Durotaxis of Passive Nanoparticles on Elastic Membranes
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ABSTRACT: The transport of macromolecules and nanoscopic particles to a target cellular site
is a crucial aspect in many physiological processes. This directional motion is generally controlled
via active mechanical and chemical processes. Here we show, by means of molecular dynamics
simulations and an analytical theory, that completely passive nanoparticles can exhibit directional
motion when embedded in non-uniform mechanical environments. Specifically, we study the motion
of a passive nanoparticle adhering to a mechanically non-uniform elastic membrane. We observe a
non-monotonic affinity of the particle to the membrane as a function of the membrane’s rigidity,
which results in the particle transport. This transport can be both up or down the rigidity gradient,
depending on the absolute values of the rigidities that the gradient spans across. We conclude that
rigidity gradients can be used to direct average motion of passive macromolecules and nanoparti-
cles on deformable membranes, resulting in the preferential accumulation of the macromolecules in
regions of certain mechanical properties.
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The targeted transport of nano-objects is of
great interest for numerous applications, ranging
from engineering novel nanomaterials to designing
efficient strategies for the delivery of nanoparti-
cles. A multitude of approaches can be employed
to manipulate the transport of nanoscopic objects
to specific destinations in living and synthetic mat-
ter. For example, cells use motor proteins to
transport macromolecules and organelles across
the cytoplasm.!? Viruses themselves use cellular
pH gradients for cellular entry and uncoating.? In a
synthetic context, electric, thermal, and chemical
gradients can be used to artificially direct the mo-
tion of molecular cargoes within nanochannels*”
or on surfaces.??

A commonly observed method to guide trans-
port involves the usage of rigidity gradients. Per-
haps the best known example of such transport
is durotaxis, which was first observed in cells and
was defined as the tendency of living cells to mi-
grate towards regions of higher stiffness.'® Existing
physical models attribute this phenomenon either
to rigidity-dependent persistence of motion, im-
plying that cells sense and adapt to the absolute
rigidity of the underlying substrate, or to gradient-

dependent forces, implying that cells sense rigidity
gradients on the scale of a single cell.'' 13 In both
cases — in the former more subtly than in the latter
— energy is implied to be required to drive directed
motion.

Rigidity-guided migration is, however, not only
restricted to active systems, but has also been ob-
served in a range of passive nanoscopic scenar-
ios. Gradients in the rigidity or in the strain field
of a substrate have been used to orient motion
of graphene nanosheets'* and nanoflakes.!> Wa-
ter droplets can undergo reverse durotaxis, mi-
grating towards softer regions of a surface to in-
crease wetting,'® whereas non-wetting droplets un-
dergo regular durotaxis for the opposite reason.!”
Analogously, polymer droplets tend to migrate to
stiffer surfaces, where their Van der Waals energy
is minimised.'® All these passive systems share a
similarity: the nano-object migrates as to increase
its contact with the underlying substrate and lower
the system’s potential energy.

In this paper, we study the durotactic mo-
tion of passive nanoscopic objects diffusing on de-
formable membranes. Biological membranes have
diverse compositions and contain different species
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FIG. 1: Illustration of a hard spherical nanopar-
ticle on an elastic membrane that contains two
halves of different rigidities. The right half has a
greater bending rigidity than the left half. The mem-
brane is described as a triangulated elastic surface,
where the bending rigidity is controlled by the dihe-
dral potential between adjacent triangles (1-2-3 and 2-
3-4). The diameter of the nanoparticle is oxp = 100,
where o is the simulation unit of length and the diam-
eter of one membrane bead (beads at the bottom not
in scale). See Methods for details.

of phospholipids and proteins,'® whose expres-
sion can exhibit spatio-temporal dependence.?0:2!
This can result in non-uniform mechanical prop-
erties across their surfaces.?>?3 Such lateral stiff-
ness heterogeneities have been observed in vivo
and n vitro, for instance in protozoa,?*?® red
blood cells,?%:27 T-cells,?® rat neurons and HeLa
cells.?? In these systems, the variation in the elas-
tic moduli (which may differ by as much as a fac-
tor of 15)** is thought to be functional for the
cell. Heterogeneity has been attributed to the
chemical composition of the membrane, to the
mechanics of the underlying cytoskeleton, and to
their mutual interplay.3°33 Recent computational
work has reported that a nanoparticle bound to
a microphase-separated multi-component mem-
brane exhibits preference for a given phase, as a
consequence of different bending rigidities between
the two phases®; also, membrane elasticity has
been proposed to influence the persistence of mo-
tion of a nanoparticle that actively cleaves the un-
derlying substrate via the so-called burnt bridge
mechanism.??

