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Abstract 1 

Background: Education might be causal to type 2 diabetes mellitus (T2DM). We triangulated 2 

cohort and genetic evidence to consolidate the causality between education and T2DM.  3 

Methods: We obtained observational evidence from the English Longitudinal Study of Ageing 4 

(ELSA). Self-reporting educational attainment was categorised as high (post-secondary and 5 

higher), middle (secondary), and low (below secondary or no academic qualifications) in 6,786 6 

community-dwelling individuals aged ≥50 years without diabetes at ELSA wave 2, who were 7 

followed until wave 8 for the first diabetes diagnosis. Additionally, we performed two-sample 8 

Mendelian randomisation (MR) using an inverse-variance weighted (IVW), MR-Egger, 9 

weighted median (WM), and weighted mode-based estimate (WMBE) method. Steiger 10 

filtering was further applied to exclude single-nucleotide polymorphisms (SNPs) that were 11 

correlated with an outcome (T2DM) stronger than exposure (education attainment).  12 

Results: We observed 598 new diabetes cases after 10.4 years of follow-up. The adjusted 13 

hazard ratios (95%CI) of T2DM were 1.20 (0.97-1.49) and 1.58 (1.28-1.96) in the middle- and 14 

low-education groups, respectively, compared to the high-education group. Low education 15 

was also associated with increased glycated haemoglobin levels. Psychosocial resources, 16 

occupation, and health behaviours fully explained these inverse associations. In the MR 17 

analysis of 210 SNPs (R2=0.0161), the odds ratio of having T2DM per standard deviation-18 

decreasing years (4.2 years) of schooling was 1.33 (1.01-1.75; IVW), 1.23 (0.37-4.17; MR-19 

Egger), 1.56 (1.09-2.27; WM), and 2.94 (0.98-9.09; WMBE). However, applying Steiger 20 

filtering attenuated most MR results toward the null. 21 

Conclusions: Our inconsistent findings between cohort and genetic evidence did not support 22 
the causality between education and T2DM. 23 

Keywords 24 

Educational level, Type 2 diabetes mellitus, Glycated haemoglobin, Prospective cohort, 25 

Mendelian randomisation 26 

Key messages 27 

What is already known on this subject? 28 

- Several pieces of evidence suggested that education attainment might play a causal 29 

role in the occurrence of T2DM. 30 

What does this study add? 31 

- Our observational evidence suggested no direct impact of education on the risk of 32 

T2DM. The observed inverse associations were mediated through insufficient 33 

psychosocial resources, low occupation class, and unhealthy behaviours due to low 34 

education. 35 

- In contrast, the genetic evidence suggested no causal association between education 36 

and the risk of T2DM. Notably, the significant associations from our genetic evidence 37 

resulted from the invalid genetic instrument used in the analysis. 38 
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- The observational and genetic evidence was inconsistent; therefore, our triangulated 1 

evidence did not support a causal role of education in the occurrence of T2DM.  2 

Introduction 3 

Type 2 diabetes mellitus (T2DM) is a significant global burden affecting more than 422 million 4 

people worldwide, and its prevalence will reach 7,079 per 100,000 by 2030.[1] In some 5 

countries, the increased prevalence reflects a better survival rate, while the incidence of 6 

T2DM is still rising in others.[2] 7 

Currently, T2DM is incurable. Thus, prevention is crucial. An effort has been put into clinical 8 

risk modification, such as weight reduction and smoking cessation.[3] However, it has been 9 

suggested that these clinical factors attributed to only one-third of total diabetes risks.[4] 10 

Therefore, the residual factors are worth further investigation. 11 

Previous observational studies have shown an inverse association between educational level 12 

and the risk of T2DM.[5–8] However, residual confounders and reverse causality limited the 13 

establishment of causality. Moreover, scarce evidence had examined the relationship 14 

between education and glycated haemoglobin (HbA1c) levels,[9] which are the biomarker of 15 

prediabetes and well-established cardiovascular risk.[10] Furthermore, findings from genetic 16 

