number of true positive (TP), true negative
(TN), false positive (FP) and false negative (FN) classifications.
The following metrics were considered:

recall =
TP

TP+FP
precision =

TP
TP+FN

(4)

F1 = 2
(
recall × precision
recall + precision

)
(5)

The recall (more often called completeness in astrophysics applica-
tions) indicates the fraction of input example sources, for a given
class, that are correctly labelled, whilst the precision (purity) shows
the fraction of output predictions which are truly part of the class.
The harmonic mean of these metrics constitutes the F1 score, giving
an overall measure of accuracy for the classification. Confusion ma-
trices also serve as useful visual tools to inspect the performance of
a classification process. The recall for each class is shown along the
leading diagonal with the fraction of false negatives and false pos-
itives, with respect to other classes, shown in adjacent cells along
each row and column respectively.

A quantitative summary of the averaged 10-fold cross-
validation scores obtained for the 348 initial binary classifiers is
shown in Table 2. We quote the mean and standard deviation of the
metrics over the classifiers. The corresponding confusion matrix is
given in the left panel of Fig. 12. The macro F1 average, where
macro signifies normal averaging such that all predictions are given
equal weight, is 0.854 ± 0.021 showing a notable level of discrimi-
nation between the variable and constant training classes. Classifier
accuracy depends highly on the Galactic positioning of the tile in
question, as shown in the distribution of F1 scores over the foot-
print in Fig. 13. Performance peaks in the high cadence region of
VVV (+2.417◦ ≤ ` ≤ +6.807◦ and −3.138◦ ≤ b ≤ −2.043◦ where
there are ∼ 200 − 600 detections per source) and more sparsely
populated parts of the bulge and disk, where constant sources are
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Figure 12. Normalised confusion matrix for 10-fold cross-validated variable/non-variable star classifier (left) and variable star classifier (right). The x-axis
represents the classification predicted by the model for the set of known labels shown on the y-axis.

Table 2. Aggregated 10-fold cross-validation results for the 348 binary classifiers. The arithmetic mean of each performance score and class size is shown,
with the standard deviation of the scores quoted as well.

Broad Class precision recall F1 score class size
VAR 0.915 ± 0.048 0.862 ± 0.018 0.887 ± 0.031 401 363
CONST 0.774 ± 0.081 0.877 ± 0.030 0.820 ± 0.048 255 060
Macro average 0.844 ± 0.027 0.870 ± 0.021 0.854 ± 0.021 656 423
Weighted average 0.877 ± 0.025 0.868 ± 0.019 0.870 ± 0.020 656 423
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Figure 13. Grid of 348 VVV tile binary classifiers colour mapped based on F1 score of 10-fold cross-validation. Performance is greatest for high latitude tiles
and those found in the high cadence region (+2.417◦ ≤ ` ≤ +6.807◦ and −3.138◦ ≤ b ≤ −2.043◦) and decreases towards the crowded regions of the Galactic
midplane ( |b | < 2◦).

sufficiently sampled or isolated to limit the effect of spurious mag-
nitude measurements. In contrast, the crowded tiles towards the
Galactic midplane exhibit lower F1 scores of typically 0.77 due to
the decrease in observational accuracy.

We show in Fig. 14 the average misclassification rate averaged

over all first-stage classifiers, equivalent to 1 − recall, as a function
of Ks magnitude and split by detailed class. RRab, the majority of
which are within 14 ≤ Ks ≤ 15, are efficiently identified with mis-
classification rates strictly below 1 per cent within said boundaries.
EW and the joint Cepheid class CEP/T2CEP display good recovery
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Table 3. 10-fold cross-validation results for second stage classifier divided by
individual classes. Macro and weighted performance averages are also given
where scores are aggregated with equal weighting or weights proportional
to class size respectively.

Variability Class precision recall F1 score class size
EW 0.522 0.852 0.648 39 874
EA/EB 0.927 0.655 0.768 109 127
Ell 0.592 0.874 0.706 11 156
RRab 0.945 0.975 0.961 22 387
RRcd 0.814 0.928 0.867 6 663
CEP 0.802 0.647 0.716 300
T2CEP 0.805 0.870 0.836 545
LPV 0.879 0.918 0.898 364
CONST 0.997 0.996 0.997 34 449
Macro average 0.809 0.857 0.822 224 865
Weighted average 0.847 0.794 0.801 224 865
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Figure 14. Misclassification rate for the 1st stage binary classification. We
show the results for the variable star training set as a function of Ks magni-
tude averaged over VVV tiles. The line width reflects the training set density
with a broader band corresponding to higher density. NoteDelta Scuti are not
included in the second classification stage due to the high misclassification
rate.

with rates of 5 and 2 per cent at peak source density respectively.
Lower amplitude variable stars such as EA/EB, Ell and RRcd are
harder to discern from constant sources and aremisclassified as con-
stant sources in 10 to 30 per cent of predictions. Around 30 per cent
of LPV sources are misclassified towards the bright magnitude end
where saturation and bleeding are more commonplace leading to
erroneous variability indices. Though significant misclassification
is apparent for these classes, the sources affected do not have satis-
factory VVV light curves for accurate period extraction and further
classification. Our sample of DSCT sources, also observed to have
insignificant amplitudes, are rarely classified as variables with a

standard recall of 0.3. We are therefore unable to determine these
sources in the survey and ignore the class for stage 2. This anal-
ysis leads us to believe that the first stage selects the majority of
worthwhile variables across the whole footprint as intended.

