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Highlights 

 New generative model for selective attention during cocktail party listening 

 Computational ‘lesions’ in the model dissociate different errors during word report  

 We model different temporal hypotheses for preparatory attention 

 Temporal changes in precision are necessary to explain ERPs but not reaction times 

 CNV-like responses can be explained by subjective precision rather than action 

Abstract 

In this paper, we introduce a new generative model for an active inference account of preparatory 

and selective attention, in the context of a classic ‘cocktail party’ paradigm. In this setup, pairs of 

words are presented simultaneously to the left and right ears and an instructive spatial cue directs 

attention to the left or right. We use this generative model to test competing hypotheses about the 

way that human listeners direct preparatory and selective attention. We show that assigning low 

precision to words at attended—relative to unattended—locations can explain why a listener 

reports words from a competing sentence. Under this model, temporal changes in sensory precision 

were not needed to account for faster reaction times with longer cue-target intervals, but were 

necessary to explain ramping effects on event-related potentials (ERPs)—resembling the contingent 

negative variation (CNV)—during the preparatory interval. These simulations reveal that different 

processes are likely to underlie the improvement in reaction times and the ramping of ERPs that are 

associated with spatial cueing. 

 

 

Keywords: Selective attention; Preparatory attention; Spatial attention; Temporal attention; 

Cocktail party listening; Active inference 
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Introduction 

For decades, researchers and theoreticians have debated the basis of selective attention. A feature of 

attention is that different stimuli can be selected, without any changes in sensory signals (e.g., Driver, 

2001; Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 1999; Necker, 1832; Rubin, 1915; Van 

Noorden, 1975). In many situations, attention is not all-or-none, but rather fluctuates over time, 

even when the attribute that is attended is not obviously time itself (e.g., following a cue for location; 

Posner & Cohen, 1984; Rolke & Hofmann, 2007). In this paper, we examine the computational 

processes that can explain the implicit time-sensitive attentional set. 

Time-dependent changes in attention can be understood at different temporal scales. Here, we focus 

on the gradual build-up of preparatory (i.e., anticipatory) attention, which occurs approximately 0–2 

seconds before a target stimulus occurs (e.g., Holmes et al., 2018). Within this temporal window, a 

graded improvement in accuracy or response times occurs when an attentional cue is presented 

earlier in advance of an upcoming stimulus (Holmes, Kitterick, & Summerfield, 2018; Lu et al., 2009; 

Yamaguchi, Tsuchiya, & Kobayashi, 1994). There is also an anticipatory ramping of event-related 

potentials resembling the contingent negative variation (CNV) (Poljac & Yeung, 2012; Tecce, 1972; 

Walter, Cooper, Aldridge, McCallum, & Winter, 1964). These slow attentional effects can be 

distinguished from faster effects that occur at a theta rate (see Fiebelkorn & Kastner, 2019; Helfrich 

et al., 2018; Kotz, Schwartze, & Schmidt-kassow, 2009; Lakatos et al., 2016), which may be relevant 

to the temporal scheduling of stimulus sampling (e.g., rates of syllable presentation or the timing of 

saccades; Friston, Adams, Perrinet, & Breakspear, 2012; Giraud & Poeppel, 2012). Here, we focus on 

the mechanisms underlying slow changes, which have received less investigation. This paper offers a 

novel perspective, by introducing an active inference account of covert endogenous attention that 

we compare to human behaviour.  

The requisite generative model is based on an influential paradigm introduced by Cherry (1953), 

termed ‘cocktail party listening’. The original paradigm presents two semantically meaningful passages 

of speech to the left and right ears, and the listener is asked to shadow words in one ear. 

Subsequent follow-up studies have used simplified versions of this paradigm to isolate specific 

processes. For example, rather than passages of text, individual words, phrases, or sentences are 

presented—which may be devoid of semantic context and which listeners can report with a single 

response (e.g., a button press). These tasks are interesting for several reasons. First, different types 

of errors reflect distinct processes (Holmes et al., 2018; Johnsrude et al., 2013; Maddox & Shinn-

Cunningham, 2012): errors can be words from the competing speech, a mixture of words from the 

target and competing speech, or words that were not spoken. When a listener reports words from 

the competing speech, this implies a problem with attentional selection: streams of words are 

correctly separated, but the incorrect talker is selected; whereas, reporting a mixture of words from 

the target and competing sentences implies that the two streams of words are not correctly 

separated.  

Second, attentional preparation for a target talker appears to be graded: when a spatial cue (left or 

right) indicates which talker should be attended, reaction times progressively improve when the cue 

is presented longer before the talkers begin to speak (Holmes et al., 2018). Also, before the target 

talker begins to speak, electrophysiological responses resembling the CNV slowly increase over time 

(Holmes, Kitterick, & Summerfield, 2016, 2017), possibly reflecting activity in fronto-parietal brain 

regions (Hill & Miller, 2010; Lee et al., 2013).  

In this paper, we examine how different computational processes affect accuracy, error types, 

reaction times, and electrophysiological responses in a simplified cocktail party paradigm, in which 

two pairs of words are presented at different locations. We simulate active inference under different 
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generative models to test competing hypotheses about how these behavioural and 

electrophysiological hallmarks of preparatory attention emerge. 

Crucially, the current paper focusses on the selective attention component of cocktail party 

listening. Other models have considered the extraction of words from an acoustic signal 

(Bornkessel-Schlesewsky, Schlesewsky, Small, & Rauschecker, 2015; Friston et al., 2021), acoustic 

segregation of a sound mixture (Chen, Luo, & Mesgarani, 2017), or whether stimuli are perceived as 

one or two streams (see Szabó, Denham, & Winkler, 2016 for a review). In contrast, the current 

paper focuses on the deployment of top-down attention. Unlike some other ‘models’ of attention, 

which are largely conceptual, here our goal is to make quantitative predictions and evaluate these 

based on empirical data. 

We use active inference (Friston, 2003; Friston, FitzGerald, Rigoli, Schwartenbeck, & Pezzulo, 2017) 

to simulate synthetic agents that act under different generative models. Active inference has been 

applied to a variety of topics in neuroscience (e.g., Brown, Adams, Parees, Edwards, & Friston, 2013; 

Brown, Friston, & Bestmann, 2011; Friston, 2005; Friston, Kilner, & Harrison, 2006; Mirza, Adams, 

Mathys, & Friston, 2016; Parr & Friston, 2017). It is based on the idea that perception uses 

approximate Bayesian inference, and the resulting behaviour can be cast as planning as inference. 

Under our generative model, beliefs about unobservable states of the world (e.g., the beliefs about 

the target words) determine observable outcomes (e.g., the visual cue that is presented and the 

words that are spoken at the two locations); inverting the model allows inferences about hidden 

states given sensory observations. Bayesian inference can be cast as minimising variational free 

energy: to update beliefs about hidden states to provide (simultaneously) the simplest and most 

accurate explanation of sensory data (see Equation A.2).  

The enactive component of active inference enables a synthetic agent to act upon the world to 

change sensory observations. In this setting, beliefs about the best actions to take depend on 

expected outcomes, and can be formalised as minimising risk and ambiguity (see Equation A.3). 

Actions are more likely to be selected if they (i) generate preferred outcomes (i.e., they minimise 

risk: technically, the expected divergence between predicted and preferred outcomes) and (ii) if they 

reduce ambiguity (technically, the inverse precision of the likelihoods of particular outcomes, given 

beliefs about hidden states). Under this framework, we can simulate performance (i.e., action 

selection) and belief updating during perceptual inference under different generative models. By 

appealing to the accompanying process theories, electroencephalographic (EEG) responses can be 

modelled as consequent on the neuronal dynamics that minimise the energy (Friston, FitzGerald, et 

al., 2017). Unlike many other models, which either ignore or focus solely on electrophysiological 

responses, active inference allows us to simulate EEG and behavioural responses together under a 

variety of generative models. 

Unlike other conceptualisations of attention, under models employing active inference, attention is 

conceptualised not as what is being represented, but rather as the precision of probabilistic 

representations (Feldman and Friston, 2010). Formally, this is specified as optimising the precision of 

mappings between hidden causes and sensory observations in the generative model (Hohwy, 2012; 

Parr & Friston, 2019b). This idea has been used to successfully model goal-dependent behaviour—

for example, due to a change in task—that differs under the same sensory observations (Feldman & 

Friston, 2010; Mirza, Adams, Friston, & Parr, 2019; Parr, Corcoran, Friston, & Hohwy, 2019; Parr & 

Friston, 2017). 

This paper aims to address two questions. First, can precision in different parts of a generative 

model explain the distinct ways in which attention can ‘fail’ in cocktail party listening—and thereby 

generate different types of errors? To study this, we apply previous formulations of attention in 

active inference to a simplified cocktail party listening paradigm, and consider how variations in 
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precision could explain attentional effects that are not ‘all-or-none’. We use the ensuing model to 

test hypotheses about how precision in different parts of a generative model produces different 

types of error. Second, we turn to preparatory attention, which requires us to consider the 

temporal deployment of attention and attention. We ask whether behavioural and 

electrophysiological correlates of preparatory attention arise from similar processes. To study this, 

we extend previous work by considering precision as a state-dependent parameter that changes 

over time during preparatory attention—which has not been addressed previously. In our cocktail 

party listening paradigm, this reflects the time between the presentation of a spatial cue and the 

onset of a target phrase. Our goal was to make predictions about reaction times (RTs) and 

electroencephalographic (EEG) responses, and compare these predictions to empirical data reported 

by Holmes et al. (2018) and Holmes et al. (2017), respectively. Cucially, both of these studies 

employed a similar paradigm to study preparatory attention. 