(Mendelian randomisation) studies are equivocal.[11–14]  17 

This study aims to investigate the causal effect of education on the risk of T2DM and HbA1c 18 

levels by comparing results from two different study designs – an approach called 19 

‘triangulation of evidence’.[15] Triangulated findings may complement the limitations of each 20 

other and provide a more solid conclusion. The two methods being used here are cohort study 21 

and Mendelian randomisation (MR). In brief, MR uses single-nucleotide polymorphisms 22 

(SNPs) as a proxy of exposure. This genetic proxy is less likely to be associated with 23 

confounders due to its random allocation according to Mendel’s law of independent 24 

assortment.[16–18] Additionally, we also examine the causal pathway linking educational 25 

level with the risk of T2DM and HbA1c levels. 26 

Methods 27 

This report followed the STrengthening the Reporting of OBservational Studies in 28 

Epidemiology (STROBE) guidance of cohort studies and its extension to Mendelian 29 

randomisation (STROBE-MR) (Table S1-S2).[19] 30 

Cohort evidence 31 

Data source and study population 32 

We used the English Longitudinal Study of Ageing (ELSA) data: a prospective cohort study of 33 

nationally representative community-dwelling individuals aged ≥50 years. At ELSA wave 1 34 

(2002-03), samples included all consenting people who participated in the Health Survey for 35 

England (HSE) in 1998, 1999 and 2001. Subsequent follow-up interviews and health 36 

examinations take place regularly at two- and four-year intervals, respectively. More 37 

information on ELSA can be found at http://www.elsa-project.ac.uk/.[20] 38 
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We used data from ELSA wave 2 (2004–05), which comprised follow-up interviews and health 1 

examinations and constituted the baseline of our cohort study. Of 11,391 participants in ELSA 2 

wave 1, 8,780 participated in ELSA wave 2, of whom 7,666 consented to the health 3 

examination. Our final analysis included 6,786 individuals without a history of diabetes in 4 

ELSA wave 2. To make the results comparable to genetic evidence, only white participants 5 

(97.7% of core samples in ELSA wave 2) were included in the analyses (Figure S1). 6 

Educational level 7 

Educational level was the self-reported highest educational qualification obtained by ELSA 8 

wave 2, further classified into three groups as implemented by a previous ELSA study.[5] A 9 

high educational level was defined as a university degree, other higher or post-secondary 10 

education, and A-level education (n=2,218), whereas a middle educational level included a 11 

Certificate of Secondary Education (CSE) and similar foreign qualifications (n=2,106). 12 

Individuals with below secondary education or without educational qualifications were 13 

grouped as low educational level (n=2,462).  14 

Type 2 diabetes mellitus (T2DM) and glycated haemoglobin (HbA1c) levels 15 

The primary outcome was the self-report physician-diagnosed diabetes up to ELSA wave 8 16 

(2016/17). To minimise misclassification bias, we included participants with HbA1c levels 17 

≥6.5% at least twice in a diabetic group as suggested clinically.[10] The secondary outcome 18 

was the trajectory of HbA1c levels measured at ELSA wave 2, 4, 6, and 8. Notably, HbA1c 19 

measured in ELSA before October 2011 was calibrated using Diabetes Control and 20 

Complications Trial (DCCT) standards, replaced by the International Federation of Clinical 21 

Chemistry (IFCC) standardisation afterwards. Details of quality control of HbA1c measured in 22 

ELSA has been published elsewhere.[21]  23 

Covariates 24 

We collected all covariates at baseline, mostly self-reported, except for body mass index 25 

(BMI). These covariates included age (years), age2, sex (i.e., male and female), marital status 26 

