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ABSTRACT Infrastructure systems, such as power, transportation, telecommunication, and water systems,
are composed of multiple components which are interconnected and interdependent to produce and distribute
essential goods and services. So, the robustness of infrastructure systems to resist disturbances is crucial for
the durable performance of modern societies. Multilayer networks have been used to model the multiplicity
and interrelation of infrastructure systems and percolation theory is the most common approach to quantify
the robustness of such networks. This survey systematically reviews literature published between 2010 and
2021, on applying percolation theory to assess the robustness of infrastructure systemsmodeled as multilayer
networks. We discussed all network properties applied to build infrastructure models. Among all properties,
interdependency strength and communities were the most common network property whilst very few studies
considered realistic attributes of infrastructure systems such as directed links and feedback conditions. The
review highlights that the properties produced approximately similar model outcomes, in terms of detecting
improvement or deterioration in the robustness of multilayer infrastructure networks, with few exceptions.
Most of the studies focused on highly simplified synthetic models rather than models built by real datasets.
Thus, this review suggests analyzing multiple properties in a single model to assess whether they boost or
weaken the impact of each other. In addition, the effect size of different properties on the robustness of
infrastructure systems should be quantified. It can support the design and planning of robust infrastructure
systems by arranging and prioritizing the most effective properties.

INDEX TERMS Multilayer networks, infrastructure interdependencies, interdependent systems, modelling.

I. INTRODUCTION
Near zero disruption in the operation of infrastructure sys-
tems is vital for the delivery and integrity of the essential
goods and services [1]. Any interruption in the performance
of critical infrastructure systems, such as water distribution,
electric power, natural gas, communication, and transporta-
tion systems can cause economic loss and affect societal
wellbeing [2]. As robustness is referred to as the ability of
a system to withstand disturbances [3], robust infrastructure
systems are essential for continued societal function and
averted economic loss. During recent years, infrastructure
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systems have evolved into complex systems with increas-
ing interdependency [4], [5] mostly as the cyber-physical
systems where communication function of telecommunica-
tion systems integrated into cyber interdependence of other
infrastructure sectors like the power grid, water supply,
and transportation systems [6]–[8]. On the other hand, the
other types of interdependency including functional, geo-
graphical, and logical [5], [9] among infrastructure sectors
exhibits complex relationships since the performance of a
sector can be dependent on the proper functionality of other
sectors. Thereby, a failure in one sector may cause dam-
ages to other interdependent sectors, leading to cascading
failures spreading back-and-forth through the sectors and
resulting in catastrophic consequences [10]. In this regard,
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the network-based models have been among the most popular
approaches to explore the behavior of these complex systems
under disturbances [11]. In this regard, multilayer networks
have been developed which constitute layers of the infras-
tructure systems with nodes paired by links through different
layers showing interdependency and interconnectivity [12].

The robustness in networks is defined as the ability to
sustain a sequential nodes/links removal, as the simulation
of arising and spreading disturbances in real-world sys-
tems [13]. During a disturbance, nodes/links are removed
from a networked system due to five major reasons including
imposing initial failures directly, failures of their couplings,
becoming isolated, being part of the smaller emerging sub-
networks that remained after stopping the cascade process,
or locating within a certain distance from the other removed
nodes/links [13]–[15]. The initial failures can be imposed
by different types of attacks from random, to localized, and
targeted (complementary information is provided in section
III.N.1). The giant connected component is the largest sub-
network of connected nodes/links remained after the cascade
of failures through the whole network [15]. In this regard,
the robustness of the networked system is measured based
on the size of the giant connected component remained after
the disturbance. The higher the number of remained nodes
belonging to the giant connected component, the network is
more robust [14].

These definitions are close to the theoretical approach of
the percolation theory to study the behavior of networks when
some nodes and links are designated as removed [16], [17].
It can be the reason why the percolation theory is the most
popular in studying and analyzing the robustness of net-
worked systems [18]. The percolation theory is to study the
behavior of networks in terms of the critical percolation
threshold and the size of the giant component, when some
nodes and links are assigned as removed [16], [17]. In per-
colation theory, the removal fraction of nodes/links is tuned
increasingly from zero to a certain critical threshold in which
the state of the network shifts from connected to disconnected
according to the decreasing size of the giant connected com-
ponents [19]. Below the critical threshold, there is no giant
connected component, whereas above the critical threshold a
giant connected component exists [14].

However, many studies related to percolation theory have
been focused on single-layer networks while real-world
systems, including infrastructure systems, are composed
of multilayer networks [20]. Applying percolation the-
ory for analyzing multilayer networks was initiated by
Buldyrev et al. [14], [16], [20], [21]. They utilized the perco-
lation approach to study the robustness in a 2-layer network
by defining two types of links; (i) connectivity links that
connect nodes within layers and (ii) dependency links that
connect nodes between layers. While they fixed the number
of dependency links in their model, they varied the degree of
nodes based on the number of connectivity links and found
that the robustness decreases by having broader degree dis-
tribution in layers. Since then, the application of percolation

theory for studying and analyzing the robustness ofmultilayer
networks has been expanded, especially for evaluating the
effects of different network properties [20], [22].

Parshani et al. [23] defined a ‘‘coupling strength mea-
sure’’ between two layers of a multilayer network based on
the number of dependency links. They indicated that as the
number of dependency links increases, the coupling strength
increases, and ultimately, the vulnerability of multilayer net-
works increases. Cellai et al. [24] showed that links overlap
among layers can improve the robustness of multilayer net-
works where two nodes are connected within all layers. In
comparison to Shao et al. [25] that developed a theoretical
framework by randomly interconnected nodes of two layers,
some other researchers proposed frameworks with correlated
interconnection [26]–[28]. It is concluded that nodes that are
interconnected in a 2-layer network according to their degree
correlation can improve the robustness of multilayer net-
works. Regarding that multilayer networks can be considered
as n-interdependent layers, Gao et al. [29]– [30] developed a
general framework to study the percolation of the networks of
networks (NoN) with different structures of layers including
random regular, tree-like, star-like, and loop-like. In contrast
to other studies defining random removal of nodes to simulate
random damages in real systems, [31], [32] were among the
first researchers that studied the percolation of multilayer
networks under targeted removal of nodes [20], [21]. These
are some initial studies that were followed by more extensive
research to study the effect of different network properties on
the robustness of multilayer networks.

In spite of different studies that focused on capturing the
effect of different network properties on the robustness of
multilayer networks, the question is which of these properties
have been used to represent different characteristics of infras-
tructure systems. This study provides a systematic review to
gather all network properties used to buildmultilayer network
models of infrastructure systems and discuss their impact on
the robustness of these systems. We also categorize different
mechanisms of nodes and links removal defined to simulate
real-world failure propagations. The scope of this study is
narrowed to the application of percolation theory. Accord-
ing to the findings, the effective network properties make
approximately similar impacts which should be considered in
designing and planning the future infrastructure systems and
improving the structure of existing systems. Selected papers
merely focused on assessing the effect of different network
properties on the robustness of infrastructure while there is a
lack of comparing the effect of different nodes/links removal
mechanisms on the robustness.

The rest of the article is organized as follows.
Section 2 explains the methodology used for the col-
lection and selection of papers. Section 3 represents the
contents of the selected papers by categorizing network
properties. Section 4 contains extensive analysis and com-
parison between network properties and their effects.
Section 5 presents our conclusion and thoughts about future
works.
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II. METHODOLOGY
This study is a systematic review using Kitchenham’s proto-
col [33] as a guideline. In the following sections, we explain
how we planned and conducted the review to select papers
and extract data.

A. PLANNING THE REVIEW
This review paper aims to identify and describe how network
properties, used to characterize infrastructure systems, influ-
ence the robustness and vulnerability of such systems. The
focus is on answering the following questions: (i) what are the
network properties used to model infrastructure systems as
multilayer networks, specifically in percolation-based stud-
ies? (ii) how these defined properties affect the robustness
of the created models? (iii) do these properties lead to dis-
tinct outcomes under different percolation mechanisms? (iv)
which percolation mechanism has a more destructive effect?
Since the focus is on network properties that are applicable for
different types of infrastructure systems, we excluded papers
containing models which were specialized and dedicated to a
specific type of infrastructure.

Four databases including Scopus, Web of Science, Google
Scholars, and Cochran were searched to find other simi-
lar review papers based on the applied inclusion/exclusion
criteria of this study. Only five review articles turned
up [16], [20]–[22], [34], yet none of them was a systematic
review. In more detail, they did not contain the paper selec-
tion criteria and data processing. On the other hand, they
considered other real-world systems such as biological,
metabolic, and social systems in addition to the infrastruc-
ture systems. Therefore, this study is the first systematic
review paper that gathered all network properties applied to
build multilayer network models that represent infrastructure
systems.

B. CONDUCTING THE REVIEW
The intersection of three research areas defined the search
query for this study; (i) multilayer networks, (ii) infras-
tructure systems, and (iii) percolation theory. The intersec-
tion was identified by linking three search strings listed
in Table 1 with ‘‘AND’’. Adapted from Boccaletti et al. [35],
in this study, a multilayer network is defined as ‘‘a pair
M= (G, C) where G represents different layers ofM,made by
directed or undirected, weighted or unweighted graphs, and
C is the set of interconnections between nodes belonging to
different layers’’. It is a general framework for multilayer net-
works which can include other types of multilayer networks
like interdependent networks, multiplex networks, networks
of networks, and so on. Since the literature on multilayer
networks is messy [36] and defined network structures in
different studies are not consistent, providing definitions for
different types of multilayer networks is out of the scope
of this study. This study only focuses on network proper-
ties used to model infrastructure systems. Keywords in the
search string related to multilayer networks were identified

TABLE 1. Search query.

from [36] which were connected with ‘‘OR’’ to include all
appropriate alternatives. To make it more inclusive, we also
added similar word combinations made by the system instead
of the network. Two single keywords used as the second and
third search strings were sufficient and efficient to show the
most relevant papers in the related areas.

We searched relevant peer-reviewed papers published after
2010 in Scopus and Web of Science. To find peer-reviewed
papers, the document type and the source type were cho-
sen as ‘‘Article’’ and ‘‘Journal’’, respectively. To collect the
most relevant papers, the search query was limited to titles,
abstracts, and keywords of articles. The language was limited
to English. Table 2 specifies all applied inclusion and exclu-
sion criteria.