A generative model of selective attention during cocktail party listening 

We first describe a generative model of cocktail party listening, and show that an agent who employs 

this model during active inference can solve the cocktail party problem. This provides the basis for 

testing hypotheses about how precision in different parts of the generative model affects 

performance, which we address in the next section of the paper. 

Our generative model uses a (partially observable) Markov decision process (MDP) to map from 

discrete states to discrete outcomes. MDP models have been used in applications of active inference 

to many domains of neuroscience (e.g., Mirza et al., 2019, 2016; Parr & Friston, 2019a). In brief, MDP 

models describe how states change over time, and how states generate outcomes. Outcomes are 

observable features of the world, and states are hypotheses about the (hidden or latent) causes of 

outcomes. While states are not cognitive constructs themselves (see Ramstead, Friston & Hipólito, 

2020), it can be helpful to name them in a manner that is interpretable. When we describe the states 

in this particular generative model, it should become clear that states are constructs that we assume 

people make inferences about in order to complete the task at hand. For example, the colour of an 

object is something that people infer from the signals that reach their visual system: it is not a 

directly observable property of the world, and is instead affected by the types of cone cells in the 

person’s retina and the lighting conditions in the room. Previous work (e.g., Feldman and Friston, 

2010) has proposed that attention can be linked to the precision of the probability distributions that 

map between states and outcomes. These types of models are termed decision processes, because 

state transitions depend upon the decisions made (or policies selected). By inverting the MDP 

model, a synthetic subject can infer the most likely causes of sensory observations under their 

generative model, and infer the most probable course of action given those beliefs. 

 

< FIGURES 1 & 2 > 

 

Figure 1 depicts a simplified version of the cocktail party paradigm—resembling that used in many 

empirical studies—which consists of short phrases with closed-set responses: two talkers each speak 

a colour word and a number word (as in the Coordinate Response Measure corpus: Moore, 1981); 

the listener is directed to attend to the words spoken by the talker on their left or right by a visual 

cue (left or right arrow). There are four options for each colour word (“red”, “green”, “blue”, and 

“white”) and four options for each number word (“1”, “2”, “3”, “4”): on each trial, the listener is 

required to respond with the target colour and number words (which can be considered as 

analogous to pressing a button labelled “red 1”, as in empirical studies by Holmes et al., 2016, 2017, 

2018 and others). While the paradigm used by Cherry (1953) used longer passages of speech that 
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were semantically meaningful, the use of shorter phrases, devoid of semantic context allows us to 

isolate spatial attention. In this section, we begin with a simplified version of the task, which we 

extend later in the paper.  

Figure 2 illustrates a plausible generative model for this task. The generative model contains four 

hidden state factors, and six outcome factors. The Spatial Attention factor contains two states, 

reflecting beliefs that attention is directed to the Left or Right. The Target Colour factor contains four 

states: the target word is Red, Green, Blue, or White. The Target Number factor also contains four 

states: the target word is 1, 2, 3, or 4. The Response factor contains 17 control states, which indicate 

the model’s beliefs about the response emitted: 16 of these are the permissible combinations of the 

4 colour and 4 number words, and the final state is Null, which means that no response is currently 

being made (e.g., at the beginning of a trial, before the correct response is inferred). The Visual Cue 

outcome factor indicates whether a Left or Right arrow is displayed on the screen. The Left Colour 

Word and Right Colour Word outcome factors indicate whether the left and right talkers, respectively, 

are saying the words Red, Green, Blue, or White. The Left Number Word and Right Number Word 

outcome factors indicate the same for the number word (1, 2, 3, or 4). The Feedback outcome 

factor describes the visual feedback that is observed: indicating whether the response is Correct or 

Incorrect. In summary, the generative model covers all the states that are necessary to generate 

observable outcomes that constitute the task or paradigm at hand. 

The generative model takes the form specified in Appendix 2. Specifying the generative model 

formally requires the following probability distributions: (1) The likelihood mappings between hidden 

states and outcomes; (2) How states within each state factor are expected to transition over time; 

(3) Preferences over outcomes for each outcome factor; (4) Prior beliefs about which states the 

model is likely to be in, initially. Each probability distribution is specified in matrix form (see Equation 

A.4). 

The likelihood matrix (A-matrix) for each outcome factor defines the mappings between each state 

and the possible outcomes. In other words, given that I believe that a particular word has been 

spoken, how likely am I to hear that word? Or, given I believe I am attending to the left, how likely 

am I to observe a left spatial cue? These examples may seem counterintuitive, because we are used 

to taking the perspective of perception: inferring states from observations in the world. From the 

perspective of perceptual inference (i.e., inferring the cause from its consequence), these mappings 

can be conceived as the model’s confidence that the target word is Red, given that it has heard the 

word Red, and its confidence that it is attending to the left side, given it has seen a left spatial cue. 

We have set the parameters so that the model is very confident that the Visual Cue outcome will 

match its beliefs about which Spatial Attention state it is in. This is specified as an identity matrix and 

reflects an infinitely precise mapping. The Visual Cue outcome is not influenced by any of the other 

state factors.  

The Left Colour Word outcome matches the model’s beliefs about the Target Colour with infinite 

precision if the Spatial Attention state is Left, but there is no relationship between the Target Colour 

states and the Left Colour Word outcomes if the Spatial Attention state is Right: in the latter case, the 

likelihood mappings are specified as a uniform matrix (i.e., a matrix with zero precision). Similarly, 

the Right Colour Word outcome matches the model’s beliefs about the Target Colour with infinite 

precision if the Spatial Attention state is Right, but with zero precision if it is Left. Equivalent mappings 

apply to the Target Number, Left Number Word, and Right Number Word. The Feedback outcome is 

Correct if the Response state matches the combination of the Target Colour and Target Number states 

(e.g., the Target Colour is Red, the Target Number is 1, and the Response is Red-1) and is Incorrect if it 

does not match. For this reason, the Null Response state is always considered Incorrect, regardless 

of the Target Colour and Target Number states. 
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A probably transition matrix (B-matrix) is specified for each state factor, and defines how states are 

expected to change over time. In other words, given I currently believe I’m attending to the left, 

how likely am I to believe I’m attending to the left at the next time step? In the current generative 

model, beliefs about Spatial Attention, Target Colour and Target Number states are stable, with infinite 

precision (that is, they are not expected to change over time, within a trial). The states within the 

Response factor are control states: in other words, an action (analogous to pressing a button) 

controls the Response state. The model contains 16 policies, which correspond to acting on the 16 

permissible colour-number combinations. If the Response state is Null, then the action changes the 

Response state to the selected word with 100% probability. Otherwise, the action has no effect and 

the Response state remains the same, with infinite precision. In other words, once the synthetic agent 

has executed an action, it cannot change its mind. Specifying 16 policies, that correspond to the 

permissible colour-number combinations, means that a simulated agent acting under this generative 

model must choose a colour-number response on every trial, even if it is uncertain. Note that the 

Null response state is only used at the beginning of the trial, before the correct response is inferred. 

The prior preference matrix (C-matrix) defines preferences over outcomes for each outcome 

factor. The current generative model has no preferences for seeing particular spatial cues (Visual Cue 

outcomes) or hearing particular words (Left Colour Word, Right Colour Word, Left Number Word, and 

Right Number Word outcomes). However, the model has a strong preference for Correct over 

Incorrect feedback (Feedback factor) (see Appendix 3 for parameter values). 

The priors (D-matrix) define prior beliefs about which states the model is likely to be in, at the 

beginning of a trial. In the current model, we specified uniform beliefs over Spatial Attention, Target 

Colour and Target Number states—in other words, no cues or words were expected to be more 

likely than others a priori. However, the model has a strong (infinitely precise) prior belief that it is 

initially making no response (Null Response state). This allows the agent’s action to affect the 

Response state once per trial. 

Now that we have specified a plausible generative model, we can evaluate the performance of a 

synthetic agent that uses this generative model for active inference. In these simulations, the visual 

cue and the colour and number words for the two talkers are presented concurrently for simplicity; 

thus, each trial contains one round of belief updates (i.e., a one-shot trial), which includes updating 

beliefs about the Response, which is enacted. Given the model’s prior belief that the Response is 

initially Null, the Feedback outcome always begins as Incorrect—in other words, the synthetic agent 

initially sees a cross on the screen. The preference for Correct feedback means that the agent’s goal is 

to end the trial with a tick on the screen, by emitting a Response that it believes is correct. It can 

only do this by using the visual cue to infer which side it should be attending to, and using the colour 

and number words at that location to determine the correct response.  

To check the task was performed accurately under this generative model, we simulated 100 trials 

using standard routines in SPM12 (using MATLAB R2017b). For each trial, we compared the 

response made by the agent with the sensory observations: if the action was consistent with the 

words at the target location (i.e., the Left Colour Word and Left Number Word if a Left Visual Cue was 

observed, and the Right Colour Word and Right Number Word if a Right Visual Cue was observed), the 

agent was considered to have performed the trial correctly and was awarded a point. Otherwise, it 

was considered to have performed incorrectly and received no points for that trial.  