The key idea in the present paper is that stiff-
ness inhomogeneity alone, even in the absence of
any active mechanism, might direct the dynamics
of macromolecules bound to the membrane and
lead to their preferential accumulation in regions
of optimal rigidity. The aim of this paper is to un-
derstand the physics of this effect from first prin-
ciples and to propose it as a sorting mechanism
in its own right. We use molecular dynamics sim-

ulations to study the preferential localisation of a
hard spherical nanoparticle on a non-homogeneous
elastic membrane. We place an adhering nanopar-
ticle on a fluctuating membrane divided in two
halves of different bending rigidities, as shown in
Fig. 1. We show that a difference in the values of
the bending rigidity between the two regions of the
membrane is sufficient to drive the nanoparticle’s
localisation to one side. We provide a theoreti-
cal underpinning for this phenomenon, based on
free energy calculations and analytical estimates.
Depending on the absolute values of the two rigidi-
ties, we observe motion both up and down the
rigidity gradient, thereby effectively demonstrat-
ing both regular and negative durotaxis. (In the
rest of the paper, unless otherwise specified, the
term durotaxis describes a passive phenomenon,
happening at the nanoscale; we stress again that
durotaxis of living cells is, on the contrary, an ac-
tive process and happens at the scale of the cell
size.)

Results and Discussion

Adhesion non-monotonically depends on
the bending rigidity. To investigate how the
substrate’s stiffness influences the preferential lo-
calisation of a nanoparticle, we first placed the
nanoparticle on uniform membranes of different
rigidities, Kj, varied between K; = 0.01 kg7 and
K, = 500kgT. For every set of simulations,
we tracked the average nanoparticle coordination
number, defined as the number of membrane parti-
cles within range of interaction with the nanoparti-
cle, as well as the total adhesion interaction energy
between the membrane and nanoparticle.

The nanoparticle’s adherence to the membrane
is influenced by the balance of three terms: the
energetic cost of locally deforming the membrane,
the energy gain due to the adhesion of the
nanoparticle, and an entropic effect related to
membrane fluctuations. Depending on the value
of the bending rigidity, the contact between the
nanoparticle and the membrane exhibits four
distinct regimes as shown in Fig. 2. For low
values of the bending rigidity, the membrane
is conspicuously corrugated and its fluctuations
hinder full contact with the particle (regime
I). As the rigidity is increased, the membrane
fluctuations are gradually suppressed and the
nanoparticle can be wrapped more by the mem-
brane, leading to a substantial increase in the
coordination number and in the absolute value of
the total adhesion energy (regime II). At values
of K, above ~ 2kgT, the mechanical cost of
deforming the membrane overcomes the adhesion
term, resulting in decreased adherence (regime
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FIG. 2: Nanoparticle’s time-averaged coordina-
tion number and adhesion energy as a func-
tion of bending rigidity of a uniform membrane.
The nanoparticle contact with the membrane follows a
non-monotonic pattern, with a maximum at a value of
Ky ~ 2kpT. Four different regimes appear, described
in the text. The shaded area indicates the standard
deviation of the adhesion energy distribution. Note
that adhesion energy (blue) is roughly proportional to
the coordination number (purple).

III). The entropic term can be neglected at high
rigidities. For very high values of the bending
rigidity, the local membrane deformation imposed
by the nanoparticle is prohibitively costly and
the coordination number eventually saturates at
a low value (regime IV). These results show that
there is an optimal value of bending rigidity that
maximises the adherence of the nanoparticle dif-
fusing on the surface of a fluctuating membrane.
We expect this non-monotonic behaviour of the
adhesion interaction to have a direct impact on
the preferential localisation of the nanoparticle on
the membrane.