Similar analysis is given in Table 3 for the cross-validation
performance of the second-stage classifier. We report scores com-
puted for each class and give the corresponding confusion matrix
in the right panel of Fig. 12. The macro F1 for the classifier is
0.822. It is clear that RR Lyrae variables are most accurately clas-
sified, with 97 per cent true positive rate for RRab and 93 per cent
for RRcd. This is a product of the narrow and distinctive regions
in feature space populated by these sources as illustrated previously
(see Fig. 7). The LPV class also achieves high accuracy with only
an 8 per cent misclassification rate. This is expected as the majority
of the class consists of high amplitude red Mira variables, easily
discernible from other entities in period, amplitude and colour. In
contrast to this, detached and contact eclipsing binaries are signifi-
cantly mixed, with 28 per cent of the training set EA/EB identified
as EW and 12 per cent of EW sources labelled as EA/EB. This is
due to the inherent similarities between both variable types and
no decisive physical class boundary as discussed in Section 3.2.3.
The ellipsoidal binary class (Ell) suffers a smaller loss in accuracy
due to resemblance with its eclipsing counterparts, and is mis-
classified 8 per cent of the time as either EW or EA/EB classes.
Relatively low levels of EA/EB, EW and Ell contamination in other
classes are noted. However, as the EA/EB represents the largest
training class, any degree of misclassification brings about a large
number of contaminants. This entails low precision scores for the
severely contaminated classes such as 0.522 and 0.592 for EW and
Ell classes respectively. Classical Cepheid variables are recovered
in 65 per cent of predictions as a result of the limited training set
available and similarity to Ell examples. We also note a complete
separation between all variables classes and the CONST class as
a result of the differing log10(FAP) distributions and periodic fea-
tures. Note that our quoted statistics reflect the success with which
we recover the labels in the training set. Any misclassifications in
the training set likely reduce the genuine success rate with which
we classify true class members.

With high accuracy, specifically for variable classes of primary
interest, we evaluate the second stage of the classifier as successful.
The efficacy of the whole method can be examined by compounding
the performance of each stage. We believe this results in a compe-
tent workflow to extract and identify variable sources. Furthermore,
we bias towards sources with high degree of periodicity produc-
ing low contamination from constant sources and between variable
classes. This in turn leads to an incomplete but somewhat reliably
classified output catalogue. We proceed by retraining all classifiers
in both stages on their full respective training sets and store them
for application on unknown sources.

3.3.2 Feature importance

Akey advantage of ensemble classification is the ability to assess in-
dividual feature importances. These measure the normalised mean
decrease in decision tree impurity as a result of feature inclusion
for RF classifiers (Breiman 2001) and the overall feature contribu-
tion to loss reduction along tree branches for XGBoost ensembles
(Chen & Guestrin 2016). In either case, all incorporated feature
importances sum to unity. Furthermore, each feature importance
is computed independently and does not account for correlation
between attributes. Hence, quantities outlining the same physical
properties may have equally large independent importances. Con-
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Figure 15. Relative feature importances for all binary classifier features (top) and top 40 variable star classifier features (bottom). All importances for features
employed in either case sum to unity.

sequently, feature combinations of these quantities would lead to
meager increases in importance.

Table B1 in Appendix B gives the full feature ranking for the
first and second stage classifiers. Fig. 15 displays this information
visually, limiting to the 40most important features for the secondary
classifier. The greatest distinguishing factor for the initial classifi-
cation is the level of correlation between consecutive time-series
points included as the Stetson I and J indices. Other light curve
spread statistics, such as percentile ranges and median absolute de-
viation, are also influential in stage 1 classifications. Similarly, the
degree and cadence of periodicity quantified as log10(FAP), the pe-
riod and the amplitude are used to greatest effect when determining
the specific variability type of the sources in stage 2.

It must also be noted that these quantities establish the gen-
eral importance of a feature in all classifications. We therefore ex-
pect distinction between specific class boundaries to rely on certain
features, possibly quantified as relatively unimportant overall. For
example, phase differences are particularly useful differentiating
between asymmetric and symmetric light curves such as RRab and
EW, respectively, and colour amplitude ratios in separating extrinsic
and intrinsic variables. However, these features are not instrumental
in all classifications.

4 CLASSIFICATION OF THE ENTIRE VVV SURVEY

We now apply the constructed hierarchical classifier to first extract
candidate variable stars from the full VVV survey and then cate-
gorise their variability type.

The 490million unclassified VVV source ZY JHKs photomet-
ric light curves and variability indices, described in Section 2.1, are
stored in a spatially arranged grid of 22 585 files created through
HEALpix pixelization (Górski et al. 2005) of the on-sky survey foot-
print. We begin by splitting the file group into 128 ‘chunks’ and
parallelise the computation over individual pixels in each chunk
and over the chunks themselves. This severely reduces the compute
time.

The end-to-end procedure carried out for each pixel is the same
and begins by locating the VVV tiles within which the pixel sources
are found. The corresponding tile binary classifiers are then loaded
from disk and used to classify the input sources based on their
computed variability indices. Note that we pre-process and nor-
malise the feature entries before classification in the same way as
in Section 3.3. Candidate variables are selected as outputs labelled
variable with first stage classification probability greater than 0.65,
where probabilities denote the fraction of trees in the RandomForest
which reach majority consensus. Stage 2 periodic and non-periodic
features, outlined in Section 3.2, are then computed for each candi-
date in order to predict the variability type using the trained detailed
variable classifier loaded from disk.

On average this resulted in 24.5 per cent of sources labelled
as candidate variables to be classified further. The vast majority
of these were determined to be constant sources by the secondary
classifier due to ambiguous periodic or non-periodic features. In-
spection of the output set of roughly 1.9 million variable sources
showed narrow overdensities in source count around observational
aliases, a signature of spurious period extraction. Sources with out-
put frequency (1/Period) within a narrow ±2.5 × 10−4 day−1 win-
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dow of a reciprocal sidereal day, and its integer multiples fn =
n∗(sidereal day)−1 day−1 for n = 2, 3, ..., 9,were removed.Addition-
ally, we included the above sidereal frequencies ±1/365.25 day−1

to the removed range in order to account for coupling with year
aliases. Following this procedure, a remaining set of 1, 364, 732
sources were characterised as periodic variables with no clear alias
signal. We display the classification results by class as well as
their grouping based on classification probability in Table 4 and
denote the number of sources recovered from our initial training
set. 198, 476 predictions detail sources found in our initial vari-
able set, of which 155, 676 have matching class labels. We attribute
the loss of 51.1 per cent of initially collected variables primarily to
the strict log10(FAP) cut performed when constructing the second
stage training set. This places a selection bias in favour of entries
with a high degree of periodicity recognised in their Lomb-Scargle
periodograms. In contrast, we recover 90.6 per cent of the second
stage training set which satisfy the false alarm probability con-
straint. The 42, 800 predictions of known variables with incorrect
labelling (21.6 per cent of all recovered sources) agrees roughlywith
20 per cent average contamination rate between variable classes at-
tained from cross-validation of the training set (see Section 3.3.1).