Happily, the synthetic agent performed 100% correct on this task (i.e., it made no errors). This 

serves as a proof of principle that the generative model described above enables perfect 

performance on this kind of task. In the next section, we ‘break’ (i.e., change the parameters of) 

different parts of the model, and assess how this affects task performance. Our goal is to simulate 

the types of errors made by human listeners. 
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Modelling impaired performance 

Cocktail party listening is difficult for human listeners: Not only does competing speech mask the 

spectro-temporal components of target speech (“energetic masking”), but it also requires listeners 

to segregate target speech from a similar-sounding distracter (“informational masking”) (Brungart, 

2001; Brungart, Simpson, Ericson, & Scott, 2001). Human errors are more likely to consist of words 

spoken by a competing talker than other words not spoken by any of the talkers, showing that 

informational masking plays a large role when cocktail party listening is challenging (Best, Ozmeral, 

Kopčo, & Shinn-Cunningham, 2008; Brungart & Simpson, 2002; Holmes et al., 2018). In this section, 

we ask which computational processes could lead to informational masking using the generative 

model introduced in the previous section. In other words, we changed the parameters of the 

generative model and examined their effects on percent correct and the types of errors that the 

agent made. 

Three types of error have received interest in the literature (Holmes et al., 2018; Ihlefeld & Shinn-

Cunningham, 2008; Johnsrude et al., 2013; Maddox & Shinn-Cunningham, 2012): “Masker errors”, in 

which reported words were spoken by the competing talker; “Mix errors”, in which some of the 

words were spoken by the target talker and others were spoken by the competing talker; and 

“Absent errors”, in which the words reported were spoken by neither talker. Distinguishing these 

errors is of interest, because they speak to different cognitive processes. In order to report the 

correct words in the paradigm used here, the two words from the target need to be correctly 

grouped together, which relies on streaming and, in addition, the correct talker needs to be 

attributed as the target. Masker errors suggest that two talkers have been streamed (i.e., the two 

consecutive words spoken by each talker have been successfully attributed to the same talker), but 

the listener failed to attend to the correct (i.e., target) talker. For example, this could arise if the 

target location cannot be distinguished from the competing location, or if the competing talker is 

salient and cannot be ignored. Mix errors suggest that the two talkers have not been successfully 

streamed, which could arise if the listener cannot infer which words belong to which talker. Absent 

errors could arise from failures in a variety of processes—including errors at the response stage, or 

low arousal or motivation. We, therefore, predicted that these different types of errors could be 

dissociated by changing different parameters of the generative model. 

Reflecting the wide variety of processes that could lead to Absent errors, they are straightforward 

to simulate under our generative model. Absent errors arise if preferences over outcomes (C-

matrix) are specified so that the agent no longer prefers correct feedback, because the agent has no 

reason to respond correctly. Alternatively, Absent errors could arise from stochastic selection of an 

action from posterior beliefs. Operationally, this stochasticity is parameterised with a parameter 

alpha: if alpha is less than one, the precision over the set of policies is low and the probability of 

selecting the least likely policy approaches the probability of selecting the most likely policy. Absent 

errors could also arise from imprecise beliefs about the relationship between the Response states 

and Feedback outcomes: In other words, this instils a belief that feedback is likely to be incorrect 

regardless of the actions that are taken. 

Our aim here was to adjust the model so that the errors it made were qualitatively similar to those 

made by human listeners. We therefore focussed on generating Masker and Mix errors. We tested 

four different hypotheses by which Masker and Mix errors might arise, which are displayed in Figure 

3. (1) Imprecise likelihood mappings between Target Colour and Target Number states and the 

observed words on the attended side (e.g., Left Colour Word or Right Colour Word outcomes, 

depending on the Spatial Attention state). From the perspective of model inversion, this mechanism 

affects the extent to which auditory sensations on the target side update the model’s beliefs about 
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the target words: Lower precisions are associated with less belief updating. (2) Very precise 

likelihood mappings between Target Colour and Target Number states and observed words on the 

unattended side. Higher precisions for words on the unattended side allows auditory sensations that 

are unattended to influence beliefs about target words, and model an inability to attend away from 

the location that was not cued. (3) Imprecise likelihood mapping between Spatial Attention states and 

the observed Visual Cue. From the perspective of model inversion, this mechanism reflects the extent 

to which seeing a Left visual cue enables the model to direct spatial attention to words on the left 

rather than the right side: Low precision means that sometimes words on the right side are attended 

when the spatial cue indicates that the target words are on the left. (4) Imprecise likelihood mapping 

between Response states and the Feedback outcome. 

We expected imprecise beliefs about the relationship between the Response states and Feedback 

outcomes to lead to absent errors, for the reason described above and, thus, Hypothesis 4 was 

included in the simulations as a comparison. Whereas, we expected that any of Hypotheses 1–3 

could be associated with Masker and Mix errors.  

We varied each of the ensuing four likelihood precisions parametrically. For each mechanism, we 

simulated 26 different levels (between 0 and 5, except for words on the unattended side, which 

varied between 0 and 1024), and simulated 48 trials at each level. Likelihood precisions were 

specified with a precision parameter that determines the relationship between on-diagonal and off-

diagonal elements of the relevant A-matrices in the model: the precision (p) is the temperature 

parameter of a softmax function on an identity matrix (where N is the number of state factors): 

1 1

1 11

1 1

1 1 1

p

p

p

p

e

e

N e

e

 
 
 
  
 
 

A       (1) 

To disambiguate the effects of different mechanisms, we varied each precision while keeping the 

other precisions constant. We used precisions for the other parameters that were either low (in the 

case of words on the unattended side: its associated precision parameter was set to zero when it 

was not the factor of interest) or high (for all other factors, precision was set to 1024 when they 

were not factors of interest) (see Figure 3). We set the value of the alpha parameter to one, so that 

actions were selected according to the inferred probability of allowable actions. 

For each of the above mechanistic hypotheses, we examined effects of precision on the percent of 

trials that had a correct response and, on incorrect trials, the percentages of each error type 

(Masker, Mix, and Absent). The results are shown in Figure 4. Chance performance is 6.25%, 

because there are 16 possible policies and only one is correct. 

 

< FIGURES 3 & 4 > 

 

Lower precision of the likelihood mappings between Target Colour and Target Number states and 

observed words on the attended side systematically engendered worse performance (Figure 4A: left 

panel)—particularly when the precision parameter was less than 1. However, the majority of errors 

were Absent errors (Figure 4A: right panel). When the precision of the likelihood mappings between 

Target Colour and Target Number states and observed words on the unattended side was greater than 

0, performance was low although still above chance (Figure 4B: left panel). Unlike the first 

manipulation, however, most of the errors were Mix errors, and the second highest error type were 
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Masker errors (Figure 4B: right panel). The precision of the likelihood mapping between Spatial 

Attention states and the observed Visual Cue only seemed to affect performance when the mapping 

was entirely imprecise (i.e., zero precision, which indicates a uniform matrix), which led to mainly 

Absent errors (Figure 4C). Finally, changing the precision of the likelihood mapping between 

Response states and the Feedback outcome had a more incremental effect: performance was worse 

for lower precisions and was at chance level when the precision was zero (Figure 4D: left panel). As 

expected, this manipulation led to predominantly Absent errors (Figure 4D: right panel). 

Perhaps surprisingly, the pattern of errors for three of the four manipulations was similar (Figure 

4A,C,D), characterised by a high percentage of Absent errors and low percentages of Masker and 

Mix errors. Only one of the manipulations—increasing the precision of the likelihood mappings 

between Target Colour and Target Number states and observed words on the unattended side—led to 

a higher percentage of Mix errors than other errors. This profile is similar to that seen in 

behavioural studies (Holmes et al., 2018; Johnsrude et al., 2013; Maddox & Shinn-Cunningham, 2012: 

“Consistent” condition).  

These results show how different likelihood precisions can underwrite error types in this simple 

cocktail party listening paradigm. We found that reducing the likelihood precision for words on the 

attended side (Hypothesis 1) did not lead to a high proportion of Masker and Mix errors, and 

instead led to Absent errors. Conceptualising this using cognitive terms, if we reduce attention to 

words on the attended side, this does not necessarily mean that words from the unattended side will 

be reported, if the precision for words on the unattended side is low as in these simulations; instead, 

this leads to reporting words at random. Similarly, reducing the likelihood precision for the visual 

cue (Hypothesis 3) led to mainly Absent errors—although, interestingly, the simulations were 

relatively robust to a severe reduction in precision. In other words, even if the left spatial cue is only 

weakly associated with attending to the left side, the correct words are usually still reported. 

Interestingly, however, it was the manipulation of precision for words on the unattended side 

(Hypothesis 2) that led to Masker and Mix errors—suggesting that when the precision for words on 

the unattended side was sufficiently high, these words could ‘break through’ to influence the 

reported words. 

While previous empirical studies are consistent in reporting the greatest percentage of Mix errors, 

they differ in the relative percentages of Marker and Absent errors. Our manipulation of the 

precision parameter related to words on the unattended side showed a greater percentage of 

Masker Errors than Absent errors, which differs from the findings reported by Holmes et al. (2018), 

upon which the current paradigm was based. However, this pattern aligns with the results reported 

by Johnsrude et al. (2013). Maddox and Shinn-Cunningham (2012) show that the relative percentages 

of errors depend on whether the configuration of talkers differs within a spoken phrase, and so is 

expected to differ under different versions of the paradigm. In addition, it is likely that human 

patterns of errors are not only attributable to a single mechanism. For example, if a large proportion 

of errors were made because of an overly precise likelihood mapping to words on the unattended 

side, and a smaller proportion of errors were made due to an imprecise response-to-feedback 

likelihood mapping, then this could lead to the highest proportion of Mix errors, a smaller 

proportion of Absent errors, and the smallest proportion of Masker errors. In other words, human 

errors may result from a combination of processes. Regardless, here we show that a high percentage 

of Mix errors can only be explained by high precision associated with words on the unattended side, 

and not by the remaining precision manipulations that we considered. 

