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A

Reference and realism





Introduction to Part A

The two central themes of Part A are reference and realism.
Here is an old philosophical chestnut: How do we (even manage to) represent the

world? Our most sophisticated representations of the world are perhaps linguistic.
So a specialised—but still enormously broad—version of this question is: How do
words (even manage to) represent things?

Enter model theory. One of the most basic ideas in model theory is that a struc-
ture assigns interpretations to bits of vocabulary, and in such away thatwe canmake
excellent sense of the idea that the structure makes each sentence (in that vocabu-
lary) either true or false. Squint slightly, andmodel theory seems to be providing us
with a perfectly precise, formal way to understand certain aspects of linguistic rep-
resentation. It is no surprise at all, then, that almost any philosophical discussion
of linguistic representation, or reference, or truth, ends up invoking notions which
are recognisably model-theoretic.

In Chapter 1, we introduce the building blocks of model theory: the notions of
signature, structure, and satisfaction. Whilst the bare technical bones should be
familiar to anyone who has covered a 101-level course in mathematical logic, we
also discuss the philosophical question: How should we best understand quantifiers
and variables? Here we see that philosophical issues arise at the very outset of our
model-theoretic investigations. We also introduce second-order logic and its var-
ious semantics. While second-order logic is less commonly employed in contem-
porary model theory, it is employed frequently in philosophy of model theory, and
understanding the differences between its various semantics will be important in
many subsequent chapters.

In Chapter 2, we examine various concerns about the determinacy of reference
and so, perhaps, the determinacy of our representations. Here we encounter fa-
mous arguments from Benacerraf and Putnam, which we explicate using the for-
mal Push-Through Construction. Since isomorphic structures are elementarily
equivalent—that is, they make exactly the same sentences true and false—this
threatens the conclusion that it is radically indeterminate, which of many isomor-
phic structures accurately captures how language represents the world.

Now, one might think that the reference of our word ‘cat’ is constrained by the
causal links between cats and our uses of that word. Fair enough. But there are no
causal links betweenmathematical objects andmathematical words. So, on certain
conceptions of what humans are like, we will be unable to answer the question:
How do we (even manage to) refer to any particular mathematical entity? That is, we
will have to accept that we do not refer to particular mathematical entities.
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Whilst discussing these issues, we introduce Putnam’s famous just-more-theory
manoeuvre. It is important to do this both clearly and early, since many versions of
this dialectical move occur in the philosophical literature onmodel theory. Indeed,
they occur especially frequently in Part B of this book.

Now, philosophers have often linked the topic of reference to the topic of real-
ism. One way to draw the connection is as follows: If reference is radically inde-
terminate, then my word ‘cabbage’ and my word ‘cat’ fail to pick out anything de-
terminately. So when I say something like ‘there is a cabbage and there is a cat’, I
have at best managed to say that there are at least two distinct objects. That seems
to fall far short of expressing any real commitment to cats and cabbages themselves.1

In short, radical referential indeterminacy threatens to undercut certain kinds of
realism altogether. But only certain kinds: we close Chapter 2 by suggesting that
some versions of mathematical platonism can live with the fact that mathematical
language is radically referentially indeterminate by embracing a supervaluational
semantics.

Concerns about referential indeterminacy also feature in discussions about real-
ismwithin the philosophy of science. In Chapter 3, we examine a particular version
of scientific realism that arises by considering Ramsey sentences. Roughly, these
are sentences where all the ‘theoretical vocabulary’ has been ‘existentially quanti-
fied away’. Ramsey sentences seem promising, since they seem to incur a kind of
existential commitment to theoretical entities, which is characteristic of realism,
whilst making room for a certain level referential indeterminacy. We look at the re-
lation betweenNewman’s objection and the Push-ThroughConstruction of Chap-
ter 2, and between Ramsey sentences and various model-theoretic notions of con-
servation. Ultimately, by combining the Push-Through Construction with these
notions of conservation, we argue that the dialectic surrounding Newman’s objec-
tion should track the dialectic of Chapter 2, surrounding Putnam’s permutation ar-
gument in the philosophy of mathematics.

The notions of conservation we introduce in Chapter 3 are crucial to Abraham
Robinson’s attempt to use model theory to salvage Leibniz’s notion of an ‘infinites-
imal’. Infinitesimals are quantities whose absolute value is smaller than that of any
given positive real number. They were an important part of the historical calculus;
they fell from grace with the rise of ε–δ notation; but they were given a new lease
of life within model theory via Robinson’s non-standard analysis. This is the topic
of Chapter 4. Here we introduce the idea of compactness to prove that the use of
infinitesimals is consistent.

Robinson believed that this vindicated the viability of the Leibnizian approach
to the calculus. Against this, Bos has questioned whether Robinson’s non-standard
analysis is genuinely faithful to Leibniz’s mathematical practice. In Chapter 4, we

1 Cf. Putnam (1977: 491) and Button (2013: 59–60).
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offer a novel defence of Robinson. By building valuations into Robinson’s model
theory, we prove new results which allow us to approximate more closely what we
know about the Leibnizian conception of the structure of the infinitesimals. In-
deed, we show that Robinson’s non-standard analysis can rehabilitate various his-
toricalmethods for reasoningwith and about infinitesimals that have fallen far from
fashion.

The question remains, of whether we should believe in infinitesimals. Leib-
niz himself was tempted to treat his infinitesimals as ‘convenient fictions’; Robin-
son explicitly regarded his infinitesimals in the same way; and their method of in-
troduction in model theory allows for perhaps the cleanest possible version of a
fictionalist-cum-instrumentalist attitude towards ‘troublesome’ entities. Indeed,
we can prove that reasoning as if there are infinitesimals will only generate results
that one could have obtained without that assumption. One can have anti-realism,
then, with a clear conscience.

In Chapter 5, we take a step back from these specific applications of model the-
ory, to discuss amoremethodological question about the philosophical application
of model theory: under what circumstances should we call two structures ‘the same’?
This question canbeposedwithinmathematics, where its answerwill dependupon
the similarities and differences that matter for the mathematical purposes at hand.
But the question can also be given a metaphysical gloss. In particular, consider a
philosopher who thinks (for example) that: (a) there is a single, abstract, entity
which is ‘the natural number structure’, and that (b) there is a single, abstract en-
tity which is ‘the structure of the integers’; but that (c) these two entities are dis-
tinct. Then this philosopher must provide an account of identity and distinctness
between ‘structures’, so construed; and we show just how hard this is.

Notions of sameness of structure also induce notions of sameness of theory. Af-
ter surveying a wide variety of formal notions of sameness of structure and theory,
we discuss three ambitious claims concerning what sameness of theory preserves,
namely: truth; arithmetical provability; and proof. We conclude that more philo-
sophically ambitious versions of these preservation-theses generally fail.

This meta-issue of sameness of structure and theory is a good place to end Part
A, though, both because (a) the discussion is enhanced by the specific examples
of structures and theories discussed earlier in the text, and because (b) questions
about sameness of structure and theory inform a number of the discussions and
debates which we treat in later Parts of the book.

Readers who only want to dip into particular topics of Part A can consult the
following Hasse diagram of dependencies between the sections of Part A, whilst
referring to the table of contents. A section y depends upon a section x iff there is
a path leading downwards from x to y. So, a reader who wants to get straight to the
discussion of fictionalism about infinitesimals will want to leap straight to §4.7; but
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they should know that this section assumes a prior understanding of §§2.1, 4.1, 4.2,
and much (but not all) of Chapter 1. (We omit purely technical appendices from
this diagram.)
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1

Logics and languages

Model theory begins by considering the relationship between languages and struc-
tures. This chapter outlines the most basic aspects of that relationship.

One purpose of the chapter will therefore be immediately clear: we want to lay
down some fairly dry, technical preliminaries. Readers with some familiarity with
mathematical logic should feel free to skim through these technicalities, as there are
no great surprises in store.

Before the skimming commences, though, we should flag a second purpose of
this chapter. There are at least three rather different approaches to the semantics
for formal languages. In a straightforward sense, these approaches are technically
equivalent. Most books simply choose one of them without comment. We, how-
ever, lay down all three approaches and discuss their comparative strengths and
weaknesses. Doing this highlights that there are philosophical discussions to be had
from the get-go. Moreover, by considering what is invariant between the different
approaches, we can better distinguish between the merely idiosyncratic features of
a particular approach, and the things which really matter.

One last point, before we get going: tradition demands that we issue a caveat.
Since Tarski and Quine, philosophers have been careful to emphasise the impor-
tant distinction between using and mentioning words. In philosophical texts, that
distinction is typically flagged with various kinds of quotation marks. But within
model theory, context almost always disambiguates between use and mention.
Moreover, including toomuch punctuation makes for ugly text. With this in mind,
we follow model-theoretic practice and avoid using quotation marks except when
they will be especially helpful.

1.1 Signatures and structures
We start with the idea that formal languages can have primitive vocabularies:

Definition 1.1: A signature, L , is a set of symbols, of three basic kinds: constant sym-
bols, relation symbols, and function symbols. Each relation symbol and function symbol
has an associated number of places (a natural number), so that one may speak of an
n-place relation or function symbol.
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Throughout this book, we use script fonts for signatures. Constant symbols should
be thought of as names for entities, and we tend to use c1, c2, etc. Relation symbols,
which are also known as predicates, should be thought of as picking out properties
or relations. A two-place relation, such as x is smaller than y, must be associated
with a two-place relation symbol. We tend to use R1,R2, etc. for relation symbols.
Function symbols should be thought of as picking out functions and, again, they
need an associated number of places: the function of multiplication on the natural
numbers takes two natural numbers as inputs and outputs a single natural number,
so we must associate that function with a two-place function symbol. We tend to
use f 1, f 2, etc. for function symbols.