(i.e., single, married, and separated divorced or widowed), depressive symptom (i.e., Center 27 

for Epidemiologic Studies Depression [CESD] score ≥4), occupational class (i.e., managerial or 28 

professional, intermediate, and routine or manual occupation), BMI (i.e., normal, overweight, 29 

and obese), smoking status (i.e., never, ex-, and current smoker), alcohol drinking (i.e., never 30 

or almost never, 1-2 times a month, 1-2 times a week, and daily or almost daily). Moreover, 31 

childhood socioeconomic position (SEP) was obtained and categorised into four groups 32 

according to father’s main job when participants aged 14 years: high (i.e., managerial-, 33 

professional-, administrative occupations, or business owners); middle (i.e., trade- or services 34 

related occupations); low (manual or casual occupations, unemployed, sick and disabled); and 35 

miscellaneous (i.e., armed forces and retired). According to directed acyclic graphs (DAGs) 36 

adapted from Hamad et al.[22] and Liang et al.[14] only age, sex, and childhood SEP were 37 

considered confounders, whereas the rest were mediators (Figure S2). 38 

  39 
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Statistical analysis 1 

Sample baseline characteristics were explored according to educational groups using 2 

descriptive and inferential statistics, as appropriate. We created a Kaplan-Meier plot for the 3 

cumulative incidence of T2DM of each group and compared it by log-rank test. 4 

The association between educational levels and the risk of T2DM was examined using a Cox-5 

proportional hazards model with high education as a reference group. To investigate 6 

potential causal pathways, models were adjusted for each set of covariates as follows: 7 

confounding factors (i.e., age, sex, and childhood SEP); psychosocial resources (i.e., 8 

depressive symptom and marital status); occupational class (i.e., occupation); health 9 

behaviours (i.e., BMI, smoking, alcohol drinking, and physical activity); and a final model that 10 

was accounted for all covariates. The proportional hazards assumption was checked by 11 

Schoenfeld residual statistic and log-minus-log plots. The multicollinearity of covariates was 12 

examined by calculating variance inflation factor (VIF). Covariates with missing data (mostly 13 

missed <5%, Table 1) were multiply imputed by chain equation (MICE) (see supplementary 14 

materials). 15 

Additionally, we performed the following sensitivity analyses: First, we analysed only 16 

complete-case samples; second, we calculated a Bonferroni adjusted (97.5%) confidence 17 

interval to account for multiplicity. Moreover, we performed subgroup analyses according to 18 

sex, age groups (i.e., <75 and ≥75 years old), BMI groups, and smoking status. 19 

To examine the association between education and the trajectory of HbA1c levels, we used a 20 

multilevel linear (growth curve) model, allowing for random intercepts and random slopes 21 

with unstructured covariance. The adjustment was similar to the T2DM outcome but based 22 

on a complete-case approach. The model’s validity was checked from the distribution of 23 

intercepts and slopes. Sensitivity analysis was performed by excluding participants with 24 

reporting diabetes during follow-up since they might receive antidiabetic agents that can 25 

modify HbA1c levels and distort the actual effect of education on HbA1c. 26 

Genetic evidence 27 

Data source 28 

All SNPs used in our study were derived from an MR-based platform as summary-level data 29 

publicly available from https://www.mrbase.org/.[23] Specific ethical approval and consents 30 

were already obtained in the original studies. Details of each genetic consortia can be found 31 

in supplementary appendices (Table S6). 32 

Selection of instrumental variants 33 

We obtained SNPs associated with years of schooling from the Social Science Genetic 34 

Association Consortium (SSGAC, n=1,131,881).[24] SNPs that reached genome-wide-35 

significance (i.e., P-value<5*10-8) were selected and further pruned using linkage 36 

disequilibrium (LD)-r2<0.001 within a 10,000 kb window. The measuring unit of education in 37 

SSGAC was per standard deviation (SD) increase in years of schooling (4.2 years). 38 
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Outcomes and variants harmonisation 1 

T2DM and HbA1c variants were taken from the DIAbetes Genetics Replication And Meta-2 

analysis (DIAGRAM) consortium (34,840 cases 114,981 controls) [25] and the UK Household 3 

Longitudinal Study (UKHLS, n=9,961),[26] respectively. Variants from different consortia were 4 

harmonised, allowing for both palindromic SNPs (i.e., a minor allele frequency [MAF] 5 

threshold of 0.3) and proxy SNPs (i.e., LD r2>0.8 within 10,000 kb window; Figure S6).  6 