To examine the combined (interactive) effects of the precision of the A-matrix for words on the 

attended and unattended sides (i.e., manipulations 1 and 2, above), we ran simulations at 

combinations of 21 different levels of each factor between 0 and 2. In other words, we manipulated 

the two parameters in combination rather than in isolation to examine their non-additive effects. 
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Figure 5 shows that these two precision parameters have an interactive effect on percent correct. 

When the precision for words on the attended side is much greater than the unattended side (upper 

left corner of Figure 5A), accuracy is 100%. However, when the precision for words on the attended 

side approaches the precision for words on the unattended side (i.e., near to the diagonal in Figure 

5A), percent correct decreases. This is not all-or-none, but is rather a graded effect that appears 

when the difference in precision is less than approximately 0.5, suggesting that the magnitude of the 

difference in precision affects performance. As the precisions converge (i.e., become more similar), 

this produces mainly Mix errors and some Masker errors (Figure 5B–D)—showing that words from 

the unattended side are able to ‘break through’ to influence the agent’s beliefs about target words. 

The exception is when the precision of both mappings is low (i.e., towards the lower left corner of 

the plots): in this scenario, the majority of errors are Absent errors (Figure 5D).  

 

< FIGURE 5 > 

 

Overall, these simulations demonstrate that the sort of errors exhibited by human listeners (i.e., 

masker and mix errors) occur when the precision for words on the unattended side is only 

marginally lower than the precision for words on the attended side. In other words, errors occur 

when participants are not assigning sufficiently high precision to the attended side (or, conversely, 

sufficiently low precision to the unattended side) to prevent ‘break through’ from words on the 

unattended side. This means that, for these types of errors to occur, attention does not necessarily 

need to be misallocated (i.e., attending to the non-cued location rather than the cued location)—but, 

instead, it is simply not allocated ‘strongly’ enough (i.e., with sufficiently high precision) to suppress 

breakthrough from words on the non-cued side. 

Modelling preparatory attention: Reaction times 

In the simulations that follow, our aim was to simulate preparatory attention; specifically, the 

apparent build-up of attention over time before the onset of a target stimulus. This reflects the more 

general finding that attention is not all-or-none, and we wanted to examine how this type of non-

binary voluntary attention could be modelled. With this goal in mind, we sought to reproduce two 

sets of empirical findings for preparatory attention that speak to time-varying attention: the 

systematic shortening of reaction times with longer cue-target intervals (reported by Holmes et al., 

2018), and a build-up of ERP responses during the cue-target interval (reported by Holmes et al., 

2017). Crucially, both of these findings were obtained using the same paradigm as we described 

above. In the previous section, precision parameters were fixed over time. Whereas, we predicted 

that—in order to reproduce behavioural and electrophysiological correlates of preparatory 

attention—we would need to simulate changes in precision over time. The rationale behind this 

prediction is that likelihood mappings have more time to become precise when the cue-target 

interval is longer, and more precise mappings are likely to lead to faster reaction times. Therefore, in 

this section and the subsequent section, we consider time-varying precision. The neural basis for 

time-varying precision could be changes in neuronal gain (Parr & Friston, 2019b). 

In this section, we focus on the shortening of reaction times with longer cue-target intervals. In 

active inference, response times are the time taken for the gradient descent on free energy to 

converge. In more general terms, they can be considered as a measure of statistical efficiency, under 

the Principle of Least Action (because Action in physics is a time integral). We tested competing 

hypotheses about how precision evolves over time. We predicted that a faster build-up of precision 

would translate into faster belief updating, leading to faster convergence within each epoch (i.e., 

time-step within a trial) and hence faster response times (RTs). 
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To model different temporal profiles, we simulated a long trial (consisting of 14 time-steps) in which 

the spatial cue and the spoken words were presented at different times. To model changes in 

precision, we introduced an additional state factor into the generative model: Attentional Focus (see 

Figure 6). This factor equipped the model with an explicit belief about the precision for words on 

the attended side, which could, for example, relate to a belief about when the target talker will start 

speaking.  

The A-matrix was specified so that the Attentional Focus states determined the likelihood precision 

between Target Colour states and observed colour words (i.e., Left Colour Word or Right Colour Word 

outcomes, depending on the Spatial Attention state). The same precision value was used for the 

mappings between Target Number states and observed number words. The B-matrix for the 

Attentional Focus state was specified as a shift matrix (i.e., ones on the sub-diagonal and zeros 

elsewhere) with the additional specification that the final (i.e., most focussed) state is an absorbing 

state. Consequently, the attentional state transitions through the Attentional Focus states, in turn, as 

the trial proceeds, until the most focussed stated is reached. The agent then remains in the most 

focussed state until the trial ends. This reflects the implicit prior belief that, during a trial of fixed 

length, we can be increasingly confident that the stimulus is imminent as time elapses, if we have not 

yet observed the stimulus. 

In these simulations, we separated the generative process (i.e., the process generating outcomes in 

the world) from the generative model (i.e., the synthetic agent’s internal generative model of the 

task), because attention only operates in the brain and not in the world. Thus, we let Attentional 

Focus modulate precision in the generative model, but not the generative process. 

Notice that the Attentional Focus and Spatial Attention states are factorised in this generative model. 

That is, the Attentional Focus states only encode the precision of the mapping between word states 

and outcomes, not which words (i.e., left or right side) are attended. This could be thought of as a 

distinction between ‘what’ (Spatial Attention) and ‘when’ (Attentional Focus)—which interact to 

produce a particular attentional set (Auksztulewicz et al., 2018; Coull & Nobre, 1998). We revisit 

this point in the discussion. 

We included 10 discrete Attentional Focus states, and each state was associated with a particular 

precision value: we specified distinct precisions in different models to characterise the temporal 

profiles that could plausibly generate a slow instantiation of attentional set. In other words, for the 

purposes of these simulations, we discretised time between the presentation of the visual cue and 

the spoken word into 10 bins. We could have simulated smaller time steps, and thus a more gradual 

change in Attentional Focus over time, but this was unnecessary for the behavioural simulations that 

follow. 

 

< FIGURE 6 > 

 

We tested 5 different hypotheses about how precision changes over time, which are illustrated in 

the lower panel of Figure 6: (i) Precision increases linearly; (ii) Precision follows an exponential 

function; (iii) Precision follows an exponential cumulative density function; (iv–v) Precision is 

constant over time (i.e., null hypothesis). We can think of hypotheses (i)–(iii) as progressing from an 

imprecise state to a maximally precise state—which means that greater precision was allocated to 

words on the attended side as time progressed. These hypotheses differ, however, in the shape of 

the time-dependent increase in precision. Hypothesis (i) assumes that precision increases steadily 

from the time at which the cue occurs until 2000 ms after the cue is presented. Hypothesis (ii) 

assumes that precision begins low, then rapidly increases shortly before 2000 ms. Hypothesis (iii) 
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assumes that precision increases rapidly soon after the cue is presented and remains high. We also 

specified two alternatives for the null hypothesis: one corresponding to a low uniform precision 

(hypothesis (iv)), and a second corresponding to a high uniform precision (hypothesis (v)). We chose 

to include two null hypotheses rather then one, so that the null hypothesis was not biased towards a 

particular precision. For each hypothesis, we selected 10 different (equally spaced) positions on the 

temporal function, which were discretised into 10 different Attentional Focus states. The 

corresponding precision values specified the temperature parameter on a softmax (normalised 

exponential) function, which specified the relative difference between on-diagonal and off-diagonal 

elements of the A-matrix (see Eq. 1), as in the previous section.  

In these simulations, we assumed that the cue was revealed in the first epoch. Essentially, this meant 

that we did not model the period of time before the cue was presented, which contained no 

relevant information for the task. To simulate the different lengths of preparation time used in the 

experiment by Holmes et al. (2018), we changed the epoch when the talkers started speaking—

essentially simulating different cue-target intervals (i.e., the stimulus-onset asynchrony). Thus, for 

each preparation time condition, the agent was in a different Attentional Focus state at the time that 

the talkers started speaking. In other words, the precision value when the talkers started speaking 

was at a different place on the temporal functions illustrated in Figure 6(i)–(v). We assumed that 

each epoch corresponded to 250 milliseconds, which was the shortest preparation time used in 

Holmes et al. and the greatest common factor of all of their preparation times (250, 500, 1000, and 

2000 ms). We simulated 0 ms preparation time by specifying outcomes as words at the start of the 

trial, on the second epoch (the trial always begins with the agent hearing nothing on the first epoch, 

as described above). We simulated preparation times of 250, 500, 1000, and 2000 ms by introducing 

the talker onset at the third, fourth, sixth, and tenth epochs. In this paper, we refer to this variable 

as the ‘Talker Onset Epoch’.  

We added a null outcome for each of the word outcomes (see Figure 6), to indicate that the talkers 

were not speaking any words at the beginning of the trial. We also added a null Feedback outcome: 

When no response was made, feedback was neither correct nor incorrect. The null Feedback 

outcome was considered to be a non-preferred outcome (see Appendix 3 for parameter values), so 

the synthetic agent should try to change the outcome by making a response, but a null outcome was 

still preferred over an incorrect outcome. 

