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Abstract 

Proton exchange membrane (PEM) fuel cells are considered a promising power supply 

system with high efficiency and zero emissions. They typically work within a relatively 

narrow range of temperature and humidity to achieve optimal performance; however, 

this makes the system difficult to control, leading to faults and accelerated degradation. 

Two main approaches can be used for diagnosis; limited data input which provides an 

unintrusive, rapid but limited analysis, or advanced characterisation that provides a 

more accurate diagnosis but often requires invasive or slow measurements. In order to 

provide an accurate diagnosis with rapid data acquisition, machine learning (ML) 

methods have shown great potential. However, there is a broad approach to the 

diagnostic algorithms and signals used in the field. This paper provides a critical view 

of the current approaches and suggests recommendations for future methodologies of 

ML in fuel cell diagnostic applications. 

Keywords: Proton Exchange Membrane Fuel Cell (PEMFC); Fault diagnosis; Water 

management failure; Machine learning; Data-driven. 

 

Introduction 

Fuel cells are electrochemical energy generators, converting chemical energy into 

electricity and heat directly. They have attracted growing attention in automotive and 

stationary applications, thanks to their zero emissions, high energy conversion 



efficiency and power density. Two systems have attracted a lot of attention and 

development: proton exchange membrane (PEM) fuel cells and solid oxide fuel cells 

(SOFCs) [1], named for the type of electrolyte they use. 

Cost is one of the significant barriers to commercialising PEM fuel cells [2], mainly 

due to the high Pt load on the cathode side and small batch production. Another 

important hinderance is insufficient durability and reliability [3]. Consequently, various 

fault diagnosis techniques and fault tolerance control strategies have been developed. 

The former can detect and identify faulty modes, and the latter adapts to correct 

developing faults and maintain optimal performance. Petrone et al. [4] proposed an 

overview of different model-based diagnosis approaches and Zheng et al. [5] have 

presented a complementary review on non-model diagnosis methodologies. Both works 

suggest that data-driven methods may be a promising solution for online fuel cell 

diagnosis. It is worth mentioning that Machine learning (ML) algorithms have also 

performed well in material and structure optimisation [6, 7], remaining lifetime 

prediction [8] and other fields of fuel cells. 

PEM fuel cell fault modes 

A typical fuel cell system is composed of the fuel cell stack (containing catalyst-coated 

electrodes and a polymer electrolyte membrane – together termed the membrane 

electrode assembly, MEA),  reactant supply subsystems, humidification, coolant 

circuits, a DC/DC converter and a controller unit. The operating conditions of the 

system are complicated and can be affected by many external factors, meaning faults 

may occur in different components during the life-cycle, resulting in a temporary 

decrease in system performance or accelerated degradation of the MEA or balance-of-

plant (BOP).  

Faults can be divided into ‘recoverable’ and ‘unrecoverable’. An unrecoverable fault 

generally refers to a permanent structural defect; for instance, pinholes or flaws in the 

membrane formed during the stack compression or assembly [9], or operational 

chemical degradation [10]. 

The ‘recoverable’ faults are those whereby the reduction in system performance is 



temporary and can be reversed with appropriate actions, such as short-circuit [11], 

reactant starvation, impurity poisoning (CO, H2S, and NH3) and water management 

failures [12]. However, if there is no timely fault detection and handling mechanism in 

the system, a reversible fault evolves into an irreversible one; for instance, Taniguchi et 

al. [13] analysed the effect of hydrogen starvation and showed that the cell output 

voltage rapidly drops below zero when the anode is short on fuel (termed cell reversal).  

Water management failures are the most commonly encountered and represent over 

50% of PEM fuel cell faults [14]. Especially for the next generation of self-humidifying 

fuel cell systems, water management will be critical to optimal performance. There is a 

subtle balance between the generation, transport and removal of water to maintain a 

stable voltage output [15, 16]. Once a fault occurs, it should be detected and identified 

as quickly as possible by a non-intrusive and real-time tool; it can then often be 

mitigated or even eliminated. 

