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Abstract5

Since the beginning of the COVID-19 pandemic, the reproduction number6

R has become a popular epidemiological metric used by policy makers and the7

media to communicate the state of the epidemic across countries. At its most8

basic, R is defined as the average number of secondary infections caused by9

one primary infected individual. R seems convenient and easy to use, because10

the epidemic is expanding if R > 1 and contracting if R < 1. The magnitude11

of R indicates by how much transmission needs to be reduced to control the12

epidemic. However, using R in a näıve way can cause new problems. The13

reasons for this are threefold. 1) There is not just one definition of R but14

many, and the precise definition of R affects both its estimated value and how15

it should be interpreted. 2) Even with a particular clearly defined R, there16

may be different statistical methods used to estimate its value, and the choice17

of method will affect the estimate. 3) The availability and type of data used18

to estimate R vary, and it is not always clear what data should be included19

in the estimation. For example, should imported cases that are immediately20

quarantined count towards R, or should the data used to estimate R capture21

the potential of the local population to transmit the infection? In this review,22

we discuss when R is useful, when it may be of use but needs to be interpreted23

with care, and when it may be an inappropriate indicator of the progress of the24

epidemic. We also argue that careful definition of R, and the data and methods25

used to estimate it, can make R a more useful metric for future management26

of the epidemic.27

1 What is the reproduction number R?28

Since the start of the novel coronavirus (SARS-CoV-2) pandemic, the reproduction29

number R has become a popular summary statistic, used by policy makers to assess30
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the state of the epidemic and the efficacy of interventions and by the media to31

communicate the progress of the epidemic to the general public. The primary appeal32

of R is that it offers a single number that indicates whether the transmission of the33

pathogen is increasing or decreasing, depending on whether R is above or below34

one. Early R estimates for SARS-CoV-2 in different countries were in the range35

of 2.0 - 6.5 [34, 52]. However, the use of R can be problematic in terms of both36

its definition and its estimation. Its usefulness is precisely because it is a summary37

statistic rather than a basic parameter describing the dynamic processes of infection,38

transmission and recovery. To understand how it is calculated and how it can be39

affected by interventions, the epidemic process needs to be considered in more detail.40

When epidemic numbers are small or concentrated in possibly atypical parts of a41

population, it may be an unreliable descriptor of the state of the outbreak.42

In this paper, we discuss these issues and determine the situations when43

the reproduction number R is most useful for assessing and communicating the state44

of an outbreak (see Figure 1).45

1.1 The beginning of a pandemic - R046

In the early stages of a new outbreak of an infectious disease we can define an47

initial R value, known as the basic reproduction number R0, that is the average48

number of individuals infected by each infectious individual in a fully susceptible49

population [21, 30, 31]. An outbreak resulting from one infected individual may die50

out within a few infection generations by chance. Otherwise, if R0 > 1, the incidence51

of cases will grow exponentially, with on average Rn
0 cases in the nth generation.52

Already, this simple description introduces a number of concepts and assumptions.53

An individual’s infection generation specifies their position in the chain of infections,54

the (n − 1)th generation infects the nth generation, and so on. It also assumes an55

underlying scenario (model) in which the average number of susceptibles infected by56

each infective stays the same over successive infection generations, and ignores the57

depletion of susceptibles. (We refer to those members of the population who are58

uninfected and susceptible to infection as susceptibles, and those that are infected59

and infectious as infectives.) The potential importance of these assumptions depends60

on the contact structure of the population, to which we return below.61

Thus, R0 (and other R values to be defined later) is not just a property of62

the infectious agent (pathogen). It depends on demography, and whatever human63

behaviour is associated with the possibility of infectious contact (an effective contact64

is one that results in transmission if made with a susceptible, while a contact in65

the common sense of the word has a certain probability of transmission). For the66

simplest models, R0 > 1 implies that an introduction of infection will result in an67

epidemic. Furthermore, if there were no interventions or changes in behaviour, then68

the proportion of the population infected during the entire course of an epidemic69
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Are we in the early 
phase of the 
epidemic?

Yes

No

Is the epidemic 
widely established 
in the population?

Yes

No

Is the epidemic 
fragmented?

Yes

Estimate 𝑹𝟎 from early outbreak data (Section 1.1, Section 3)
Estimate the Critical Vaccination Threshold (Section 2)
Points to consider:
Early transmitters may not be typical for the whole population. Therefore, the 
estimated value of 𝑅0 may not be representative.
The optimal vaccination strategy may depend on population structure.