TABLE 2. Inclusion and exclusion criteria.
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TABLE 3. Detailed information about extracted data in terms of the properties of networked models and their categories.

Once the initial collection of papers was done and dupli-
cations were removed, all collected papers were read in two
phases to ensure the final group of selected papers meets
the defined criteria; (i) title and abstract, (ii) the full article.
As specified in Table 2, single-layer networks or single infras-
tructure systems were excluded. In addition, papers that only
reviewed the results of other papers and did not build their
own multilayer models were excluded.

In the next stage, in-depth reading and analyzing was per-
formed to extract and classify data obtained from the selected
papers. Data was classified into three main groups; 1- data
related to different types of removal mechanisms and spread-
ing the failure, 2- data related to different network properties
defined for multilayer models, and 3- obtained results. More
details about the extracted data and the groups they belong
can be found in Table 3.

III. RESULTS
The literature search identified 46 publications. Applica-
tion of inclusion and exclusion criteria (Table 2) identi-
fied 31 papers as relevant to the scope of this review. The
15 excluded papers consisted of 8 papers that built models
for single-layer networks, 3 papers which mostly contained
general discussions without building their own models, and
4 papers modelled specific type of infrastructure (2 on the
telecommunication system, 1 on the energy system, and 1 on
the transportation system). Among 31 selected papers, there
were two papers that built their models considering a single-
layer network. However, their single-layer models contained
dependency groups to evaluate interdependencies and inter-
connectivities. Thus, they were included in the relevant stud-
ies. According to the results, more than 60% of selected
papers were published after 2018 which shows the growing
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trend of such studies. The detailed information compiled from
included studies is presented in Table 3.

A. SYNTHETIC/REALITY-BASED MODELS
Two studies used real datasets to build network mod-
els in which nodes were distributed in layers based on
their real spatial locations. Degree, load, and capacity of
nodes as well as direction, type, and the number of links
were extracted from real datasets [37]- [38]. The rest of
the papers applied synthetic networks to mimic different
aspects of real-world systems as discussed in the following
sections.

B. NETWORK TYPE
Synthetic networks including Erdös-Rényi network (ER),
scale-free network (SF), random regular network (RR),
square lattice network (SL), and small world network (SW)
were applied in the papers to define the configuration of
nodes and links within layers. In [39], SF and SL were
combined so that all nodes of two SF networks were ran-
domly located in a 2D square plane with a defined side
length.

In almost all but two of the synthetic network models, all
layers were made by the same type of synthetic networks.
But the two exceptions were [40] in which researchers built a
hierarchal multilayer network of n layers where the top layer
was ER and the lower layers were SF networks; and [41]
in which researchers examined 2-layer networks composed
of different combinations of ER-SF, ER-SW, and SF-SW
networks. In [40], each layer represents a specific sector in
infrastructure systems and each hierarchical level represents a
geospatial scale as a state, cities, and neighborhoods from top
to down. In [41], the multilayer model represent interdepen-
dency between different configurations of the communication
network and the power grid.

By contrast to these synthetic models, [37], [38] built
their models based on the real datasets. Thus, the loca-
tion of nodes and arrangement of links in each layer were
based on real-world cases of power/gas networks in [37],
and road/sewer networks in [38]. All of these models can
be grouped into five categories as illustrated in Figure 1;
(i) models in which all layers are made by the same synthetic
networks, (ii) models in which layers are formed based on
different synthetic networks, (iii) models in which layers are
built with different real datasets, (iv) models in which layers
are composed of synthetic and real networks, (v) models in
which all layers are made by the same real networks. The last
two models were discussed in [17].

C. NUMBER OF LAYERS
Among the included papers, 60% of the models were built
as a 2-layer network. 35% of papers worked on multilayer
networks of n layers. Two papers defined interdependencies
and interconnectivities in single-layer networks by dividing
nodes into different groups.

FIGURE 1. Five schematic diagrams to show multilayer network models
in which; a) all layers are made by the same synthetic networks, b) layers
are made by different synthetic networks, c) layers are made by different
real networks, d) layers are made by synthetic and real networks, e) all
layers are made by the same real networks (adapted from [33]).

D. NoN-STRUCTURES
Multilayer models contained more than two layers were
built according to the following Network of Networks struc-
tures (NoN) as illustrated in Figure 2; tree-like, random reg-
ular, star-like, and loop-like. Lattice and chain-like [17], [21]
are also among NoN-structures which were not considered in
the collected papers. These structures can represent how dif-
ferent cities are connected through their infrastructures [43].
They can also show the connection between different infras-
tructure sectors [44]. While Kivela et al. [36] declared the
difference between interdependent networks and NoNs as
links connecting two layers do not necessarily indicate depen-
dency relations, most of the included studies in this review
considered dependency relationships between layers in
NoN-structures.

FIGURE 2. Schematic diagrams of different NoN-structures in which each
node represents a network layer.
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E. FEEDBACK CONDITIONS
Except for one paper [37], all other papers considered
no-feedback conditions in which network A depends on net-
work B, then each node in A depends on one and only one
node in B. As shown in Figure 3, in [37], feedback conditions
were considered between schematic networks of road and
sewer systems since there might be multiple sewer lines
underneath one road link in which failure of any of them
can lead to the road link closure [37]. However, the effect of
the feedback conditions on the robustness of the multilayer
networkwas not explained in this paper.Many real-world net-
works including infrastructure systems rarely appear in isola-
tion, but always are coupled together, usually with feedback
conditions [45]. [45], [46] assessed the effect of feedback
conditions (also called feedback dependency links) conclud-
ing that they can make multilayer networks more vulnerable.

FIGURE 3. Schematic illustration of feedback conditions by red lines and
no-feedback conditions by black lines between road and sewer
networks [28].

F. FORM OF INTERDEPENDENCE
We found four different forms of interdependency defined
in the collected papers; full, partial, tolerated, and correlated
(Figure 4). In full interdependence, every node in Layer A is
connected to only one of the nodes in layer B. In this case,
all layers have the same number of nodes like a multi-modal
transportation linking multiple cities [47].

In partial interdependence, there are some nodes in layer
A which are connected to some of the nodes in layer B.
In this case, the higher the number of interconnected nodes,
the interdependency is stronger. These two cases can be
expanded to n-layer networks as well. As Gross et al. [48]
explained partial interdependence is more realistic where
additional resources are needed at a node to accommodate
dependency links such as international airports equipped with
longer runways for transoceanic flights and power stations
equipped with additional infrastructures for transferring large
loads to long distances.

FIGURE 4. Different forms of interdependence patterns between layers.
In full interdependence, there is a link between two nodes of different
layers. In partial interdependence, only a fraction of random nodes is
interconnected. In correlated interdependence, nodes are interconnected
based on their degree. In tolerated interdependence, a different range of
strengths is defined for dependency links.

The strength of interdependence can also be defined as the
tolerance parameter which represents the tolerance of nodes
in layer A to the failure of their interdependent nodes in
other layers. In this case, some nodes with weaker interdepen-
dency are more resistant to damage of their interdependent
neighbors while some nodes with stronger interdependency
show low tolerance because they are vulnerable to the failure
of their interdependent nodes. As Liu et al. [47] explained,
in real-world systems, a failed node does not destroy all of
its neighbors completely. For example, when an airport is
shut down, it is not likely that all trips via cars, buses, trains,
and ferries will be affected equally leading to removing all
nodes and links. The failure in air travel can increase travel
demand in each interdependent mode but they may have
different capacities to support increased demand. In addition,
the amount of added demand for each mode is not equal since
passengers may choose one over the others. Thus, the failure
of a node in one layer cannot necessarily cause the loss of all
interconnected nodes and links in other layers.

Since real interdependent systems are usually not ran-
domly connected, there is correlated interdependence among
defined models. For example, worldwide ports tend to couple
to international airports. Similarly, it is much more com-
mon that a central telecommunication center depends on a
central power station [26]. There are two linking patterns
in correlated interdependence; assortative and disassorta-
tive [39], [49].

In assortative patterns, nodes in different layers are inter-
linked by descending ranking of their degree or centrality.
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In disassortative patterns, nodes with the higher degree or
centrality in layer A tend to connect to nodes with the lower
degree or centrality in other layers. The correlated interdepen-
dence is one of the two parameters which were introduced by
Parshani et al. [26] to assess inter-similarity between layers
in multilayer networks. The other one is the inter-clustering
coefficient which evaluates how many of the neighbors of
node i in layer A depend on neighbors of node j in layer B
when i and j are interconnected. The effect of inter-similarity
in terms of the inter-clustering coefficient was not studied in
the selected papers of this paper.

Some studies only considered one of these interdepen-
dency forms in their models while some others stud-
ied how the combinations of these forms affect the
robustness of multilayer networks. [39], [49]–[52] built
their models with the combination of full and correlated
interdependence. [53], [55] considered partially tolerated
interdependence among layers. As Li et al. [16] mentioned,
the combination of tolerated and correlated interdependency
was studied in [56] which was not among the papers collected
in this study. In this case, different tolerances were assigned
to dependency links according to their degree correlation. So,
nodes with higher degrees were more resistant to damage.

G. TOPOLOGICAL/FUNCTIONAL/DYNAMICAL
PROPERTIES
Studying the effect of interdependency in multilayer net-
works can be divided into three categories based on the
nature of network properties applied in the models; topolog-
ical, functional, and dynamical. More than 85% of the col-
lected papers focused on the effect of topological properties
such as number of layers, number of interconnected nodes,
size of communities, and configuration of linking patterns.
Functional properties in multilayer models of infrastructure
systems were defined as the load and capacity of nodes
and links used to produce and distribute a continuous flow
of goods and services within and between the layers [57].
As Wang et al. [58] discussed the functionality of layers
is dependent on the steady flow coming from other layers.
In this case, each node has a certain initial load and capacity.
When the network is damaged, the load of failed nodes will
move to other nodes and push other nodes beyond their
capacity limit and cause cascading failure [49].