XGBoost classification probability, pC , for a class,C ∈Classes
= {EA/EB, EW, Ell, RRab, RRcd, CEP, T2CEP, LPV}, is given by

pC (x) =
eFC (x)∑

i∈Classes
eFi (x)

(6)

where x is the example feature entry and {Fi(x) for i ∈ Classes}
is the set of class prediction scores output by the classifier. From
here on, we discard class notation and annotate the probability of
classification as p with C taken as the predicted class. In Fig. 16
we show the distribution of second-stage classification probability
for predictions in each class. Bimodal distributions are noticed for
nearly all of the classes, with a sharp peak at high probability and
a lower peak in the range 0.4 to 0.6. The former peak corresponds
to sources with features in complete agreement with their predicted
training class, whilst the latter incorporates sources with similarity
to multiple classes. Contact binaries (EW) stand out with a distinct
lack of high probability predictions, with only 1.0 per cent of predic-
tions having p ≥ 0.95. We believe this is a result of a broad EA/EB
training set incorporating a portion of sources near identical to EW
in all features (see Section 3.2.1). This entails significant classifier
scores associated with the EA/EB class for EW predictions, limit-
ing high probability outputs. Examples of high confidence, p > 0.9
and ∆ logL > 300, extracted variable light curves are shown in
Fig. 17. These sources are found within 2 deg of the Galactic plane,
showing the ability to extract and determine periodic stars in chal-
lenging observational regions with the NIR survey. The similarity
between the first EA/EB light curve and the EW light curve col-
umn emphasises the difficulty in differentiating between eclipsing
binary subtypes. The confusion between eclipsing binary subtypes
highlights a limitation of the supervised learning approach. Un-
supervised learning algorithms such as locally linear embedding
or t-distributed stochastic neighbor embedding may allow for re-
classifications of the spectrum of eclipsing binaries in our dataset
(Matijevič et al. 2012; Kirk et al. 2016; Bódi & Hajdu 2021) and a
cleaner separation of classes. However, our reported statistics and
the classification probabilities give an honest reflection of the am-
biguity in classification given the set of well-motivated classes we
employ and the quality of our data.
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Figure 16. Distribution of classification probability for catalogued variable
sources. Area is normalised to one for each class. Bimodality with a high
probability (p > 0.9) peak is present for each class apart from the shaded
light blue EW distribution peaking around p = 0.55.

4.1 Contamination of the catalogue

Complete visual inspection of the output catalogue requires large
amounts of time and countless pairs of eyes. We therefore limit the
exercise to a thousand sources in each class to gauge misclassifi-
cation estimates in various probability ranges. This is carried out
through reviewing the shape of phase-folded light curves in com-
parison to known variable light curves. Misclassifications are noted
if no periodicity is apparent or light curve shape resembles that of
a class other than the one predicted. We find the former much more
prevalent and due primarily to a faulty period extraction yielding
observational aliases. We outline in Fig. 18 the results of the visual
inspection. All classes have below 5 per cent misclassifications for
predictions with p > 0.9. The RRab sample is particularly impres-
sive with lower than 1 per cent misclassified sources for p > 0.8,
where the majority of the output class lie. The same is seen for the
EW class, with p = 0.8 marking the high end of its shifted prob-
ability distribution. We neglected consideration of the LPV class
due to concerns of largely erroneous period extraction, mentioned
in Section 3.2.2, which would entail severe misclassification rates.

We provide the catalogue in its entirety and advise the use
of known class boundaries for physical features, such as period or
amplitude ranges, paired with probability cuts in order to provide
minimally contaminated samples, primed for scientific use-cases.
These representative samples can be further refined by restricting
features outlining the quality of the model fit or periodicity (e.g.
∆ logL, FAP, LSmax or LSdisp).

The normalised on-sky density distribution for sources with
p ≥ 0.9 is illustrated in Fig. 19 for all variability classes. The EW
and RRcd maps show lower density in the Galactic midplane where
quality of light curves is more limited. This effect is less pronounced
for the RRab sample which shows reasonable coverage in the mid-
plane and dense sampling across the rest of the footprint. In contrast
we see classical and Type II Cepheid variables peaking in the central
bulge regions, possibly tracing in part a young inner disk population
(Dékány et al. 2015). We also note the flattened LPV distribution
which appears to follow the extinction. This suggests that colour is
a primary factor in classifications for this class, with long period
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Table 4.Classification summary of the entire VVV survey.We give the number of classifications for each class and the percentage with classification probability,
p, greater than 0.8, 0.9 and 0.95. The total number of sources recovered from the variable set constructed in Section 2.2 is also quoted as well as the number
of these for which our classifications agree with the literature.