The examples just given—being smaller than, and multiplication on the natural
numbers—suggest that we will use our formal vocabulary to make determinate
claims about certain objects, such as people or numbers. To make this precise,
we introduce the notion of an L -structure; that is, a structure whose signature is
L . An L -structure, M, is an underlying domain, M, together with an assignment
of L ’s constant symbols to elements of M, of L ’s relation symbols to relations
onM, and ofL ’s function symbols to functions overM. We always use calligraphic
fonts M,N,… for structures, and M,N,… for their underlying domains. Where s
is anyL -symbol, we say that sM is the object, relation or function (as appropriate)
assigned to s in the structure M. This informal explanation of an L -structure is
always given a set-theoretic implementation, leading to the following definition:

Definition 1.2: An L -structure, M, consists of:
• a non-empty set, M, which is the underlying domain of M,
• an object cM ∈ M for each constant symbol c from L ,
• a relation RM ⊆ Mn for each n-place relation symbol R from L , and
• a function fM : Mn Ð→ M for each n-place function symbol f from L .

As is usual in set theory, Mn is just the set of n-tuples over M, i.e.:1

Mn = {(a1,…, an) : a1 ∈ M and … and an ∈ M}

Likewise, we implement a function g : Mn Ð→ M in terms of its set-
theoretic graph. That is, g will be a subset of Mn+1 such that if (x1,…, xn, y) and
(x1,…, xn, z) are elements of g then y = z and such that for every (x1,…, xn) in Mn

there is y inM such that (x1,…, xn, y) is in g . But we continue to think about func-
tions in the normal way, as maps sending n-tuples of the domain, Mn, to elements
of the co-domain, M, so tend to write (x1,…, xn, y) ∈ g just as g(x1,…, xn) = y.

1 The full definition of Xn is by recursion: X1 = X and Xn+1 = Xn × X, where A × B = {(a, b) :
a ∈ A and b ∈ B}. Likewise, we recursively define ordered n-tuples in terms of ordered pairs by setting e.g.
(a, b, c) = ((a, b), c).
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Given the set-theoretic background, L -structures are individuated extension-
ally: they are identical iff they have exactly the same underlying domain and make
exactly the same assignments. So, where M,N are L -structures, M = N iff both
M = N and sM = sN for all s from L . To obtain different structures, then, we can
either change the domain, change the interpretation of some symbol(s), or both.
Structures are, then, individuated rather finely, and indeed we will see in Chapters
2 and 5 that this individuation is too fine for many purposes. But for now, we can
simply observe that there are many, many different structures, in the sense of Defi-
nition 1.2.

1.2 First-order logic: a first look
Weknowwhat (L -)structures are. Tomove to the idea of amodel, we need to think
of a structure as making certain sentences true or false. So we must build up to the
notion of a sentence. We start with their syntax.

Syntax for first-order logic

Initially, we restrict our attention to first-order sentences. These are the sentences we
obtain by adding a basic starter-pack of logical symbols to a signature (in the sense
of Definition 1.1). These logical symbols are:

• variables: u, v,w, x, y, z, with numerical subscripts as necessary
• the identity sign: =
• a one-place sentential connective: ¬
• two-place sentential connectives: ∧, ∨
• quantifiers: ∃,∀
• brackets: (, )

We now offer a recursive definition of the syntax of our language:2

Definition 1.3: The following, and nothing else, are first-order L -terms:

• any variable, and any constant symbol c from L

2 A pedantic comment is in order. The symbols ‘t1’ and ‘t2’ are not being used here as expressions in
the object language (i.e. first-order logic with signature L ). Rather, they are being used as expressions of
the metalanguage, within which we describe the syntax of first-order L -terms and L -formulas. Similarly,
the symbol ‘x’, as it occurs in the last clause of Definition 1.3, is not being used as an expression of the object
language, but in the metalanguage. So the final clause in this definition should be read as saying something
like this. For any variable and any formula φ which does not already contain a concatenation of a quantifier
followed by that variable, the following concatenation is a formula: a quantifier, followed by that variable,
followed by φ. (The reason for this clause is to guarantee that e.g. ∃v∀vF(v) is not a formula.) We could
flag this more explicitly, by using a different font for metalinguistic variables (for example). However, as
with flagging quotation, we think the additional precision is not worth the ugliness.
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• f(t1,…, tn), for any L -terms t1,…, tn and any n-place function symbol f
from L

The following, and nothing else, are first-order L -formulas:

• t1 = t2, for any L -terms t1 and t2
• R(t1,…, tn), for any L -terms t1,…, tn and any n-place relation symbol R
from L

• ¬φ, for any L -formula φ
• (φ ∧ ψ) and (φ ∨ ψ), for any L -formulas φ and ψ
• ∃xφ and∀xφ, for any variable x and any L -formula φ which contains neither
of the expressions ∃x nor∀x.

Formulas of the first two sorts—i.e. terms appropriately concatenated either with the
identity sign or an L -predicate—are called atomic L -formulas.

As is usual, for convenience we add two more sentential connectives, → and↔,
with their usual abbreviations. So, (φ → ψ) abbreviates (¬φ ∨ ψ), and (φ ↔ ψ)
abbreviates ((φ → ψ) ∧ (ψ → φ)). We will also use some extremely common
bracketing conventions to aid readability, so we sometimes use square brackets
rather than roundedbrackets, andwe sometimes omit bracketswhere no ambiguity
can arise.

We say that a variable is bound if it occurs within the scope of a quantifier, i.e. we
have something like ∃x(…x…). A variable is free if it is not bound. We now say
that an L -sentence is an L -formula containing no free variables. When we want
to draw attention to the fact that some formula φ has certain free variables, say x
and y, we tend to do this by writing the formula as φ(x, y). We say that φ(x, y) is a
formulawith free variables displayed iff x and y are the only free variables in φ. When
we consider a sequence of n-variables, such as v1,…, vn, we usually use overlining
to write this more compactly, as v, leaving it to context to determine the number
of variables in the sequence. So if we say ‘φ(x) is a formula with free variables dis-
played’, wemean that all andonly its free variables are in the sequence x. We also use
similar overlining for other expressions. For example, we could have phrased part
of Definition 1.3 as follows: f(t) is a term whenever each entry in t is an L -term
and f is a function symbol from L .

Semantics: the trouble with quantifiers

Wenow understand the syntax of first-order sentences. Later, we will consider log-
ics with amore permissive syntax. But first-order logic is something like the default,
for both philosophers and model theorists. And our next task is to understand its
semantics. Roughly, our aim is todefine a relation,⊧, whichobtains between a struc-
ture and a sentence just in case (intuitively) the sentence is true in the structure. In
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fact, there are many different but extensionally equivalent approaches to defining
this relation, and we will consider three in this chapter.

To understand why there are several different approaches to the semantics for
first-order logic, we must see why the most obvious approach fails. Our sentences
have a nice, recursive syntax, so we will want to provide themwith a nice, recursive
semantics. The most obvious starting point is to supply semantic clauses for the
two kinds of atomic sentence, as follows:

M ⊧ t1 = t2 iff tM1 = tM2
M ⊧ R(t1,…, tn) iff (tM1 ,…, tMn ) ∈ RM

Next, wewould need recursion clauses for the quantifier-free sentences. So, writing
M ⊭ φ for it is not the case that M ⊧ φ, we would offer:

M ⊧ ¬φ iff M ⊭ φ
M ⊧ (φ ∧ ψ) iff M ⊧ φ and M ⊧ ψ

So far, so good. But the problem arises with the quantifiers. Where the notation
φ(c/x) indicates the formula obtained by replacing every instance of the free vari-
able x in φ(x)with the constant symbol c, an obvious thought would be to try:

M ⊧ ∀xφ(x) iff M ⊧ φ(c/x) for every constant symbol c from L

Unfortunately, this recursion clause is inadequate. To see why, suppose we had a very
simple signature containing a single one-place predicateR and no constant symbols.
Then, for any structure M in that signature, we would vacuously have that M ⊧
∀vR(v). But this would be the case even if RM = ∅, that is, even if nothing had the
property picked out by R. Intuitively, that is the wrong verdict.

The essential difficulty in defining the semantics for first-order logic therefore
arises when we confront quantifiers. The three approaches to semantics which we
consider present three ways to overcome this difficulty.

Why it is worth considering different approaches

In a straightforward sense, the three approaches are technically equivalent. Somost
books simply adopt one of these approaches, without comment, and get on with
other things. Indeciding topresent all three approacheshere,we seemtobe trebling
our reader’s workload. So we should pause to explain our decision.

First: the three approaches to semantics are so intimately related, at a technical
level, that the workload is probably only doubled, rather than trebled.

Second: readerswho are happyploughing through technical definitionswill find
nothing very tricky here. And such readers should find that the additional technical
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investment gives a decent philosophical pay-off. For, as wemove through the chap-
ter, we will see that these (quite dry) technicalities can both generate and resolve
philosophical controversies.

Third: we expect that even novice philosophers reading this book will have at
least a rough and ready idea of what is coming next. And such readers will be bet-
ter served by reading (and perhaps only partially absorbing) multiple different ap-
proaches to the semantics for first-order logic, than by trying to rote-learn one spe-
cific definition. They will thereby get a sense of what is important to supplying a
semantics, and what is merely an idiosyncratic feature of a particular approach.