Estimate 𝑹𝒕 to track progress of epidemic in a population and the effectiveness of 
interventions (Section 1.2, Section 3)
Points to consider:
𝑅𝑡 may not only change because of interventions and rising herd immunity but also 
because the epidemic successively affects different subpopulations with varying 
potentials to transmit the virus.
The generation time distribution used to estimate 𝑅𝑡 may also vary in different 
subpopulations and because of interventions.

Estimate 𝑹𝒕 to track progress of epidemic in a population and the effectiveness of 
interventions (Section 1.3, Section 3)
Compare the severity of local outbreaks (Section 1.3)
Points to consider:
Quarantined imported cases and contained outbreaks do not contribute to the 
transmission potential of the whole population.
Contextual measures, such as the daily number of new cases per capita, the number 
of hospitalisations and spare ICU capacity, should be combined to assess the epidemic.

Figure 1: Flow chart summarising the main points explained in the main text de-
pending on the state of the epidemic

would be the non-zero solution of the equation P = 1 − e−R0P (for example, if70

R0 = 2, then P is approximately 0.8). This result is referred to as the final size71

equation, and underscores the fact that during an epidemic it is not generally true72

that everybody will be infected at some point.73

Individuals may vary considerably in their susceptibility to infection and74

in their propensity to pass it on through their biology or behaviour. Age is often75

an important determinant. If the population is grouped in some way, so that for76

instance some groups have higher R values than others, then the overall outbreak77

is expected to grow as described by an R0 that depends on all of these values, and78

also depends on how each group infects the others, i.e. on the R values between79

groups as well as within them (R0 is then the dominant eigenvalue of the matrix of80

R values [20,21,30]). The first few stages of the outbreak may be atypical, depending81

on which group is first infected.82

For the simplest mathematical model of the beginning of an outbreak, it83

is assumed that because only a small fraction of the population has been infected,84

all potential contacts are with susceptibles. This may be an unrealistic assump-85

tion because human interaction networks tend to be clustered (for example, through86

households, workplaces or schools). Growth through successive generations of infec-87

tion, which is the basis for defining R0, does not translate simply into time, because88

the generation interval of an infection (the time interval back from the instant when89

a susceptible is infected, to that when their infector was infected) is variable, and90

infection generations may overlap temporally. Typically, growth in the early stages91
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is faster than the simple assumption of a fixed average generation time would suggest92

and this is a major problem in estimating R0 from early outbreak data. In addition,93

the implicit assumption is that all infectives are identifiable as such. If there is a94

significant proportion of asymptomatic cases, an estimate of R0 may be affected by95

the time from when an asymptomatic infective has become infected to when he/she96

is expected to infect susceptibles. If this timing is the same for asymptomatic and97

symptomatic cases, then the estimate for R0 will be unaffected.98

1.2 The second simplest case: where an outbreak is widespread99

- Rt100

When the pandemic is well-established in a country (or region), with large numbers101

of cases most of which are internal to the country, an ‘effective reproduction number’102

at time t, Rt (sometimes denoted Re or Reff ), is a useful descriptor of the progress103

of the outbreak (Figure 1). Again, the concept is of an average of how many new104

cases each infectious case causes. The value of Rt may be affected by interventions:105

typically the aim is to reduce Rt below one and to as small a value as possible. For106

models including detailed, and therefore complex, contact networks there may be107

more than one way of defining Rt; however, definitions should always agree that the108

value of Rt is 1 when the expected number of new infections is constant.109

The relevance of the assumptions here (large numbers of cases, mostly in-110

ternal to the region) is that in such circumstances we expect Rt to have a fairly stable111

value that changes substantially over time only when interventions are introduced112

or cease. The definition of Rt here is in terms of actual new infectious cases, i.e.113

excluding potentially infectious contacts with individuals who have had the disease114

and are immune to reinfection. As the number of immune individuals grows large115

compared to the entire population, the spread of infections will gradually slow, be-116

cause many contacts will be with immune individuals, and hence the value of Rt will117

be reduced. The level of immunity at which Rt = 1 is the herd immunity threshold118