Nanoparticle localisation is strongly in-
fluenced by the stiffness gradient. Accord-
ing to the previous observations, a nanoparticle
adsorbed on an inhomogeneous membrane should
preferentially migrate to regions where the adhe-
sion is maximised in order to minimise the sys-
tem’s total energy, thus resulting in a form of pas-
sive durotaxis. We test this hypothesis by plac-
ing the nanoparticle on a membrane divided in
two halves of different rigidities (as illustrated in
Fig. 1). We expect that the local bending rigid-
ity will influence the statistical partitioning of the
particle between the two membrane regions. Fig. 3
illustrates how the preference of the nanoparticle
for either side of the membrane changes depending
on the rigidity of each surface. Here, the nanopar-
ticle localisation is quantified by counting the time
spent by the particle on each side of the membrane.
The nanoparticle shows substantial preference for
one side of the membrane.
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FIG. 3: Partitioning of the nanoparticle between
the rigid and the soft region of the membrane.
tsoft and tsyg are the amounts of time spent by the
particle on each of the two surfaces, of rigidity Ksoft
and K respectively. As shown by the drawings, val-
ues of tstif /tsore above 1 indicate preferential affinity
for the stiff side, and vice versa. For each curve, Kqoft
is fixed (see legend). The gray ticks on the right repre-
sent In(stifr /tsott ), which can be interpreted as a free
energy difference in units of kg7

In particular, we distinguish two different
durotactic regimes, depending on the bending
rigidity Kgof; of the softer region. For small K,
the entropic effects seem to dominate over the
energy ones and the nanoparticle preferentially
localises on the rigid side (top half of Fig. 3). In
this case, the particle follows a proper durotactic
motion, displaying a tendency to migrate towards
stiffer regions. Conversely, if K5 is larger, the
preference will be reversed (bottom half of Fig. 3).
These findings are in agreement with the variation
of the nanoparticle’s average adherence shown in
Fig. 2. The particle will have greater preference
for states that maximise its contact with the
membrane. As such, nanoparticles will exhibit a
tendency to migrate to regions of rigidity closer
to the value of maximum adherence (~ 2kpT)
observed in Fig. 2. The non-monotonic behaviour
of the curves in the top half of Fig. 3 (proper
durotactic regime) also qualitatively follows the
trend in adherence: the partitioning shifts slightly
in favour of the softer region for large K, as
wrapping favours very soft membranes compared
to very stiff (Fig. 2). Altogether, these results
demonstrate that adherence greatly influences
the particle’s motion on an inhomogeneous mem-
brane, where the preferred stiffness value results
from an interplay between adhesion and bending
energies, with thermal fluctuations.

Free energy analysis. To better understand
how adherence (Fig. 2) and, more importantly,
durotaxis (Fig. 3) depend on the bending rigidity
of the membrane, we outline a simple analytical



model to study the free energy of adhesion. This
free energy can be directly compared to our earlier
results, since the ratio of time spent on either side
of the membrane should be proportional to the ex-
ponential of the free energy difference between the
stiff-bound and soft-bound state. In other words,
given any two values of rigidity ksory and Kegigr,
the nanoparticle partitioning will depend only on
AFott—stiff = F(Hstiff) - F(Hsoft)' The key obser-
vation is that we can choose as a reference state to
measure free energies the one in which the parti-
cle is unbound from either half of the membrane:
we call F(k) the free energy the system gains if a
previously detached nanoparticle is absorbed onto
a membrane of rigidity k, with k£ = Kgig Or Keoft
(see end of Methods for the relation between x and
Ky).

The approach we use to compute the free en-
ergy is the following (see Methods for mathemati-
cal details). We aim at writing a constrained free
energy, depending explicitly on the amount of ad-
hered surface A; the minimum of this constrained
free energy will then give the optimal wrapping
and the equilibrium free energy value. Now, F
includes a bending term Fhending ¢ KA, an adhe-
sion term Fagpesion < —A, and an entropic term
—TS. A fourth term, related to membrane ten-
sion, could be inserted; however, the simulated
membrane is effectively tensionless and can only
sustain local transient stretching, so we neglect
surface tension in our thermodynamic treatment.
For simplicity, we restrict ourselves to the limit
of strong adhesion. While the energetic terms
Ehending and Eagnesion are easily written down in
a coarse grained fashion neglecting fluctuations
(Methods Egs. (5) and (6)), a correct evaluation
of the entropy of a generic confined membrane is
a more challenging undertaking.363% We assume
that bound membrane beads, which are strongly
confined close to the nanoparticle surface, only
fluctuate along the confinement axis. This allows
us to estimate the amplitude dh of these fluctu-
ations by invoking the equipartition theorem and
using a quadratic expansion of the adhesion po-
tential around its minimum. As expected, adhe-
sion strongly suppresses fluctuations: in particu-
lar, short-wavelength modes tend to be controlled
by bending, both when the nanoparticle is bound
to the membrane and in the unbound reference
state; on the contrary, long-wavelength modes are
suppressed in the bound state more than in the
reference state, due to adhesion. The entropy dif-
ference is then computed within the approxima-
tion that beads fluctuate independently from each
other and perpendicularly to the surface. This
gives a 1D-ideal-gas-like entropy contribution, that
depends on the adhered surface A and on the ratio
of bending rigidity versus adhesion energy (Meth-
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FIG. 4: Free energy F as a function of bending
rigidity x, within the analytical approximation.
Dashed and dotted lines correspond to bending energy
Epending, adhesion energy Fadhesion (representing also
the wrapped area A), and entropic term —T'S (where
S is entropy). The sum of these three terms is the total
free energy F'. The adhesion energy, which is directly
proportional to the adhered surface A, reproduces the
trend from Fig. 2. See Methods for details.