Class # of classifications p ≥ 0.8 (%) p ≥ 0.9(%) p ≥ 0.95 (%) # recovered
sources

# with matching
class

EW 338 647 22.5 5.3 1.0 69 085 37 361
EA/EB 599 529 41.7 31.2 25.2 85 673 81 318
Ell 155 822 53.6 37.8 25.1 12 722 8 266
RRab 53 728 77.3 71.9 67.4 23 200 22 031
RRcd 16 369 57.5 48.3 40.9 5 993 5 052
CEP 5 900 33.0 23.4 17.3 320 283
T2CEP 8 830 34.9 24.5 18.6 708 629
LPV 185 907 77.1 65.7 55.6 775 736
Total 1 364 732 44.6 31.9 25.1 198 476 155 676
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Figure 17. Example light curves classified by our algorithm. Each column corresponds to a different class. All sources were selected to be within 2 deg of the
Galactic plane, to have high classification probability (p > 0.9) and to have log-likelihood difference between the periodic and constant model > 300.

redder sources predominantly labelled as such. However, it should
also be noted that typically these sources would be intrinsically
very bright in VVV so significant extinction is required to avoid
saturation. The LPV overdensity towards the Galactic centre region
is likely related to the nuclear stellar disc (Launhardt et al. 2002).

4.2 Catalogue completeness

The design of our algorithm has been chosen to minimise contami-
nation at the expense of lowering the completeness. In general, the
completeness of our catalogue is difficult to assess as any calcula-
tion is biased by the properties of our training set. However, here
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Figure 18. Visually determined cumulative misclassification rate against
probability of classification. Rates for high probability (p > 0.9) sources are
shown by intersections with the vertical black line. Distributions end when
no more contaminants are found in the probability range of the samples.

we investigate the completeness of the RR Lyrae star sample with
respect to the latest OGLE results (Soszyński et al. 2019).

In Fig. 20 we compare the properties of our RR Lyrae stars
(bothRRab andRRcd) to theOGLE sample. The on-sky distribution
of OGLE RRab and our (completeness-corrected, see later) VVV
RRab sample with p > 0.9 and Ks < 16 are shown in the bottom
right. The overall morphology of the samples is similar with the
VVV sample reaching further into the high-extinction plane. The
RRab related to the Sagittarius stream are visible in the OGLE data
around (`, b) = (5,−8) but are too faint (Ks > 17) for VVV.

Due to ‘dead’ regions in the OGLE camera, the absolute com-
pleteness of any OGLE dataset is reduced by 6 − 7 per cent. Fur-
thermore, by inspecting duplicate sources, Soszyński et al. (2019)
evaluate the completeness of the remaining RRab and RRcd as 96
and 91 per cent respectively. We can thus treat the completeness
with respect to OGLE as being indicative of the overall complete-
ness. In the top left and middle panels of Fig. 20, we show the
fraction of VIRAC-2 cross-matches in the full OGLE RR Lyrae
star sample (using a cross-match radius of 0.4 arcsec and account-
ing for the epoch difference using the VIRAC-2 proper motions)
which enter our final variable star catalogue. We see that the com-
pleteness is around 90 per cent for RRab with more than ∼ 150
epochs and 14 < Ks < 15. A similar conclusion was reached
by Contreras Ramos et al. (2018) who found ∼ 10 per cent of the
OGLE RRab were low-amplitude and difficult to detect with VVV.
Restricting to only those with p > 0.9 only weakly changes the
completeness suggesting many objects with p < 0.9 are not gen-
uine RRab. The tail at faint magnitudes arises due to increased
uncertainties in VVV. The bright magnitude tail is a reflection of
the higher misclassification rate seen in Fig. 14. For RRcd, the com-
pleteness is lower and decays at brighter magnitudes due to their
lower amplitude. Furthermore, limiting to p > 0.9 sources more
significantly changes the contamination suggesting this cut is too
strict and removes some genuine RRc. In the top right of Fig. 20 we
show the cumulativemisclassifications by us of theOGLERRLyrae
stars as a function of classification probability. We also show the
RRab misclassification rate determined by eye from Fig. 18 which
agrees very well with the OGLE result. This gives us confidence
that for p > 0.9 the misclassification rate (contamination) is below
1 per cent.

In the lower left of Fig. 20 we show the density profile of
OGLE and VVV RRab with Ks < 16 as a function of Galactic

latitude. Here we have corrected the VVV number counts for the
incompleteness of the VVV RRab sample with respect to OGLE
(top left). For b . −3 deg, we see the very good correspondence
between the two density profiles, which is well fitted by an expo-
nential profile with scalelength 4.5 deg. This test is not trivial as it
requires low contamination in our VVV sample. Note at positive
latitudes the OGLE density is lower than symmetry would suggest,
whilst our sample well matches the symmetric prediction, suggest-
ing OGLE is incomplete above the plane. Finally, we see that the
VVV density profile continues as predicted by the simple model
to slightly lower latitudes than OGLE, reflecting VVV’s ability to
probe further through the midplane dust.

5 SCIENCE POTENTIAL OF THE CATALOGUE

A full investigation of the contents of the catalogue is beyond the
scope of this work, and we intend on producing more detailed sci-
ence studies resulting from this catalogue in future works. However,
to close the presentation of this new catalogue, we will present some
preliminary results highlighting the scientific potential of the cata-
logue.

5.1 Spatial and kinematic distributions of RR Lyrae stars

We briefly investigate the spatial and kinematic distributions of the
RR Lyrae stars in our catalogue. As highlighted in the introduction,
these stars are useful Galactic tracers due to their tight period-
luminosity relation and bias towards old, metal-poor systems. Our
investigation here is brief and we refer readers to the more thorough
work of Du et al. (2020) using OGLE RR Lyrae stars, which we
corroborate here.

We use the period-luminosity-metallicity relations for RR
Lyrae stars in theLargeMagellanicCloud (LMC) fromCusano et al.
(2021). These relations are in the VISTA bands. For RRab type the
relations are

J =(17.888 ± 0.008) − (2.45 ± 0.02) log10 P

+ (0.121 ± 0.004)[Fe/H],
Ks =(17.547 ± 0.008) − (2.80 ± 0.02) log10 P

+ (0.114 ± 0.004)[Fe/H],

(7)

whilst for RRc type they give

J =(17.225 ± 0.03) − (2.53 ± 0.05) log10 P

+ (−0.010 ± 0.012)[Fe/H],
Ks =(16.850 ± 0.026) − (2.99 ± 0.05) log10 P

+ (0.011 ± 0.012)[Fe/H].