Intrusive diagnostic techniques 

Intrusive diagnostic approaches give us a fundamental understanding of degradation 

mechanisms caused by various faults and they are generally ex-situ diagnostic tools or 

involve pausing the operation of the fuel cell to carry out in situ testing. Examples 

include electrochemical impedance spectroscopy (EIS) [17-20], cyclic voltammetry 

(CV) [21, 22], galvanostatic analysis [23, 24], and visualization [25-27] or 

spectroscopic measurements [28]. They can provide detailed information about the 

state-of-health (SoH) of the fuel cell system or materials; nevertheless, they typically 

require special modifications to the fuel cell system, which can affect its integrity (such 

as altered external components allowing probing of the MEA), or changing the nominal 

operating conditions. Additionally, since sensors cannot directly measure all faults, 

building the reverse relationship between system characteristics and SoH is challenging. 

Model-based approaches involve modelling the fuel cell system and then comparing 

the model outputs with the sensor measurements, the residual signal determining the 

SoH. This can be a complex and computationally demanding process; however, 

methods based on ML do not require a complex system model and fitting parameters. 



Instead, they establish a mapping function between signal and SoH directly. 

Traditional ML-based diagnostic techniques 

ML refers to a process whereby an algorithm is used to obtain models from data or 

interaction with the environment that can then be run automatically with minimal 

human interaction. ML can be divided into unsupervised, supervised or reinforcement 

learning. From the perspective of the training process, unsupervised learning only uses 

unlabeled datasets, supervised learning uses labelled datasets, and reinforcement 

learning needs dynamic interaction with the environment. Reinforcement learning 

addresses the decision-making problem of maximising long-term rewards. For example, 

Zhou et al. [29] proposed reinforcement learning-based energy management strategies 

for fuel cell vehicles to achieve maximum service lifetime of two power sources. 

Unsupervised learning is concerned with the distribution of the data itself. One of the 

common methods is clustering, which can group data points with similar characteristics 

or features. When the label takes the continuous value in supervised learning, it is called 

a regression problem, and when the label bears the discrete value, it is a classification 

problem. Therefore, data-driven fault diagnosis can be considered a classification 

problem. 

Figure 1 shows a simplified workflow of how ML can be used in fuel cell fault 

diagnosis. In the data collection step, experiments need to be carried out at different 

operating conditions, including fault free and other faulty states of interest, and the 

method of faults being imposed requires careful design. Then, the ML-based diagnostic 

model is trained, and so the relationship between the signal and SoH is built. Finally, 

the model can be deployed in a fuel cell system to monitor SoH online. The two most 

critical factors are the signals and the diagnostic model, as shown in Fig. 1. The 

diagnostic signals should be as simple as possible under the premise of indicating faults. 

Signals reflecting SoH include individual cell voltages [30-32], magnetic fields [33, 34], 

current density distribution [35, 36], acoustic emission [37, 38] and impedance spectra 

[39]. 



 

Fig. 1. Flowchart of the ML-based diagnostic techniques as applied to a fuel cell system. 

Li et al. [31] used Fisher discriminant analysis (FDA) to extract low dimensional 

features from the individual cell voltages. FDA makes it possible to separate data from 

different classes after dimensionality reduction. A PEMFC stack is typically composed 

of dozens or hundreds of cells, so feature extraction is necessary before training the 

classifier. The spherical-shaped multiple-class support vector machine (SSM-SVM) is 

adopted to classify the features into different SoH. Compared to the original SVM, 