ods Egs. (8), (12) and (14)).

Interestingly, this simplified model can repro-
duce the results of our simulations and help us
make sense of the entropic effects. In Fig. 4 we
show the free energy resulting from the minimiza-
tion process, broken down in its three components.
For low bending rigidity values (I), entropy lim-
its wrapping, as observed in simulations (Fig. 2),
and counterbalances adhesion energy. As rigid-
ity increases (II), if wrapping stays minimal, the
fluctuations of the reference unbound state de-
crease, until they have the same amplitude as in
the bound state and the entropy loss due to ad-
hesion vanishes. As a result the system can af-
ford a larger adhered surface A. As A gets larger,
though, new bound large-wavelength modes be-
come available, which are suppressed by adhesion
more than they would be in the unbound state.
This yields a new source of entropy loss, which
limits the growth in the adhered surface and sets
the optimal wrapping. Increasing x further (III),
the bending energy per unit surface becomes com-
parable with (or larger than) the adhesion energy
per unit surface and bending becomes more and
more unfavourable. At the same time, entropy
loses relevance. This is because the cutoff between
adhesion-limited and bending-limited modes gets
shifted to wavelengths that become unphysically
larger than /A, so that all available modes are
now bending-limited. Consequently, the entropy
difference S between a bound and an unbound
membrane gradually goes to zero. In this regime,
optimal wrapping is dominated by a competition
between bending energy and adhesion energy and
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FIG. 5: Durotaxis is caused by a net force acting at the interface, not by rigidity-dependent kinetics.
(a) and (b) Potential of mean force (free energy) across the direction of the stiffness gradient (x). The softer region

(left-hand side) has bending rigidity Keote = 0.5ksT (a) and Ko = 5 kT (b).

The insets show the average

force f, acting on the nanoparticle: f; > 0 means that the particle is pushed toward positive x values, and
vice versa. The bending rigidities of the rigid side are in the legend. (c) Diffusion coefficient of the nanoparticle,
moving without constraints on a uniform membrane, projected on the zy plane (parallel to the average membrane

position).

can only decrease with , until the point (IV)
where A becomes as small as possible (virtually
just one point of nanoparticle-membrane contact).

This analysis demonstrates that the free en-
ergy curve (thus including entropic effects) follows
the same qualitative trend as the adhesion energy
curve, clarifying why the durotactic behaviour ob-
served in Fig. 3 can be explained with the nanopar-
ticle’s preference for the higher membrane wrap-
ping (Fig. 2). In addition, since tsif/tsofs =
e~ [F(msuier) = Frsore)l/kBT  the Jogarithmic partition-
ing curves shown for given K. in Fig. 3 probe
precisely F(k), as described by Fig. Sla of the
Supporting Information.

The shape of the free energy from Fig. 4 is in
principle robust against changes in the size R of
the particle, with its minimum point ki, growing
roughly as R? and its minimum value F(Kmin)
as R. Adhesion, too, contributes to setting the
energy scale for the free energy: in particular,
increasing adhesion strength deepens and shifts
the minimum to the right, presumably up to a
point (not reached in our simulations) where the
particle is fully wrapped.39:40

Mechanical mechanisms and kinetics. To
provide an additional comparison with our the-
ory, we measure the potential of mean force for
a membrane-bound nanoparticle crossing the in-
terface between two regions of different rigidities,
by means of umbrella sampling (see Methods).
Adopting similar settings as in Fig. 3, we fix the
rigidity of the softer side and vary that of the stiffer
side. In the case of low Ksp = 0.5 kT, the free
energy decreases significantly when passing to the
stiff side of the membrane (Fig. 5a). This finding
is consistent with the trend observed for the same
Kot in Fig. 3: a direct comparison is shown in

Fig. S1b. The free energy difference AFyof_stift
corresponds to the difference in potential of mean
force between positive and negative x, far from
the interface. It exhibits non-monotonic behaviour
that matches the one observed in Fig. 4, displaying
a deep minimum at intermediate values of bend-
ing rigidity Kgug ~ 10 k7. Interestingly, the free
energy difference favours the stiff side even at very
large Kgie, as there is some non-zero adhesion
present at the particle-membrane contact even in
that case: this indicates a limit of the analytical
model, whose continuous treatment of adhesion as-
sumes zero energy gain at infinite rigidity. In the
case of a larger Koy = 5kpT (Fig. 5b) the free
energy increases in value when passing from the
soft to the stiff side, again in agreement with the
corresponding curve of Fig. 3 (see also Fig. S1b).