Given we were interested in reaction times, our policy space covered the different actions the agent 

could make (one of 16 response buttons) and when the agent could make the action (i.e., in which 

epoch): Thus, the agent could decide to respond early in the trial (e.g., before the talker started 

speaking) or wait to accumulate evidence before changing from a Null response to one of the 16 

colour-number combinations. This meant that we had a large policy space (208 policies: 16 response 

options at 13 epochs; the agent was not allowed to respond in the first epoch).  

During model inversion under active inference, a response time is calculated for each epoch. As our 

response time measure, we used the integral (i.e., sum) of response times from the epoch at which 

the talkers started speaking until the epoch that the action changed from Null to one of the 16 

colour-number combinations. This measure accounts for both the number of epochs until the 

response was enacted and the efficiency of the gradient descent within each epoch. 

For each hypothesis, we simulated average RTs, and directly compared these to the experimental 

data reported by Holmes et al. (2018). We did this by calculating the average RT, as described above, 

for each Talker Onset Epoch. For each Talker Onset Epoch within each of the five hypotheses, we 

simulated 100 trials. After taking the average over trials, we linearly scaled the simulated RTs—

which are in arbitrary units—to the group data reported by Holmes et al. (2018), so that the 

response times at Talker Onset Epochs of 2 and 10 matched the experimental data for preparation 
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times of 0 and 2000 ms, respectively. This allowed us to contrast the shapes of the temporal RT 

functions among the 5 hypotheses. 

The results are shown in Figure 7A, alongside the data from Holmes et al. (2018). Contrary to our 

prediction, the temporal functions are extremely similar among the 5 hypotheses. All of the 

simulated RTs are within one standard deviation of the experimental data.  

Figure 7B shows the root-mean-squared (RMS) error between each of the 5 hypotheses and the 

experimental data. The RMS error is low for all hypotheses, suggesting that all hypotheses explain 

the data well, but is marginally lower for the low-precision uniform (i.e., null) hypothesis. It is 

interesting to note that the two uniform (null) hypotheses are the simplest of the five hypotheses, 

and do not require the presence of an Attentional Focus state. Thus, these simulations demonstrate 

that time-dependent changes in precision are unnecessary to explain the RT data reported by 

Holmes et al. (2018). 

 

< FIGURE 7 > 

 

This raises the question: What underlies the difference in RTs between the five preparation time 

conditions (modelled as five Talker Onset Epoch conditions), if it is not mediated by time-sensitive 

precision (which differed under the five hypotheses)? A possible explanation is that faster RTs reflect 

the evaluation of a smaller number of policies, because the efficiency of gradient descent is related to 

the number of plausible policies that are retained. In active inference, policies are pruned if the 

evidence for the policy falls outside of Occam’s window (i.e., its posterior probability is very low). 

Thus, we subsequently examined whether policy pruning could account for differences in simulated 

RTs among Talker Onset Epoch conditions.  

Figure 8 shows the time-course of policy pruning in an example trial. Figure 8A shows that every 

Talker Onset Epoch condition began with the same number of policies and finished with one 

(winning) policy, but many of these were pruned away during the first few epochs. Relative to the 

onset of the trial, policies were pruned slightly (although not substantially) earlier when the talker 

onset was earlier. This seems intuitive because the response depends on the spoken words, which 

are not revealed until the talker onset epoch, and cannot be inferred from the attentional cue alone. 

To account for the difference in the epoch at which the talker outcomes were revealed among the 

different conditions, Figure 8B plots policy pruning relative to talker onset. This reveals systematic 

differences between policy pruning for the five different Talker Onset Epoch conditions. Note that 

the way of plotting policies in Figure 8B (i.e., relative to the onset of the target stimulus) better 

corresponds to how RTs are typically calculated in empirical studies, than those displayed in Figure 

8A. 

 

< FIGURE 8 > 

 

Table 1. Results of the hierarchical linear regression, showing how the number of policies at each 

epoch affects the reaction time (RT) for the trial. This analysis incorporates simulated trials under all 

models. Each row shows a different model, incorporating different variables (which were entered 

using the stepwise method, meaning that the variables that accounted for the greatest variance were 

entered first). R2 change and p-values result from comparing the model in that row with the model 

in the row above (not applicable for the first row). 
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Variables in model R2 (%) R2 change (%) p-value 

Policies in epoch 1 95.3 - - 

Policies in epochs 1 & 2 97.2 1.9 < .001 

Policies in epochs 1, 2 & 3 97.3 .1 < .001 

Policies in epochs 1, 2, 3 & 5 97.4 .1 < .001 

Policies in epochs 1, 2, 3, 4 & 5 97.6 .2 < .001 

 

 

Generally speaking, when the talker onset epoch is earlier, there are more policies within Occam’s 

window at the talker onset epoch (i.e., at epoch 1 in Figure 8B)—and it takes a greater number of 

epochs (i.e., more rounds of belief updating) to prune the set of policies to one winning policy. In 

general, these simulations imply that the RT benefit of lengthening the cue-target interval in the 

current simulations was that, as time passes, fewer policies are plausible, and so policy selection can 

occur sooner after talker onset. To test this hypothesis, we entered the number of policies on each 

simulated trial (at epochs 1–5 relative to talker onset) as predictor variables in a general linear 

model (GLM), with simulated RTs as the dependent variable. A hierarchical stepwise regression 

showed that the number of policies at the epoch corresponding to the talker onset (i.e., epoch 1) 

was a significant predictor of simulated RT (p < .001), accounting for 95.3% of the variance in RTs 

across all of the simulated trials. Although the number of policies at epoch 1 was the best predictor 

of RTs, including the number of policies at subsequent epochs significantly improved the model fit 

further (Table 1).  

This relationship was conserved when each of the 5 models were tested in separate hierarchical 

regressions, although there were some subtle differences in the ordering of variables. For all models, 

the number of policies in epoch 1 accounted for the most variance in RTs (R2 = 94.8%–94.8%, p < 

.001). For the uniform model with lower precision, the number of policies in epoch 4 was entered 

second into the regression (R2 change = 2.9%, p < .001), and none of the other variables significantly 

improved the model fit beyond this (p ≥ .15). For the other 4 models, the number of policies in 

epoch 2 was entered second (R2 change = 2.1–2.3%, p < .001), and the number of policies in epoch 5 

was entered third (R2 change = .1–.2%, p < .001). None of the other variables significantly improved 

the model fit beyond this (p ≥ .06), apart from the exponential CDF model, for which adding the 

number of policies in epoch 4 improved the model fit beyond the number of policies in epochs 1, 2, 

and 5 (R2 change = .02%, p = .031).  

Overall, these results imply that the RT benefit at longer preparation times can be accounted for by 

policy pruning, rather than greater precision. In a speeded reaction time task, an artificial listener 

begins with a large number of policies, reflecting the fact that they expect to respond at any time 

from when the cue is presented until the trial ends. However, as the listener waits for the target 

talker to start speaking, they can discount policies that involve responding during the preparatory 

interval, because—if they have not yet heard the talker speak—there is insufficient evidence for 

those policies. When the cue-target interval is longer, the listener has already discounted a greater 

number of policies by the time that the target talker starts speaking, so the correct policy can be 

selected more quickly after talker onset. Whereas, when the cue-target interval is short, the artificial 

listener still has lots of possible policies to evaluate (some for responding quickly and others for 

responding more slowly), and this slows down the process of belief updating (in the Bayesian model 

comparison literature, this is sometimes known as model dilution). In our model, the pruning of 
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policies was sufficient to account for different RTs with different lengths of preparation time. We 

found no improvement in model fit when we included time-dependent changes in precision. 

 

Modelling preparatory attention: EEG responses 

Finally, we examined simulated EEG responses under the five temporal hypotheses, to test whether 

time-dependent changes in precision are necessary to account for EEG responses observed during 

preparatory attention. In particular, we evaluated the ability of the five models to predict the CNV 

response (Tecce, 1972; Walter et al., 1964), which has been observed in a variety of domains, in 

both the auditory and visual modalities (Pasinski, Mcauley, & Snyder, 2016; Walter et al., 1964). The 

CNV is a negative potential over fronto-central electrodes that gradually increases in amplitude over 

time, until a target stimulus occurs. It is thought to reflect the anticipation of an upcoming stimulus 

(Chennu et al., 2013), and larger magnitude CNVs are related to better detection of acoustic stimuli 

(Rockstroh, Müller, Wagner, Cohen, & Elbert, 1993). CNV-like responses have been observed 

during preparatory attention for cocktail party listening, as characterised by an increase in amplitude 

before a target talker begins to speak (Holmes et al., 2016, 2017). 

Given the simulated RTs presented in the previous section, we asked whether the five hypotheses 

predict similar EEG responses, or whether the temporal profile of simulated EEG responses differs 

among hypotheses—resembling the CNV under some hypotheses more than under others. In the 

EEG simulations in this section, we focussed on the longest Talker Onset Epoch, which emulates 

empirical analyses of event-related potentials (ERPs) in preparation for cocktail party listening 

(Holmes et al., 2016, 2017). 

In active inference, EEG responses directly relate to belief updating under the generative model. The 

simulated EEG response is the rate of change of neuronal activity encoding the sufficient statistics of 

posterior beliefs (Friston, FitzGerald, et al., 2017). This activity is simulated using a  gradient descent 

on free energy (or, in other words, a gradient ascent on marginal likelihood). We simulated a trial 

under each of the five models, and extracted the accompanying neuronal dynamics. We then  filtered 

the simulated neuronal responses as if they were an ERP and compared these simulated responses 

to the empirical ERPs reported in Holmes et al. (2017; Figure 2C: Cluster 2N). For further details 

about simulated neuronal dynamics under active inference, please see Friston et al. (2017).    