SSM-SVM overcomes the limitation of being unable to recognise an unknown class – 

that is if the model is trained with only two classes (say ‘humidified’ and ‘dry’). For a 

class outside of the training dataset (such as ‘catalyst poisoning’), SVM will also 

recognise it as humidified or dry. Therefore, even if the new sample belongs to an 

unknown fault, conventional classifiers falsely predict it to be one of the predefined 



faults, but the SSM-SVM will classify it as a potential novel SoH. Li et al. [32] further 

verified the effectiveness of FDA by combining a directed acyclic graph SVM classifier 

as the diagnostic structure with experimental data from two different sized stacks, and 

other works provide online validation [40, 41]. As shown in Fig. 2a, the diagnostic 

methods based on ML include two procedures: offline and online, where offline training 

includes diagnostic model training and verification. Mao et al. [42] used stack voltage, 

current and operating conditions as the original diagnostic signals. The performance of 

supervised kernel FDA and unsupervised kernel principal component analysis (PCA) 

as the feature extraction algorithm is also compared. Unlike FDA, PCA aims to 

maximize the variance of the original data in the feature space. The introduction of the 

kernel function maps the original samples to higher dimensional space, which is used 

to solve the case of linear inseparability. Liu et al. [43] presented a diagnostic strategy 

based on the K-means clustering algorithm and discrete hidden Markov model 

(DHMM). K-means is an unsupervised iterative clustering algorithm whereby K 

clustering centers are randomly selected, and each data point is assigned to the nearest 

clustering center. Then, the average vector of each class is used as the clustering center 

of the next iteration. The singular sample points can be screened out in the data 

processing stage, and the K-value is set to the number of health states (6 here), then the 

original data of the same health state will be grouped. The point where the health state 

contradicts the grouping is singular. The average diagnostic accuracy for six different 

health states is 94.17% achieving higher classification accuracy than SVM with less 

computational cost. To deal with simultaneous faults in SOFCs, multi-label SVM was 

employed by Li et al. [44], which only requires a training dataset of a single isolated 

fault. Although there are many differences between SOFCs and PEMFCs,  the fault 

diagnosis strategy and the challenges are referential. Lin et al. [45] applied incremental 

PCA as the feature extraction algorithm, and four different classifiers are compared, 

concluding that random forest classifiers worked best. Liu et al. [46] presented a 

conversion technique to transform time-series cell voltage signals into 2D images, the 

statistical features of which are then extracted and classified by K-means. 



 

 
Fig. 2. The implementation procedure of the ML-based diagnostic strategies. Figure (a) adapted and 

rearranged with permission from Li et al. [41], Copyright (2018) Elsevier. Figure (b) adapted and 

rearranged with permission from Zhang et al. [47], Copyright (2018) Elsevier. 

Neural networks have also shown the strong capability, including reservoir 

computing [48, 49], extreme learning machine (ELM) [50], stacked sparse autoencoder 



(SSAE) [47] and long short-term memory (LSTM) networks [51, 52]. Liu et al. [50] 

combined ELM and Dempster–Shafer (D-S) theory to study the diagnostic result fusion 

at the decision level. The average recognition rate reaches 98.70%, and the operating 

time is only 0.211 s. ELM is a fast algorithm to solve the weight and bias of the single 

hidden layer neural network without calculating the gradient of the loss function. Since 

many signals are correlated with the SoH, the fusion problem arises correspondingly, 

and the fusion is divided into data fusion and decision fusion. Data fusion refers to 

splicing signals from different sensors, followed by input into the unique diagnostic 

model. Decision fusion here refers to determining the final result when multiple 

diagnostic models have different predictions. D-S theory is a framework for reasoning 

with uncertainty. Zhang et al. [47] proposed an SSAE-based diagnostic strategy for 

simultaneous faults (Fig. 2b). The diagnostic model parameters can be pre-trained with 

large amounts of unlabeled samples, and then fine-tuned with small amounts of labelled 

samples. Gu et al. [52] integrated the LSTM model into the embedded system 

(Simulink/C) and realised the online diagnosis (system controller) of flooding faults. 

LSTM can effectively process time-series signals, the traditional neural network does 

not consider the relationship between the current and previous output, so it cannot 

handle sequence data well. LSTM has the ability to handle long-term dependency 

problems thanks to its gates structure, meaning that LSTM networks can provide more 

reasonable diagnositic results compared to other “memoryless” approaches. 

ML-based techniques do not require physical parameters and theoretical 

relationships of the system. The SoH of the fuel cell system can be recognised through 

identifying patterns from simple sensor signals; therefore, they can be a suitable 

solution for real-time application in SoH determination.  