Figs. 5a-b show that the change in free energy
occurs on a length scale comparable to the diam-
eter of the nanoparticle (100). More explicitly,
their insets represent the spatial distribution of the
average force f, acting on the nanoparticle along
the direction of the gradient x. These plots show
that the particle experiences a pulling force in the
direction of lower free energy, or maximum wrap-
ping, every time it approaches the rigidity gra-
dient. This force is the microscopic mechanism
behind the passive durotaxis we observe, falling
in the category of gradient-sensing mechanisms.
These have been shown — albeit in the different,
out-of-equilibrium context of cell durotaxis!® —
to be more efficient than absolute-rigidity-sensing
mechanisms, also called durokinetic because they
only rely on the fact that kinetic parameters de-
pend on the local rigidity.*! To assess the potential
copresence of a durokinetic process, we computed
the projected 2D nanoparticle diffusion coefficient
D (Fig. 5¢). Durokinesis predicts motion in the
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FIG. 6: Partitioning of a collection of particles. a) Ratio between average number of particles on the stiff
and on the soft side. The considered bending rigidities are specified on each bar. The results are averaged over
100 simulation repeats. b) Probability distribution of nanoparticles on a membrane in which rigidity is increased
step-wise along z, from one end to another, in an exponential manner. A section of a simulation snapshot
highlights rigidity increments on the membrane and shows accumulation of particles in its central region.

direction of larger diffusivity, which is roughly pro-
portional to the persistence time: we would there-
fore expect D to first grow and then decrease with
stiffness. This is not the case; besides, its increase
is limited to a factor < 2, much smaller than in re-
lated studies.'®*! We conclude that kinetics can-
not be the dominant durotactic mechanism here,
in agreement with thermodynamic considerations
detailed in the Conclusions.

The rigidity dependence of the projected diffu-
sion coefficient is however interesting in its own
right.*? It does not trivially follow wrapping; in-
stead, it decreases monotonically starting from its
free-particle value, as rigidity decreases. This is
qualitatively consistent with purely geometric ef-
fects attributed to surface corrugation.*344

Finally, the passive durotaxis phenomenon we
present bears some analogy with the physics of
membrane-mediated interactions between elastic
inclusions.*> 47 Treating the wrapped portion
of membrane as a stiff effective inclusion, it is
possible to predict attraction toward stiffer do-
mains on the membrane, and conversely repulsion
from softer domains. This approach, however
intriguing, misses adhesion and bending gains,
that in our system are crucial; fluctuation-induced
interactions, perhaps only partially captured by
our treatment of entropy, are likely subdominant,
as suggested by the absence of a clear long-range
component in the potential of mean force.

Durotaxis of multiple nanoparticles. The
observed single-particle durotactic behaviour can
lead to collective migration of multiple membrane-
adsorbed particles. However, membrane-mediated
interactions between multiple particles can render
the resulting behaviour more complex. As a proof

of principle, we explore the collective preferential
migration of an ensemble of nanoparticles adhered
on the inhomogeneous membrane. To do so, we
place 36 identical particles uniformly on the mem-
brane surface (corresponding to a projected sur-
face packing fraction ¢ ~ 0.28) and we measure
partitioning. The particles are allowed to diffuse
freely across the membrane regions and they in-
teract with each other through volume exclusion.
As shown in Fig. 6a, multiple particles behave in
a manner analogous to what was observed for a
single particle (Fig. 3). For low soft-side rigidity,
they prefer transferring to the rigid side (first two
bars in Fig. 6a); in case of similar values of bending
rigidity, no significant preference for either surface
is observed (third bar); for large soft-side rigid-
ity, particles migrate to the softer side (fourth
bar). These observations suggest that collective
transport of macromolecules can be achieved solely
through gradients in the local environment’s bend-
ing rigidity.