(see Section 2 on vaccination and herd immunity below).119

1.3 When the outbreak is at a low level or fragmented – the120

concept of R may be less useful121

If the outbreak is at a low level either because it has run its course or because of suc-122

cessful interventions, the definition and the use of an R value are problematic (Figure123

1). At low levels of prevalence there will (as in the early stages of the outbreak) be124

greater statistical variability. Additionally, there are likely to be heterogeneities as-125

sociated with the infection being unevenly spread among different subgroups of the126

population (possibly dependent on age, behaviour or geographical location [53]), with127
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some parts of the population having had more exposure than others. There may also128

be local variability in interventions, and it may not be easy to allow for the effect of129

some cases being introductions from outside the population under consideration. If130

the outbreak is fragmented, particularly when close to elimination, it will make more131

sense to think of it as composed of separate local outbreaks, which can be modelled132

separately, rather than trying to specify an average R value overall.133

1.4 Relating R to details of the infection process134

If the population is heterogeneous or structured, defining a reproduction number135

needs care, as the number of new cases an infective is expected to cause will depend on136

both their infectiousness and how well connected they are. It has been shown that in137

the early stages of an epidemic, when the relevant contact structures of a population138

are not known and interventions are not targeted, assuming a homogeneous contact139

structure results in conservative estimates of R0 and the required control effort.140

However, designing targeted intervention strategies requires reliable information on141

infectious contact structures [?]. There are several basic ways to use structured142

population models to capture departures from the simplest epidemic models. The143

four most common are (i) household models, (ii) multi-type models, (iii) network144

models and (iv) spatial models.145

In a household model, every person in the population is assumed to be146

part of a single household, which is typically small, and may even be of size one.147

Those in the same household have a higher probability of infecting each other than148

is the case for two people chosen randomly from the population. In this model,149

reproduction numbers can still be defined [6, 26]. The most commonly used is the150

household reproduction number R∗, which is the expected number of members of151

other households that are infected by people from a primary infected household. It152

is still possible to consider the average number of susceptibles infected by a single153

infectious person. However, in order for this to be useful, the average has to be154

computed in a sophisticated way, because the number of people a person can infect155

will depend on how many members of the same household are still susceptible when156

s/he becomes infectious [46].157

A second way of modelling heterogeneity in the population is to assume that158

the population can be subdivided into groups. The groups may be defined through159

age bands, social activity levels, health status, type of job, place of residence and160

so on. Characteristics such as susceptibility, infectivity and frequency of contact161

may depend on an individual’s group, but all those in a single group have the same162

characteristics. It is often assumed that all these groups are large. If there are regu-163

lar inter-group contacts then the largest eigenvalue of the so-called next generation164

matrix [20,21] has many similar properties to those of R0 for an epidemic spreading165

in a homogeneously mixing population, although the final size equation is generally166
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not satisfied.167

A third way of introducing heterogeneity is to represent the population by168

a network, where transmission is only possible between people sharing a link in the169

network. For many network models it is still possible to define a reproduction number170

[36]. It is important to note that the person initially infected in a population is often171

atypical and should be ignored in computing or estimating the reproduction number.172

A useful extension is a mixture of a network model and a homogeneous mixing173

model, in which both regular and casual contacts are captured. In this extension, a174

reproduction number with the desired threshold properties can be defined [5].175

Sometimes most transmission is restricted to people living close to each176

other, and spatial models are useful when physical location should be incorporated.177

For these, it is often difficult to define a reproduction number because there is no178

phase in which the number of infecteds is growing exponentially [19,47]. If standard179

estimation methods are used where there is a considerable spatial component then180

the estimates will be close to one, even when the spread is highly supercritical and181

transmission needs to be much reduced in order to control the epidemic.182

2 R, vaccination and herd immunity183

As immunity builds up in a population through infection during the course of an epi-184

demic, even when the contact rate between individuals remains the same (assuming185

no change in interventions), both the chance that a contact is susceptible to infection,186

and the effective reproduction number, Rt, will decrease. Herd immunity is achieved187

when enough individuals have become immune so that Rt falls below the value 1188

without the need to reduce contacts among individuals by non-pharmaceutical in-189

terventions.190

Vaccination provides another means of building up immunity in a popu-191

lation. Depending on the coverage, it can slow or halt the spread of an epidemic,192

preventing individual infection or limiting experiences of disease. All vaccination193

programs aim to achieve sufficient immunity in the population that Rt < 1 without194