As Danziger et al. [53] explained dynamical properties
were defined as a node’s local state (order or disorder) at a
certain time which is dependent on the local state of its neigh-
bors within and between layers. The overall state of nodes
in a layer reflects the collective behavior of the layer. The
varying state of nodes in a period of time can be studied under
the influence of dynamic processes like epidemic spreading,
synchronization, diffusion, and game theory.

H. PRESENCE OF COMMUNITIES
In 8 studies, layers contained communities of nodes includ-
ing dependency groups [49]–[51], [59], clusters [38], [44],
and modules [40], [60]. Dependency groups were made by

FIGURE 5. Different linking patterns among dependency groups where
they perform as super-nodes in (a) and not super-nodes in (b).

randomly dividing all nodes in a layer into the same size
groups without overlapping. While [16] mentioned that
some studies also worked on dependency groups with over-
lapping nodes, it was not the case among the selected
papers in this study. According to the provided descrip-
tions, if at least one of the nodes in a group fails, the
whole group is removed from the network. However, there
were some differences between the models containing depen-
dency groups. Two studies evaluated dependency groups in
a single layer model [52], [59] while the two others made
2-layer models [49], [51]. In 2-layer models, only one of
the layers contained dependency groups and the other one
was made by individual nodes. In [51], all nodes in a depen-
dency group are treated as a super-node (Figure 5a). Two
super-nodes in layer A are connected with a connectivity link
when there is at least one link between their nodes. Each
super-node in layer A is connected to an individual node
in layer B with a dependency link. In [49], every node in
the dependency groups can be connected with a node in the
same layer or the second layer (Figure 5b). As an example,
a substation in a power network distributes electricity needed
in gas compressors, storage regulators, and control systems
which are located in a specific area [38]. Another example is
a Wi-Fi network that provides connections for devices within
a determined radius [49].

Clusters were defined as densely connected communities
of nodes in a layer with varying sizes that can have one
or more links to other clusters within and between layers
like where infrastructure components are distributed in close
proximity [44]. Modules were groups of nodes in layers as
each module has its specific feature (according to its spe-
cific function [60] or geographic location [40]). For exam-
ple, in Figure 6, each layer contains three modules with
three different colors where layers depict cities and each
color represent specific types of infrastructure. In this case,

VOLUME 9, 2021 135761



Z. Mahabadi et al.: Network Properties for Robust Multilayer Infrastructure Systems: A Percolation Theory Review

FIGURE 6. Dependency links are between the same modules (same color)
in different layers and connectivity links are between different modules
(different color) in the same layer [60].

dependency links between layers are restricted such that they
only connect nodes of the same modules. Connectivity links
within layers connect nodes in different modules. The major
difference between modules and dependency groups is that
modules can be interconnected between layers only when
they belong to the same module while dependency groups do
not have such a restriction.

I. SPATIALITY
In multilayer networks, spatial-related data is an important
factor influencing their robustness [39]. Vaknin et al. [61]
declared that spatially embedded networks are more vulner-
able than non-embedded networks. In spatially embedded
networks, nodes and links are constrained in some inflexible
geometry since they have the specific location with a certain
distance from the rest of the network, specific number, size,
capacity, and length which cannot be changed easily as it can
be very costly and unfeasible [62]. In this way, spatiality was
studied based on three aspects including; spatial location of
nodes, length of links, and co-location of networks. Embed-
ding nodes in specific locations is a fundamental quantity
to characterize the structure of infrastructure systems and
impose some spatial constraints for example because of geo-
graphical and topographical features [42]. On the other hand,
different distributions of link length reflect different charac-
teristics in infrastructure systems like highways, transmission
lines, communication lines and pipelines [20], [39] where the
vulnerability of the network depends on the critical length
of links [63]. Co-location is another spatial-related feature
implying that two networks have an effect on each other due
to locating at a close distance. For example, water pipe leaks
can damage road foundations since water and wastewater
infrastructure are often buried underneath roads [37].

J. TEMPORALITY
Among 31 selected papers, only 7 of them considered
temporality in their multilayer models. The temporal prop-
erties defined in the papers can be grouped into two cate-
gories including; the number of time steps in which failures

propagate across the network and the duration of time spans
in which the network spends in each percolation phase. The
first group is related to the changing size of the removed
and remained parts or the failed and functional parts of the
network during the time, from the initiation of the removal to
the end of the cascading process. For example, [50], [64], [65]
topologically assessed the fraction of removed nodes in
different time steps. Similarly, [49], [66] evaluated the state
of the failed and functional nodes at different time steps
in terms of their capacity and load. In a different way,
Wang et al. [38] estimated the size of the removed nodes
under several targeted attacks during a period of time while
others only defined one initial attack at the beginning of the
removal process. The second group is about how long each
percolation phase takes. Danziger et al. [53] displayed the
duration that the network spends at each percolation phase;
from the ordered phase (connected) to the transition phase
and then the disordered (disconnected) phase. Section N
in the following provides more information about different
percolation phases.

K. OVERLAP
Cellai et al. [24] in 2013 established the first study that con-
sidered percolation in multilayer networks with overlap [20].
As node i and j exist in some or all layers of the multilayer
networks, the link (i,j) is overlapped if it connects node i and
j within more than one layer. In a fully overlapped multilayer
network, two nodes are connected within all layers like two
cities as two nodes in the multilayer transportation network
in which they are connected by the road network, railway
network, and flight network.

L. NODES
All studies consider the same number of nodes in all layers
except for two real cases. While 18 studies considered differ-
ent nodes in layers, 11 studies examined the existence of the
same nodes in all layers; like electrical substations as nodes
which are connected by underground and overhead lines to
transmit electrical power as well as optical fibers to commu-
nicate and remotely control the substations. In this case, as at
least one node has a counterpart in some other layers, it is
calledmultiplex networks [67]. Some studies definedweights
for nodes based on the specifications of their models. For
example, degree and centrality of nodes, capacity and load
of nodes, and tolerance parameter were defined to evaluate
the mechanism of targeted attacks, the effect of functional
properties, and strength of interdependency, respectively.

M. LINKS
Links can be categorized if they are internal or external,
unidirectional or bidirectional, weighted or not weighted.
As mentioned before, there are two types of links in mul-
tilayer networks [14]; connectivity links that connect nodes
within layers (internally) and dependency links that connect
nodes between layers (externally).
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Among all collected papers, only [60] built unidirectional
dependency links between layers in loop-like NoN. All other
papers considered bidirectional links within and between
layers since they assumed that there is a two-way inter-
dependence between networks [38]. For example, a power
network produces electricity required for pumps, lift sta-
tions, and control systems in water network while water
network provides water for cooling in power network [68].
In some studies [69], [70], bidirectional links are interpreted
as interdependencies while unidirectional links are defined
as dependencies. However, it is not the case in all studies; for
example [14] called bidirectional connections as dependency
links. [50], [61] evaluated the effect of link length as the link’s
weight for both connectivity and dependency links.

In [50], [61], weighted links were defined as the spatial
length of connectivity and dependency links while [53]–[55]
defined tolerate parameter as the weight of dependency links
between layers. More information regarding the tolerance
parameter can be found in Section F.

N. PERCOLATION MODELS
Percolation theory is the simplest model displaying a phase
transition [71] where the network undergoes transitions from
the phase of a large connected component (functional net-
work) to the phase of multiple dis-connected components
(non-functional network) [24]. Percolation theory is applied
to study how different networked systems are more robust
or vulnerable, in terms of the critical percolation threshold
and the size of the giant connected component. The giant
connected component is the largest subnetwork of connected
nodes/links that remained from the multilayer network after
stopping the removal process. This part is considered as a
‘‘still functional part’’ of the initial network [17]. The higher
the number of remained nodes belonging to the giant con-
nected component, the network is more robust [14].

The critical percolation threshold is the fraction of removed
nodes or links leading to the complete collapse of the net-
work [22]. Below the critical threshold, there is no giant
connected component, whereas above the critical threshold a
giant connected component exists [14]. The robustness and
vulnerability of multilayer networks can also be measured
according to observing one of the two types of percolation
phase transitions [72]. As illustrated in Figure 7, this tran-
sition in the size of the giant connected component can be
abrupt/discontinuous at the critical threshold implying the
vulnerability of the network since the first-order phase tran-
sition occurs. In contrast, the system is robust if the transition
is continuous with a gentle slope. In this case, we have the
second-order phase transition.

To model different disturbances in infrastructure systems,
the removal process of nodes/links in the collected papers
were defined based on different algorithms which can be
explored by answering the following questions; a) how does it
start?, b) which layer does it start from?, c) does it propagate
through nodes or links?, d) how does it propagate within and
between layers?, e) how does it form the giant connected

FIGURE 7. Schematic diagram to denote smooth transition in the second
order percolation and abrupt transition in the first order percolation. P∞

is the fraction of nodes in the giant connected component, p is the
fraction of remained nodes, and pc is the critical threshold [72].

component?. In the following section, we discuss more the
given answers to these questions.

1) ATTACK TYPES
To answer the first question, six types of attacks were
identified in the papers as the simulation of real-world
failures initiated at the beginning of the removal pro-
cess; including random attacks, degree/centrality-based tar-
geted attacks [38], [40], [49], [51], [64], [73], [101],
dependency-based targeted attacks [40], [60], [65], ori-
ented/focused localized attacks, and probabilistic attacks
(Figure 8). In all types of attacks, each node/link is removed
with probability 1-p. So, at the end of the removal process,
p fraction of nodes remains. If remained nodes belong to
the giant connected component, they can be considered as
still functional part of the network. However, depending on
the type of the attack, the first round of removal happens in
different ways. In random attacks (also called random fail-
ures [74]), removing nodes is random to represent accidental
and random damages (occur deliberately or not deliberately)
in real-world systems (Figure 8a). Targeted attacks remove
nodes based on their criticality in multilayer networks. Nodes
with higher degree/centrality as well as nodes with depen-
dency links play a more critical role such that they can be
targets in malicious attacks. Oriented and focused localized
attacks (Figure 8b and 8c) can represent damages caused by
natural hazards like earthquakes and floods, respectively [74].
In this way, core/root nodes are picked randomly or tra-
jectorially, depicting the center of the damage. Then, all
nodes/links within the specified distance from the core are
removed abruptly [61], or gradually (shell by shell) according
to increasing distance [37], [39], [44]. Dong et al. [37] pro-
posed a framework to model probabilistic attacks to analysis
the system performance under post hazard scenarios. Proba-
bilistic attacks represent the case in which some nodes/links
have higher probability to be removed from the network. For
example, roads close to water are more likely to liquefaction
after the earthquake.
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FIGURE 8. Schematic diagram to show the initiation of attacks in a layer; a) random attack in which some nodes are selected and removed
randomly, b) oriented localized attack in which some nodes in the same trajectory are removed first and then the failures propagate sell by
shell or abruptly, c) focused localized attack in which some individual nodes are removed randomly first and then the failures propagate sell by
shell or abruptly, d) degree-based targeted attack in which nodes with a higher degree are removed first, e) dependency-based targeted attack
in which nodes with dependency links are removed first (red dot-lines represent dependency links), f) probabilistic attack in which nodes with
higher probability are removed first (from left to right, red nodes have a higher probability, blue nodes have moderate probability, and black
nodes have low probability to be removed).