To further investigate whether more intricate
rigidity gradients can induce a certain degree of
localisation on the membrane, we engineer a mem-
brane in which the bending rigidity increases grad-
ually, logarithmically, from K, = 0.1kgT at one
end to K = 100 kgT at the other. The nanopar-
ticles statistically accumulate in the central region
(Fig. 6b) which coincides with the values at which
free energy is minimized (Figs. 4 and 5), and av-
erage adhesion is maximised (Fig. 2).

The effects shown in Fig. 6 cannot be attributed
to membrane-induced nanoparticle self-assembly,
such as the ones observed in,*® as we are in the
regime of weak nanoparticle wrapping, where such
assembly phenomena are absent. We confirmed
this by performing simulations on a homogeneous



membrane, that show no nanoparticle aggregation
and identical 2D radial distribution functions for
all probed values of rigidity.

These findings suggest that gradients in mem-
brane rigidity are sufficient to bias local concentra-
tion of particles on soft membranes. We propose
this as a relevant mechanism to sort proteins on
membranes or to guide diffusion of macromolecules
to their target locations during physiological pro-
cesses, or in artificial setups.

Conclusions

We demonstrated that rigidity gradients can
provide an intrinsic driving force for guiding the
motion of passive spherical nanoparticles on de-
formable non-uniform membranes. This behaviour
originates purely from the minimisation of the
system’s free energy, causing a net force where
the rigidity is non-uniform: it is not a conse-
quence of a rigidity-dependent persistence of mo-
tion, as was proposed for cellular durokinesis.*!
Indeed, durokinesis concerns non-equilibrium sys-
tems, whose activity is hidden in the stochastic
equations of motion (see?® for a general discus-
sion). Our system is instead intrinsically passive
and must behave according to standard statistical
mechanics, irrespective of the kinetics. This mech-
anism leads to more efficient transport,'® realised
by gradient sensing on the nanoparticle scale. The
fact that motion follows the direction of maxi-
mum wrapping carries analogies with cell duro-
taxis, where in some cases stronger adhesion is ob-
served on stiffer substrates.!?

We observed a non-monotonic dependence in
the particle’s average adhesion to the membrane.
In particular, in the regime of most biologically rel-
evant bending rigidity (~ 20kgT), we found that
the particle migrates toward softer surfaces, con-
trary to what is expected for durotaxis observed
in cellular systems.

This non-monotonic dependence was explained
by the competition between three terms: the en-
tropic effects which are relevant on very soft mem-
branes, the energetic gain from adhesion, and me-
chanical effects due to membrane bending which
penalise local deformations. A deeper understand-
ing of our findings was provided by free energy
calculations. In particular, we proposed a sim-
ple model to account for the entropic term, whose
dependence on the bending rigidity is highly non-
trivial and incorporates two competing effects. On
the one hand, increasing rigidity decreases the en-
tropy lost upon adhesion, because it reduces fluc-
tuations in the unconstrained membrane. On the
other hand, for this reason, a higher rigidity allows
for an increase in wrapping, which in turn unlocks

longer-wavelength adhesion-limited modes and in-
creases the entropy difference again. This feedback
mechanism controls the free energy.

Finally, we showed that gradients in rigidity are
enough to drive spontaneous oriented motion of
many particles. This phenomenon might serve as
a method to direct macromolecules toward specific
functional sites on the surface of cell membranes
or on associated filamentous protein networks.?
Rigidity gradients have recently been shown to af-
fect phase separation in a 3D elastic medium, com-
parable to the cytoskeleton:*'*2 our results sug-
gest that they might also act as a passive particle-
sorting mechanism in a 2D environment. In par-
ticular, given the high sensitivity of the free en-
ergy with respect to particle size — it scales as
the square of the particle radius — the mechanism
might prove especially efficient in segregating sin-
gle proteins from dimers or larger aggregates, serv-
ing a purpose similar to phase separation phenom-
ena. Moreover, these findings could have potential
impact on the development of nanodevices that in-
volve the transport of molecular cargoes to a tar-
geted region, for instance in the development of
artificial drug delivery systems.