From the laboratory concept to the industrial application of ML-based methods, the 

primary consideration remains: how to achieve high diagnostic accuracy through low-

cost sensors, followed by the reliability and robustness of the diagnostic model. The 

sensor fault is considered by Zhao et al. [53] and Mao et al. [54]. 

Deep learning era  



Fuel cell systems usually work at dynamic load under different operating conditions. 

Lim et al. [55] achieved >92% diagnostic accuracy under untrained current densities 

using the residual basis scaling method, but the reliability is insufficient. Traditional 

ML algorithms have been applied to most fault diagnosis cases, but they only perform 

well on signals with the same distribution as their training data. Convolutional neural 

networks (CNNs) and the following signal-to-image conversion technique have the 

potential to solve this problem, an example as illustrated in Fig. 3b. The single cell 

voltages can be transformed into images, and then CNN is used instead of traditional 

ML models. In the field of target detection, before the deep-learning era, feature vector 

extraction and following classification are the typical steps; this is the same as data-

driven fault diagnosis of fuel cells. However, object detection achieved remarkable 

progress based on deep-learning techniques, such as R-CNN [56], Faster R-CNN [57], 

YOLO [58], SSD [59], thanks to their ability to generalise untrained samples. Besides, 

CNN is an end-to-end diagnostic model, which does not require the feature 

extraction/selection step (Fig. 3a). 



 

Fig. 3. Fault diagnosis evolving from traditional ML to deep learning using signal-to-image conversion 

techniques. The individual cell voltages figure reproduced and adapted with permission from Zhou et 

al. [30], Copyright (2020) Elsevier. 

ML-based fault diagnosis is still in the stage of model verification, using test data to 

verify the diagnosis model’s effectiveness. The possible challenges of integrating to the 

onboard controller, such as limited computation ability and time delay, have not yet 

been considered. Fault diagnosis aims to improve the recognition rate to 100% if 

possible. However, a single diagnostic model can only obtain a limited recognition 

capability which may be insufficient for the actual application [60]. Decision fusion 

systems have received significant attention, and the cooperation of different classifiers 

ultimately performs better than the outcome of a single one, just like the double-

negative test for Coivd-19 (a PCR swab and an IgM antibody test). It allows for 

avoidance of the uncertainties of the individual diagnostic approach. The performance 

of four decision fusion techniques, including majority voting, Bayesian belief, multi-



agent and modified Borda count, are explored by Niu et al. [61]. The accuracy of 

Bayesian belief could reach 100%, which is a remarkable improvement compared with 

the 74% accuracy rate of the best individual classifier.  

Data-driven fault diagnosis approaches are in the early stages of laboratory testing, 

with training sample data for each SoH in the literature ranging from dozens to 

thousands of data sets. In general, the reliable size of the training dataset depends on 

the requirements for the diagnostic model. If the diagnostic model requires different 

loads, the training dataset also needs to include a wide range of load conditions. Even 

under the same load, the severity of faults varies due to the fluctuation of operating 

conditions. The larger the training data is, the more information it contains and the more 

accurate the ML prediction will be. Open source training and test datasets will facilitate 

the optimisation of diagnostic methods for researchers unable to perform costly fault 

embedding experiments. 

Conclusions 

The realisation of real-time fault diagnosis can evaluate the control strategy of fuel cell 

systems. It can even correct the operating condition by integrating into the control logic, 

avoiding recoverable fault deterioration, and improving the fuel cell system’s reliability 

and durability. Effort in improving diagnostic accuracy and reducing computational 

costs is needed, and other problems such as the generalisation ability, decision fusion 

and online deployment of the diagnostic model also remain.  

Cross-fertilisation of strategies adopted for lithium-ion battery systems would be 

helpful [62-64]. Finally, micro-integrated sensors can provide more sensitive and robust 

signals for ML-based fault diagnosis techniques, improving the accuracy of such 

models and ultimately leading to rapid onboard fault detection and prevention 

methodologies.  
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