2) PERCOLATION MECHANISMS OF FAILURE
To answer Question b, different mechanisms related to how
failures propagate within and between layers during the per-
colation processwere identified. In 25 papers, it was indicated
that the damage started from one of the layers while in six
papers, the damage was triggered in all layers simultane-
ously [39], [44], [61]–[64], [73] where there are replicas of
a node in other layers [61], [73] or in the case of localized
and targeted attacks with a concurrent damage to different
infrastructure sectors [44], [64]. To answer Question d, three
articles [37], [38], [49] indicated that the number of removed
nodes/links needs to reach the specific level within the layer
to spread to the other layers (Figure 9b) such as a case where
failure of a few low-load nodes in a gas network does not
cause other nodes overload and failure [38]. In the other
articles, it was specified that when a node with a dependency
link fails, the failure can spread within and between layers
at the same time (Figure 9a). Vaknin et al. [61] introduced
the directed giant connected component for a fully intercon-
nected multilayer network where a node is removed only if
it is in contact with at least a removed node in upper layers
(Figure 9c). So, the failure propagates from top to bottom
layers like a case where a failure spreads from the asset
layer to the component functionality layer in cyber-physical
infrastructures [75].

To answer Question c about whether percolation prop-
agates through nodes or links, two mechanisms exist in
the papers; site percolation and bond percolation. Site per-
colation refers to the node-to-node failure propagation in
which removal of a node leads to removal of the con-
nected links and then removal of the coupling node. Bond
percolation refers to the link-to-link failure propagation
in which eliminating a link removes the two connected
nodes. In site percolation, the giant connected component
is identified as the largest group of connected nodes while
in bond percolation, it is the largest group of connected
links [71]. There are three papers [37], [47], [52] among
the selected papers in this study that considered the bond
percolation while the rest of the papers worked on the
site percolation. Li et al. [16] declared that the bond per-
colation is considered less general than the site perco-
lation due to the fact that the bond percolation can be
reformulated as a site percolation. In general, the effects
of node-to-link failure propagation on the robustness of
a multilayer network have not been studied yet [47].
Figure 10 shows percolation on the square lattice, where
different colors denote different subnetworks, forming during
the removal process of nodes/links. The right-hand-side pic-
tures contain giant connected components where the fraction
of removed nodes/links is lower while the left-hand-side
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FIGURE 9. Different steps of failure propagation after removal of 2 nodes
in a 2-layer network; a) failures propagate within and between the layers
simultaneously, b) failures reach the specific level within the first layer
and then spread to the other layers, c) failure spreads from the upper
layers to lower layers. Black nodes represent removed nodes, red nodes
represent affected nodes, and blue nodes are unaffected nodes (adopted
from [22]).

FIGURE 10. Different colors denote subnetworks in the bond percolation
(a) and site percolation (b) on square lattice. P is the fraction of remained
links/nodes [16].

pictures denote the formation of infinite small subnetworks
due to a larger fraction of removed nodes/links.

Since different mechanisms of the node/link removal can
results in a different giant connected component evenwith the
same number of removals [16] it is important to identify them

which can provide an answer for Question e. According to the
classical percolation model, upon the initiation of the failure
in a layer, it will propagate to other layers due to the inter-
dependencies and interconnections in multilayer networks.
This cascading failure proceeds back and forth between all
layers until the multilayer network reaches a steady state
when no further node/link removal occurs [39]. At this stage,
we are left with the giant connected component [61] which is
considered as the functional part of the remained network.

However, there are other recursive/iterative mechanisms
defined for forming the giant connected component includ-
ing [16]; k-core percolation, color-avoiding percolation,
bootstrap percolation, greedy percolation, clique percolation,
explosive percolation, etc. 27 of the selected papers consid-
ered classical percolation while the other 4 worked with other
types of percolation models. Gross et al. [48] considered
k-core percolation which is an iterative process of removing
1-p fraction of nodes, similar to the classical percolation.
However, nodes with less than k neighbors are also consid-
ered as failed. Thus, nodes in the final giant component have
at least k links to other remained nodes.

Bootstrap percolation which was considered in [76] is a
recursive process in which every removed node can be recov-
ered if it has at least k neighbors. Bootstrap percolation occurs
when a subset of nodes with the specified size (called seeds)
remains at the end of the percolation process [77]. According
to the greedy framework which was applied by [41], remov-
ing articulation nodes causes the most damage to the network
and reduces the size of the giant component. In more detail,
removing articulation nodes maximizes the number of failed
nodes and minimizes the connectivity of nodes across the
network [78].

In color-avoiding percolation, used in [52], nodes/links
are classified into groups based on their common vulnera-
bility like buses that can be delayed during rush hours while
undergrounds can be affected by technical problems. Each
group gets its own color. In this regard, the giant component
remaining after the percolation process is the intersection of
nodes/links that always remain connected when each group
color is removed iteratively.

IV. DISCUSSION
While 29 collected papers defined different structures for
their models, they produced approximately similar outcomes
in terms of the effect of network properties on the robustness
of infrastructure systems as multilayer networks. There are
some exceptions mentioned in Table 4 which are discussed
more in the following sections.

A. THE EFFECT OF
TOPOLOGICAL/FUNCTIONAL/DYNAMICAL PROPERTIES
According to the obtained results, stronger interdependence,
in terms of either a greater number of dependency links
(in full/partial interdependence) or lower tolerance (in toler-
ated interdependence) decreases the robustness of the multi-
layer network [44], [48], [54], [55], [64]–[66], [79]. In this
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TABLE 4. Comparing the effect of different network properties on the robustness of infrastructure models.

regard, Fan et al. [80] found the optimal fraction of inter-
dependent nodes as r = 0.1. It suggests that if 10% of
cities have interconnected flights, the network is the most
robust to random attacks. The assortative correlation between
interdependent layers can improve the robustness of mul-
tilayer networks in contrast to the disassortative correla-
tion [39], [49], [51]. Nonetheless, [49], [51] showed that in
the case of degree-based targeted attacks, correlated interde-
pendence does not have an effect on the robustness. In gen-
eral, the inter-similarity between networks regarding both
the inter degree-degree correlation and the inter-clustering
coefficient boosts the robustness of multilayer networks [26].

Studying dynamical properties showed that dynamic pro-
cesses (like synchronization, epidemic spreading, diffusion,
etc.) undergo discontinuity in partial interdependence while
they go continuous in full interdependence [53]. For exam-
ple, nodes synchronize abruptly in full interdependence and
smoothly in partial interdependence.

Improving the robustness of multilayer networks in terms
of the functional properties can be evaluated by enhancing
nodes. In this case, increasing the capacity of nodes can
increase the robustness of multilayer networks [38], [49].

In addition, areas with many high load nodes are more vulner-
able so they should be given prioritized protection. [64], [81]
found that there is a minimum density of randomly rein-
forced nodes among all nodes helping with eradicating catas-
trophic collapse. The universal density which they found is
0.1756 proved to be true for ER networks with any average
degree and SF and RR networks with a large average degree.
It was examined in 2-layer models and single-layer models
with dependency groups. As an example, critical buildings in
the power transmission grid, facing a sudden power outage,
can employ backup facilities such as distributed generators.
Reinforced internet ports, after cutting off their fiber links,
can also use satellites or high-altitude platforms to exchange
vital information [59].

B. THE EFFECT OF OVERLAP
While full overlap increases the robustness of a multilayer
network, partial overlap can make the network more vulner-
able [24], [50], [59], [76]. Cellai et al. [82] demonstrated
that for the same structure of multilayer network, the case in
which all layers completely overlap is more robust. In [24],
it was explained that the effect of partial overlap in multilayer
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networks with more than two layers is less predictable and
it mostly depends on the structure of overlaps. For example,
in a three-layer network the ratio of single overlaps (c1),
double overlaps (c2), and triple overlaps (c3) play a critical
role. When there are higher proportions of c2 and c3 than
c1 then the network is more robust while with higher propor-
tions of c3 and c1 than c2 the network is more vulnerable.
Figure 11 illustrates the concept of c1, c2, and c3.

FIGURE 11. The red, blue, and green links represent single overlaps (c1),
double overlaps (c2), and triple overlaps (c3) respectively in a three-layer
network.

C. THE EFFECT OF NODE DEGREE
Higher average degree of nodes within the layers enhances
the robustness [38], [40], [47], [49], [55], [61]–[66]. In other
words, more connections among nodes within layers result in
a more robust multilayer network. If enough connections are
available within a layer, in the case of losing interdependent
links, the layer can continue to work [65]. In multilayer net-
works made by SF networks, the increase of average degree
has a larger impact on the robustness in comparison to ER
networks [49], [55].