Statistical analysis 7 

The main analysis was performed using a multiplicative random-effect inverse-variance 8 

weighted (IVW) method. For sensitivity analyses, we used the MR-Egger approach to examine 9 

and account for unbalanced horizontal pleiotropy, if any.[27] Also, we performed a weighted 10 

median and weighted mode MR. The former allowed for the invalidity of half of SNPs[28], 11 

whereas the latter minimised the false-positive rates of findings.[29] These three additional 12 

analyses were performed according to the guidelines for conducting MR investigations.[30]  13 

Moreover, during a preliminary analysis, we observed that some of our selected SNPs had a 14 

stronger association with the outcome than exposure. Therefore, we further applied MR 15 

Steiger filtering to remove those SNPs and performed analyses accordingly.[31] To ensure the 16 

validity of the genetic instruments and processes used in our MR analyses, we also examined 17 

the association between education levels and the risk of Alzheimer’s disease (AD: obtained 18 

from the International Genomics of Alzheimer’s Project [IGAP] consortium[32]) as a positive 19 

control. This is because evidence suggested that higher education is causally related to a 20 

decreased risk of AD.[33,34]  21 

The power of derived effect size was estimated using the method given by Hermani et al.[23] 22 

and Deng et al.[35] All analyses were performed using R version 3.6 and STATA version 23 

16.1MP (StataCorp, LLC) with a two-sided alpha error of 5%. Since we considered T2DM and 24 

HbA1c clinically correlated, we did not adjust for multiple testing in the MR analyses.[36] 25 

A conceptual framework of using the triangulation approach in this study 26 

- If findings from the cohort study show a significant association after adjusting for the 27 

main confounders, then the true association is likely. Explanatory pathways will be 28 

further elucidated to provide insight regarding a direct path between exposure and 29 

outcome. 30 

- The MR study is implemented to explore whether the observed association is due to 31 

causation according to our conceptual framework of MR (supplementary appendices). 32 

When evidence of causation is shown and the direction of the associations between 33 

the cohort and MR is consistent throughout, the causality can be firmly established; 34 

otherwise, the observed association might be alternatively explained by biases or 35 

residual confounders. 36 

Results 37 

Cohort evidence 38 
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Among the 6,786 participants, most were female (56.4%), with a mean age of 66.3±9.8 years 1 

old. People in the high education group were likely to be male and have higher occupation 2 

classes and childhood SEPs. Also, they were likely to be non-smokers and had increased 3 

physical activity levels and slightly lower BMIs than those in other groups (P-value<0.001). In 4 

contrast, those in the low education group tended to be separated, divorced, or widowed and 5 

have elevated depressive symptoms and a history of cardiovascular diseases (P-value<0.001, 6 

Table 1). 7 

After a median follow-up of 10.4 years, 598 out of the 6,786 participants reported diabetes 8 

(10.1 [95%CI 9.3-10.9] per 1,000 person-years). A Kaplan-Meier plot had shown that low 9 

education was associated with a significantly higher T2DM incidence (log-rank P-value<0.001, 10 

Figure S3). Moreover, we observed a gradient inverse association between the education 11 

levels and the risk of T2DM: The hazard ratios (95%CI) of T2DM in the middle and low 12 

education groups were 1.20 (0.97-1.49) and 1.58 (1.28-1.96), respectively, compared to the 13 

high education group in age, sex, and childhood SEP adjusted models (Table 2). The 14 

significance remained after individually adjusting for health behaviours, psychosocial 15 

resources, and occupational classes, but the association became null after simultaneous 16 

adjustment. Admittedly, sex, age group, BMI, and smoking status did not significantly modify 17 

the associations (Figure S4). Furthermore, the observed inverse associations were consistent 18 

across sensitivity analyses (Table S4). 19 

Regarding HbA1c levels (Table 2), we noticed that people in a low-education group had 20 

slightly higher HbA1c levels than those in a high-education group (β=0.0833, 95%CI 0.0492-21 