(8)

We adopt an LMC distance modulus of 18.477 mag from
Pietrzyński et al. (2019). Dékány et al. (2021) has shown bar-bulge
OGLE RRL have a metallicity mode of −1.38 dex corresponding
approximately to −0.94 dex on the Skowron et al. (2016) scale used
by Cusano et al. (2021). For simplicity, we adopt this metallicity for
all RRL. To avoid dealing directly with extinction, we utilise the
Wesenheit magnitude (Madore 1982)

WJKs = Ks − RJKs (J − Ks). (9)

Alonso-García et al. (2018) report RJKs = (0.428 ± 0.04) in the
VISTA bands based on the observed colour-magnitude slope of
bulge red clump in VVV, and Wang & Chen (2019) report RJKs =

(0.443 ± 0.036) for 2MASS bands using red clump stars from the
APOGEE spectroscopic survey. We use RJKs = 0.428 which also
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Figure 19. On-sky distributions of high-probability (p > 0.9) variable sources of each class. The colour-scale is logarithmic.
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Figure 20. Properties of the RR Lyrae stars in comparison to the OGLE-4 catalogue of Soszyński et al. (2019). The top row shows the completeness (number
of OGLE sources in VIRAC-2 recovered by our procedure) against Ks magnitude (left) and number of detections (middle). The right top panel shows the
cumulative rate of RR Lyrae stars in OGLE classified differently by us. We also display the misclassification rate from visual inspection of the RRab set (from
Fig. 18) in black dashed, which agrees well with the OGLE comparison. The lower set of panels show the density of RRab in OGLE-4 and VVV. The VVV
density is completeness-corrected with respect to OGLE using the dashed green curve in the upper left panel. The left panel shows the density in Galactic
latitude for the bulge region ( |` | < 10 deg, |b | < 10 deg) using stars with Ks < 16 where we also show a by-eye exponential fit with scaleheight 4.5 deg. The
right two panels show the on-sky number counts for the full OGLE RRab sample and the completeness-corrected VVV sample with Ks < 16.
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Figure 21. Properties of the RR Lyrae star sample: the left two panels show the top-down view of RRab (top) and RRcd (bottom) samples in Galactocentric
coordinates. Contours show the 20 (33) and 50 (66) per cent of peak density for the top (bottom) panel. The black line corresponds to a bar angle of 28 deg.
The middle panel shows the volume density of sources within 2 deg of the bar-bulge minor axis using the period-luminosity-metallicity calibrations from
Cusano et al. (2021). The right panel shows the mean velocities of RRab in the Galactic longitude (`) direction, separated into ` > 0 (circles) and ` < 0
(squares). Simple tanh models are fitted in orange (dashed is ` < 0).

matches very nicely the slope of the colour-magnitude distribution
of the RRab sample.

In Fig. 21 we display the top-down view in Galactocentric
coordinates of the high-confidence (p > 0.9) RR Lyrae ab and
c/d stars. Both populations show a clear elongation in the same

sense as the more metal-rich red clump stars (e.g. Wegg & Gerhard
2013) with a major axis very close to 28 deg away from the Galactic
Centre-Sun line. Du et al. (2020) reached similar conclusions based
on the OGLE-4 RR Lyrae ab star sample, showing that the metal-
rich RRab are aligned with the bar whilst the metal-poor RRab

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stab3116/6414542 by C

atherine Sharp user on 03 N
ovem

ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

22 T. A. Molnar, J. L. Sanders et al.

have a smaller bar angle. We also find that the volume density for
both populations of RR Lyrae stars peaks very near the distance of
Sgr A* (8.18 kpc, Gravity Collaboration et al. 2019). Some small
discrepancies are perhaps expected due to the lack of more metal-
rich RRLyrae stars in the LMC sample used by Cusano et al. (2021)
for the period-luminosity-metallicity calibration. Finally, we show
the velocity in the Galactic longitudinal direction corrected for the
motion of Sgr A* (Reid & Brunthaler 2020) for RRab either side
of the bulge minor axis. We have fitted simple models of the form
v` = (A/b) tanh(b(s−s0)) to both populations finding a rotation rate
of A = (39.0±2.9) km s−1kpc−1 and A = (43.2±2.2) km s−1kpc−1

for ` > 0 and ` < 0 respectively. As noted by Du et al. (2020),
this rotation rate is slower than that of the metal-rich bar-bulge
stars indicating their greater pressure support. It remains to be seen
whether the kinematics indicates the pattern speed of the RRab stars
is similar to that of the metal-rich stars as suggested by their spatial
alignment.

5.2 Period-luminosity relation of contact Eclipsing Binaries
(EW) and the Gaia EDR3 parallax zeropoint

The two components of a contact eclipsing binary (EW) fill their
Roche lobes and their envelopes are in contact. This typically leads
to equilibrium of the surface temperatures and hence a highly sym-
metric light curve where the minima from each eclipse are difficult
to distinguish. In this regime, the enclosed mean density is di-
rectly related to the orbital period of the binary, leading to tight
period-luminosity relations. Chen et al. (2018b) calibrated the EW
period-luminosity relations in the 2MASS bands using Gaia DR1
data, finding

J2 = (−0.04 ± 0.11) − (6.87 ± 0.25) log10 P,

Ks2 = (0.00 ± 0.09) − (5.95 ± 0.21) log10 P,
(10)

with dispersions of 0.23 and 0.19 respectively. Using the VISTA-
2MASS calibrations as reported by González-Fernández et al.
(2018), we find

J = −0.039 − 6.84 log10 P,

Ks = −5.94 log10 P.
(11)

The difference in the magnitude systems produces smaller differ-
ences than the uncertainties in the calibration.