Methods

Simulation details. The simulated system
consists of a colloidal nanoparticle placed on a
fluctuating elastic membrane, as shown in Fig. 1.
The membrane contains 7832 beads placed on the
nodes of a triangulated hexagonal mesh. The
membrane beads and nanoparticle have a diame-
ter o and oxp = 10 0 respectively. The membrane
beads are interconnected wia harmonic springs,
obeying to the following potential:

Ustretching(T) =K (T - TB)Q , (1)

with stretching constant K, = 18kpT/0? and
equilibrium bond length rg = 1.230. The mem-
brane bending rigidity is controlled by the follow-
ing dihedral potential between the opposite ver-
tices of triangles sharing an edge (Fig. 1):

Ubending(¢) = Kb(l + cos ¢) ) (2)

where ¢ is the corresponding dihedral angle, and
K} is the harmonic constant that controls the
membrane’s bending rigidity. In our simulations,
we explore a wide range of values of K, between
0.01 kgT and 500 kpT.

Besides the stretching and bending terms,
membrane beads interact with each other wvia
a repulsive Weeks-Chandler-Andersen (WCA)
potential®® to impose self-avoidance:
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with a radial cutoff of r, = 21/64.
5kgT.

The nanoparticle interacts with the membrane
via a truncated-shifted Lennard-Jones potential:

€o is set to

Vattr (1) = 4enp [(2)12 B (2)6} +0-927eny, (4)

where b = 5.50 and ¢,, = 10kgT. A radial
cutoff of r. = 6.50 is used. The potential en-
ergy minimum, attained at = 2'/6 b, is therefore
0.073 e, = 0.73 kgT. The parameters were finely
tuned to prevent the full wrapping and subsequent
engulfment of the nanoparticle and to allow it to
diffuse laterally on the membrane surface.

The simulation box is initialised with sides of
length L, = L, = 1000 and L, = 40¢. Peri-
odic boundary conditions are applied in the x and
y direction and the box is kept fixed in the z di-
rection. In simulations involving a heterogeneous
membrane (Figs. 1, 3, 6, and insets of 5a-b), purely
repulsive walls confine the nanoparticle within the
simulation box, preventing it from crossing the pe-
riodic boundaries. These walls are implemented
via a 3-9 Lennard-Jones potential with strength
e = 10kgT, cut at its minimum and shifted, and
they do not act on membrane beads. To compute
partitioning (Fig. 3), we consider time spent in
the region of space more than ~ 100 away from
the soft-stiff interface and more than 100 away
from the closer x wall, in order to reduce bound-
ary effects (this region is 30 o long on either side
of the membrane). In simulations involving a ho-
mogeneous membrane (Figs. 2 and 5¢), the walls
only act in the z direction, so the nanoparticle
can diffuse in the zy plane to neighbouring im-
age cells. Unwrapped trajectories are then used to
compute mean square displacements and diffusion
coefficients.

The simulations were run in the isoenthalpic-
isobaric (NPH) ensemble, with a zero lateral pres-
sure and at constant temperature. In order to
replicate the stochastic dynamics of the real sys-
tem, we used a Langevin thermostat with fric-
tion coefficient v = 1m/7, where m is the
particle mass (equal to mg for membrane beads
and to 100mg for the nanoparticle) and 7p =
/mpo?/kgT the natural time unit of the simu-
lation. The simulation time step was taken to be
7s = 0.008 79. The simulations were equilibrated
for a time of at least 300 000 75 and further run for
50000007, (20000007, for the main Figs. 5a-b
and for Fig. 6). In order to gather enough statis-
tics, each set of simulations was run for a number

of different initial velocity random seeds: 300 for
Fig. 2, at least 200 for Fig. 3, 400 for the insets of
Fig. 5a-b, 500 for Fig. 5c, and 100 for Fig. 6.

To compute potentials of mean force (main
Figs. 5a-b), we used the Weighted Histogram Anal-
ysis Method®® with a harmonic restraint of equa-
tion 2 kpias(z — 20)?, Where kpias = 1kgT/0?, x is
the position of the nanoparticle at a given instant
in the simulation and zg is the centre of the sam-
pled section. We choose 50 different values of xy,
and for each of them we run 20 simulations with
different random seeds. Within a simulation, the
centre of the section zg, and hence the minimum
of the biasing potential, does not move.

We used the LAMMPS molecular dynamics
software to run the simulations®®®® and the
OVITO software to visualise trajectory files.>”

Theoretical model. The constrained free en-
ergy F'(A), for a given value A of membrane sur-
face adhered to the nanoparticle, can be obtained
as the sum of the following terms.

The bending energy is

=, )

where k is the bending rigidity, R is the radius
of the nanoparticle plus the radius of a membrane
bead, and the factor 2 accounts for both directions
of curvature.