0.1174) after controlling for age, sex, and childhood SEP. Additionally, the results were robust 22 

after excluding diabetes participants (Table S5). The trajectory of HbA1c levels in each 23 

educational group is illustrated in Figure S5. 24 

Genetic evidence 25 

From 1,271 schooling-associated SNPs, 210 and 184 SNPs were selected and harmonised with 26 

T2DM and HbA1c levels, respectively (Figure S6). These can respectively explain 1.6% (F-27 

statistic=88.18) and 1.4% (F-statistic=74.07) of the variability in schooling years. 28 

Although an inverse association between years of schooling and the risk of T2DM was initially 29 

observed in the IVW model (Table 3), the results were not robust across sensitivity analyses. 30 

In the IVW model, the odds of having T2DM decreased as schooling years increased: OR 0.75 31 

(95%CI 0.57-0.99). The results were consistent with WM: OR 0.64 (95%CI 0.43-0.95) but not 32 

with MR Egger (OR 0.81 [95%CI 0.24-2.69]) nor weighted mode MR (OR 0.34 [95%CI 0.11-33 

1.02]). We found no apparent evidence of heterogeneity on T2DM outcome (I2=12%, P-34 

value=0.09). Nevertheless, applying Steiger filtering attenuated most results towards the null. 35 

Additionally, a scatter plot between SNPs-education and SNPs-T2DM did not show any 36 

apparent pattern of the association (Figure S7). We also found a similar way of the 37 

associations in HbA1c outcome (Table 3 and Figure S8). 38 
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Additionally, our positive control showed consistent findings with established evidence, 1 

indicating the validity of instruments and processes used in our MR analyses (Table S8). 2 

Triangulation of evidence 3 

Importantly, when we triangulated pieces of evidence (Figure 1), we found inconsistent 4 

results between observational study and MR. While cohort findings suggested inverse 5 

associations between education level and the risk of T2DM and HbA1c levels, MR findings 6 

suggested null associations.  7 

Discussion 8 

Summary of key findings 9 

In the cohort study, we observed that low education was associated with an increased risk of 10 

T2DM, possibly owing to inadequate psychosocial resources, unhealthy behaviours, and a 11 

lower occupational class. Moreover, an observed inversed association was the same for 12 

HbA1c levels, regardless of T2DM status. Nonetheless, findings from MR did not support a 13 

causal association between education and the risk of T2DM and HbA1c levels. Further, they 14 

indicated that significant MR results were dominated by SNPs directly associated with the 15 

outcome and, therefore, not a good proxy of education. 16 

Comparing with previous studies 17 

Our observational findings are concordant with previous works indicating that education was 18 
inversely associated with incident T2DM, and there is no direct pathway linked to T2DM. 19 
However, in contrast to the previous ELSA report,[5] we did not observe different sex-specific 20 
associations. This might be because we followed the participants for a more extended period 21 
and used HbA1c as an additional criterion to define T2DM. So we could identify more T2DM 22 
events in both sexes and gain better statistical power to detect slight differences. Moreover, 23 
previous work also used antidiabetic medication data to ascertain diabetes, whereas, in this 24 
study, we used only self-reporting diagnosis and HbA1c levels. Nevertheless, when we 25 
restricted the analysis to wave 4, we found a trend of the association that was similar to the 26 
previous ELSA study, where the association is more substantial in females than in males 27 
(results not shown).[5] Also, our results were coherent with previous observational 28 
studies.[6–8] 29 

In terms of genetic evidence, an MR study by Hagenaars et al. suggested no causal link 30 
between educational attainment and the risk of T2DM.[13] However, the study used only 9 31 
SNPs, and the null findings might be due to statistical underpowering. In contrast to ours, two 32 
recent MR studies have shown a causal association between education and the risk of 33 
T2DM.[11,12] It should be noted that, before applying Steiger filtering, we produced relatively 34 
similar (but slightly weaker) results as those works. However, after applying Steiger filtering, 35 
almost all MR findings became null. Thus, we cannot exclude the potential direct effect of 36 
genetic instruments used in their analyses. In addition, underpowering is unlikely to be a case 37 
for T2DM outcome in our MR study (Table S7). 38 