modifying contact patterns among individuals. In this situation, there are insuf-195

ficient susceptibles in the population for sustained transmission. The susceptible196

proportion of a population for which Rt = 1 is known as the critical vaccination197

threshold (CVT). When the susceptible proportion is below this threshold, there is198

herd immunity, which means that the population is protected from a major outbreak199

even though not everyone is vaccinated or otherwise immune.200

In simple mathematical models (e.g. models in which the population is201

only subdivided into susceptible, infected and recovered individuals), the CVT is202

determined by the basic reproduction number R0. Specifically, vaccination of a203
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uniform randomly chosen proportion 1 − 1
R0

of the population is sufficient to create204

herd immunity and prevent an epidemic, as long as the vaccine-induced immunity205

is sufficiently long-lasting [51]. As a simple example, if R0 = 2 then 50% of a206

population would need to be vaccinated or otherwise immune to prevent outbreaks.207

If R0 = 3, as is approximately the case for COVID-19, then 67% of a population208

would need to be vaccinated or immune. When setting such vaccination targets,209

waning immunity needs to be taken into account. The implementation and impact210

of a vaccination programme depends on whether vaccination is performed before or211

during an outbreak [13,32].212

As outlined above, population structure affects the reproduction numbers213

R0 and Rt as well as the probability that an epidemic will spread. Therefore, it has214

important effects on the threshold for herd immunity and the optimal vaccination215

strategy. For models with small mixing groups such as households, the basic repro-216

duction number R0, as defined in Section 1.1, does not provide a good indicator of217

whether or not an epidemic can take off because repeated contacts within households218

are likely even in the early stages of an outbreak. However, in the early stages of an219

epidemic, between-household contacts are likely to be with individuals in otherwise220

fully susceptible households, so the reproduction number R∗ which is given by the221

average number of between-household contacts that emanate from a typical within-222

household epidemic [4,7] can be used instead. For household models, herd immunity223

is achieved if a uniform randomly chosen proportion 1 − 1
R∗

of all households in a224

population is fully vaccinated.225

For COVID-19, a toy model has been used to illustrate the effect of popula-226

tion heterogeneity on herd immunity. It showed [11] that age structure and variation227

in social contacts among individuals could reduce the herd immunity threshold to228

43%, almost a third less than that for a homogeneous population. Assuming a more229

extreme variation in social contact rates and that the most exposed individuals be-230

come infected first, another study estimates that the herd immunity threshold in231

some populations could be as low as 20% [28]. In addition, there is some indica-232

tion that immunity gained from infection by some common cold coronavirus strains233

may provide cross immunity to SARS-COV-2 [49,58]. There have also been reports234

that immunity gained from COVID-19 infection may wane, reducing individual and235

population levels of immunity over time. If these observations are indeed applicable236

here, the herd immunity threshold could be further modified [49].237

One important difference between immunisation by vaccination and by in-238

fection is that, during an epidemic, individuals with higher susceptibilities and/or239

larger numbers of contacts are likely to be infected earlier. If herd immunity is to240

be achieved by vaccination, optimal planning can reduce the coverage required to241

achieve herd immunity. For example, in an illustrative households model for variola242

minor infections in Brazil, it is shown that under the optimal vaccination strategy243

the proportion of the population that needs to be vaccinated is a third less than un-244

der a strategy that fully vaccinates randomly chosen households [3]. If a COVID-19245
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vaccine is developed, demand will surely exceed supply initially. Designing optimal246

vaccination strategies for different settings that take into account population struc-247

ture alongside other public health concerns, e.g. protecting the vulnerable, could248

greatly enhance the chances of achieving herd immunity and the cost effectiveness of249

vaccination as an intervention.250

3 How can R be estimated?251

Before estimating R, the purpose of the estimation needs to be clarified. Is it intended252

simply to track the changes in the trajectory of case numbers over time? Or is it253

intended to assess the potential of a population to transmit a pathogen perhaps in254

the context of considering interventions? If the latter, the relevant population needs255

to be defined. Depending on the purpose, different data sets and statistical methods256

can be used.257

There are several approaches to estimating Rt from epidemiological data.258

In the most direct method, high-quality contact tracing data can be used, in theory259

at least, to estimate both Rt and the generation time interval, and this has been260

attempted for COVID-19 [22]. However, contact tracing of SARS-CoV-2 infections261

is notoriously difficult because of the high proportion of asymptomatic infections.262