As highlighted in the introduction, eclipsing binaries are
fairly unbiased tracers of the entire Galactic population so well
represented across the sky. Furthermore, they are predominantly
dwarf stars so relatively nearby. For these reasons, they make
ideal calibrators for the Gaia parallax zeropoint. Lindegren et al.
(2021a) describes how astrometric solutions were computed for
around 1.5 billion stars in the early third data release of Gaia
(Gaia Collaboration et al. 2016, 2021). Lindegren et al. (2021b)
provided a magnitude-, colour- and ecliptic-latitude-dependent cor-
rection for both 5 and 6 parameter solutions based on a sample of
quasars. We take all of our high-confidence (p > 0.8) EW candi-
dates with periods −0.55 < log10 P/ day < −0.25 and with Gaia
EDR3 cross-matches within 0.5 arcsec accounting for epoch dif-
ference using Gaia proper motions). We further restrict to stars
with RUWE< 1.4 and which have Gaia EDR3 parameters within
the recommended bounds for applying the Lindegren et al. (2021b)
parallax zeropoint corrections2. This results in 9872 stars with five-
parameter astrometric solutions and 23030 with six.

2 https://gitlab.com/icc-ub/public/gaiadr3_zeropoint/

In Fig. 22 we show the median difference between the parallax
computed via the period-luminosity relations from equation (11)
(again using the Wesenheit magnitude from equation (9) and adopt-
ing RJKs = 0.428) and the Gaia EDR3 parallax, both corrected and
uncorrected. We split the sample by stars with 5 and 6 parameter
astrometric solutions in Gaia EDR3, and also by magnitude, colour
and on-sky location of the stars.We observe that the rawGaia EDR3
parallaxes are significantly underestimated. This is somewhat fixed
by applying the Lindegren et al. (2021b) parallax zeropoint correc-
tions although in general results in an overestimate of the parallaxes
relative to those computed from the period-luminosity relations.
Indeed, without any correction the median difference (Gaia EDR3
minus EW period-luminosity relation) for 5 (6) parameter astromet-
ric solutions is (−0.022±0.002)mas ((−0.010±0.003)mas), whilst
after applying the recommended correction we find 0.011 ± 0.002
(0.013±0.003). This agrees well with the results of Ren et al. (2021)
who performed a similar analysis using 110, 000 contact bina-
ries fromASAS-SN (Jayasinghe et al. 2018), ATLAS (Heinze et al.
2018), WISE (Chen et al. 2018a) and ZTF (Chen et al. 2020), find-
ing the recommended parallax corrections overcorrect the parallaxes
by ∼ 4 µas with some dependence on on-sky position. They find in
particular a tendency for larger overcorrections near the Galactic
bulge region. They also find a significant trend of the parallax shift
with magnitude as shown in the upper left panel of Fig. 22. Addi-
tionally, Huang et al. (2021) reach very similar conclusions using
a sample of red clump stars from LAMOST with 10 . G . 15,
finding after correction the Gaia EDR3 parallaxes are overestimated
by 4.0(1.1) µas for 5-(6-)parameter solutions. We find for our sam-
ple there is very little colour or Galactic latitude dependence to the
mean shift (although note the sample only covers a narrow range in
Galactic b). However, we do find there is a weak Galactic longitude
dependence in the 5-parameter solution results with the bulge re-
gion having a smaller (corrected) parallax overestimate than for the
disc. This could be related to variations in the extinction coefficients
across the Galaxy (Schlafly et al. 2016). Finally, we note that this
analysis rests on an accurate period-luminosity calibration for the
contact binaries. We also looked at the period-luminosity relations
provided by Jayasinghe et al. (2020) which are ∼ 0.1 mag brighter
than those reported by Chen et al. (2018b). However, these produce
a corrected parallax zero-point of ∼ 0.04 mas. This more suggests
a bias in the Jayasinghe et al. (2020) relations possibly caused by
the quite strict parallax signal-to-noise cut of 20. A fuller analysis
would simultaneously measure the Gaia EDR3 parallax zeropoint
and the period-luminosity relation (e.g. Sesar et al. 2017).

6 CONCLUSION

We have applied an automated variability classification algorithm
to the Vista Variables in the Viá Laćtea (VVV) survey data to
generate VIVACE (the VIrac VAriable Classification Ensemble), a
catalogue of variable star classifications. We use a new astromet-
ric and photometric reduction of VVV, VIRAC-2, which provides
point-spread function photometry, includes a new zeropoint cali-
bration with respect to 2MASS and combines common detections
into an iterative astrometric fit. We ran our algorithm on an initial
sample of ∼ 490 million sources. The automated selection process
was performed hierarchically using a two-stage classifier. The first
stage utilised a random forest to separate constant and likely vari-
able sources using a set of simple variability summary statistics.
The constant training set was constructed using low-amplitude stars
selected from the Gaia 3rd Early Data Release, whilst the variable
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Figure 22. Comparison of parallaxes computed from contact eclipsing binary (EW) period-luminosity relations and those from Gaia EDR3 for EW identified
by us with classification probability p > 0.8. Orange circles show differences with the suggested corrections from Lindegren et al. (2021b) and purple squares
without. The top (bottom) row shows the results for five(six)-parameter astrometric solutions. The numbers in each subpanel give the median difference over
the displayed bins.

set was formed primarily from OGLE classifications and the VSX
compilation and included RR Lyrae stars, eclipsing and ellipsoidal
binaries, Cepheids and long-period variables. A unique classifier
was trained for each tile in VVV (1.5 × 1.1 deg2) to accommodate
variations in observing strategy and quality. The binary classifier
was on average able to correctly recall ∼ 86 per cent of the variable
training set with a precision of ∼ 92 per cent. In particular, the in-
correct classification of known RRab as constant sources was below
1 per cent.

The second stage used gradient boosting trees to perform a de-
tailed classification of the likely variable sources. The feature setwas
complemented with periodic features computed from Fourier fits to
the candidate light curves. We also introduced features to accentu-
ate the differences between different binary classes and multi-band
photometric features to distinguish between intrinsic and extrinsic
variability. The resulting macro averaged precision of our classifi-
cation was 81 per cent with 86 per cent recall. Our most successful
classifications are for RR Lyrae ab stars for which we achieve a
94.5 per cent precision and 97.5 per cent recall.