D. THE EFFECT OF COMMUNITIES
In general, multilayer networks with communities of
nodes including dependency groups, clusters, or mod-
ules are more vulnerable than networks without communi-
ties [47], [52], [60]. Papers studying the effect of commu-
nities also reported that in the multilayer networks, more
numbers and bigger sizes of communities can increase the
vulnerability. [38], [44] indicated that denser clusters of nodes
and links make the multilayer networks more vulnerable.
In more detail, areas with the small number of nodes and links
collapse after the failure of a few nodes but it does not cause
a huge loss in the whole system. However, failures in areas
with more nodes and links can cause significant performance
drop in the whole system. While [40] showed that more
and bigger modules can worsen the robustness of multilayer
networks, Shekhtman et al. [60] reported that the size of the

modules did not make a significant difference in their case.
[44], [52], [59] declared that more and bigger dependency
groups make multilayer models more vulnerable. However,
there is one exception. Dong et al. [39] showed that if we treat
all nodes of a dependency group as a super-node then bigger
dependency groups result in more robust multilayer networks
(refer to Figure 5).

Shekhtman et al [60] indicated that more connectivity links
between different modules can make the multilayer networks
more robust. However, such a study did not exist for depen-
dency groups and clusters among included papers in this
study. In this regard, [16] mentioned a study that worked
on the effects of connectivity links exciting between depen-
dency groups within the layer [83]. The study found that
connectivity links between dependency groups have the same
effect as dependency links between layers as they both make
multilayer networks more vulnerable. They also discussed
when these two types of links have nearly the same number,
multilayer networks show more robustness.

Li et al. [21] indicated studies working on the effect of
inter-similarity and overlapping between dependency groups
which were not among the collected papers of this study.
However, they can be the case in infrastructure systems as
well, like different groups of electronic devices with a shared
internet connection [28]. For example, [28], [84] showed
that similarity between dependency groups in terms of their
degree correlation, link overlapping, and the number of nodes
can result in more robust networks. Similarly, [85] worked on
dependency groups with shared nodes and proved that more
than one shared node between two dependency groups makes
the network more vulnerable.

In multilayer networks with modules under dependency-
based targeted attacks, we should expect a phenomenon
called multiple percolation transition where there is more
than one jump in the percolation transition. As shown in
Figure 12, the multiple transitions depict how failure prop-
agates through the network and separates layers first and

FIGURE 12. The multiple percolation transitions of cascading failure in a
6-layer model with the hierarchical structure of modules. P∞ is the
fraction of nodes in the giant connected component, p is the fraction of
remained nodes, and each value for k represents the average degree of
nodes in each layer [40].
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then modules. Shekhtman et al. [40] worked on modular
multilayer network with hierarchical structure and demon-
strated that the maximum number of jumps is the number of
layers minus 1. There can be fewer jumps depending on other
parameters like the average degree of nodes. In this regard,
the lower the number of jumps, the multilayer network is
more vulnerable.

E. THE EFFECT OF NUMBER OF LAYERS
According to the collected papers in this study, more lay-
ers have a devastating effect on the robustness of the
multilayer network [44], [54], [59], [61], [75]. However,
Radicchi et al. [86] showed that in a network with a large
number of layers adding a new layer can boost the robustness
since it can create redundant interdependencies among layers.
For example, adding another flight operator between two
large cities can increase the size of the system and provide
a backup option.

F. THE EFFECT OF SPATIALITY
The effect of spatiality can be assessed from three aspects;
embedded nodes in space, length of links, and co-locations of
networks. As [61] indicated, embedding nodes in Euclidean
space makes multilayer networks more vulnerable than non-
embedded networks. Three papers that examined the effect
of different link lengths concluded that shorter link length
(for both connectivity and dependency links) can improve
the robustness of multilayer networks [39], [50], [61].
Co-locating of networks can also have destructive effects as
a failure in one network results in a failure in the co-located
network [37], [38].

G. THE EFFECT OF NoN-STRUCTURES
As mentioned before, different NoN-structures were applied
in the collected papers including tree-like, random regular,

FIGURE 13. Displaying multiple percolation transitions (dark blue line
showing two continuous transitions), mixed percolation transitions
(green and red lines showing continuous and abrupt transitions
together), and normal percolation transitions (light blue line showing an
abrupt transition) in a star-like NoN of four layers. α is the tolerance
parameter, P∞ is the fraction of nodes in the giant connected component
and p is the fraction of remained [47].

star-like, and loop-like. Based on the results, they do not
have any effects on the robustness of multilayer networks.
However, [47] introduced a new phenomenon in the star-like
NoN called mixed percolation transitions, where the periph-
eral layers percolate first continuously and then the hub
layer percolates discontinuously. In this case, we have a
moderate value of the tolerance parameter. For the relatively
large value of tolerance parameter, the multiple percolation
transitions occur where peripheral and hub layer percolate
continuously but in different orders. For the small value
of the tolerance parameter, all layers percolate simultane-
ously and abruptly. Figure 13 illustrates different formats of
percolation in a star-like NoN, including mixed percolation
transitions.

H. THE EFFECT OF LINKS DIRECTION
[87]–[89] indicated that directed networks are more vul-
nerable than undirected networks in the case of single-layer
networks. Liu et al. [90] assessed the effect of directed
links in a 2-layer model and demonstrated that in-degree
and out-degree correlations between interdependent nodes
increase the robustness of multilayer networks with SF net-
works but it has an opposite effect on multilayer networks
with ER networks. However, the only paper that considered
directed links in this study [60] did not discuss their effects
on the robustness of multilayer networks.

I. THE EFFECT OF PERCOLATION MODELS
1) THE EFFECT OF ATTACK TYPES
Degree-based targeted attacksmakemultilayer networks with
SF networks more vulnerable [51], [64]. [49], [51] showed
that in the case of degree-based targeted attacks, correlated
interdependence does not have an effect on the robustness.
Only did one of the articles study SW networks and showed
multilayer networks made with this network present the best
results under degree-based targeted attacks among all other
networks [41]. Dependency-based targeted attacks lead to
a more stable network than random attacks [65]. In more
detail, by removing even all of the interdependent nodes, each
layer can still be functional if enough connectivity links are
provided to keep the nodes connected [60], [65]. Random
attacks increase the fragility of multilayer networks with ER
networks [41], [51], [54], [64]. Correlated interdependence
has better performance under random attacks while shorter
links work better under localized attacks [39]. As [44], [61]
discussed localized attacks have more destructive effects,
particularly in multilayer networks with communities.
Vaknin et al. [61] defined a minimum radius of damage in
localized attacks which is needed to push the network to the
complete collapse. They also introduced an approximated
size for multilayer networks in which there is no correla-
tion between attack size and network size. In other words,
when the network is large enough, the collapse happens once
the damage starts, regardless of the size of the localized
attack.
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FIGURE 14. Schematic diagram to show the most and the least popular topological properties applied in the papers and how they were
assembled to build the structure of multilayer models.

2) THE EFFECT OF PERCOLATION MECHANISMS
While the type of attacks affects the robustness of multilayer
networks, different mechanisms of failure percolation make
no difference in how network properties affect the robustness
of multilayer networks. For example, with more dependency
links, the system is more vulnerable, regardless of differ-
ent failure percolation mechanisms. However, comparing the
deteriorative effect of the different percolation mechanisms,
mentioned in the previous sections, needs more investigations
in future studies.

J. SIMPLIFICATION OF MODELS
1) IN SYNTHETIC MODELS
Synthetic models of infrastructure systems were simplified
by considering the same properties for layers e.g. same

network, same number of nodes, same degree distribution,
same number of communities, etc. while it is not the case
in real-world infrastructure systems. In the studies in which
researchers intended to evaluate the effect of more compli-
cated properties such as overlaps, correlated interdependence,
as well as spatial and temporal features, themultilayer models
were limited to two layers.

From the 31 included papers, 27 of them only focused on
the topological properties. However, only two of them con-
sidered functional and the two others worked on dynamical
properties. Their models were also considered as a 2-layer
model. Considering functional and dynamical properties in
models is very crucial to capture the full characteristics of
infrastructure systems. Flow of goods and services as well
as specified load and capacity of components are essential
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parts of these systems [91]. Furthermore, the structure of
infrastructure systems can evolve and change over time due
to dynamic processes [92]. For example, in the most of stud-
ies, models of transportation systems used simplified static
representations neglecting traffic flow, travel times, waiting
times, and compatibility of schedules while using a dynamic
representation that considers concepts like synchronizing,
diffusion, and random walks obtained more accurate descrip-
tions [93]–[95].

The overlap and spatiality were only studied for ER and
lattice networks, respectively. No-feedback condition applied
in all synthetic models while considering feedback condition
is more realistic for infrastructure systems. All nodes were
assumed to be connected by direct links while in many real
cases, there is not a straight line between two components of
infrastructure systems. Most of the multilayer models were
built by ER networks while infrastructure systems are usually
more complex and have non-homogeneous structures [17].
In total, among all models, 46% were 2-layer and tree-like
models made by ER/SF networks with full/partial interde-
pendency but without considering the presence of overlap,
community, or spatiality (Figure 14).

2) IN REALITY-BASED MODELS
Both papers with reality-based models applied 2-layer mod-
els [37], [38]. Only one of these two defined the dependency
links with feedback conditions, where there were more than
one dependency link connecting a node in the road network
to some nodes in the sewer network [37]. Neither of these
two models defined overlap in their real cases. According
to these results, the inclusion of more properties results in
models closer to real-world conditions. Likewise, considering
more layers, unidirectional links, functional and dynamical
properties, feedback conditions, and spatiality can make the
models more realistic.

However, large, complex models have been criticized,
mainly because they are computationally expensive and hard
to implement, their results are usually hard to interpret, and
their multipurpose approaches do not directly contribute to
the development of theoretical aspects [96], [97]. On the
other hand, simple models usually neglect important aspects
of real-world systems such as heterogeneity and variability,
and may focus too much on one of several properties [97].
Simple models are mostly generalized resulting inmisleading
modelers and may often be away from reality [98]. Nonethe-
less, while we need simple models to achieve and develop
general insights and theories [97], [98], complex systems
like infrastructures need complex solutions [99]. Specifically,
some properties of complex systems like emergent behaviors
as unexpected behaviors that stem from themultitude of inter-
actions between different components cannot be analyzed by
building simple models [100], [101].