1.3 The Tarskian approach to semantics
We begin with the Tarskian approach.3 Recall that the ‘obvious’ semantic clauses
fail because L may not contain enough constant symbols. The Tarskian approach
handles this problem by assigning interpretations to the variables of the language.
In particular, where M is any L -structure, a variable-assignment is any function σ
from the set of variables to the underlying domain M. We then define satisfaction
with respect to pairs of structures with variable-assignments.

To do this, wemust first specify how the structure / variable-assignment pair de-
termines the behaviour of the L -terms. We do this by recursively defining an ele-
ment tM,σ of M for a term t with free variables among x1,…, xn as follows:

tM,σ = σ(xi), if t is the variable xi

tM,σ = fM(sM,σ
1 ,…, sM,σ

k ), if t is the term f(s1,…, sk)

To illustrate this definition, suppose thatM is the natural numbers in the signature
{0, 1,+,×}, with each symbol interpreted as normal. (This licenses us in dropping
the ‘M’-superscript when writing the symbols.) Suppose that σ and τ are variable-
assignments such that σ(x1) = 5, σ(x2) = 7, τ(x1) = 3, τ(x2) = 7, and consider
the term t(x1, x2) = (1+x1)×(x1+x2). Then we can compute the interpretation
of the term relative to the variable-assignments as follows:

tM,σ = (1 + xM,σ
1 ) × (xM,σ

1 + xM,σ
2 ) = (1 + 5) × (5 + 7) = 72

tM,τ = (1 + xM,τ
1 ) × (x

M,τ
1 + xM,τ

2 ) = (1 + 3) × (3 + 7) = 40

We next define the notion of satisfaction relative to a variable-assignment:

3 See Tarski (1933) and Tarski and Vaught (1958), but also §12.a.
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M, σ ⊧ t1 = t2 iff tM,σ
1 = tM,σ

2 , for any L -terms t1, t2
M, σ ⊧ R(t1,…, tn) iff (tM,σ

1 ,…, tM,σ
n ) ∈ RM, for any L -terms t1,…, tn

and any n-place relation symbol R from L

M, σ ⊧ ¬φ iff M, σ ⊭ φ
M, σ ⊧ (φ ∧ ψ) iff M, σ ⊧ φ and M, σ ⊧ ψ
M, σ ⊧ ∀xφ(x) iff M, τ ⊧ φ(x) for every variable-assignment τ

which agrees with σ except perhaps on the value of x

We leave it to the reader to formulate clauses for disjunction and existential quan-
tification. Finally, where φ is any first-order L -sentence, we say that M ⊧ φ iff
M, σ ⊧ φ for all variable-assignments σ .

1.4 Semantics for variables
The Tarskian approach is technically flawless. However, the apparatus of variable-
assignments raises certain philosophical issues.

A variable-assignment effectively gives variables a particular interpretation. In
that sense, variables are treated rather like names (or constant symbols). However,
whenwe encounter the clause for a quantifier binding a variable, we allowourselves
to consider all of the otherways that theboundvariablemighthavebeen interpreted.
In short, the Tarskian approach treats variables as something like varying names.

This gives rise to a philosophical question: should we regard variables as vary-
ing names? With Quine, our answer is No: ‘the “variation” connoted [by the word
“variable”] belongs to a vague metaphor which is best forgotten.’4

To explain why we say this, we begin with a simple observation. A Tarskian
variable-assignmentmay assign different semantic values to the formulas x > 0 and
y > 0. But, on the face of it, that seems mistaken. As Fine puts the point, using one
variable rather than the other ‘would appear to be as clear a case as any of a mere
“conventional” or “notational” difference; the difference is merely in the choice of
the symbol and not in its linguistic function.’5 And this leads Fine to say:

(a) ‘Any two variables (ranging over a given domain of objects) have the same
semantic role.’

4 Quine (1981: §12). For ease of reference, we cite the 1981-edition. However, the relevant sections
are entirely unchanged from the (first) 1940-edition. We owe several people thanks for discussion of ma-
terial in this section. Michael Potter alerted us to Bourbaki’s notation; Kai Wehmeier alerted us to Quine’s
(cf. Wehmeier forthcoming); and Robert Trueman suggested that we should connect all of this to Fine’s
antinomy of the variable.

5 Fine (2003: 606, 2007: 7), for this and all subsequent quotes from Fine.
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But, as Fine notes, this cannot be right either. For, ‘when we consider the semantic
role of the variables in the same expression—such as “x > y”—then it seems equally
clear that their semantic role is different.’ So Fine says:

(b) ‘Any two variables (ranging over a given domain of objects) have a different
semantic role.’

And now we have arrived at Fine’s antinomy of the variable.
We think that thiswhole antinomygets going from themistaken assumption that

we can assign a ‘semantic role’ to a variable in isolation from the quantifier which
binds it.6 As Quine put the point more than six decades before Fine: ‘The vari-
ables […] servemerely to indicate cross-references to various positions of quantifi-
cation.’7 Quine’s point is that ∃x∀yφ(x, y) and ∃y∀xφ(y, x) are indeed just typo-
graphical variants, but that both are importantly different from ∀x∃yφ(x, y). And
to illustrate this graphically, Quine notes that we could use a notation which aban-
dons typographically distinct variables altogether. For example, instead of writing:

∃x∀y((φ(x, y) ∧ ∃zφ(x, z))→ φ(y, x))

we might have written:8

∃∀((φ(●, ●) ∧ ∃φ(●, ●))→ φ(●, ●))

Bourbaki rigorously developed Quine’s brief notational suggestion.9 And the re-
sultingQuine–Bourbaki notation is evidently just as expressively powerful as our or-
dinary notation. However, if we adopt the Quine–Bourbaki notation, then we will
not evenbe able toaskwhether typographically distinct variables like ‘x’ and ‘y’ have
different ‘semantic roles’, and Fine’s antinomy will dissolve away.10

6 Fine (2003: 610–14, 2007: 12–16) considers this thought, but does not consider the present point.
7 Quine (1981: 69–70). See also Curry (1933: 389–90), Quine (1981: iv, 5, 71), Dummett (1981: ch.1),

Kaplan (1986: 244), Lavine (2000: 5–6), and Potter (2000: 64).
8 Quine (1981: §12).
9 Bourbaki (1954: ch.1), apparently independently. The slight difference is that Bourbaki uses

Hilbert’s epsilon operator instead of quantifiers.
10 Pickel andRabern (2017: 148–52) consider and criticise theQuine–Bourbaki approach to Fine’s anti-

nomy. Pickel and Rabern assume that the Quine–Bourbaki approach will be coupled with Frege’s idea that
one obtains the predicate ‘( ) ≤ ( )’ by taking a sentence like ‘7 ≤ 7’ and deleting the names. They then
insist that Frege must distinguish between the case when ‘( ) ≤ ( )’ is regarded as a one-place predicate,
and the case where it is regarded as a two-place predicate. And they then maintain: ‘if Frege were to intro-
ducemarks capable of typographically distinguishing between these predicates, then thatmarkwould need
its own semantic significance, which in this context means designation.’ We disagree with the last part of
this claim. Brackets are semantically significant, in that ¬(φ ∧ ψ) is importantly different from (¬φ ∧ ψ);
but brackets do not denote. Fregeans should simply insist that any ‘marks’ on predicate-positions have a
similarly non-denotational semantic significance. After all, their ultimate purpose is just to account for the
different ‘cross-referencing’ in ∀x∃yφ(x, y) and ∀x∃yφ(y, x).
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To be clear, no one is recommending that we should adopt the Quine–Bourbaki
notation in practice: it would be hard to read and a pain to typeset. To dissolve
the antimony of the variable, it is enough to know that we could in principle have
adopted this notation.

But there is a catch. Just as this notation leaves us unable to formulate Fine’s
antinomy of the variable, it leaves us unable to define the notion of a variable-
assignment. So, until we can provide a non-Tarskian approach to semantics, which
does not essentially rely upon variable-assignments, we have no guarantee that we
could have adopted the Quine–Bourbaki notation, even in principle. Now, we can
of course use theTarskian approach to supply a semantics forQuine–Bourbaki sen-
tences derivatively.11 But if we were to do that that, we would lose the right to say
that we could, in principle, have done away with typographically distinct variables
altogether, for we would still be relying upon them in our semantic machinery.

In sum, we want an approach to semantics which (unlike Tarski’s) accords vari-
ables with nomore apparent significance than is suggested by theQuine–Bourbaki
notation. Fortunately, such approaches are available.

1.5 The Robinsonian approach to semantics
To recall: difficulties concerning the semantics for quantifiers arise becauseL may
not contain names for every object in the domain. One solution to this problem is
obvious: just add new constants. This was essentially Robinson’s approach.12

To define how to add new symbols, it is easiest to define how to remove them.
Given a structureM, its L -reduct is the L -structure we obtain by ignoring the in-
terpretation of the symbols inM’s signature which are not in L . More precisely:13

Definition 1.4: Let L + and L be signatures with L + ⊇ L . Let M be an L +-
structure. ThenM’sL -reduct, N, is the uniqueL -structure with domainM such that
sN = sM for all s fromL . We also say thatM is a signature-expansion ofN, and that
N is a signature-reduct of M.

In Quinean terms, the difference between a model and its reduct is not ontological
but ideological.14 We do not add or remove any entities from the domain; we just
add or remove some (interpretations of) symbols.