The algorithm was applied to the entire VVV survey yielding
∼ 1.4million classified variable sources.Alongside this publication,
we have provided the properties of these sources, their classification
and the set of light curve summary statistics. Proper motions (and
potentially a subset of the light curves) will be published along with
the full VIRAC-2 catalogue (Smith et al., in prep.). Through a visual
inspection, we have found restricting to classification probabilities
> 0.9 yields samples which are < 5 per cent contaminated for all
classes. This drops to < 1 per cent for RR Lyrae ab stars which is
corroborated by comparison to the overlapping OGLE RR Lyrae
star sample. This comparison also suggests the presented RR Lyrae
ab star sample is approximately 90 per cent complete whilst the
RR Lyrae c/d star sample is approximately 50 per cent complete.
The final high-confidence (prob.> 0.9) subset of our catalogue
consists of ∼ 38, 600 RR Lyrae ab stars, ∼ 7900 RR Lyrae c/d stars,

∼ 17, 900 contact eclipsing binaries, ∼ 186, 900 detached/semi-
detached eclipsing binaries, ∼ 1400 classical Cepheids and ∼ 2200
Type II Cepheids of which we find ∼ 205, 000 of these noted in
VSX (accessed July 2021).

As an illustration of the potential of the VIVACE catalogue,
we investigated the properties of RR Lyrae and contact eclipstars
sing binaries using the tight empirical period-luminosity relations
for these sources. We demonstrated how the spatial alignment of
the bar-bulge RRab and RRcd stars is very similar to that of the
more metal-rich populations, whilst exhibiting a lower rotational
velocity consistent with increased pressure support. Using the con-
tact binaries we have shown that, assuming the period-luminosity
relations of Chen et al. (2018b), the Gaia EDR3 parallax zeropoint
corrections fromLindegren et al. (2021a) overcorrect the parallaxes
by ∼ 10 µas with evidence of a weak magnitude dependence and
variation with Galactic longitude (Gaia EDR3 parallaxes typically
more overestimated in the southern disc).

Our catalogue is the first covering the entirety of the VVV
footprint, and represents a significant advance in indexing variable
stars within the high extinction regions of the Milky Way. We look
forward to this catalogue being used to further investigate and un-
derstand the structure and formation of the Milky Way.

DATA AVAILABILITY

The VIVACE table of classified sources along with
their light curve statistics will be made available
through Vizier. We have made the table available at
https://people.ast.cam.ac.uk/~jls/data/vproject/vivace_catalogue.fits
temporarily. We have provided the basic identifying properties,
light curve statistics used in our classification, mean ZY JHKs pho-
tometry and a cross-match to Gaia EDR3 (Gaia Collaboration et al.
2021). Further properties of the sources will be published along
with the full VIRAC v2 catalogue (Smith et al., in prep.). All
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other data used in the training steps (OGLE and VSX) are in
the public domain. The code used in this project is available at
https://github.com/thomasmolnar/virac_classifier.
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APPENDIX A: OPTIMAL REGULARIZATION FOR
FOURIER MODEL FITS

When fitting Fourier models described by equation (3) with a large
number of terms to relatively sparse light curves, higher likeli-
hood fits can be obtained by increasing the power in the higher
frequency terms at the expense of large oscillations in regions
with no data. Such unphysical behaviour is a priori unlikely so
we introduce a prior (also known as regularization) that biases
the Fourier amplitudes ai, bi towards zero, increasingly so for the
high frequency terms. Following VanderPlas & Ivezić (2015), a
regularization term θTΛθ was included in χ2 which is equiva-
lent to putting a normal prior on θ with mean zero and covari-
ance matrix Λ−1. We choose Λ as a diagonal matrix with diago-
nal λTrΣ−1n2 = λTrΣ−1(0, 0, 0, 1, 1, 4, 4, · · · ), which minimises the
curvature of the Fourier fits by increasingly penalising the higher
frequency terms. Σ is the covariance matrix of the magnitude mea-
surements and gives an appropriate scaling for the prior. The choice
of λ is somewhat arbitrary: too high and we fail to fit genuine
periodic signal; too low and we fail to penalise highly oscillatory
solutions. The optimal λ for a given light curve can be selected by
minimising the linear model cross-validation score

CV =
1
N

N∑
i=1

χ2

(1 − Hii)2
, (A1)

where the projection matrix H is given by

H = Xω(XT
ωΣ
−1Xω + Λ)−1XT

ωΣ
−1. (A2)

The CV is the sum of the magnitude residuals for a set of leave-one-
out models evaluated at the left-out times (Seber & Lee 2003). In
the notation of VanderPlas (2018) Xω is the matrix of Fourier (and
polynomial) terms at each time.

For a sample of VIRAC v2 light curves of OGLE non-contact
eclipsing binaries (Soszyński et al. 2016), we find the optimal reg-
ularization λ = λ∗ by numerically minimising CV at fixed period
using Nf = 10. The results are shown in Fig. A1. We have found
that the optimal regularization correlates best with the amplitude of
the light curve compared to the error (characterised as the differ-
ence in the 95th and 5th percentile divided by the mean error, S).
There is also a weaker dependence on the number of epochs N and
a maximum λ∗ ≈ 0.25. We therefore employ the fitting function

λ∗ = min
[
0.25,

200
NS3

]
. (A3)

We find very similar results using Nf = 4 or Nf = 6 terms.

APPENDIX B: SUMMARY OF FEATURES

In Table B1 we summarise all of the features used in the two clas-
sification stages and give their relative importances.
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Table B1. A list and definition of the various features used in our classification algorithm. The features are defined for a light curve consisting of N magnitudes
mi with errors σi . We define δ̂i = (mi − m̄)/σi and δi =

√
N/(N − 1)δ̂i where m̄ is the mean magnitude. The indices are separated into non-periodic (above

the line) used in the first and second classification steps and periodic (below) only used in the second step.