Regarding the scope of this study, further works are needed
to evaluate whether a model created by putting different net-
work properties together would show unexpected behaviors
or not. In other words, multilayer network models should

contain different properties together to investigate if some
properties boost or weaken the effect of other properties on
the robustness and vulnerability of infrastructure systems.
Since the results of the present study about the effect of
different network properties on the robustness of infrastruc-
ture systems are mostly based on created simple models,
it is needed to investigate whether these properties show
the same behavior when they are put together in a com-
plex model and when they are a focus of a simple model.
In addition, the effect size of different properties on the
robustness of infrastructure systems should be quantified to
make more optimized decisions for improving infrastructure
systems.

V. CONCLUSION
Percolation theory is the most common approach to quantify
the robustness of networked systems. However, the applica-
tion of percolation theory to evaluate multilayer networks is
still young and its use to analyze infrastructure systems is a
major gap addressed in this review paper. All studies apply-
ing percolation theory to assess the robustness in infrastruc-
ture systems modeled as multilayer networks were collected.
19 network properties used in these studies were identified
and some of these properties concerned vulnerability rather
than robustness. Interdependency strength and communities
were the most common network property whilst very few
studies considered realistic attributes of infrastructure sys-
tems such as directed links and feedback conditions.

The review highlights that the properties led to approx-
imately similar model outcomes, in terms of detecting
improvement or deterioration in the robustness of multi-
layer infrastructure networks, although some exceptions were
reported, like ineffectiveness of correlated interdependency in
SF networks under dependency-based targeted attacks. Only
two studies worked on real cases of infrastructure network
data as most of the studies used simplified synthetic models
of infrastructure systems. Each study assessed the effect of
outages by focusing on one or two network properties and
did not consider different network properties together.

In this regard, further studies are needed to analyze multi-
ple properties in a single study to assess whether they boost
or weaken the impact of each other. This would lead to a more
comprehensive and decisive understanding about the effect of
different properties under different conditions. Furthermore,
the importance of each property on the robustness of infras-
tructure systems should be quantified in future studies to sup-
port the design and planning of robust infrastructure systems
by arranging and prioritizing the most effective properties.

REFERENCES
[1] Strategic Framework and Policy Statement on Improving the Resilience

of Critical Infrastructure to Disruption From Natural Hazards, Cabinet
Office, London, U.K., 2010.

[2] D. B. Karakoc, Y. Almoghathawi, K. Barker, A. D. González, and
S. Mohebbi, ‘‘Community resilience-driven restoration model for inter-
dependent infrastructure networks,’’ Int. J. Disaster Risk Reduction,
vol. 38, Aug. 2019, Art. no. 101228.

135770 VOLUME 9, 2021



Z. Mahabadi et al.: Network Properties for Robust Multilayer Infrastructure Systems: A Percolation Theory Review

[3] I. Bachmann, J. Bustos-Jiménez, and B. Bustos, ‘‘A survey on frameworks
used for robustness analysis on interdependent networks,’’ Complexity,
vol. 2020, Apr. 2020, Art. no. 2363514.

[4] S. Thacker, R. Pant, and J. W. Hall, ‘‘System-of-systems formulation and
disruption analysis for multi-scale critical national infrastructures,’’ Rel.
Eng. Syst. Saf., vol. 167, pp. 30–41, Nov. 2017.

[5] M. Rinaldi, P. Peerenboom, and T. K. Kelly, ‘‘Identifying, understanding,
and analyzing critical infrastructure interdependencies,’’ IEEE Control
Syst. Mag., vol. 21, no. 6, pp. 11–25, Dec. 2001.

[6] F. Karimi, D. Green, P. Matous, M. Varvarigos, and K. R. Khalilpour,
‘‘Network of networks: A bibliometric analysis,’’ Phys. D, Nonlinear
Phenomena, vol. 421, Jul. 2021, Art. no. 132889.

[7] S. Mohebbi, Q. Zhang, E. Christian Wells, T. Zhao, H. Nguyen, M. Li,
N. Abdel-Mottaleb, S. Uddin, Q. Lu, M. J. Wakhungu, Z. Wu, Y. Zhang,
A. Tuladhar, and X. Ou, ‘‘Cyber-physical-social interdependencies and
organizational resilience: A review of water, transportation, and cyber
infrastructure systems and processes,’’ Sustain. Cities Soc., vol. 62,
Nov. 2020, Art. no. 102327.

[8] E. J. Oughton, D. Ralph, R. Pant, E. Leverett, J. Copic, S. Thacker,
R. Dada, S. Ruffle, M. Tuveson, and J. W. Hall, ‘‘Stochastic counter-
factual risk analysis for the vulnerability assessment of cyber-physical
attacks on electricity distribution infrastructure networks,’’ Risk Anal.,
vol. 39, no. 9, pp. 2012–2031, Sep. 2019.

[9] T. Dolan, ‘‘Digitally connected infrastructure system resilience lit-
erature review (UCL),’’ Nat. Infrastruct. Commission, 2017, doi:
10.13140/RG.2.2.14565.83680.

[10] R. Arghandeh, A. von Meier, L. Mehrmanesh, and L. Mili, ‘‘On the
definition of cyber-physical resilience in power systems,’’Renew. Sustain.
Energy Rev., vol. 58, pp. 1060–1069, May 2016.

[11] C. Heracleous, P. Kolios, C. G. Panayiotou, G. Ellinas, and
M. M. Polycarpou, ‘‘Hybrid systems modeling for critical infrastructures
interdependency analysis,’’ Rel. Eng. Syst. Saf., vol. 165, pp. 89–101,
Sep. 2017.

[12] M. De Domenico, C. Granell, M. A. Porter, and A. Arenas, ‘‘The physics
of spreading processes in multilayer networks,’’ Nature Phys., vol. 12,
no. 10, pp. 901–906, Oct. 2016.

[13] S. N. Naghshbandi, L. Varga, A. Purvis, R. Mcwilliam, E. Minisci,
M. Vasile, M. Troffaes, T. Sedighi, W. Guo, E. Manley, and D. H. Jones,
‘‘A review of methods to study resilience of complex engineering and
engineered systems,’’ IEEE Access, vol. 8, pp. 87775–87799, 2020.

[14] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin,
‘‘Catastrophic cascade of failures in interdependent networks,’’ Nature,
vol. 464, no. 7291, pp. 1025–1028, Apr. 2010.

[15] G. Bianconi, S. N. Dorogovtsev, and J. F. F. Mendes, ‘‘Mutually con-
nected component of networks of networks with replica nodes,’’ Phys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 91, no. 1,
Jan. 2015, Art. no. 012804.

[16] M. Li, R. Liu, and L. Lu, ‘‘Percolation on complex networks: Theory and
application,’’ Phys. Rep., vol. 896, pp. 1–84, Jan. 2021.

[17] S. Havlin, H. E. Stanley, A. Bashan, J. Gao, and D. Y. Kenett, ‘‘Percola-
tion of interdependent network of networks,’’ Chaos, Solitons Fractals,
vol. 72, pp. 4–19, Mar. 2015.

[18] Kong, Simonovic, and Zhang, ‘‘Resilience assessment of interdependent
infrastructure systems: A case study based on different response strate-
gies,’’ Sustainability, vol. 11, no. 23, p. 6552, Nov. 2019.

[19] S. Guo, X. Chen, Y. Liu, R. Kang, T. Liu, and D. Li, ‘‘Percolation
analysis of brain structural network,’’ Frontiers Phys., vol. 9, p. 345,
Jul. 2021.

[20] J. Gao, D. Li, and S. Havlin, ‘‘From a single network to a network of
networks,’’ Nat. Sci. Rev., vol. 1, no. 3, pp. 346–356, Sep. 2014.

[21] J. Gao, X. Liu, D. Li, and S. Havlin, ‘‘Recent progress on the resilience
of complex networks,’’ Energies, vol. 8, no. 10, pp. 12187–12210,
Oct. 2015.

[22] L. D. Valdez, L. Shekhtman, C. E. La Rocca, X. Zhang, S. V. Buldyrev,
P. A. Trunfio, L. A. Braunstein, and S. Havlin, ‘‘Cascading failures in
complex networks,’’ J. Complex Netw., vol. 8, no. 2, pp. 1–25, Apr. 2020.

[23] R. Parshani, S. V. Buldyrev, and S. Havlin, ‘‘Interdependent networks:
Reducing the coupling strength leads to a change from a first to second
order percolation transition,’’ Phys. Rev. Lett., vol. 105, no. 4, Jul. 2010,
Art. no. 048701.

[24] D. Cellai, E. López, J. Zhou, J. P. Gleeson, and G. Bianconi, ‘‘Percolation
in multiplex networks with overlap,’’ Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 88, no. 5, Nov. 2013, Art. no. 052811.

[25] J. Shao, S. Buldyrev, and S. Havlin, ‘‘Cascade of failures in coupled
network systems with multiple support-dependence relations,’’ Phys. Rev.
E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 83, Dec. 2011,
Art. no. 036116.

[26] R. Parshani, C. Rozenblat, D. Ietri, C. Ducruet, and S. Havlin, ‘‘Inter-
similarity between coupled networks,’’ EPL Europhys. Lett., vol. 92,
no. 6, p. 68002, Dec. 2010.

[27] S. V. Buldyrev, N. W. Shere, and G. A. Cwilich, ‘‘Interdependent net-
works with identical degrees of mutually dependent nodes,’’ Phys. Rev.
E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 83, no. 1,
Jan. 2011, Art. no. 016112.

[28] Y. Hu, D. Zhou, R. Zhang, Z. Han, C. Rozenblat, and S. Havlin, ‘‘Percola-
tion of interdependent networks with intersimilarity,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 88, no. 5, Nov. 2013,
Art. no. 052805.

[29] J. Gao, S. V. Buldyrev, H. E. Stanley, X. Xu, and S. Havlin, ‘‘Per-
colation of a general network of networks,’’ Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 88, no. 6, Dec. 2013,
Art. no. 062816.

[30] J. Gao, ‘‘Robustness of a network of networks,’’ Phys. Rev. Lett., vol. 107,
Nov. 2011, Art. no. 195701.

[31] X. Huang, J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, ‘‘Robust-
ness of interdependent networks under targeted attack,’’Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 83, no. 6, Jun. 2011,
Art. no. 065101.

[32] G. Dong, J. Gao, L. Tian, R. Du, and Y. He, ‘‘Percolation of par-
tially interdependent networks under targeted attack,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 85, no. 1, Jan. 2012,
Art. no. 016112.