Moreover, effective contact tracing reduces the number of contacts of traced individ-263

uals so that the corresponding estimates will be biased.264

More commonly, Rt can be estimated by inferring the rate of infection265

transmission within a dynamical model fitted to observed cases, hospitalisations,266

deaths or a combination of those [48, 56]. Dynamical models have been used widely267

to forecast the spread of COVID-19 and the effect of interventions. These models268

allow the impact of assumed changes in specific interventions on Rt to be explored, so269

estimating Rt in this way can be convenient. Dynamical models can be described by270

systems of differential equations and assume very large to infinite population sizes. In271

completely deterministic dynamical models, the uncertainty in estimated Rt values272

depends only on data and parameter uncertainty, and not on stochastic uncertainty.273

However, if the number of new infections is small, the value of Rt is strongly affected274

by chance events, which increases the uncertainty in the estimate. This situation can275

be addressed by use of stochastic models or incorporating stochastic assumptions in276

otherwise deterministic model frameworks.277

But this approach is not without drawbacks. Not least, Rt estimates from278

dynamical models depend critically on assumptions (e.g. model structure and which279

parameter values are estimated), and on data quality. Another potential drawback is280

that many parameters of dynamical models are often assumed to be fixed over time.281

These approaches are therefore less suited to capture the effects of gradual, contin-282

uous changes in behaviour, mobility or social network structure. However, gradual283
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changes in dynamic models can be incorporated by assuming that transmission pa-284

rameters change over given intervals, while at the same time the possible amount of285

change is constrained to avoid big jumps caused by a small number of noisy data286

points [10]. In this way, dynamical models that include change-points in the rate of287

infection near specific interventions can infer the impact of control policies, as well288

as the effect of susceptible depletion.289

There is also a difference in how Rt is estimated between compartmental and290

agent- or individual-based models. In an agent-based model, it is possible simply to291

count exactly how many secondary infections are caused by each primary infection.292

Thus, all details of the epidemic – including time-varying viral loads, population-293

level and localised immunity, interventions, network factors, and other effects – are294

automatically incorporated, and do not need to be considered separately [44]. As295

agent-based models explicitly include stochastic effects, the uncertainty in Rt esti-296

mates can be greater than for those derived from deterministic dynamical models.297

Because of the greater number of parameters included in dynamical and particularly298

agent-based models, they require more data and more different types of data than299

the simpler statistical models below to identify estimates for all parameters.300

A third approach uses statistical models to estimate Rt, and continuous301

changes in it, empirically from case notification data. These methods make minimal302

structural assumptions about epidemic dynamics, and only require users to specify303

the distribution of the generation interval. They are agnostic to population suscep-304

tibility or epidemic phase, but as we discuss below, care must still be taken to avoid305

quantitative and temporal biases. The most common empirical methods are the Cori306

method [18,54] and the Wallinga-Teunis method [57]. Drawbacks of some statistical307

models include that they cannot be used to combine different data streams into a308

coherent picture.309

Where genome sequences from viral samples taken from infected patients310

are available and the date of sampling is known, Rt can also be estimated using phy-311

logenetic methods. An evolutionary model is fitted that best explains the patterns312

of nucleotide substitution in the dated samples. The fitted model parameters in-313

clude the nucleotide substitution rate and the population size of the virus at a given314

time in the past. Using a metapopulation analogy, the effective population size of315

a pathogen has been shown to be proportional to the number of infected individu-316

als and inversely proportional to the transmission rate from which the reproduction317

number can be determined [38].318

3.1 Statistical methods to estimate R319

In this paragraph we discuss two frequently used simple statistical methods to es-320

timate R and common issues associated with them. The Cori and Wallinga-Teunis321

methods estimate subtly different versions of Rt; the Cori method generates esti-322
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mates of the instantaneous reproduction number and the Wallinga-Teunis method323

generates estimates of the case reproduction number [18, 24]. The key difference is324

that the instantaneous reproduction number gives an average Rt for a homogeneous325

population at a single point in time, whereas the case reproduction number can ac-326

commodate individual heterogeneity, but blurs over several dates of transmission.327