Figure 9 shows the simulated neural responses for the five hypotheses. All of the simulated 

responses show a similar theta component, which simply arises because we scheduled belief updating 

every 250 ms; in other words, the synthetic agent updates their beliefs about which Attentional Focus 

state they are in every 250 ms. This theta component is therefore of less interest here, although it 

might be considered to be similar to the time-scale at which people sample sensory data (e.g., rates 

of syllable presentation or the timing of saccades; Friston et al., 2012; Giraud & Poeppel, 2012). 

Crucially, the slower drifts in the amplitude of EEG activity (which are illustrated in red in Figure 9, 

for visualisation purposes) differ among models, consistent with their distinct precision profiles. 

Although there were no new outcomes before the talkers started speaking (which occurred at 2.25 

seconds in Figure 9), the synthetic agent updated its beliefs about the Attentional Focus state, which 

transitioned throughout this time period—in other words, reflecting changes in precision that were 

associated with different Attentional Focus states. 

 

< FIGURE 9 > 
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The models with uniform precision (Figure 9D–E) give rise to ERPs that have a stable amplitude. The 

ERPs for the linear model (Figure 9A) show an early increase in amplitude until approximately 1.25 

seconds, and then a plateau. The exponential CDF model (Figure 9C) shows an early increase similar 

to the linear model, but then a sharper decrease in amplitude towards the baseline amplitude. The 

exponential model (Figure 9B) shows a delayed increase in amplitude that peaks around the time of 

talker onset. Based on visual inspection of Figure 9, the exponential model is most consistent with 

the ramping of ERP amplitude during preparatory attention, of the sort attributed to the CNV 

response.  

To formally compare the models, we entered the simulated ERPs from each of the 5 models into a 

hierarchical linear regression (stepwise method) to predict the data reported in Holmes et al. 

(2017). We selected Cluster 2N from Holmes et al. (2017), because this was the cluster that 

displayed the CNV-like response. It is worth noting that their analysis identified a complementary 

cluster (Cluster 2P) with opposite (positive) polarity, which simply reflects differences in polarity 

when ERPs are measured at different places on the scalp relative to the source of activity. We 

extracted the empirical data for Cluster 2N between 0 and 2000 ms, which corresponds to the time 

period of the cue-target interval in Holmes et al. (2017). We compared these data with our 

simulated ERPs between 0.25 and 2.25 seconds.  

We found that the exponential CDF model explained the most variance in the empirical EEG data 

(R2 = .42, β = .53, p < .001), and the exponential model explained additional variance unaccounted 

for by the exponential CDF model (R2 change = .08, β = -.31, p < .001). None of the responses from 

the remaining models accounted for additional variance (p > .38). The exponential CDF model 

appears to account best for the early response to the visual cue, measured within the first 1000 ms 

after the cue is presented, whereas the exponential model accounts best for the later CNV-like 

response at 1000–2000 ms, which is immediately before the target talker starts to speak. 

Overall, these simulated data show that, while time-dependent changes in precision are unnecessary 

to explain the RT advantage at longer preparatory intervals (as reported in the previous section), 

they are needed to explain the ramping pattern of EEG activity—suggesting that, in fact, these two 

empirical findings are not necessarily underpinned by the same computational process. Of the 

models we tested, an exponential increase in precision best approximates the empirical CNV 

response. This implies a time-dependent precision in which precision begins low, then rapidly 

increases shortly before the target talker starts speaking. 

 

Discussion 

In this paper, we introduce a generative model that accounts for spatial attention during a simplified 

cocktail party paradigm that uses CRM phrases. Active inference under this generative model offers 

100% accuracy in a spatial cueing task, but performance is impaired in different ways when the 

precisions of various likelihood mappings in the generative model are changed, revealing 

computational dissociations. Crucially, we found that masker and mix errors during cocktail party 

listening can be accounted for by a likelihood mapping for words on the attended side that is only 

marginally more precise than the likelihood mapping for words on the unattended side. This allows 

words on the unattended side to ‘break through’ to update beliefs about target words. Thus, a low 

precision for attended relative to unattended words might explain why human listeners typically 

make masker and mix errors during cocktail party listening, rather than reporting other words that 

are not in the mixture (Best et al., 2008; Brungart & Simpson, 2002; Holmes et al., 2018). This 

speaks to an explanation of masker and mix errors, whereby attention does not need to be 

misallocated to the non-target location, but may simply not be allocated strongly enough to the 
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attended location relative to the unattended location. The precision of likelihood mappings is 

generally understood as neuronal gain (Parr & Friston, 2019b); thus, the difference in precision could 

conceivably be reflected in the gain of neuronal populations encoding words on the unattended side, 

relative to words on the unattended side. We found that Absent errors could be accounted for by a 

variety of ‘computational lesions’ under our generative model, reflecting the variety of processes that 

can lead participants to report words that were not spoken on a trial. For example, a lack of 

motivation to respond correctly, or failures at the response stage. Given that a variety of errors are 

often observed in auditory attention experiments, future work could employ this generative model 

as a tool for dissecting the processes underlying these errors, and how they vary across participants: 

Equipped with each participants’ behavioural responses, this generative model could be inverted to 

recover the most likely underlying parameters that account for participants’ responses and, 

ultimately, which parameters best account for individual differences or differences between groups 

of participants (Schwartenbeck and Friston, 2016). 

When we extended the generative model to accommodate preparatory attention, we found that 

time-dependent changes in precision were not needed to explain faster RTs with longer preparatory 

intervals, but were necessary to explain the ramping of ERPs (resembling the CNV) before the target 

talker begins to speak. We found that faster RTs could be explained quite simply by the pruning (i.e., 

discounting) of policies over time—and time-dependent changes in precision did not improve the fit 

of our simulations to empirical RTs from human listeners. This speaks to an explanation of 

preparatory RTs that involves a relatively automatic process, related to the need to act quickly (i.e., 

a psychological Principle of Least Action), rather than to a volitional control of precision that 

changes over time. For example, it might relate to the conditional probability that the target talker 

will start speaking, which—given that this has not yet occurred—increases over time (c.f., a harzard 

function) (Luce, 1986). Alternatively, given that our policy space included both the nature and the 

timing of the response, it could relate to a speed-accuracy trade-off. The latter would imply that 

such a pattern of RTs would only be observed in challenging task contexts, where the need to 

respond quickly is in conflict with the need to respond accurately. Consistent with this idea, visual 

cues do not improve performance on a cocktail party listening task when the talkers are easily 

separable based on their acoustic characteristics (Varghese, Ozmeral, Best, & Shinn-Cunningham, 

2012). 

We found that models with different time-dependent precision profiles give rise to different 

electrophysiological responses. Our simulated electrophysiological responses constitute updates to 

the agent’s beliefs about the Attentional Focus state, which—in our generative model—determines the 

precision of likelihood mapping for words on the attended side. As shown in Figure 9, flat precision 

profiles were associated with flat responses, whereas models with time-dependent increases in 

precision generated increased neuronal responses during the preparatory interval (i.e., before the 

target talker started speaking). We could clearly demonstrate that different patterns of precision are 

associated with different amplitude profiles. This is intuitive from the perspective of active inference, 

because belief updating is related to the rate of change in precision. Of the models we tested, the 

exponential model best accounted for CNV-like responses that have been observed in EEG studies 

of preparatory attention. Although we only tested three formally distinct temporal changes in 

precision here, our findings speak to a temporal deployment of attention that increases non-

linearly—beginning low when an attentional cue is presented and rapidly increasing shortly before 

the target stimulus occurs. This fluctuation in precision is specified as an explicit belief in our 

generative model, and it could, therefore, be considered as a volitional deployment of attention—

which could be instantiated as an increase in neuronal gain—possibly reflecting the time at which a 

listener expects a target stimulus to occur. Indeed, studies that have measured the CNV using two 

or more temporal intervals found that the timing of the CNV aligns well with participants’ 

expectations about when a stimulus will occur (Birbaumer, Elbert, Canavan, & Rockstroh, 1990; 
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Rockstroh et al., 1993; Ruchkin, McCalley, & Glaser, 1977). Also, the CNV has a steeper slope when 

shorter intervals are used that can be more accurately estimated (McAdam, Knott, & Rebert, 1969; 

Miniussi, Wilding, Coull, & Nobre, 1999). Although, in these previous studies of the CNV, the CNV 

is closely associated with a ‘preparatory set’ related to motor preparedness (Rohrbaugh, Syndulko, & 

Lindsley, 1976); whereas, in the current cocktail party setting, the cue does not inform participants 

about the motor response, because the response depends upon the words spoken by the target 

talker.  

While we simulated a simplified cocktail party setting here, similar computational processes might 

also underpin preparatory and selective attention in other domains. The Attentional Focus factor in 

our generative model could be considered more generally as a possible mechanism for temporal 

attention (e.g., Shen & Alain, 2011, 2016); specifically, ‘temporal orienting’ (Coull & Nobre, 1998; 

Nobre, 2001; Nobre, Correa, & Coull, 2007). Implicit temporal preparation has been shown to 

affect behaviour even when it is not task-relevant (Vallesi, 2010). In this context, the temporal 

functions in Figure 6(i)-(v) reflect different expectations about when a target stimulus is expected to 

occur. One could imagine a family of functions, reflecting the time that participants expect an event 

to occur (and uncertainty about the expected time). Under this formulation, the particular form of 

time-dependent precision constitutes a hypothesis in the model, and the null hypotheses considered 

in this paper correspond to a belief that a target is no more likely to occur at one time point than 

another. Interestingly, the empirical EEG responses that we modelled were recorded in an 

experiment in which the target always occurred 2000 ms after the cue. Thus, participants would 

have strong expectations that the target would occur around 2000 ms, which could explain why the 

exponential temporal function, which increased rapidly around 2000 ms, was the best fit to the 

CNV-like response. Future experiments could test this more directly by controlling the distribution 

of cue-target intervals, factorising different expected values and precisions over the length of the 

cue-target interval, to observe how this affects the temporal profile of electrophysiological 

responses. 