11 Where φ is any Quine–Bourbaki sentence, let φfo be the sentence of first-order logic which results
by: (a) inserting the variable vn after the nth quantifier in φ, counting quantifiers from left-to-right; (b)
replacing each blob connected to the nth-quantifier with the variable vn and (c) deleting all the connecting
wires. Then say M ⊧ φ iff M ⊧ φfo, with M ⊧ φfo defined via the Tarskian approach.

12 A. Robinson (1951: 19–21), with a tweak that one finds in, e.g., Sacks (1972: ch.4).
13 Cf. Hodges (1993: 9ff) and Marker (2002: 31).
14 Quine (1951: 14).
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We can now define the idea of ‘adding new constants for every member of the
domain’. The following definition explains how to add, for each element a ∈ M, a
new constant symbol, ca, which is taken to name a:

Definition 1.5: LetL be any signature. For any setM,L (M) is the signature obtained
by adding to L a new constant symbol ca for each a ∈ M. For any L -structureMwith
domainM, we say thatM○ is theL (M)-structure whoseL -reduct isM and such that
cM

○

a = a for all a ∈ M.

Since M○ is flooded with constants, it is very easy to set up its semantics. We start
by defining the interpretation of the L (M)-terms which contain no variables:

tM
○
= fM

○
(sM

○

1 ,…, sM
○

k ), if t is the variable-free L (M)-term f(s1,…, sk)

For each atomic first-order L (M)-sentence, we then define:

M○ ⊧ t1 = t2 iff tM
○

1 = tM
○

2 , for any variable-free L (M)-terms t1, t2

M○ ⊧ R(t1,…, tn) iff (tM
○

1 ,…, tM
○

n ) ∈ RM○
, for

any variable-free L (M)-terms t1,…, tn and
any n-place relation symbol R from L (M)

And finally we offer:

M○ ⊧ ¬φ iff M○ ⊭ φ
M○ ⊧ (φ ∧ ψ) iff M○ ⊧ φ and M○ ⊧ ψ
M○ ⊧ ∀xφ(x) iff M○ ⊧ φ(ca/x) for every a ∈ M

Wenowhavewhatwewant, in terms ofM○. And, sinceM○ is uniquely determined
by M, we can now extract what we really wanted: definitions concerning M itself.
Where φ(v) is a first-orderL -formulawith free variables displayed, and a are from
M, we define a three-place relation which, intuitively, says that φ(v) is true of the
entities a according to M. Here is the definition:

M ⊧ φ(a) iff M○ ⊧ φ(ca/v)

The notation φ(c/v) indicates the L (M)-formula obtained by substituting the
kth constant in the sequence c for the kth variable in the sequence v. So we have
defined a three-place relation between anL -formula, entities a, and a structureM,
in terms of a two-place relation between a structure M○ and an L (M)-formula.
For readability, we will write φ(c) instead of φ(c/v), where no confusion arises.

As a limiting case, a sentence is a formula with no free variables. So for each L -
sentence φ, our definition states that M ⊧ φ iff M○ ⊧ φ. And, intuitively, we can
read this as saying that φ is true in M.
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To complete the Robinsonian semantics, we will define something similar for
terms. So, where a are entities from M and t(v) is an L -term with free variables
displayed, we define a function tM : Mn Ð→ M, by:

tM(a) = (t(ca/v))M
○

This completes the Robinsonian approach. And the approach carries no taint of
the antinomy of the variable, since it clearly accords variables with nomore seman-
tic significance than is suggested by the Quine–Bourbaki notation. Indeed, it is
easy to give a Robinsonian semantics directly for Quine–Bourbaki sentences, via:
M○ satisfies a Quine–Bourbaki sentence beginning with ‘∀’ iff for every a ∈ M the
model M○ satisfies the Quine–Bourbaki sentence which results from replacing all
blobs connected to the quantifier with ‘ca’ and then deleting the quantifier and the
connecting wires.

1.6 Straining the notion of ‘language’
For all its virtues, the Robinsonian approach has some eyebrow-raising features of
its own. To define satisfaction for the sentences of the first-order L -sentences, we
have considered the sentences in some other formal languages, namely, those with
signatureL (M) for anyL -structureM. These languages canbe enormous. LetM
be an infinite L -structure, whose domain M has size κ for some very big cardinal
κ.15 Then L (M) contains at least κ symbols. Can such a beast really count as a
language, in any intuitive sense?

Of course, there is no technical impediment to defining these enormous lan-
guages. So, if model theory is just regarded as a branch of pure mathematics, then
there is no real reason toworry about any of this. Butwemight, instead, wantmodel
theory to be regarded as a branch of applied mathematics, whose (idealised) sub-
ject matter is the languages and theories that mathematicians actually use. And if
we regard model theory that way, then we will not want our technical notion of a
‘language’ to diverge too far from the kinds of things which we would ordinarily
count as languages.

There is a second issue with the Robinsonian approach. In Definition 1.5, we
introduced a new constant symbol, ca, for each a ∈ M. But we did not say what,
exactly, the constant symbol ca is. Robinson himself suggested that the constant
ca should just be the object a itself.16 In that case, every object in M○ would name
itself. But this is both philosophically strange and also technically awkward.

On the philosophical front: we might want to consider a structure, W, whose
domain is the set of all living wombats. In order to work out which sentences are

15 As is standard, we use κ to denote a cardinal; see the end of §1.b for a brief review of cardinals.
16 A. Robinson (1951: 21).
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true inW using Robinson’s own proposal, we would have to treat each wombat as a
name for itself, and so imagine a language whose syntactic parts are live wombats.17

This stretches the ordinary notion of a language to breaking point.
There is also a technical hitch with Robinson’s own proposal. Suppose that c is

a constant symbol of L . Suppose that M is an L -structure where the symbol c
is itself an element of M’s underlying domain. Finally, suppose that M interprets c
as naming some element other than c itself, i.e. cM ≠ c. Now Robinson’s proposal
requires that cM

○
= c. But since M○ is a signature expansion of M, we require that

cM
○
= cM, which is a contradiction.

To fix this bug whilst retaining Robinson’s idea that ca = a, we would have to
tweak the definition of an L -structure to ensure that the envisaged situation can-
not arise.18 A better alternative—which also spares the wombats—is to abandon
Robinson’s suggestion that ca = a, and instead define the symbol ca so that it is
guaranteed not to be an element of M’s underlying domain.19 So this is our official
Robinsonian semantics (even if it was not exactly Robinson’s).

1.7 The Hybrid approach to semantics
Tarskian and Robinsonian semantics are technically equivalent, in the following
sense: they use the same notion of an L -structure, they use the same notion of
an L -sentence, and they end up defining exactly the same relation, ⊧, between
structures and sentences. But, as we have seen, neither approach is exactly ideal. So
we turn to a third approach: a hybrid approach.

In the Robinsonian semantics, we used M○ to define the expression M ⊧ φ(a).
Intuitively, this states that φ is true of a inM. If we start by defining this notation—
which we can do quite easily—then we can use it to present a semantics with the
following recursion clauses:

M ⊧ t1 = t2 iff tM1 = tM2 , for any variable-free L -terms t1, t2
M ⊧ R(t1,…, tn) iff (tM1 ,…, tMn ) ∈ RM, for any variable-free L -terms

t1,…, tn and any n-place relation symbol R from L

M ⊧ ¬φ iff M ⊭ φ
M ⊧ (φ ∧ ψ) iff M ⊧ φ and M ⊧ ψ
M ⊧ ∀vφ(v) iff M ⊧ φ(a) for all a ∈ M

17 Cf. Lewis (1986: 145) on ‘Lagadonian languages’.
18 We would have to add a clause: if M is an L -structure and s ∈ L ∩M, then sM = s.
19 A simple way to do this is as follows: let ca be the ordered pair (a,M). By Foundation in the back-

ground set theory within which we implement our model theory, (a,M) ∉ M.
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All that remains is to defineM ⊧ φ(a)without going all-out Robinsonian. And the
idea here is quite simple: we just add new constant symbols when we need them,
but not before. Here is the idea, rigorously developed. Let M be an L -structure
with a from M. For each ai among a, let cai be a constant symbol not occurring in
L . Intuitively, we interpret each cai as a name for ai . More formally, we define
M[a] to be a structure whose signature is L together with the new constant sym-
bols among ca, whose L -reduct is M, and such that cM[a]ai = ai for each i. Where
φ(v) is an L -formula with free variables displayed, the Hybrid approach defines:

M ⊧ φ(a) iff M[a] ⊧ φ(ca/v)

When we combine our new definition of M ⊧ φ(a) with the clause for universal
quantification, we see that universal quantification effectively amounts to consider-
ing all the different ways of expanding the signature ofMwith a new constant sym-
bolwhich could be interpreted to name any element ofM. (So theHybrid approach
offers a semantics by simultaneous recursion over structures and languages.) Fi-
nally, we offer a similar clause for terms:

tM(a) = tM[a](ca/v)

thereby completing the Hybrid approach.20

1.8 Linguistic compositionality
Unsurprisingly, the Hybrid approach is technically equivalent to the Robinsonian
and Tarskian approaches. However, its philosophical merits come out when we
revisit some of the potential defects of the other approaches. The Tarskian ap-
proach does not distinguish sufficiently between names and variables; the Hybrid
approach has no such issues. Indeed, just like the Robinsonian approach, the Hy-
brid approach accords variables with no greater semantic significance than is sug-
gested by the Quine–Bourbaki notation. But the Robinsonian approach involved
vast, peculiar ‘languages’; the Hybrid approach has no such issues. And, following
Lavine, we will pause on this last point.21

It is common to insist that languages shouldbe compositional, in some sense. One
of the most famous arguments to this effect is due to Davidson. Because natural
languages are learnable, Davidson insists that ‘the meaning of each sentence [must
be] a function of a finite number of features of the sentence’. For, on the one hand,

20 The hybrid approach is hinted at by Geach (1962: 160), and Mates (1965: 54–7) offers something
similar. But the clearest examples we can find are Boolos and Jeffrey (1974: 104–5), Boolos (1975: 513–4),
and Lavine (2000: 10–12).