The adhesion energy is

Ebending (A) =2K

Eadnesion (A) = —GTLA, (6)

where n is the surface density of beads on the
membrane, and € is the average energy gain per
bead when adhered to the nanoparticle surface.
The surface energy term is due to an adhesion-
induced stretching of the membrane. It reads
2
Esurface (A) = Tﬁ 5 (7)

where 7 is the surface tension. Adhesion can in-
deed stretch a membrane, shaping an unbound
disk of membrane into a spherical cap, with an
area increase that is quadratic in the bound area
A. This term is effectively irrelevant in our simu-
lations, that are performed at constant zero pres-
sure.

The entropic contribution represents in a quali-
tative manner the decrease in entropy due to ad-
hesion and consequent confinement of membrane
beads close to the nanoparticle. It is computed as

S(A) = nAlog (;&) , 8)

within a 1D-ideal-gas approximation for mem-
brane beads, as far as motion perpendicular to the



membrane surface is concerned. dh is the typical
amplitude of fluctuations for a bound membrane
surface A, while dhg is the same quantity for a
surface A of the reference (unbound) membrane.
Lengths dh and dhg are estimated in the following
way. First we write down a constrained Helfrich
Hamiltonian. For the bound state, this reads

H(A) = /A (g(VQh)2 +7(Vh)? + aenZhZ) dz dy,
(9)

where h is the distance of the membrane at (z,y)
from its ground-state surface xy. The first term in
parentheses represents (microscopic) bending, the
second surface tension, and the third is a quadratic
expansion of the adhesion potential around its
minimum, with o = 62 - 2%/ ~ 100 if the con-
sidered potential is a Lennard-Jones with energy
parameter €. For the unbound reference state, the
Hamiltonian reads the same, except for the last
term which is obviously not present (o = 0). Writ-
ing h by means of a Fourier series allows us to com-
pute thermal averages (hZ) (or (h§,) for the un-
bound state) through the equipartition theorem:

kT
kq* + 7¢% + aen?)

2
From here it is clear that the role of adhesion
is to penalise small wavenumbers ¢ = |q, i.e.,
in a tensionless membrane (7 = 0), wavelengths
shorter than y/r/(cen?). We then integrate (hZ)
for wavelengths ranging from the size of a bead
v/1/n to the size of the adhered membrane por-

tion v/A: this integral provides an upper-bound
estimate for the square of the typical fluctuation
amplitude 6h (or dhg), at a given wrapped area A.
The result is

8m2Kkn+T _ AT+87%K
6h2 - (atan Vidakn2e—12 atan Av4arkn2e—T12

ksT 2mv/4akn2e — 72 ’
(11)

For 7 = 0, this can be expanded as follows:

m(nA—1) )
TacAn? i <
oL = 1 __T HTrm K<r<KEK
kT ) 8nyaex aen2A ! 2o
nA—1 £
T6monn e >
(12)
with
. Qe €
1= =~ —,
1674 1
61 6 (13)

aeA?n? eA%n?
16704 — 16

In practice: for k < k1, all fluctuation modes are
adhesion-dominated; for k1 < kK < Ko, fluctua-
tions are limited by adhesion on a wavelength v/A,
but by bending on a shorter wavelength /1/n; at
larger x, all permitted fluctuations are bending-
dominated. For the reference unbound state, it is
always®8:59

6hi  nA-—1
kgT ~ 16m3nk’

(14)

since k1 and ko from Eq. (13) go to 0, as « goes to
0. Fluctuations can only be bending-dominated in
this case.

Now, given Egs. (12) and (14), the entropy of
the adhered state with respect to the free one
is provided by Eq. (8). A comparison between
Egs. (12) and (14) shows that the entropy gain
is maximal, in absolute value, for small x, and de-
creases to 0 as k approaches ko.

Fig. 4 is obtained by numerically minimising
the total constrained free energy, resulting from
the sum of (5), (6), (7) and (8), with respect to
the bound surface A; then, the total free energy
is computed, together with its bending, adhesion
and entropic terms, for such optimal value of A.
In the calculation, for which code is available,%°
we use parameters meant to represent our molec-
ular dynamics simulations: n~'/2 = 1.14 ¢ (where
o is the Lennard-Jones length unit), R = 6.17 o,
€=0.7kgT, and 7 = 1073 kgT/o?.

The parameter x (or Ksoy and Ky in the main
text) is the obvious counterpart of the numerical
parameter Kp (or Kgoy or Kgg). We point out
that the exact mapping between s in our theory
and K} in our simulations is not important for the
purpose of this paper, but a simple geometrical
calculation returns x ~ Kjv/3/2.
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