Our model factorises two different types of attentional states. The Spatial Attention factor, which is 

akin to the type of attentional state that has been modelled in previous work (e.g., Feldman & 

Friston, 2010; Mirza et al., 2019), determined which spatial location was the focus of attention. 

Whereas, the Attentional Focus state played a different role: it determined how strongly attention was 

focussed on a particular location, irrespective of which location was attended. In the current 

simulations, we used the Attentional Focus states to control gradations in attention within a trial that 

were not all-or-none. In this way, the Attentional Focus state only modified the strength (i.e., 

precision) of connections between particular states and outcomes. We could envisage a different 

model structure, whereby a single factor determines both the strength and the direction of 

attention. The factorisation used here would be more efficient, because many more states are 

needed to represent the combination of strength and direction (2 directions * 10 strengths = 20 

states) than the factorised version (2 directions + 10 strengths = 12 states). When considering the 

Attentional Focus state in the context of temporal attention, one could consider this formulation as a 

factorisation of spatial and temporal attention—in other words, distinct beliefs about attention to 

what and when. This is consistent with evidence from human electrocorticography (Auksztulewicz et 

al., 2018) showing that predictions about the timing and content of a spoken syllable evokes activity 

in distinct bran areas, and is best modelled by different changes in synaptic gain. The current model 

could be extended to incorporate other forms of attention, such as frequency-specific attention, 

which could be encoded in a similar way as the spatial attention factor. 

We assume that the slow drifts in attention that we modelled here—which occur on the order of 

seconds—are distinct from faster changes in attention that have previously been associated with 

theta oscillations (Morillon & Schroeder, 2015; Pefkou, Arnal, Fontolan, & Giraud, 2017; Senoussi, 

Moreland, Busch, & Dugué, 2019; VanRullen, 2018). These faster attentional processes may be 
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associated with the temporal sampling of outcomes—for example, at the rate of syllables in a spoken 

sentence. Whereas, the temporal changes in attention we modelled here operate over a relatively 

longer temporal scale (although not as long as sustained attention, which may operate over tens of 

seconds and is accompanied by even slower changes in neuronal dynamics). One could imagine a 

hierarchical nesting of temporal scales (Friston, Parr, & de Vries, 2017; Friston et al., 2020; Giraud & 

Poeppel, 2012; Hovsepyan, Olasagasti, & Giraud, 2020; Poeppel, Idsardi, & Van Wassenhove, 

2008)—in which slower changes in attention (e.g., those that we modelled here) operate at a higher 

level of the model, and faster attentional processes (related to sampling of stimuli) occur at a lower 

level.  

In future work, the current model could be combined with models mapping the acoustic signal to 

words (Friston et al., 2021) and with models mapping words to semantics (Friston et al., 2020); this 

could be used to simulate cocktail party paradigms in which semantically meaningful passages are 

heard, or conversations in which a listener volitionally directs attention to a conversational partner 

and then switches their attention to a different talker to gather new semantic information. For 

example, if the other sentence helps to resolve semantic ambiguity or contains salient words, such as 

the listener’s name. While these more naturalistic instantiations of cocktail party listening require 

additional processes beyond those studied here, we assume that the top-down attention component 

of cocktail party listening—which we isolate using simple CRM phrases that lack semantic context—

also applies to these naturalistic settings. This type of hierarchical model could also be used to 

investigate interactions between bottom-up and top-down processes during attentional selection, 

which has previously been modelled for non-speech sounds (Golob, Venable, Anderson, Benzell, & 

Scheuerman, 2016). A previous model by Golob et al. (2016) incorporated a spatial attention 

gradient, which could also be incorporated into the current model—and may be particularly useful 

for modelling talkers who are not as clearly separated in location as in the current simulations. 

The ERPs simulated in Figure 9 are also interesting from the perspective of hearing loss. Holmes et 

al. (2017) showed that the CNV-like response during the cue-target interval is significantly weaker in 

people with hearing loss than in people with normal hearing, even when people with hearing loss use 

hearing aids. During the cue-target interval, their ERPs resemble the flat ERP that is associated with 

uniform precision, rather than the CNV-like responses associated with an exponential increase in 

precision. One of the most common problems reported by people with hearing loss—including 

those who use hearing aids—is difficulty listening in noisy places. Combined with the data reported 

by Holmes et al. (2017), one possible explanation is that they are unable to increase the precision of 

mappings to attended relative to unattended locations to the same extent as do people with normal 

hearing. In future work, we plan to use the current generative model to compare computational 

parameters between people with and without hearing loss. For example, this type of model can 

enable us to dissociate the hypotheses that people with hearing loss have a different sort of 

generative model (i.e., with different parameters), from the hypothesis that they use the same 

generative model, but it is based on different auditory outcomes, which are distorted due to hearing 

loss. 

The model could also be used to simulate a variety of other empirical effects. For example, the cost 

of switching attention—which is characterised by slower RTs when a listener is instructed to attend 

to a different stimulus attribute (Nolden, Ibrahim, & Koch, 2018; Seibold, Nolden, Oberem, Fels, & 

Koch, 2018) or stream (Larson & Lee, 2013; Maddox & Shinn-Cunningham, 2012) than when these 

remain the same—might be underpinned by a belief that the stimulus set will be enduring. In our 

Markov decision process, this would be reflected in the B-matrix for the Spatial Attention factor. One 

could equip the model with beliefs that the Spatial Attention state will remain the same over time, or 

beliefs that it will change; we expect that switching to a different attentional state would evoke a 

greater change in beliefs when the state is expected to remain the same over time, which could slow 

down subsequent inference and explain slower RTs. The model could also be used to examine 
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object-based attention (Shinn-Cunningham, 2008) by contrasting models in which different features 

(e.g., location and frequency) are attended separately or in combination. It would also be interesting 

to examine learning under this generative model: moment-by-moment changes in precision might 

help to explain why attentional streaming builds up over time (Bregman, 1978). To test any of these 

hypotheses, Bayesian model comparison could be used to establish which different instantiations of 

the generative model best account for empirical data (Schwartenbeck and Friston, 2016). 

In summary, this paper introduces a generative model that can reproduce empirical behaviour and 

electrophysiological responses during cocktail party listening, under active inference. We show that 

this model is useful for predicting effects of different computational deficits on error types, and that 

errors that involve reporting words spoken by a competing talker—which are a hallmark of 

informational masking—arise when the likelihood precision for words at an unattended location is 

only marginally lower than precision for words at an attended location. In addition, we used this 

model to simulate preparatory attention during the cue-target interval, before a target talker starts 

to speak. This revealed a dissociation in the computational processes underlying faster RTs with 

longer cue-target intervals compared with CNV-like ERPs measured during the cue-target interval. 

The former can be explained by policy pruning and speaks to a relatively automatic process related 

to the need to act quickly (i.e., a psychological Principle of Least Action). Whereas, the latter can be 

explained by a temporal evolution of precision in the absence of new sensory observations, which 

speaks to a volitional deployment of time-sensitive attention that peaks around the time a target 

talker is anticipated. We envisage that this generative model may be useful for future work 

examining different aspects of attention and everyday listening, and for examining differences 

between (groups of) participants. 
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Appendices 

Appendix 1: Free energy equations 

Variational free energy (𝐹) is an upper bound on surprise: 

ln ( ) [ ( ) || ( | )]KLF P o D Q s P s o        (A.1) 

where  represents the states of the generative model, 1( ,..., )o o o  denotes sensory 

observations until the current time (τ), P indicates the probability under the generative model, and 

Q indicates posterior beliefs. Under this formulation, surprise ( ln ( )P o ) is the negative log 

probability of observations under the generative model, and the second part of the equation is the 

Kullback–Leibler divergence (DKL) between the approximate posterior distribution and the true 

posterior distribution.  Thus, minimising variational free energy minimises surprise. 

The equation for variational free energy can be written another way as the difference between 

accuracy and complexity. Thus, minimising variational free energy simultaneously maximises accuracy 

and minimises complexity. 

[ ( ) || ( )] [ln ( | )]KL Q

complexity accuracy

F D Q s P s E P o s       (A.2) 

where EQ indicates the expected value under the posterior (Q) distribution.  

The enactive component of active inference comes from selecting policies (π; i.e., a series of actions) 

that minimise expected free energy (G) under the generative model:  

( ) ( , )

( , ) [ln ( | ) ln ( | , ) ln ( | )]

[ ( | ) || ( | )] [ ( | )]

Q

KL

risk ambiguity

G G

G E Q s Q s o P o

D Q o P o H Q o s
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



   

   

 

   

 



C

C

  (A.3) 

where C indicates preferences over outcomes, which are documented in Appendix 2.  

Minimising expected free energy relies on predictions about future outcomes. The probability of 

pursuing any particular outcome is proportional to the expected free energy if that action is taken. 