Furthermore, the case reproduction number is a leading estimator of the instanta-328

neous reproduction number, i.e. it depends on data from after the time for which the329

reproduction number is to be estimated, and must be adjusted accurately to infer330

the impact of time-specific interventions [29].331

The instantaneous reproduction number represents the expected number of332

infections generated at time t by currently infectious individuals [18]. For real-time333

analysis, one of the benefits of estimating the instantaneous reproduction number is334

that it does not require information about future changes in transmissibility, and it335

reflects the effectiveness of control measures in place at time t. But as an aggregate336

measure of transmission by all individuals infected in the past (who may now be337

shedding virus), it does not easily consider heterogeneity in transmission. In contrast,338

the case reproduction number represents the expected number of infections generated339

by an individual who is first infected at time t, and has yet to progress through the full340

course of viral shedding. This leads to “right censoring” when the case reproduction341

number is estimated in real-time; if all infections generated by individuals who were342

infected at time t have not yet been observed, then the data must be adjusted343

[14, 15,43] or the case reproduction number will be underestimated.344

The Cori method and the Wallinga-Teunis method involve inferring the345

values of Rt that are most consistent with observed incidence data (for a review,346

see [29]). In the Cori method, typically this inference is carried out by assuming347

that Rt is constant over fixed time windows. Smoothing windows are used to avoid348

spurious fluctuations in estimates of Rt. These can occur if imperfect observation349

and reporting effects, rather than actual bursts in transmission, are the main source350

of noise in the data. Cross-validation and proper scoring rules can be used to avoid351

under- or oversmoothing Rt estimates [25].352

An important concept, basic to both methods, is the intrinsic generation353

time also referred to as the infectiousness profile. The intrinsic generation interval is354

a theoretical quantity derived from the renewal equation of Lotka and Euler [37,56].355

It describes the time distribution of potentially infectious contacts made by an index356

case, and is independent of population susceptibility [17]. In practice, the intrin-357

sic generation interval is not observable, and it must be estimated carefully from358

observed serial intervals within contact tracing data [17, 45]. The serial interval is359

generally defined as the duration of time between onset of symptoms in an index case360

and in a secondary case [59]. In the early stages of an outbreak, accurate estimation361

should adjust for right truncation of observations, for changes over time in popula-362

tion susceptibility, and for interventions like case isolation, which may shorten the363

generation interval by limiting transmission events late in the course of infectious-364
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ness [2, 17,45].365

Both the Cori and Wallinga-Teunis methods are conceptually based on sep-366

arating the infectiousness of an infective into two components, total amount and367

timing. The timing is expressed by the generation time distribution while the total368

amount is expressed by Rt. The variation of (average) infectivity over time is as-369

cribed, at least in practical implementations of the methods, to changes in Rt, while370

the intrinsic generation time is assumed to remain fixed. This is a simplification that371

may lead to inaccurate estimation of Rt, since, in reality, the observed generation372

time distribution varies over time, both because of the epidemic dynamics [12,55,59],373

because of the epidemic affecting different subgroups of the population, with possi-374

bly different generation time distributions over time [35,39], and, more importantly,375

because of interventions that affect the length or efficacy of the infectious period [2].376

An additional complication is that the “intrinsic” generation interval of the Cori and377

Wallinga-Teunis estimators includes potentially infectious contacts with both sus-378

ceptible and immune individuals, whereas only contacts with susceptible individuals379

cause new infections, and are observed in contact tracing [17, 45]. Even when using380

an accurately estimated, fixed generation time distribution, both Rt estimators are381

numerically sensitive to the specified mean and variance of the intrinsic generation382

interval [16].383

3.2 Data used to estimate R384

Fundamentally, Rt is a measure of transmission. Ideally, it would be estimated from385

data on the total number of incident infections (i.e. transmission events) occurring386

each day. But in practice, only a small fraction of infections are observed, and noti-387

fications do not occur until days or weeks after the moment of infection. Temporally388

accurate Rt estimation requires adjusting for lags to observation, which can be es-389

timated as the sum of the incubation period and delays from symptom onset to390

case observation [9,16]. Delays not only shift observations into the future, they also391

blur infections incident on a particular date across many dates of observation. This392

blurring can be particularly problematic when working with long and variable delays393