Interestingly, our null findings on HbA1c were consistent with the most recent work by Liang 39 
et al. despite the contradiction in T2DM outcomes.[14] The discrepancy in results might be 40 
due to different methods used for weighting SNPs in the IVW model. Rather than using an 41 
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additive model, we used a multiplicative one instead, as recommended.[30] The former may 1 
upweight outlier SNPs and consequently erroneously strengthen the association, which can 2 
be noticed by the similarity of scatter plots of SNPs exposure and SNPs outcome between our 3 
work and the previous one. 4 

Strengths and limitations 5 

To our best knowledge, this is the first report that triangulated cohort and genetic evidence 6 

on education and T2DM and HbA1c. However, there are some caveats worth noticing. First, 7 

our outcome derived from self-reporting diabetes, which cannot differentiate between T1DM 8 

and T2DM, and might be prone to misclassification bias. However, since incident diabetes 9 

cases in our study were identified in participants aged ≥50 years, most events were clinically 10 

assumed to be T2DM.[10] Additionally, it was shown that self-report diabetes had a very high 11 

specificity (99.7%) but low sensitivity (66%).[37] Thus, we used HbA1c as an additional 12 

criterion to define the outcome to improve false-negative cases. Second, we cannot exclude 13 

the possibility that factors treated as mediators in our analysis can also be confounders since 14 

we did not have the exact temporal sequence of each variable. For instance, some 15 

participants might already be obese or active smokers before their graduation, and these risks 16 

were carried over until age 50 when they participated in ELSA. Additionally, no evidence of 17 

causal effect estimated from MR study could also be due to weak instrument bias from using 18 

two different samples even if F-statistics>10.[38] Lastly, the generalisability of our findings is 19 

limited to European ancestry populations. 20 

Implications of findings 21 

The validity of SNPs used in the MR analysis should be a significant concern for both readers 22 

and researchers when interpreting and implementing findings from MR studies. Meanwhile, 23 

results from observational research alone prone to being misleading due to biases and 24 

residual confounders. Hence, we encouraged using the triangulation approach to gain more 25 

confidence in the causality inferences. Also, future works on different ethnicities might 26 

warrant generalisability. According to our findings, targeting education might not directly 27 

decrease the incidence of T2DM. However, education is a key to improve psychosocial 28 

resources, healthy behaviours, and occupation, which might delay the occurrence of T2DM 29 

and have a positive impact on health in the long run.[3] Therefore, improving education 30 

should still be encouraged, although its causality to T2DM might not exist. 31 

In summary, education did not directly affect T2DM and HbA1c levels. Inadequate 32 

psychosocial resources, low occupational class, and unhealthy behaviours could explain the 33 

observed inverse associations. Moreover, our triangulation of evidence did not support a 34 

causal role of education in the risk of T2DM and HbA1c levels. 35 

  36 
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Table 1 Baseline characteristics of included participants  1 

Characteristics 
Educational levels 

Total 
High Middle  Low  

N 2,218 2,106 2,462 6,786 

Male 1,220 (55.0) 851 (40.4) 890 (36.2) 2,961 (43.6) 

Age (years) 63.6 ± 8.8 65.2 ± 9.2 69.6 ± 10.1 66.3 ± 9.8 

High occupational class 1,400 (63.1) 503 (23.9) 240 (9.8) 2,143 (31.6) 

     Missing  11 (0.5) 16 (0.8) 65 (2.6) 92 (1.4) 

High childhood SEP 1,039 (46.8) 660 (31.3) 388 (15.8) 2,087 (30.8) 

     Missing  82 (3.7) 88 (4.2) 96 (3.9) 266 (3.9) 

Marital status     

     Single 129 (5.8) 87 (4.1) 137 (5.6) 353 (5.2) 