21 See Lavine’s (2000: 12–13) comments on compositionality and learnability.
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if a language has this feature, then we ‘understand how an infinite aptitude can be
encompassed by finite accomplishments’. Conversely, if ‘a language lacks this fea-
ture then nomatter howmany sentences a would-be speaker learns to produce and
understand, there will remain others whose meanings are not given by the rules
already mastered.’22

Davidson’s argument is too quick. After all, it is awild idealisation to suggest that
any actual human can indeed understand or learn the meanings of infinitely many
sentences: some sentences are just too long for any actual human to parse. It is
unclear, then, why we should worry about the ‘learnability’ of such sentences.

Still, something in the vicinity of Davidson’s argument seems right. In §1.6, we
floated the idea that model theory should be regarded as a branch of applied math-
ematics, whose (idealised) subject matter is the languages and theories that (pure)
mathematicians actually use. But here is an apparent phenomenon concerning that
subject matter: once we have a fixed interpretation inmind, we tend to act as if that
interpretation fixes the truth value of any sentence of the appropriate language, no
matter how long or complicated that sentence is.23 All three of our approaches to
formal semantics accommodate this point. For, given a signature L and an L -
structure M—i.e. an interpretation of the range of quantification and an interpre-
tation of each L -symbol—the semantic value of every L -sentence is completely
determined within M, in the sense that, for every L -sentence φ, either M ⊧ φ, or
M ⊧ ¬φ, but not both.

But the Hybrid approach, specifically, may allow us to go a little further. For,
when L is finite,24 and we offer the Hybrid approach to semantics, we may gain
some insight into how a finite mind might fully understand the rules by which an
interpretation fixes the truth-value of every sentence. That understanding seems to
reduce to three rather tractable components:

(a) an understanding of the finitely many recursion clauses governing satisfac-
tion for atomic sentences (finitely many, as we assumed that L is finite);

(b) an understanding of the handful of recursion clauses governing sentential
connectives; and

(c) an understanding of the recursion clauses governing quantification

On the Hybrid approach, point (c) reduces to an understanding of two ideas: (i)
the general idea that names can pick out objects,25 and (ii) the intuitive idea that, for
any object, we could expandour languagewith a newname for that object. In short:

22 Davidson (1965: 9).
23 A theme of Part B is whether, in certain circumstances, axioms can also fix truth values.
24 We can make a similar point if L can be recursively specified.
25 There are somedeepphilosophical issues concerning thequestionof hownamespick out objects (see

Chapters 2 and 15). However, the general notion seems to be required by any model-theoretic semantics,
so that there is no special problem here for the Hybrid approach.
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theHybrid semantics seems toprovide a truly compositionalnotionofmeaning. But
we should be clear on what this means.

First, we are not aiming to escape what Sheffer once called the ‘logocentric
predicament’, that ‘In order to give an account of logic, we must presuppose and employ
logic.’26 Our semantic clause for object-language conjunction, ∧, always involves
conjunction in the metalanguage. On the Hybrid approach, our semantic clause
for object-language universal quantification, ∀, involved (metalinguistic) quantifi-
cation over all the ways in which a new name could be added to a signature. We do
not, of course, claim that anyone could read these semantic clauses and come to un-
derstand the very idea of conjunction or quantification from scratch. We aremaking
amuchmoremundane point: to understand the hybrid approach to semantics, one
need only understand a tractable number of ideas.

Second, in describing our semantics as compositional, we are not aiming to sup-
ply a semantics according to which the meaning of∀xF(x) depends upon the sep-
arate meanings of the expressions ∀, x, F, and x.27 Not only would that involve an
oddly inflexible understanding of the word ‘compositional’; the discussion of §1.4
should have convinced us that variables do not have semantic values in isolation.28

Instead, on the hybrid approach, the meaning of∀xF(x) depends upon the mean-
ings of the quantifier-expression ∀x…x and the predicate-expression F( ). The
crucial point is this: theHybrid approach delivers the truth-conditions of infinitely
many sentences using only a small ‘starter pack’ of principles.

Having aired the virtues of the Hybrid approach, though, it is worth repeating
that our three semantic approaches are technically equivalent. As such, we can in
good faith use whichever approachwe like, whilst claiming all of the pleasant philo-
sophical features of theHybrid approach. Indeed, in the rest of this book, we simply
use whichever approach is easiest for the purpose at hand.

This concludes our discussion of first-order logic. It also concludes the ‘philo-
sophical’ component of this chapter. The remainder of this chapter sets down the
purely technical groundwork for several later philosophical discussions.

1.9 Second-order logic: syntax
Having covered first-order logic, we now consider second-order logic. This is much
less popular than first-order logic among workingmodel-theorists. However, it has

26 Sheffer (1926: 228).
27 Pickel and Rabern (2017: 155) call this ‘structure intrinsicalism’, and advocate it.
28 Nor would it help to suggest that the meaning of ∀xF(x) depends upon the separate meanings of

the two composite expressions ∀x and F(x). For if we think that open formulas possess semantic values
(in isolation), we will obtain an exactly parallel (and exactly as confused) ‘antinomy of the open formula’
as follows: clearly F(x) and F(y) are notational variants, and so should have the same semantic value; but
they cannot have the same value, since F(x) ∧ ¬F(y) is not a contradiction.
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certain philosophically interesting dimensions. We explore these philosophical is-
sues in later chapters; here, we simply outline its technicalities.

First-order logic can be thought of as allowing quantification into name position.
For example, if φ(c) is a formula containing a constant symbol c, then we also have
a formula ∀vφ(v/c), replacing c with a variable which is bound by the quantifier.
To extend the language, we can allow quantification into relation symbol or function
symbol position. For example, if φ(R) is a formula containing a relation symbol R,
we would want to have a formula∀Xφ(X/R), replacing the relation symbol Rwith
a relation-variable,X, which is bound by the quantifier. Equally, if φ( f) is a formula
containing a function symbol f , we would want to have a formula∀pφ(p/ f).

Let us make this precise, starting with the syntax. In addition to all the symbols
of first-order logic, our language adds some new symbols:

• relation-variables: U,V,W,X,Y,Z
• function-variables: p, q

both with numerical subscripts and superscripts as necessary. In more detail: just
like relation symbols and functions symbols, these higher-order variables come
equipped with a number of places, indicated (where helpful) with superscripts. So,
together with the subscripts, this means we have countablymany relation-variables
and function-symbols for each number of places. We then expand the recursive
definition of a term, to allow:

• qn(t1,…, tn), for any L -terms t1,…, tn and n-place function-variable qn

and we expand the notion of a formula, to allow
• Xn(t1,…, tn), for any L -terms t1,…, tn and n-place relation-variable Xn

• ∃Xnφ and∀Xnφ, for any n-place relation-variable Xn and any second-order
L -formula φ which contains neither of the expressions ∃Xn nor∀Xn

• ∃qnφ and ∀qnφ, for any n-place function-variable qn and any second-order
L -formula φ which contains neither of the expressions ∃qn nor∀qn

We will also introduce some abbreviations which are particularly helpful in a
second-order context. Where Ξ is any one-place relation symbol or relation-
variable, wewrite (∀x : Ξ)φ for∀x(Ξ(x)→ φ), and (∃x : Ξ)φ for∃x(Ξ(x)∧φ).
We also allow ourselves to bind multiple quantifiers at once; so (∀x, y, z : Ξ)φ ab-
breviates∀x∀y∀z((Ξ(x) ∧ Ξ(y) ∧ Ξ(z))→ φ).

1.10 Full semantics
The syntax of second-order logic is straightforward. The semantics is more subtle;
for here there are some genuinely non-equivalent options.

We start with full semantics for second-order logic (also known as standard se-
mantics). This uses L -structures, exactly as we defined them in Definition 1.2.
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The trick is to add new semantic clauses for our second-order quantifiers. In fact,
we can adopt any of the Tarskian, Robinsonian, orHybrid approaches here, andwe
sketch all three (leaving the reader to fill in some obvious details).