[33] B. Kitchenham, ‘‘Procedures for performing systematic reviews,’’ Keele
Univ., Newcastle, U.K., Tech. Rep. 0400011T.1, 2004.

[34] L. M. Shekhtman, M. M. Danziger, D. Vaknin, and S. Havlin, ‘‘Robust-
ness of spatial networks and networks of networks,’’Comp. Rendus Phys.,
vol. 19, no. 4, pp. 233–243, May 2018.

[35] S. Boccaletti, ‘‘The structure and dynamics of multilayer networks,’’
Phys. Rep., vol. 544, no. 1, pp. 1–22, 2014.

[36] M. Kivela, ‘‘Multilayer networks,’’ J. Complex Netw., vol. 2, no. 3,
pp. 203–271, 2014.

[37] S. Dong, H. Wang, A. Mostafizi, and X. Song, ‘‘A network-of-networks
percolation analysis of cascading failures in spatially co-located road-
sewer infrastructure networks,’’ Phys. A, Stat. Mech. Appl., vol. 538,
Jan. 2020, Art. no. 122971.

[38] S. Wang, H. E. Stanley, and Y. Gao, ‘‘A methodological framework
for vulnerability analysis of interdependent infrastructure systems under
deliberate attacks,’’ Chaos, Solitons Fractals, vol. 117, pp. 21–29,
Dec. 2018.

[39] Z. Dong, M. Tian, J. Liang, Y. Fang, and Y. Lu, ‘‘Research on the connec-
tion radius of dependency links in interdependent spatial networks against
cascading failures,’’ Phys. A, Stat. Mech. Appl., vol. 513, pp. 555–564,
Jan. 2019.

[40] L. M. Shekhtman and S. Havlin, ‘‘Percolation of hierarchical net-
works and networks of networks,’’ Phys. Rev. E, Stat. Phys. Plas-
mas Fluids Relat. Interdiscip. Top., vol. 98, no. 5, Nov. 2018,
Art. no. 052305.

[41] D. Zhao, B. Gao, Y. Wang, L. Wang, and Z. Wang, ‘‘Optimal dismantling
of interdependent networks based on inverse explosive percolation,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 7, pp. 953–957,
Jul. 2018.

[42] A. Bashan, Y. Berezin, S. V. Buldyrev, and S. Havlin, ‘‘The extreme
vulnerability of interdependent spatially embedded networks,’’ Nature
Phys., vol. 9, no. 10, pp. 667–672, Oct. 2013.

[43] G. Pflieger andC. Rozenblat, ‘‘Introduction. Urban networks and network
theory: The city as the connector of multiple networks,’’ Urban Stud.,
vol. 47, no. 13, pp. 2723–2735, Nov. 2010.

[44] G. Dong, H. Xiao, F. Wang, R. Du, S. Shao, L. Tian, H. E. Stanley, and
S. Havlin, ‘‘Localized attack on networks with clustering,’’ New J. Phys.,
vol. 21, no. 1, Jan. 2019, Art. no. 013014.

[45] G. Dong, R. Du, L. Tian, and R. Liu, ‘‘Percolation on interacting networks
with feedback-dependency links,’’ Chaos: Interdiscipl. J. Nonlinear Sci.,
vol. 25, no. 1, Jan. 2015, Art. no. 013101.

[46] G. Dong, R. Du, L. Tian, and R. Liu, ‘‘Robustness of network of networks
with interdependent and interconnected links,’’Phys. A, Stat.Mech. Appl.,
vol. 424, pp. 11–18, Apr. 2015, Art. no. 062816.

VOLUME 9, 2021 135771

http://dx.doi.org/10.13140/RG.2.2.14565.83680


Z. Mahabadi et al.: Network Properties for Robust Multilayer Infrastructure Systems: A Percolation Theory Review

[47] R.-R. Liu, D. A. Eisenberg, T. P. Seager, and Y.-C. Lai, ‘‘The ‘weak’
interdependence of infrastructure systems produces mixed percolation
transitions in multilayer networks,’’ Sci. Rep., vol. 8, no. 1, Dec. 2018,
Art. no. 2111.

[48] B. Gross, H. Sanhedrai, L. Shekhtman, and H. Sh, ‘‘Interconnections
between networks acting like an external field in a first-order percolation
transition,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 101, no. 2 Oct. 2020, Art. no. 022316.

[49] L. Zhou, X. Qi, and L. Liu, ‘‘The robustness of interdependent net-
works with traffic loads and dependency groups,’’ IEEE Access, vol. 8,
pp. 98449–98459, 2020.

[50] M.M. Danziger, L. M. Shekhtman, Y. Berezin, and S. Havlin, ‘‘The effect
of spatiality on multiplex networks,’’ EPL Europhys. Lett., vol. 115, no. 3,
p. 36002, Aug. 2016.

[51] J. Wang, H. Fang, and X. Qin, ‘‘Targeted attack on correlated interde-
pendent networks with dependency groups,’’ Phys. A, Stat. Mech. Appl.,
vol. 536, Dec. 2019, Art. no. 121952.

[52] A. Kadovi, S. M. Krause, G. Caldarelli, and V. Zlatic, ‘‘Bond and site
color-avoiding percolation in scale-free networks,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 98, no. 6, Dec. 2018,
Art. no. 062308.

[53] M. M. Danziger, I. Bonamassa, S. Boccaletti, and S. Havlin, ‘‘Dynamic
interdependence and competition in multilayer networks,’’ Nature Phys.,
vol. 15, no. 2, pp. 178–185, Feb. 2019.

[54] Y.-Y. Cao, R.-R. Liu, C.-X. Jia, and B.-H. Wang, ‘‘Percolation in mul-
tilayer complex networks with connectivity and interdependency topo-
logical structures,’’ Commun. Nonlinear Sci. Numer. Simul., vol. 92,
Jan. 2021, Art. no. 105492.

[55] W.-J. Jiang, R.-R. Liu, and C.-X. Jia, ‘‘Depth penetration and scope exten-
sion of failures in the cascading of multilayer networks,’’ Complexity,
vol. 2020, Apr. 2020, Art. no. 3578736.

[56] L.-W. Kong, M. Li, R.-R. Liu, and B.-H. Wang, ‘‘Percolation on net-
works with weak and heterogeneous dependency,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 95, no. 3, Mar. 2017,
Art. no. 032301.

[57] C. Zorn, R. Pant, S. Thacker, and A. Y. Shamseldin, ‘‘Evaluating the
magnitude and spatial extent of disruptions across interdependent national
infrastructure networks,’’ ASCE-ASME J. Risk Uncert Engrg. B, Mech.,
vol. 6, no. 2, Jun. 2020, Art. no. 020904.

[58] S. Wang, W. Lv, L. Zhao, S. Nie, and H. E. Stanley, ‘‘Structural and func-
tional robustness of networked critical infrastructure systems under differ-
ent failure scenarios,’’ Phys. A, Stat. Mech. Appl., vol. 523, pp. 476–487,
Jun. 2019.

[59] J. Xie, Y. Yuan, Z. Fan, J. Wang, J. Wu, and Y. Hu, ‘‘Eradicating abrupt
collapse on single network with dependency groups,’’ Chaos: Interdis-
cipl. J. Nonlinear Sci., vol. 29, no. 8, Aug. 2019, Art. no. 083111.

[60] L.M. Shekhtman, S. Shai, and S. Havlin, ‘‘Resilience of networks formed
of interdependent modular networks,’’ New J. Phys., vol. 17, no. 12,
Dec. 2015, Art. no. 123007.

[61] D. Vaknin, M. M. Danziger, and S. Havlin, ‘‘Spreading of localized
attacks in spatial multiplex networks,’’ New J. Phys., vol. 19, no. 7,
Jul. 2017, Art. no. 073037.

[62] M. Barthelemy, ‘‘Spatial networks,’’ Phys. Rep., vol. 499, pp. 1–101,
Feb. 2010.

[63] W. Li, A. Bashan, S. V. Buldyrev, H. E. Stanley, and S. Havlin, ‘‘Cas-
cading failures in interdependent lattice networks: The critical role of the
length of dependency links,’’ Phys. Rev. Lett., vol. 108, no. 22, May 2012,
Art. no. 228702.

[64] G. Dong, J. Gao, R. Du, L. Tian, H. E. Stanley, and S. Havlin, ‘‘Robust-
ness of network of networks under targeted attack,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 87, no. 5, May 2013,
Art. no. 052804.

[65] D. Zhou and A. Bashan, ‘‘Dependency-based targeted attacks in inter-
dependent networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 102, no. 2, Aug. 2020, Art. no. 022301.

[66] D. Duan, C. Lv, S. Si, Z.Wang, D. Li, J. Gao, S. Havlin, H. E. Stanley, and
S. Boccaletti, ‘‘Universal behavior of cascading failures in interdependent
networks,’’ Proc. Nat. Acad. Sci. USA, vol. 116, no. 45, pp. 22452–22457,
Nov. 2019.

[67] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno,
M. A. Porter, S. Gómez, and A. Arenas, ‘‘Mathematical formulation
of multilayer networks,’’ Phys. Rev. X, vol. 3, no. 4, Dec. 2013,
Art. no. 041022.

[68] R. Guidotti, H. Chmielewski, V. Unnikrishnan, P. Gardoni, T. McAllister,
and J. van de Lindt, ‘‘Modeling the resilience of critical infrastructure:
The role of network dependencies,’’ Sustain. Resilient Infrastruct., vol. 1,
nos. 3–4, pp. 153–168, Nov. 2016.

[69] V. Krishnamurthy, A. Kwasinski, and L. Dueñas-Osorio, ‘‘Comparison
of power and telecommunications dependencies and interdependencies
in the 2011 Tohoku and 2010 maule earthquakes,’’ J. Infrastructure Syst.,
vol. 22, no. 3, Sep. 2016, Art. no. 04016013.

[70] K. Christensen, Percolation Theory. London, U.K.: Imperial College,
2002.

[71] J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, ‘‘Networks formed
from interdependent networks,’’ Nature Phys., vol. 8, no. 1, pp. 40–48,
Jan. 2012.