     Married 1,625 (73.3) 1,436 (68.2) 1,421 (57.7) 4,482 (66.1) 

     Separated§ 464 (20.9) 583 (27.7) 904 (36.7) 1,951 (28.8) 

Elevated depressive symptoms  213 (9.6) 283 (13.4) 457 (18.6) 953 (14.0) 

     Missing  10 (0.5) 10 (0.5) 24 (1.0) 44 (0.7) 

Never smoked 874 (39.4) 784 (37.2) 852 (34.6) 2,510 (37.0) 

     Missing 10 (0.5) 5 (0.2) 13 (0.5) 28 (0.4) 

Never/ almost never drunk 352 (15.9) 507 (24.1) 948 (38.5) 1,807 (26.6) 

     Missing 10 (0.5) 5 (0.2) 15 (0.6) 30 (0.4) 

High physical activity level 596 (26.9) 423 (20.1) 345 (14.0) 1,364 (20.1) 

     Missing  10 (0.5) 12 (0.6) 25 (1.0) 47 (0.7) 

Body mass index (kg/m2)  27.3 ± 4.6 27.5 ± 4.7 28.1 ± 4.9 27.7 ± 4.7 

     Missing  451 (20.3) 427 (20.3) 699 (28.4) 1,577 (23.2) 

Having a history of CVDs 1,017 (45.9) 1,075 (51.0) 1,408 (57.2) 3,500 (51.6) 

Notes All P-values (not including a missing group) were < 0.001. P-values were based on 2 

different sample sizes for each variable with missing data as follows: 6,694 (occupation class), 3 

6,520 (childhood SEP), 6,742 (depressive symptoms), 6,758 (smoking), 6,756 (alcohol 4 

drinking), 6,739 (physical activity), and 5,209 (body mass index). Figures represent frequency 5 

(%) or mean ± SD. Abbreviations: CVDs; Cardiovascular diseases, SEP; Socioeconomic position. 6 
§Also included divorced and widowed 7 

  8 
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Table 2 The association between education levels and the incidence of type 2 diabetes 1 
mellitus (n=6,786) and the trajectory of HbA1c levels (n=5,158)  2 

Outcomes High education Middle education Low education 

Hazard ratios of incident T2DM (95%CI) 

          Model 1 1.00 (ref) 1.22 (0.99 to 1.51) 1.71 (1.41 to 2.09) 

     Confounder-adjusting models 

          Model 2 1.00 (ref) 1.28 (1.03 to 1.58) 1.78 (1.45 to 2.18) 

          Model 3§ 1.00 (ref) 1.20 (0.97 to 1.49) 1.58 (1.28 to 1.96) 

     Confounder- and mediator-adjusting models 

          Model 4 1.00 (ref) 1.10 (0.89 to 1.37) 1.24 (0.99 to 1.54) 

          Model 5 1.00 (ref) 1.19 (0.96 to 1.48) 1.54 (1.24 to 1.91) 

          Model 6 1.00 (ref) 1.16 (0.92 to 1.46) 1.45 (1.14 to 1.84) 

          Model 7 1.00 (ref) 1.08 (0.86 to 1.36) 1.17 (0.92 to 1.50) 

β-coefficients of HbA1c levels (95%CI)‡ 

        Model 1 0.00 (ref) 0.0263 

(-0.0048 to 0.0575) 

0.1088 

(0.0772 to 0.1404) 

     Confounder-adjusting models 

        Model 2 0.00 (ref) 0.0231 

(-0.0081 to 0.0544) 

0.0869 

(0.0543 to 0.1194) 
         Model 3§ 0.00 (ref) 0.0217 

(-0.0100 to 0.0533) 

0.0833 

(0.0492 to 0.1174) 

     Confounder- and mediator-adjusting models 

        Model 4 0.00 (ref) 0.0028 

(-0.0283 to 0.0338) 

0.0396 

(0.0055 to 0.0737) 
        Model 5 0.00 (ref) 0.0210 

(-0.0107 to 0.0527) 