Tarskian. Variable-assignments are thekey to theTarskian approach to first-order
logic. So the Tarskian approach to second-order logic must expand the notion of
a variable-assignment, to cover both relation-variables and function-variables. In
particular, we take it that σ is a function which assigns every variable to some entity
a ∈ M, every n-place relation-variable to some subset of Mn, and every function-
variable to some function Mn Ð→ M. We now add clauses:

M, σ ⊧ Xn(t1,…, tn) iff (tM,σ
1 ,…, tM,σ

n ) ∈ (Xn)M,σ for any
L -terms t1,…, tn

M, σ ⊧ ∀Xnφ(Xn) iff M, τ ⊧ φ(Xn) for every variable-assignment τ
which agrees with σ except perhaps on Xn

M, σ ⊧ ∀qnφ(qn) iff M, τ ⊧ φ(qn) for every variable-assignment τ
which agrees with σ except perhaps on qn

Robinsonian. The key to the Robinsonian approach to first-order logic is to in-
troduce a new constant symbol for every entity in the domain. So the Robinsonian
approach to second-order logicmust introduce anew relation symbol for everypos-
sible relation on M, and a new function symbol for every possible function. Let
M◾ be the structure which expands M in just this way. So, for each n and each
S ⊆ Mn, we add a new relation symbol RS with S = RM◾

S , and for each function
g : Mn Ð→ M we add a new function symbol f g with g = fM

◾

g . We can now
simply rewrite the first-order semantics, replacing M○ with M◾, and adding:

M◾ ⊧ ∀Xnφ(Xn) iff M◾ ⊧ φ(RS/Xn) for every S ⊆ Mn

M◾ ⊧ ∀qnφ(qn) iff M◾ ⊧ φ( f g/qn) for every function g : Mn Ð→ M

Hybrid. The key to the Hybrid approach to second-order logic is to define, up-
front, the three-place relation betweenM, a formula φ, and a relation (or function)
on M.29 We illustrate the idea for the case of relations (the case of functions is ex-
actly similar). Let S be a relation on Mn. Let RS be an n-place relation symbol not
occurring in L . We define M[S] to be a structure whose signature is L together
with the new relation symbol RS, such that M[S]’s L -reduct is M and RM[S]

S = S.
Thenwhere φ(X) is anL -formulawith free relation-variable displayed, we define:

M ⊧ φ(S) iff M[S] ⊧ φ(RS/X) for any relation symbol RS ∉L

M ⊧ ∀Xnφ(Xn) iff M ⊧ φ(S) for every relation S ⊆ Mn

29 Trueman (2012) recommends a semantics like this as a means for overcoming philosophical resis-
tance to the use of second-order logic.
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The three approaches ultimately define the same semantic relation. Andwe call the
ensuing semantics full second-order semantics.

The relative merits of these three approaches are much as before. So: the
Tarskian approach unhelpfully treats relation-variables as if theywere varying pred-
icates; theRobinsonian approach forces us to stretch the idea of a language tobreak-
ing point; but the Hybrid approach avoids both problems and provides us with a
reasonable notion of compositionality. (It is worth noting, though, that all three
approaches effectively assume that we understand notions like ‘all subsets of Mn’.
We revisit this point in Part B.)

1.11 Henkin semantics
The Tarskian, Robinsonian, and Hybrid approaches all yielded the same relation,
⊧. However, there is a genuinely alternative semantics for second-order logic. More-
over, the availability of this alternative is an important theme in Part B of this book.
So we outline that alternative here.

In full second-order logic, universal quantification into relation-position effec-
tively involves considering all possible relations on the structure. Indeed, using
℘(A) for A’s powerset, i.e. {B : B ⊆ A}, we have the following: if X is a one-place
relation-variable, then the relevant ‘domain’ of quantification in∀Xφ is℘(M); and
if X is an n-place relation-variable, then the relevant ‘domain’ of quantification in
∀Xφ is ℘(Mn). An alternative semantics naturally arises, then, by considering
more restrictive ‘domains’ of quantification, as follows:

Definition 1.6: A Henkin L -structure, M, consists of:

• a non-empty set, M, which is the underlying domain of M
• a set Mrel

n ⊆ ℘(Mn) for each n < ω
• a set Mfun

n ⊆ {g ∈ ℘(Mn+1) : g is a function Mn Ð→ M} for each n < ω
• an object cM ∈ M for each constant symbol c from L
• a relation RM ⊆ Mn for each n-place relation symbol R from L
• a function fM : Mn Ð→ M for each n-place function symbol f from L .

In essence, Mrel
n serves as the domain of quantification for the n-place relation-

variables, and Mfun
n serves as the domain of quantification for the n-place function-

variables. As before, though, we can make this idea precise using any of our three
approaches to formal semantics. We sketch all three.

Tarskian. Where M is a Henkin structure, we take our variable-assignments σ
to be restricted in the following way: σ assigns each variable to some entity a ∈ M,
each n-place relation-variable to some element of Mrel

n , and each n-place function-
variable to someelement of Mfun

n . We then rewrite the clauses for the full semantics,
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exactly as before, but using this more restricted notion of a variable-assignment.
Robinsonian. Where M is a Henkin structure, we let M◽ be the structure which

expandsM by adding new relation symbolsRS such that S = RM◽

S for every relation
S ∈ Mrel

n , and new function symbols f g such that g = fM
◽

g for every function g ∈
Mfun

n . We then offer these clauses:

M◽ ⊧ ∀Xnφ(Xn) iff M◽ ⊧ φ(RS/Xn) for every relation S ∈ Mrel
n

M◽ ⊧ ∀qnφ(qn) iff M◽ ⊧ φ( f g/qn) for every function g ∈ Mfun
n

Hybrid. We need only tweak the recursion clauses, as follows:

M ⊧ ∀Xnφ(Xn) iff M ⊧ φ(S) for every relation S ⊆ Mrel
n

M ⊧ ∀qnφ(qn) iff M ⊧ φ(g) for every function g ∈ Mfun
n

We say that Henkin semantics is the semantics yielded by any of these three ap-
proaches, as applied to Henkin structures. Importantly, Henkin semantics gener-
alises the full semantics of §1.10. To show this, letM be anL -structure in the sense
of Definition 1.2. From this, define aHenkin structureN by setting, for each n < ω,
Nrel

n = ℘(Nn) and N fun
n as the set of all functions Nn Ð→ N. Then full satisfaction,

defined over N, is exactly like Henkin satisfaction, defined over N.
The notion of a Henkin structure may, though, be a bit too general. To see

why, consider a Henkin L -structure M, and suppose that R is a one-place rela-
tion symbol of L , so that RM ⊆ M. Presumably, we should want M to satisfy
∃X∀v(R(v) ↔ X(v)), for RM should itself provide a witness to the second-order
existential quantifier. But this holds if and only if RM ∈ Mrel

1 , and the definition of
a Henkin structure does not guarantee this. For this reason, it is common to insist
that the following axiom schema should hold in all structures:

Comprehension Schema. ∃Xn∀v(φ(v) ↔ Xn(v)), for every formula φ(v) which
does not contain the relation-variable Xn

We must block Xn from appearing in φ(v), since otherwise an axiom would be
∃X∀v(¬X(v)↔ X(v)), which will be inconsistent. However, we allow other free
first-order and second-order variables, because this allows us to form new concepts
from old concepts. For instance, given the two-place relation symbol R, we have as
an axiom ∃X2∀v1∀v2(¬R(v1, v2)↔ X2(v1, v2)), i.e. Mrel

2 must contain the set of
all pairs not in RM, i.e. M2 ∖ RM. So: if we insist that (all instances) of the Com-
prehension Schema must hold in all Henkin structures, then we are insisting on
further properties concerning our various Mrel

n s. There is also a predicative version
of Comprehension:

Predicative Comprehension Schema. ∃Xn∀v(φ(v) ↔ Xn(v)), for every formula
φ(v) which neither contains the relation-variable Xn nor any second-order quantifiers
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When we want to draw the contrast, we call the (plain vanilla) Comprehension
Schema the Impredicative Comprehension Schema. But this will happen only
rarely; we only mention Predicative Comprehension in §§5.7, 10.2, 10.c, and 11.3.

We could provide a similar schema to govern functions. But it is usual to make
the stronger claim, that the following should hold in all structures (for every n):30

Choice Schema. ∀Xn+1 (∀v∃y Xn+1(v, y)→ ∃pn∀v Xn+1(v, pn(v)))

To understand these axioms, let S be a two-place relation on the domain, and sup-
pose that the antecedent is satisfied, i.e. that for any x there is some y such that
S(x, y). The relevantChoice instance then states that there is then aone-place func-
tion, p, which ‘chooses’, for each x, a particular entity p(x) such that S(x, p(x)).
For obvious reasons, this p is known as a choice function. Hence, just like the Com-
prehension Schema, theChoice Schema guarantees that the domains of the higher-
order quantifiers are well populated.

This leads to a final definition: a faithful Henkin structure is a Henkin structure
within which both (impredicative) Comprehension and Choice hold.31

1.12 Consequence
We have defined satisfaction for first-order logic and for both the full- andHenkin-
semantics for second-order logic. However, any definition of satisfaction induces a
notion of consequence, via the following:

Definition 1.7: A theory is a set of sentences in the logic under consideration. Given a
structure M and a theory T, we say that M is a model of T, or more simply M ⊧ T, iff
M ⊧ φ for all sentences φ from T. We say that T has φ as a consequence, or that T
entails φ, or more simply just T ⊧ φ, iff: if M ⊧ T then M ⊧ φ for all structures M.

Note that this definition is relative to a semantics. So there are as many notions of
logical consequence as there are semantics.

Here are some examples to illustrate the notation. Consider the natural numbers
N and the integers Z in the signature consisting just of the symbol <, where this
is given its natural interpretation. It is easy to see that both structures satisfy the
following axioms:

∀x∀y∀z((x < y ∧ y < z)→ x < z)
∀x(x ≮ x)

∀x∀y(x < y ∨ x = y ∨ y < x)
30 For more, see Shapiro (1991: 67).
31 See e.g. Shapiro (1991: 98–9).
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These are the axioms of a linear order. LetTLO be the theory consisting of just these
three axioms. ThenwewouldwriteN ⊧ TLO andZ ⊧ TLO. But ifwedrop the third
axiom, we obtain the related notion of a partial order. For an example of a partial
order which is not a linear order, consider any set X with more than two elements,
and consider the structure P whose first-order domain is the powerset ℘(X) of X,
with< interpreted inP as the subset relation. If a, b are distinct elements ofX, then
P ⊧ {a} ≮ {b} ∧ {a} ≠ {b} ∧ {b} ≮ {a}. So P ⊭ TLO.