Expected free energy simultaneously minimises risk (i.e., the Kullback–Leibler divergence between 

predicted and prior preferences over outcomes under policies) and minimises ambiguity (i.e., the 

uncertainty about outcomes given states). 

For technical details on variational and expected free energy, see Friston et al. (2017). 

 

Appendix 2: Form of the generative model 

All of the generative models in this paper take the same generic form: 
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   (A.4) 

where s  represents the states of the generative model, 1( ,..., )o o o  denotes sensory 

observations until the current time (τ), π denotes policies, and P indicates the probability under the 

generative model. The notation Cat means a categorical distribution. Probability distributions are 

defined by: A-matrices (A), which specify likelihood mappings between states and outcomes; B-

matrices (B), which specify how states within each state factor are expected to transition over time; 

C-matrices (C), which specify preferences over outcomes for each outcome factor; D-matrices (D), 

which specify prior beliefs about which states the model is likely to be in, initially. The probability of 

pursuing policies is defined by a softmax (normalized exponential) function (σ) over the expected 

free energy (G). 

 

Appendix 3: Parameters of generative models 

Table 2. Relevant parameters of the generative model used in the section “A generative model of 

selective attention during cocktail party listening”. Other parameters are specified in the main text or 

were otherwise set to their default values in SPM12. In the column headed Parameter, colons are 

used to index a matrix or cell array: they indicate a vector containing every integer between the two 

integers (inclusive). 

Parameter Value Description 

C{6} [2; -4] 

Log preferences over Feedback outcomes (respectively: 

Correct, Incorrect). These values are repeated for all time 

points in a 2 x T matrix. 

C{1:5} [1; 1; …] 

Log preferences over all other outcome factors: N-element 

vector, where N indicates the number of outcomes for each 

outcome factor. These values are repeated for all time 

points in a N x T matrix. 

α 512 Precision over policies 

 

Table 3. Relevant parameters common to all generative models used in the section “Modelling 

impaired performance”. Other parameters are specified in the main text or were otherwise set to 

their default values in SPM12. 

Parameter Value Description 

C{6} [2; -4] 

Log preferences over Feedback outcomes (respectively: 

Correct, Incorrect). These values are repeated for all time 

points in a 2 x T matrix. 
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C{1:5} [1; 1; …] 

Log preferences over all other outcome factors: N-element 

vector, where N indicates the number of outcomes for each 

outcome factor. These values are repeated for all time 

points in a N x T matrix. 

α 1 Precision over policies 

 

Table 4. Relevant parameters common to all generative models used in the sections “Modelling 

preparatory attention: Reaction times” and “Modelling preparatory attention: EEG responses”. Other 

parameters are specified in the main text or were otherwise set to their default values in SPM12. 

Parameter Value Description 

C{6} [2; -4; -3] 

Log preferences over Feedback outcomes (respectively: 

Correct, Incorrect, Null). These values are repeated for all 

time points in a 3 x T matrix. 

C{1:5} [1; 1; …] 

Log preferences over all other outcome factors: N-element 

vector, where N indicates the number of outcomes for each 

outcome factor. These values are repeated for all time 

points in a N x T matrix. 

α 512 Precision over policies 
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Figure Captions 

Figure 1. Schematic of the task. The participant sees an instructional cue (left or right arrow) on 

the screen, which directs their attention to their left or right side. They then hear two phrases 

spoken by different talkers, which each contain a colour word and a number word: one phrase is 

presented on their left side and the other is presented on their right side. They are instructed to 

report the colour and number words from the side indicated by the instructional cue. In the 

example shown in the figure, the cue directs attention to the left side, and the correct answer is 

“White 1”. 

 

Figure 2. Schematic detailing the structure of a generative model of selective attention during 

cocktail party listening. States are displayed (in blue) on the upper row, and outcomes are displayed 

(in orange) on the lower row. Note that only 5 of the 17 Response states are illustrated in the 

figure, to avoid visual clutter. Grey solid arrows represent likelihood mappings between states and 

outcomes that have high probabilities, and grey dots at the intersection between two lines indicate 

that a state factor modulates the likelihood of an outcome under another state. For clarity, only one 

example set of mappings is shown in the figure—corresponding to a case in which Spatial Attention is 

Right, the Target Colour Word is “Red”, and the Target Number Word is “1”. Grey dashed arrows 

show mappings between word states and word outcomes that would have high probabilities if the 

Spatial Attention state was Left. The mapping between Response and Feedback is modulated by the 

Target Colour and Target Number factors (modulation not displayed). Transitions in the response 

factor depend upon the policy selected. 
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Figure 3. Details of the 4 different mechanistic hypotheses that produce characteristic errors. To 

test each hypothesis, a different likelihood precision was manipulated parametrically at 26 levels. This 

figure displays the range of precision parameter values, the default value of the precision parameter 

when other parameters were manipulated, and a schematic that illustrates the location of the 

manipulated precision in the model—which is indicated by the black arrows. 
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Figure 4. Results from simulations. The left column shows the percent correct for 48 simulations, 

and the right column shows the error types. Errors are separated into three types: Masker, Mix, and 

Absent. Each error type is expressed as a percentage of all errors (i.e., based on the number of 

incorrect trials). (A) Effect of the precision of the likelihood mapping between beliefs about attended 

words and the observed words. (B) Effect of the precision of the unattended talker. (C) Effect of the 

precision of the likelihood mapping between Spatial Attention states and the observed Visual Cue. (D) 

Effect of the precision of the likelihood mapping between Response states and the Feedback outcome. 

 

Figure 5. Combinations of A-matrix precision values for the mappings from beliefs about words 

(Target Colour and Target Number factors) to word outcomes on the attended and unattended sides 
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(Left Colour Word, Right Colour Word, Left Number Word, and Right Number Word). (A) Percent 

correct. (B) Masker errors as a percentage of all errors. (C) Mix errors as a percentage of all errors. 

(B) Absent errors as a percentage of all errors. 

 

Figure 6. Schematic showing the generative model from Figure 2, with an additional Attentional Focus 

state factor that underwrites preparatory attention. States are displayed (in blue) on the upper row, 

and outcomes are displayed (in orange) on the lower row. For clarity, the Target Number states, Left 

Number Word outcomes, and Right Number Word outcomes are not displayed in the schematic, but 

act in the same way as the corresponding colour states and outcomes. Similarly, only 4 of the 10 

Attentional Focus states and 5 of the 17 Response states are shown. Arrows represent likelihood 

mappings between states and outcomes that have high probabilities, and dots indicate that a factor 

modulates the likelihood mapping between a state and an outcome. The figure illustrates an example 

set of mappings for a trial in which the right talker was attended, who spoke the words “Red 1”. The 

lower (orange) panel shows how the Attentional Focus state affects the relevant mappings between 

states and outcomes. A precision parameter (p) is set by one of 5 distributions: panels (i)–(v) show 

the distributions from which this parameter is sampled under the (i) linear, (ii) exponential, (iii) 

exponential cumulative density, (iv) uniform with lower precision, and (v) and uniform with higher 

precision hypotheses. For attended outcomes (determined by the Spatial Attention state), the 

precision parameter becomes the temperature parameter in a softmax function, which determines 

the relationship between on-diagonal and off-diagonal elements. The likelihood mappings between 

the target word states and the unattended outcomes are uniform matrices (i.e., with zero precision) 
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under all five hypotheses. In terms of neuronal implementation, these likelihood mappings—and their 

time-dependent changes—correspond to effective connectivity, where short-term changes in 

underlying synaptic efficacy may be mediated by neuromodulatory synaptic mechanisms. 

 

Figure 7. Results from preparatory attention simulations, under different hypotheses about the 

shape of the temporal precision function. (A) Average reaction times for each combination of talker 

onset epoch and temporal hypothesis. The grey dotted line indicates the reaction time (RT) data 

from 20 human listeners, as reported in Holmes et al. (2018); for the purposes of this comparison, 

preparatory intervals of 0, 250, 500, 1000, and 2000 ms are assumed to correspond to talker onset 

epochs of 2, 3, 4, 6, and 10, respectively. Error bars indicate ± 1 standard deviation from the mean. 

The RTs simulated from the 5 models have been scaled (linearly) to the data reported in Holmes et 

al. (2018): this is why the simulated reaction times match the data at talker onset epochs of 2 and 10. 

(B) Root mean squared (RMS) errors between the (scaled) simulated RTs under each model and the 

RTs reported in Holmes et al. (2018). Model A: Linear; Model B: Exponential; Model C: Exponential 

cumulative density function (CDF); Model D: Uniform with lower precision; Model E: Uniform with 

higher precision. 
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Figure 8. Examples of policy pruning under different talker onset values for the low-precision 

uniform model. The pattern of pruning was similar under all models. (A) The number of policies 

remaining at each epoch during the trial, starting when the visual cue was presented. (B) The number 

of policies remaining in each epoch, relative to the talker onset epoch. Within each plot, each line 

reflects a different Talker Onset Epoch condition. 

 

Figure 9. Examples of synthetic electrophysiological responses under different models. Grey lines 

show simulated electrophysiological responses, and red lines show the slower temporal pattern of 

simulated responses (for visualisation only). Each epoch is plotted with 0.25 seconds duration. On 

these plots, the presentation of the visual cue occurs at 0 seconds, and the talker onset corresponds 

to 2.25 seconds (as indicated by the dashed vertical lines). (A) Linear function. (B) Exponential 

function. (C) Exponential cumulative density function (CDF). (D) Uniform function with lower 

precision. (E) Uniform function with higher precision. 
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