[72] D.-W. Zhao, L.-H. Wang, Y.-F. Zhi, J. Zhang, and Z. Wang, ‘‘The robust-
ness of multiplex networks under layer node-based attack,’’ Sci. Rep.,
vol. 6, no. 1, Jul. 2016, Art. no. 24304.

[73] A. L. Barabasi, Network Science. Cambridge, U.K.: Cambridge Univ.
Press 2016.

[74] W. Wang, S. Yang, F. Hu, H. E. Stanley, S. He, and M. Shi, ‘‘An approach
for cascading effects within critical infrastructure systems,’’ Phys. A, Stat.
Mech. Appl., vol. 510, pp. 164–177, Nov. 2018.

[75] I. Marsa-Maestre, J. M. Gimenez-Guzman, D. Orden, E. de la Hoz, and
M. Klein, ‘‘REACT: Reactive resilience for critical infrastructures using
graph-coloring techniques,’’ J. Netw. Comput. Appl., vol. 145, Nov. 2019,
Art. no. 102402.

[76] G. J. Baxter, S. N. Dorogovtsev, J. F. F. Mendes, and D. Cellai, ‘‘Weak
percolation on multiplex networks,’’ Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 89, no. 4, Apr. 2014, Art. no. 042801.

[77] G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,
‘‘Bootstrap percolation on complex networks,’’ Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 82, no. 1, Jul. 2010,
Art. no. 011103.

[78] D. T. Nguyen, Y. Shen, and M. T. Thai, ‘‘Detecting critical nodes in inter-
dependent power networks for vulnerability assessment,’’ IEEE Trans.
Smart Grid, vol. 4, no. 1, pp. 151–159, Mar. 2013.

[79] L. Feng, C. P. Monterola, and Y. Hu, ‘‘The simplified self-consistent
probabilities method for percolation and its application to interdependent
networks,’’ New J. Phys., vol. 17, no. 6, Jun. 2015, Art. no. 063025.

[80] J. Fan, G. Dong, L. M. Shekhtman, D. Zhou, J. Meng, X. Chen, and
S. Havlin, ‘‘Structural resilience of spatial networks with inter-links
behaving as an external field,’’ New J. Phys., vol. 20, no. 9, Sep. 2018,
Art. no. 093003.

[81] X. Yuan, Y. Hu, H. E. Stanley, and S. Havlin, ‘‘Eradicating catastrophic
collapse in interdependent networks via reinforced nodes,’’ Proc. Nat.
Acad. Sci. USA, vol. 114, no. 13, pp. 3311–3315, Mar. 2017.

[82] D. Cellai, S. N. Dorogovtsev, and G. Bianconi, ‘‘Message passing theory
for percolation models on multiplex networks with link overlap,’’ Phys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 94, no. 3,
Sep. 2016, Art. no. 032301.

[83] L. Cao and J. M. Schwarz, ‘‘Correlated percolation and tricriticality,’’
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 86,
no. 6, Dec. 2012, Art. no. 061131.

[84] Z. Wang, D. Zhou, and Y. Hu, ‘‘Group percolation in interdependent
networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 97, no. 3, Mar. 2018, Art. no. 032306.

[85] M. Li, Y. Deng, and B.-H.Wang, ‘‘Clique percolation in random graphs,’’
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 92,
no. 4, Oct. 2015, Art. no. 042116.

[86] F. Radicchi and G. Bianconi, ‘‘Redundant interdependencies boost the
robustness of multiplex networks,’’ Phys. Rev. X, vol. 7, no. 1, Jan. 2017,
Art. no. 011013.

[87] Y.-Y. Liu, E. Csóka, H. Zhou, and M. Pósfai, ‘‘Core percolation on
complex networks,’’ Phys. Rev. Lett., vol. 109, no. 20, Nov. 2012,
Art. no. 205703.

[88] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, ‘‘Giant
strongly connected component of directed networks,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 64, no. 2, Jul. 2001,
Art. no. 025101.

[89] L. A. Meyers, M. E. J. Newman, and B. Pourbohloul, ‘‘Predicting epi-
demics on directed contact networks,’’ J. Theor. Biol., vol. 240, no. 3,
pp. 400–418, Jun. 2006.

[90] X. Liu, H. E. Stanley, and J. Gao, ‘‘Breakdown of interdependent directed
networks,’’ Proc. Nat. Acad. Sci. USA, vol. 113, no. 5, pp. 1138–1143,
Feb. 2016.

135772 VOLUME 9, 2021



Z. Mahabadi et al.: Network Properties for Robust Multilayer Infrastructure Systems: A Percolation Theory Review

[91] R. Holden, D. V. Val, R. Burkhard, and S. Nodwell, ‘‘A network flow
model for interdependent infrastructures at the local scale,’’ Saf. Sci.,
vol. 53, pp. 51–60, Mar. 2013.

[92] C. Ducruet and I. Lugo, ‘‘Structure dynamics of transportation networks:
Models methods applications,’’ in The SAGE Handbook of Transport
Studies, J. P. Rodrigue, T. E. Notteboom, and J. Shaw, Eds. SAGE, 2013,
pp. 347–364.

[93] O. Lordan and J. M. Sallan, ‘‘Dynamic measures for transportation net-
works,’’ PLoS ONE, vol. 15, no. 12, 2020, Art. no. e0242875.

[94] R. Donner, Emergence of Synchronization in Transportation Networks
With Biologically Inspired Decentralized Control. Berlin, Germany:
Springer, 2009.

[95] J. Hackl and B. T. Adey, ‘‘Estimation of traffic flow changes using net-
works in networks approaches,’’ Appl. Netw. Sci., vol. 4, no. 1, pp. 4–28,
Dec. 2019.

[96] E. H. Van Nes andM. Scheffer, ‘‘A strategy to improve the contribution of
complex simulation models to ecological theory,’’ Ecol. Model., vol. 185,
nos. 2–4, pp. 153–164, Jul. 2005.

[97] M. Evans, ‘‘Do simplemodels lead to generality in ecology,’’ Trends Ecol.
Evol., vol. 28, no. 10, pp. 578–583, 2013.

[98] J. A. Logan, ‘‘In defense of big ugly models,’’ Amer. Entomol., vol. 40,
no. 4, pp. 202–207, 1994.

[99] E. J. Oughton, W. Usher, P. Tyler, and J. W. Hall, ‘‘Infrastructure
as a complex adaptive system,’’ Complexity, vol. 2018, Nov. 2018,
Art. no. 3427826.

[100] C. W. Johnson, ‘‘What are emergent properties and how do they affect the
engineering of complex systems,’’ Reliab. Eng. Syst. Saf., vol. 91, 2006.

[101] X. Huang, S. Shao, H.Wang, S. V. Buldyrev, H. E. Stanley, and S. Havlin,
‘‘The robustness of interdependent clustered networks,’’ EPL Europhys.
Lett., vol. 101, no. 1, p. 18002, Jan. 2013.

[102] S. Dong, A. Mostafizi, H. Wang, J. Gao, and X. Li, ‘‘Measuring the topo-
logical robustness of transportation networks to disaster-induced failures:
A percolation approach,’’ J. Infrastruct. Syst., vol. 26, no. 2, Jun. 2020,
Art. no. 04020009.

[103] D. Zhou, H. E. Stanley, G. D’Agostino, and A. Scala, ‘‘Assortativity
decreases the robustness of interdependent networks,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 86, no. 6, Dec. 2012,
Art. no. 066103.

ZAHRA MAHABADI received the bachelor’s
degree in architecture from Shahrood Univer-
sity of Technology, Iran, in 2010, and the
double master’s degrees in urban and regional
planning from the Art University of Isfahan, Iran,
and in urban informatics from King’s College
London, U.K., in 2013 and 2018, respectively.
She is currently pursuing the Ph.D. degree with
University College London, U.K., with the focus
of resilience of infrastructure through anticipa-

tory and self-healing mechanisms. During her Ph.D. studies, she has been
involved in a number of research projects in the areas of interdependent
infrastructure systems and resilience principles.

LIZ VARGA received the degree (Hons.) from
The Open University, Milton Keynes, U.K., and
the MBA and Ph.D. degrees from Cranfield Uni-
versity, Bedford, U.K. She has been the Chair
of complex systems with University College
London (UCL), London, U.K., since 2018, and
was previously a Professor of complex infras-
tructure systems with Cranfield University, from
2015 to 2019. She leads the Infrastructure Systems
Institute (UCL) and is the Section Head of infras-

tructure and cities with the Civil, Environmental and Geomatics Engineering
Department, UCL. She is the Principal Investigator of the coordination
node of U.K. Collaboratorium for Research in Infrastructure and Cities and
is involved in several research projects and teaching commitments. She
has published over 60 journal articles on infrastructure systems: energy,
transport, water, waste, and telecommunications. She is a regular speaker,
a reviewer, and an advisor on infrastructure matters, particularly sustainable
innovation, resilience, and digitalization, and has advised various organiza-
tions and programmes, including the Royal Academy of Engineering, World
Economic Forum, United Nations Office for Disaster Risk Reduction, and
U.K.’s National Digital Twin Programme (NDTp). She is a Commissioner
with the National Preparedness Commission. She is a fellow of the Char-
tered Institute of Building Engineers (FCABE) and the Higher Education
Academy (HEA) and was awarded the Research Prize from Cranfield Uni-
versity, from 2014 to 2016.

TOM DOLAN is a Senior Research Associate
of UKCRIC Co-ordination Node with University
College London (UCL). His research interests
include complex infrastructure systems as enablers
of societally beneficial outcomes. In particular,
on the systemic interdependencies, emergent prop-
erties and dynamic context that underpin their
normal operations and enable the realization of
systemic outcomes that are net zero; sustainable
and resilient to the disruptive impacts of global

warming and other resilience challenges; enhance the quality of the local
environment; and helps catalyse an urgent transformation to a net zero GHG
emission economy. His research is systemic in scope and includes challenges
of how we systemically govern, regulate, manage (including plan, design,
procure, construct, operate, maintain, enhance, repurpose, measure, account
for, value, and incentivise investment in) complex infrastructure systems for
the safe emergence of these system characteristics.

VOLUME 9, 2021 135773