1.13 Definability
In addition to a notion of consequence, a semantics will induce a notion of defin-
ability, as follows:

Definition 1.8: Let M be any structure and n ≥ 1. We say that a subset X of Mn

is definable iff there is both a formula φ(v1,…, vn, x1,…, xm) with all free variables
displayed and also elements b1,…, bm ∈ M such that:

X = {(a1,…, an) ∈ Mn : M ⊧ φ(a1,…, an, b1,…, bm)}

Here, the elements b1,…, bm are called parameters. Many authors allow parame-
ters to be tacitly suppressed, and so say that X is definable iff X = {(a1,…, an) ∈
Mn : M ⊧ φ(a1,…, an)} for some φ(v1,…, vn) which is (tacitly) allowed to con-
tain further unmentioned parameters. If parameters are not allowed, such authors
typically say this explicitly. We will be similarly explicit. When parameters are not
allowed, the resulting sets are called parameter-free definable sets. Clearly a set isM-
definable iff it is parameter-free definable in some signature-expansion of M (see
Definition 1.4).

To illustrate the idea of definability, consider again the natural numbersN in the
signature consisting just of <, again with its natural interpretation. Here is a simple
definable set:

{0} = {n ∈ N : N ⊧ ¬∃x x < n}

As a slightly more complicated example, the graph of the successor operation in N
is definable, since intuitively n = m + 1 iff m is less than n and there is no natural
number strictly between m and n. More precisely:

G = {(n,m) ∈ N2 : N ⊧ (m < n ∧ ¬∃z(m < z < n))}

Now, both of these sets are parameter-free definable. And so it follows that all defin-
able sets overN are parameter-free definable. For, where S is the successor function
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on the natural numbers, each natural number n is equal to the term Sn(0), which
we define recursively as follows:

S0(a) = a Sn+1(a) = S(Sn(a)) (numerals)

(We label this definition ‘(numerals)’ for future reference.) Hence, to say that 2 =
S2(0) is just a fancy way of saying that two is the second successor of zero. The
terms Sn(0) are sometimes called the numerals, and clearly N ⊧ n = Sn(0) for
each natural number n ≥ 0. So, we can explicitly define the numerals in terms of
the less-than relation usingG, any definable set onN is parameter-free definable, by
the following:

{(a1,…, an) ∈ Nn : N ⊧ φ(a1,…, an, b1,…, bm)}
={(a1,…, an) ∈ Nn : N ⊧ φ(a1,…, an, Sb1(0),…, Sbm(0))}

For an example of a structure with definable sets which are not parameter-free de-
finable, let L be a countable signature and let M be an uncountable L -structure.
Since there are only countably many L -formulas, there are only countably many
parameter-free definable sets. But trivially the singleton {a} of any element a from
M is definable, as {a} = {x ∈ M : M ⊧ x = a}. So M has uncountably many
definable subsets which are not parameter-free definable.

Finally, it is worthmentioning a particular aspect of definability in second-order
logic. Consider the natural numbers N in the full semantics, and consider the set
{(n,A) ∈ N × ℘(N) : N ⊧ A(n)} consisting of all pairs of numbers and sets
of numbers such that the number is in the set. It obviously makes good sense to
say that this set is definable, even though it is not a subset of N × N but rather of
N×℘(N). So, in the case of second-order logic, we expand the notion of definabil-
ity to include both subsets of products of the second-order domain, and subsets of
products of the first-order domain and the second-order domain. This point holds
for both the Henkin and the full semantics.

1.a First- and second-order arithmetic
We have laid down the syntax and semantics for the logics which occupy us
throughout this book. However, we will frequently discuss certain specific mathe-
matical theories. So, for ease of reference, in this appendix we lay down the usual
first- and second-order axioms of arithmetic. We cover set theory in the next ap-
pendix, and reserve all philosophical commentary for later chapters.

Definition 1.9: The theory of Robinson Arithmetic,Q, is given by the universal closures
of the following eight axioms:
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(Q1) S(x) ≠ 0
(Q2) S(x) = S(y)→ x = y
(Q3) x ≠ 0→ ∃y x = S(y)
(Q4) x + 0 = x

(Q5) x + S(y) = S(x + y)
(Q6) x × 0 = 0
(Q7) x × S(y) = (x × y) + x
(Q8) x ≤ y↔ ∃z x + z = y

The theory of Peano Arithmetic, PA, is given by adding to Robinson Arithmetic the fol-
lowing Induction Schema:

[φ(0) ∧ ∀y (φ(y)→ φ(S(y)))]→ ∀yφ(y)

While PA obviously formalises an important part of number-theoretic practice, it
was axiomatised only in 1934.32 We now turn to second-order arithmetic:

Definition 1.10: The theory of second-order Peano arithmetic, PA2, is given by ax-
ioms (Q1)–(Q3) ofDefinition 1.9, theComprehension Schemaof §1.11, and the following
mathematical Induction Axiom:

∀X([X(0) ∧ ∀y(X(y)→ X(S(y)))]→ ∀yX(y))

With the exception of the Comprehension Schema, the axioms of PA2 were first
explicitly written down by Dedekind.33 The Choice Schema is typically not built
into axiomatisations of PA2, although it is valid on the standard semantics.34

Note that the signature of PA2 is just {0, S}, whereas the signature of the first-
order theory PA is {0, S,<,+,×}. However, in the setting of PA2, order, addition
and multiplication are explicitly definable in the sense of Definition 1.8. For in-
stance, the graph of the addition function is the unique three-place relation which
is the union of all three-place relations satisfying the following condition, which
intuitively describes an initial segment of the graph of addition:

Φ(B) := ∀xB(x, 0, x) ∧ ∀x∀y∀w[B(x, S(y),w)→
∃z (w = S(z) ∧ B(x, y, z))]

By Comprehension, there is a three-place relation A satisfying A(a, b, c) iff
∃B(Φ(B)∧ B(a, b, c)). If we then define a+ b = c by A(a, b, c)we can easily show
by induction that this satisfies axioms (Q4)–(Q5) of Definition 1.9. An analogous
definition can be presented in second-order logic for a formula which satisfies ax-
ioms (Q6)–(Q7). Finally, obviously (Q8) allows≤ to be explicitly defined in terms
of addition and first-order logic.

32 Hilbert and Bernays (1934). For contemporary references on PA and its subsystems, see e.g. Kaye
(1991) and Hájek and Pudlák (1998).

33 Dedekind (1888).
34 A contemporary reference on PA2 and its subsystems is Simpson (2009).
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1.b First- and second-order set theory
We now turn to set theory. The signature of set theory consists just of the binary
relation ∈, where we read x ∈ y as ‘x is a member of y’. We start with the following
axioms, which we state slightly informally, leaving the reader to transcribe them
into sentences of first-order logic if she wishes. Here and throughout, (∀y ∈ x)φ
abbreviates∀y(y ∈ x→ φ) and (∃y ∈ x)φ abbreviates ∃y(y ∈ x ∧ φ).

Extensionality. For all x and y, we have: x = y iff∀z (z ∈ x↔ z ∈ y)
Pairing. For all x and y, there is a unique set, {x, y}, such that for all z: z ∈ {x, y} iff
either z = x or z = y
Union. For all x, there is a unique set,⋃ x, , such that for all z: z ∈ ⋃ x iff (∃y ∈ x)z ∈ y
Power Set. For all x, there is a unique set, ℘(x), such that for all z: z ∈ ℘(x) iff z ⊆ x
Separation Schema. For all x and v there is a unique set, {y ∈ x : φ(y, v)}, such that
for all z: z ∈ {y ∈ x : φ(y, v)} iff both z ∈ x and φ(z, v)

In the Separation Schema, there is one axiom for each formula φ(y, v) in the signa-
ture. It is worth noting that the uniqueness claims in Pairing, Union, Power Set, and
the Separation Schema are redundant, given Extensionality,35 and that the left-to-
right directions of the biconditionals in Pairing, Union, and Power Set are redun-
dant, given the Separation Schema. For instance, suppose that for all x and y there
is some v such that if z = x or z = y then z ∈ v. Then {z ∈ v : z = x ∨ z = y} exists
by Separation and is obviously equal to {x, y}.

Using these axioms, we define∅ as the unique set with no members; the empty
set. Whilst there are philosophical discussions to have about ∅’s existence,36 there
are no technical discussions to be had. The usual background axioms for first-order
logic assert that there exists at least one object x, and applying Separation to the
formula z ≠ z we obtain a set ∅ such that, ∀z (z ∈ ∅↔ (z ∈ x ∧ z ≠ z)), from
which it follows by elementary logic that ∀z z ∉ ∅. The uniqueness of the empty
set then follows from Extensionality.

The intersection of x, written ⋂ x, is the set whose members elements are ex-
actly those which are members of every element of x. This exists whenever x is
non-empty, since ⋂ x = {y ∈ ⋃ x : (∀z ∈ x)y ∈ z}, which exists by Union and
Separation. The usual binary operations of union x ∪ y and intersection x ∩ y can
then be defined via x ∪ y = ⋃{x, y} and x ∩ y = ⋂{x, y}. Finally, the singleton {x}
is defined to be {x, x} and is the set whose unique member is x.