Name Description Definition
Feature

Importance
Stage 1

Feature
Importance
Stage 2

MAD1 Median absolute deviation median ( |mi −median (mi ) |) 0.035 (0.073) 0.017 (0.021)

mags_pj_pk1
j, k percentile difference where
(j, k) ∈ {(100, 0) , (99, 1) ,
(95, 5) , (84, 16) , (75, 25)}

percent(mi, j)-percent(mi, k)
0.010,0.016,0.037,0.056,0.052
(0.004,0.006,0.017,0.043,0.063)

0.003,0.006,0.020,0.011,0.006
(0.004,0.003,0.006,0.005,0.035)

SD1 Standard deviation

√
1

N−1
N∑
i=1
(mi − m̄)2 0.043 (0.011) 0.003 (0.006)

Skewness - N
(N−1)(N−2)

N∑
i=1
(mi − m̄)3

/
SD3 0.022 0.003

Kurtosis 1
(N−2)(N−3)

(
N (N+1)
(N−1)

N∑
i=1
(mi − m̄)4

/
SD4 − 3(N − 1)2

)
0.004 0.004

η
von Neumann ratio of the
consecutive to total variance

N−1∑
i=1
(mi+1 −mi )2

/ N∑
i=1
(mi − m̄)2 0.069 0.007

Stetson I
Correlation between Np
pairs of observations

√
1

Np(Np−1)
Np∑
i=1

δ̂1i δ̂2i ; |t1i − t2i | < 1h 0.242 0.004

Stetson J
Correlation between
consecutive observations

1
N−1

N−1∑
i=1

sgn(δiδi+1) |δiδi+1 | 0.119 0.010

Stetson K Robust kurtosis measure 1
N

N∑
i
|δi |

/√
1
N

N∑
i
δ2
i 0.006 0.002

f>SD
Fraction of magnitudes outside
one standard deviation of mean

1
N

∑N
i, |mi−m̄ |>SD 1 0.003

∆φmax
Max. difference between
consecutive folded phases maxi ∆φi ; ∆φi = ω(ti+1 − ti )mod 2π 0.003

Norm. ∆φmax
∆φmax relative to mean
normalized by dispersion (maxi ∆φi −meani ∆φi )/stdi ∆φi 0.003

Period (P) Best-fitting Fourier period 2π/ω 0.081

LSmax
Maximum power in
Lomb-Scargle periodogram maxωPω ; Pω =

(
1 − χ2

LS(ω)/χ
2
LS,ref

)
0.023

LSdisp
Dispersion of maximum
Lomb-Scargle power from mean (maxω Pω −meanω Pω )/stdω Pω 0.061

Amodel Model amplitude maxtm(t |ω, θ) −mintm(t |ω, θ) 0.062
Adata Data amplitude maxi mi −mini mi 0.049
A j Amplitude of jth harmonic

√
a2
j + b2

j 0.017,0.010,0.005,0.003

Ri j Amplitude ratio A j/Ai
0.012,0.010,0.005,
0.005,0.003,0.0022

Φi j Phase difference jΦi − iΦ j where Φi = arctan(−bi/ai )
0.010,0.005,0.003,
0.005,0.003,0.0032

A∗j Double-period amplitude
√
a∗2j + b∗2j 0.016,0.051,0.005,0.055

R∗i j Double-period amplitude ratio A∗j/A
∗
i

0.006,0.004,0.009,
0.007,0.010,0.0062

Φ∗i j Double-period phase difference jΦ∗i − iΦ
∗
j where Φ

∗
i = arctan(−b∗n/a∗n)

0.003,0.002,0.003,
0.002,0.018,0.0022

(∆ log L)/N Log-likelihood diff. between
Fourier and constant fit

1
N

N∑
i=1

[
− (mi−m(ti |ω,θ))2

2σ2
i

+
(mi−m̄)2

2σ2
i

]
0.013

FAP False-alarm probability of
highest peak, LSmax

3 1 − (1 − e−LSmax )e−τ(LSmax) 0.073

rmodel
Ratio between consecutive
minima depths of model

m(tmin |ω,θ)−s
m(t2nd min |ω,θ)−s

; s = maxi mi 0.011

rdata
Ratio between consecutive
minima depths of data

∑
i∈min(mi−s)∑

i∈2nd min(mi−s)
; s = mags_p1 0.003

(J − Ks )0 Unextincted (J − Ks ) colour (J − Ks ) − E(J − Ks )RC 0.028
(H − Ks )0 Unextincted (H − Ks ) colour (H − Ks ) − E(H − Ks )RC 0.006

XRMS/Ks,RMS
RMS of X = {Z,Y, J, H }
relative to RMS of Fourier model RMS(Xi )

/
RMS(m(ti |ω, θ)) 0.008,0.004,0.006,0.003

Xscale
Scaling of Ks Fourier model
to match band X = {Z,Y, J, H } argminXscale

∑
i
(Xi − Xscalem(ti |ω, θ))2 0.004,0.006,0.005,0.002

1 Median error-weighted versions of these indices were also included (feature importances given in brackets).
2 Ratios and phase-differences are given in the order ((2,1), (3,1), (4,1), (3,2), (4,2), (4,3)). Phase-differences are the geometric mean of the sine and cosine
components.

3 See Baluev (2008) for the full definition.
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Figure A1. Optimal light curve regularization parameter, λ, as a function
of light curve signal-to-noise ratio (SNR, S) characterised as the difference
in the 95th and 5th percentile divided by the mean error. The points are
coloured by the number of epochs. The proposed approximation is shown
by the black lines for N = (50, 100, 1000). The horizontal grey line is the
absolute maximum.
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D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stab3116/6414542 by C

atherine Sharp user on 03 N
ovem

ber 2021