(e.g. from infection to death), and when Rt is changing. Deconvolution [8,23,27,41],394

or Rt estimation models that include forward delays [1] can be used to adjust lagged395

observations. Simpler approaches may be justifiable under some circumstances. If396

observation delays are relatively short and not highly variable, and if Rt is not rapidly397

changing, simply shifting unadjusted Rt estimates back in time by the mean delay398

can provide a reasonable approximation to the true value (see Challen et al., in this399

volume, for an in-depth discussion [16]). The benefits and disadvantages of each400

approach are reviewed in [29]. Changes over time in case ascertainment can also401

bias Rt estimates, so ideally data should be drawn from structured surveillance (see,402

for example, the REACT study [33]) or adjusted for known changes in testing or403

reporting effort [33,42].404
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In practice, Rt can be estimated from a time series of new symptom on-405

set reports, cases, hospitalisations or deaths. Choosing an appropriate data stream406

involves weighing representativeness, timeliness of reporting, consistency of ascertain-407

ment, and length of lag. For example, reported deaths may be reasonably unaffected408

by changes over time in ascertainment, but adjusting for long lags to observation409

can be challenging, and deaths may not be representative of overall transmission410

(e.g. if the epidemic shifts toward younger age groups) [40, 50]. Extensions of exist-411

ing statistical models for Rt estimation could potentially integrate multiple kinds of412

data, by assuming that (e.g.) cases, hospitalisations and deaths, arise from a shared,413

latent infection process, with different delays [29]. A mechanistic model can also pull414

multiple data streams together by modelling the different processes underlying each415

data stream. Problems can arise if different data streams disagree on the progress416

of the pandemic. However, if the disagreement is caused by a shift in delays from417

events to reporting in different data streams, a mechanistic model can highlight these418

changes. Sometimes different data streams can be used for model validation.419

All methods used to estimate Rt must decide on the length of the time420

window over which it is to be estimated. All data used to estimate Rt are noisy.421

The shorter the time window used for estimation, the higher will be the noise-to-422

signal ratio and, therefore, the uncertainty in the estimate of Rt. In contrast, longer423

time windows will produce estimates with lower uncertainty, but sudden changes in424

transmission may not be detected if the time window is too long.425

4 Summary: Cautions and Recommendations426

During the early phase of the epidemic:427

• R0 estimates in the early phase may not be representative for the population428

as a whole if the group of initial transmitters is atypical.429

• R0 may be incorrectly estimated in the early phase if infected but asymptomatic430

individuals are not counted or recognised, and their epidemiologically relevant431

behaviour differs from that of symptomatic individuals.432

When the epidemic is established in the population:433

• Rt can differ for different population groups, and the value of Rt is dominated by434

the group in which most transmission occurs. To improve targeted containment435

measures, where possible additional information should be reported alongside436

case data, such as demographic, socio-economic and occupational information.437

• The estimated value of Rt and its associated uncertainty depend on the data438

stream(s) used and the time window over which Rt was estimated, and these439
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should be reported alongside the estimates. This will make it possible to draw440

more robust conclusions when considering results from different models.441

• Model components that are likely to change over the time course of the epi-442

demic (e.g. the generation time distribution) should be updated regularly, and443

sensitivity to changing assumptions should be kept under consideration.444

When the ongoing epidemic is fragmented:445

• Rt estimates from local outbreaks, if they can be contained, cannot inform on446

the progress of the epidemic and efficacy of interventions at the national level.447

They may inform local interventions. Other descriptors should be considered448

to assess the progress of the epidemic, such as the number of new cases per449

capita per day in a defined area, the number of hospitalisations and the spare450

hospital and intensive care capacity.451

• Imported cases that are effectively quarantined should not be counted towards452

Rt estimates as they do not contribute to the local transmission potential in453

the community.454

Vaccination and herd immunity:455

• If the available vaccine supply is limited, optimal vaccination strategies should456

be designed that take into account population structure and the transmission457

potential within different groups and other public health priorities, e.g. pro-458

tection of the vulnerable groups.459

In conclusion, estimated R values do not exactly correspond to the theoretically de-460

fined quantities. In statistical terms, model uncertainty, sampling variability, and461

data accuracy affect the estimates. Nevertheless, R0 and Rt are useful quantities to462

assess the potential and progress of an epidemic. Their usefulness for decision mak-463

ing varies depending on the phase of the epidemic (early, established, fragmented).464

Clearly defining the context, the data streams and the statistical methods used to465

estimate R can improve its value for the management of an epidemic.466
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