0.0815 

(0.0474 to 0.1157) 
        Model 6 0.00 (ref) 0.0058 

(-0.0279 to 0.0394) 

0.0554 

(0.0173 to 0.0936) 
        Model 7 0.00 (ref) -0.0074 

(-0.0403 to 0.0255) 

0.0230 

(-0.0148 to 0.0607) 

Notes: §Represent the main results. ‡Random-intercept and-slope model with unstructured 3 

covariance. Embolden figures to represent statistical significance. Abbreviations: HbA1c; 4 

Glycated haemoglobin, T2DM; Type-2 diabetes mellitus. Model 1: Unadjusted models, Model 5 

2: Age and sex-adjusted models, Model 3: Model 2 + childhood SEP adjusted models, Model 6 

4: Model 3 + health behaviours adjusted models, Model 5: Model 4 + psychosocial resources 7 

adjusted models, Model 6: Model 3 + occupational class adjusted models, Model 7: Model 4 8 

+ Model 5 + Model 6 adjusted models  9 



 13 

Table 3 The association between years of schooling, risk of T2DM, and HbA1c levels 1 

MR model Without Steiger filtering With Steiger filtering 

T2DM SNPs OR (95%CI) P-value SNPs OR (95%CI) P-value 

     IVW§ 210 0.75 (0.57, 0.99)a 0.041 195 0.81 (0.62, 1.05)b 0.12 

     MR-Egger 210 0.81 (0.24, 2.69)c 0.73 195 0.98 (0.31, 3.10)d 0.97 

     WM 210 0.64 (0.44, 0.92) 0.017 195 0.74 (0.50, 1.11) 0.15 

     WMBE 210 0.34 (0.11, 1.02) 0.05 195 0.31 (0.09, 0.99) 0.049 

HbA1c SNPs β (95%CI) P-value SNPs β (95%CI) P-value 

     IVW§ 184 -0.1639e 

(-0.2863, -0.0414) 

0.009 46 -0.0782f 

(-0.2584, 0.1019) 

0.40 

     MR-Egger 184 -0.2319g 

(-0.7198, 0.2560) 

0.35 46 -0.0188h 

(-0.9386, 0.9009) 

0.97 

     WM 184 -0.5048 

(-0.6755, -0.3342) 

<0.001 46 -0.4422 

(-0.7060, -0.1784) 

0.001 

     WMBE 184 -0.7063 

(-1.3318, -0.0807) 

0.027 46 -0.5886 

(-1.1761, -0.0012) 

0.05 

Notes Effect sizes were per standard deviation (SD) increase in years of schooling (4.2 years). 2 

Embolden figures represent significant results. aI2=12% (P-value=0.09), bI2=0% (P-value=0.95), 3 
cEgger-intercept = -0.001 (P-value = 0.90), dEgger intercept -0.003 (P-value=0.73), eI2=31% (P-4 

value<0.001), fI2=0% (P-value 0.53), gEgger-intercept = 0.001 (P-value = 0.78), hEgger intercept 5 

-0.001 (P-value=0.90), §Represent the main results. 6 

Abbreviations HbA1c: Glycated haemoglobin, IVW: Inverse-variance weighted, MR: 7 

Mendelian randomisation, OR: Odds ratio, SNPs: Single Nucleotide Polymorphisms, T2DM: 8 

Type 2 diabetes mellitus, WM: Weighted median, WMBE: Weighted mode-based estimates, 9 
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Figure 1 Triangulation of observational and genetic evidence on the association between 1 
educational levels and the risk of type 2 diabetes mellitus and HbA1c levels 2 

Notes: *Effect sizes are hazard ratio (adjusted for age, sex, and childhood SEP) for prospective 3 

cohort design and odds ratio for Mendelian randomisation. Effect sizes from MR findings were 4 

transformed from the original values to reflect per SD decrease in years of schooling. 5 

Abbreviations: IVW; Inverse variance weighted, WM; Weighted median, WMBE; Weighted 6 

mode-based estimate 7 
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