We define the successor s(x) of x to be the set x∪ {x}, so that z ∈ s(x) iff either
z = x or z ∈ x. This notation allows us to state another axiom:

Infinity. There is a set w such that∅ ∈ w and for all x, if x ∈ w then s(x) ∈ w
35 For philosophical commentary on uniqueness, see Potter (2004: 258–9).
36 See e.g. Oliver and Smiley (2006: 126–32).
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The empty set∅plays a role in set theory similar to the role zero plays in arithmetic,
and the successor function s in set theory is similar to the successor function S from
the axioms of Definition 1.9. In these terms, the Infinity Axiom says that there is a
set which contains the ersatz of zero and is closed under the ersatz of successor.

Using the intersectionoperation, defined above, we can also state another axiom,
whose role is to rule out infinite descending membership chains:

Foundation. For every non-empty set x there is some z ∈ x such that z ∩ x = ∅

After all, if an infinite chain… ∈ xn ∈… ∈ x2 ∈ x1 ∈ x0 existed, then thenon-empty
set x = {x0, x1, x2,…, xn,…}would violate Foundation.

Introducing the usual notation ∃!xφ to abbreviate ∃x∀v(φ ↔ x = v), for any
variable vnot occurring in φ, we lay downan axiomschemawhich, intuitively, states
that the image of any set under a function is a set:

Replacement Schema. For all w and all v: if (∀x ∈ w)∃!yφ(x, y, v), then ∃z(∀x ∈
w)(∃y ∈ z)φ(x, y, v)

Finally, we lay down an axiom stating that any set can be equipped with a binary
relation that satisfies the axioms of a well-order:

Choice. Any set can be well-ordered

A well-order is a linear order such that any non-empty set of ordered elements has
a least element. (The axioms of a linear order were given in §1.12.) Note that
Choice, here, is a single axiom, expressed in first-order logic with an additional
primitive, ∈. This single Axiom should not be confused with the Choice Schema
for second-order logic, as laid down in §1.11, which yields infinitely many second-
order sentences. That said, there is evidently a connection between the Axiom and
the Schema: theAxiomofChoice (in ourmodel theory) entails that the full seman-
tics for second-order logic always satisfies the Choice Schema, since one can use a
well-order of the underlying domain of the model (or one of its finite products) to
obtain the relevant witnesses for the Choice Schema.

Having discussed the axioms, we can finally define some theories:37

Definition 1.11: The axioms of first-order Zermelo–Fraenkel set theory,ZF, are Ex-
tensionality, Pairing, Union, Power Set, Infinity, Foundation, the Separation Schema,
and the Replacement Schema. The theory ZFC adds Choice to ZF.

We can form second-order versions of these theories by replacing the first-order
schemas with appropriate second-order sentences. In particular, we replace the

37 A contemporary reference for ZFC is e.g. the monograph Kunen (1980).
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Separation and Replacement Schemaswith simpleAxioms, i.e. individual sentences
of second-order logic with an additional primitive, ∈:

Separation. ∀F∀x∃y∀w [w ∈ y↔ (w ∈ x ∧ F(w))]
Replacement. ∀G∀w [(∀x ∈ w)∃!yG(x, y)→ ∃z(∀x ∈ w)(∃y ∈ z)G(x, y)]

We then define:

Definition 1.12: The theory of second-order Zermelo–Fraenkel set theory with
Choice, ZFC2, is formed by taking the axioms of first-order ZFC, and replacing the
Separation Schema with the Separation Axiom, and the Replacement Schema with the
Replacement Axiom, and by adding on the Comprehension Schema.

Aswith second-order arithmetic, theChoiceSchema isnotbuilt into these theories,
and should not be confused with the (set-theoretic) Axiom of Choice. The theory
ZFC2 is sometimes also called Kelly–Morse set theory.38 While second-order set
theory is less widely used than first-order set theory, it plays an important role in
the foundations and philosophy of set theory. We discuss this in Chapters 8 and 11.

Occasionally, but especially fromChapter 7 onwards, we invoke elementary con-
siderations about ordinals and cardinals. As is usual, we reserve α, β, γ , δ for or-
dinals. An ordinal is defined to be a transitive set which is well-ordered by mem-
bership, where x is transitive iff every member of x is a subset of x. The member-
ship relation on ordinals is usually just written with <, and it is provable in very
weak fragments of ZFC that < well-orders the ordinals. The successor operation
s(α) = α ∪ {α} = α + 1 on ordinals is such that α < s(α) and there is no ordinal
β with α < β < s(α). We define 0 = ∅, then 1 = s(0), 2 = s(1), 3 = s(2),…, and
ω = {0, 1, 2, 3,…}. A limit ordinal is an ordinal β such that β ≠ 0 and β ≠ s(γ) for
any ordinal γ; and ω is the least limit ordinal.

A cardinal is an ordinal which is not bijective with any smaller ordinal. The finite
ordinals 0, 1, 2,…andω are all cardinals. Thealeph sequenceprovides the standard
enumeration of infinite cardinals: ℵ0 = ω;ℵα+1 is the least cardinal greaterℵα; and
when α is a limit ordinal, the cardinal ℵα is the least upper bound of {ℵβ : β <
α}. Hence ℵω is the least ordinal which is greater than ℵ0,ℵ1,ℵ2,… and it too is a
cardinal. We reserve κ, λ for cardinals, and we use ∣X∣ for the cardinality of the set
X, that is ∣X∣ = κ iff X is bijective with κ but with no smaller ordinal. We frequently
invoke the facts that ∣X × Y∣ = max{∣X∣ , ∣Y∣} when one of ∣X∣ , ∣Y∣ is infinite, and
that the union of ≤ κ-many sets of cardinality ≤ κ itself has cardinality ≤ κ when κ
is infinite.39

38 See Monk (1969) for an axiomatic development of set theory in this framework.
39 These elementary facts about cardinality can be found in any set-theory textbook, such as Hrbáček

and Jech (1999) or the beginning chapters of Kunen (1980) or Jech (2003).
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1.c Deductive systems
In several places in this book, we will need to refer to a deductive system for first-
order and second-order logics. Many different but provably equivalent deductive
systems are possible, andwe could compare and contrast their relative technical and
philosophical merits. However, deduction is not the focus of this book, so we will
simply set down a system of natural deduction without much comment.40

Tobe clear: wedonot expect anyone to be able to learn how touse ormanipulate
natural deductions just by reading this appendix. Equally, we did not expect that
anyone could learn how to do arithmetic or set theory just by reading the previous
two appendices. The aim is just to lay down a particular system, so that we can refer
back to it later in this book.

First, we lay down rules for the sentential connectives. In the rules ¬E, ∨E, and
→I, an assumption is discharged at the point when the rule is applied. Wemark this
using square brackets, and a cross-referencing index, n:

� Exφ
φ ¬φ

Raa�
[φ]n

⋮
� ¬I, n¬φ

[¬φ]n

⋮
� ¬E, nφ

φ ψ
∧I

(φ ∧ ψ)
(φ ∧ ψ)

∧Eφ
(φ ∧ ψ)

∧Eψ

φ
∨I

(φ ∨ ψ)
ψ

∨I
(φ ∨ ψ)

(φ ∨ ψ)

[φ]n

⋮
χ

[ψ]n

⋮
χ
∨E, nχ

[φ]n

⋮
ψ

→I, n
(φ → ψ)

φ (φ → ψ)
→Eψ

We now consider the rules for first-order quantifiers. These rules are subject to
the following restrictions: t can be any term; in ∀I, c must not occur in any undis-
charged assumption on which φ(c) depends; in ∃I one can replace any/all occur-
rences of t with x, but in ∀I one must replace all occurrences of c with x, and in
both of these rules x should not already occur in φ(c); finally, in implementing ∃E,
c must not occur in ∃xφ(x), in ψ , or in any undischarged assumption on which ψ
depends, except for φ(c).

40 It is essentially based on Prawitz (1965).
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φ(c)
∀I

∀xφ(x)
∀xφ(x)

∀E
φ(t)

φ(t)
∃I

∃xφ(x)
∃xφ(x)

[φ(c)]n

⋮
ψ
∃E, nψ

To complete the rules for first-order logic, we have the rules for identity. Note that
adopting the rule =I is equivalent to treating every instance of t = t as an axiom,
since it is licensed on any (including no) assumptions:

=I
t = t

t1 = t2 φ(t1)
=E

φ(t2)
t2 = t1 φ(t1)

=E
φ(t2)

To move to a deduction system for second-order logic, we simply add rules for the
quantifiers, exactly analogous to the first-order case. So, for relation-variables we
have (with similar restrictions as before):

φ(Rm)
∀2I∀Xmφ(Xm)

∀Xmφ(Xm)
∀2E

φ(Rm)

φ(Rm)
∃2I∃Xmφ(Xm)

∃Xmφ(Xm)

[φ(Rm)]n

⋮
ψ
∃2E, nψ

Thecaseof function symbols is exactly similar. Finally, to ensure that our deduction
system aligns with faithful Henkin models, we also allow as axioms any instance of
the Comprehension or Choice schemas, i.e. we add these rules:

Comp
∃Xn∀v(φ(v)↔ Xn(v))

Choice
∀Xn+1 (∀v∃y Xn+1(v, y)→ ∃pn∀v Xn+1(v, pn(v)))

These are all the rules for our deduction systems for sentential, first-order and
second-order logic. When we have a deduction whose only undischarged assump-
tions are members of T and which ends with the line φ, we write T ⊢ φ.


