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ABSTRACT

In urban traffic management and planning, an important problem is 
how to obtain estimates of origin-destination (O-D) trip matrices using 
low-cost data such as traffic counts. Although conventional methods 
using the data from direct surveys can be used to estimate trip 
matrices, they appear to be inaccurate and expensive. By contrast, the 
use of traffic counts is attractive, as it is less expensive and more 
practical.

The main objective of the research reported in this thesis is to 
develop new methods for estimating trip matrices from traffic counts 
when congestion effects in networks are considered. The problem and 
existing methods including the sequential solution method used in the 
ME2 model are reviewed.

A new formulation is given for the problem which solves the two 
sub-problems of entropy maximization and equilibrium traffic assignment 
simultaneously. It allows modelled link flows to be constrained so as to 
equal observed ones without link assignment proportions of the trips. A 
simultaneous solution method is presented for this new formulation. To 
reduce the considerable computational burden in solving the problem, a 
heuristic method has been developed which uses a linear approximation 
fitted by regression to the equilibrium link flows. Extrapolation and 
perturbation methods have also been used to speed up the solution 
process. However, the simultaneous solution method appears to be 
impractical for use in large networks because of the heavy computational 
demand. As an alternative, an improved sequential solution method is 
proposed which uses a penalty function method. This method approximates 
a solution by solving a sequence of problems, while fixed link 
assignment proportions are used.

The performance of the proposed methods has been tested and 
compared with that of the existing sequential ME2 method using both 
small example networks and a larger real network. The results show that 
the simultaneous method works well and that it performs better than the
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existing sequential method or the improved sequential method. The 
improved sequential method is also shown to perform closely to the 
simultaneous one. Some practical implications of the new methods 
including the robustness of the solutions and the increased 
computational burden are discussed and they are also compared with those 
of the sequential solution method.

The conclusions from the main findings of the research are drawn 
and a number of suggestions for further study are given.
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CHAPTER 1. INTRODUCTION

1.1 Background

The estimation of origin-destination (O-D) trip matrices is an 
important part in the analysis of traffic management and transport
planning tasks. The trip matrices are often used to design and evaluate
the new transport plans. For example, to assess the impacts of
alternative traffic management schemes, one makes use of the trip 
matrices as an input to traffic assignment methods in order to estimate 
the likely variations in link flows on the network.

Conventional methods using the data from direct surveys can be used 
to estimate trip matrices. However, they are fairly expensive, involving 
considerable resources and causing interruptions to trip makers. More 
importantly, their end products may well be short-lived and unreliable. 
All methods of this kind use the sampled data and thus they can only
provide an approximation of the trip matrix for the survey period.

By contrast, the use of traffic counts for estimating trip matrices 
can avoid at least some of the difficulties identified in conventional
methods. In particular, traffic counts are easily available or 
inexpensive to collect. Traffic counts are collected regularly by local 
authorities for various local traffic management uses. Most counting 
operations can be performed without interrupting traffic or causing 
delays to travellers. Furthermore, traffic counts are automatically 
collected from the detectors laid down under the road. Secondly, as
traffic counts can be collected routinely, the evolution of the data
base can be easily followed up. This enables transport planners to 
update designs and forecasts continuously. Finally, the new methods 
using traffic counts are simple in terms of data processing and the
estimation process. However, they could produce more accurate results, 
since they use more reliable data.

Since the potential of using traffic counts for estimating trip 
matrices was recognized, various methods have been developed. The most
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common idea of estimating trip matrices from traffic counts is to find a 
trip matrix which, when assigned to the network, closely replicates 
traffic counts. Accordingly, the use of an appropriate traffic 
assignment method is important in the matrix estimation process.
According to the review of the literature presented in Chapter 4, the 
problem of estimating a trip matrix from traffic counts when the route 
choice proportions from the traffic assignment are assumed to be fixed
over variation of traffic demands is now well researched. However, the 
use of proportional assignment methods such as all or nothing assignment 
is not sufficiently realistic, especially when congestion in networks 
plays an important role in route choice. The better result in the matrix
estimation of using traffic counts can be achieved by using more
advanced assignment methods such as Wardrop’s equilibrium traffic 
assignment.

A number of methods have been proposed for the problem of
estimating trip matrices from traffic counts when the traffic
equilibrium conditions are taken into account. They can be classified 
into three methods: Willumsen’s method (Hall, Van Vliet and Willumsen, 
1980), Nguyen’s method (Nguyen, 1977) and Fisk and Boyce’s method 
(1983). However, none of these three methods solves the problem
satisfactorily. In particular, Willumsen’s method appears to be
attractive because of its advantages such as the simple data requirement
and the low computing cost. The method was initially developed by 
assuming fixed route choice proportions for the trips and was later
extended to use equilibrium assignment. However, the sequential solution 
method applied to solve the extended problem is only a heuristic, as it 
solves the two subproblems of entropy maximization and equilibrium
assignment alternately. The sequential solution method cannot be
guaranteed to converge to optimal solutions or even to converge at all. 
On the other hand, Nguyen’s method has the form of a traffic assignment 
problem with elastic demand and it uses a set of the interzonal travel 
costs as the input data which may be obtained from traffic counts. Fisk 
and Boyce’s method is an extension of a doubly constrained gravity model 
whose applications may not be suitable for urban transport studies. 
These two methods are distinguished from Willumsen’s one in a sense that 
they are based on the different level of the detail in the input data.
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1.2 Objectives

The main objective of this research is to develop new methods for 
estimating trip matrices from traffic counts when congestion effects in 
networks are considered. The problem and existing methods for estimating 
trip matrices from traffic counts are reviewed. A new formulation and 
its solution methods are proposed and their performance is tested and 
compared with that of the existing sequential solution method.

1.3 Structure of the thesis

This thesis is organized as follows. Chapter 1 describes a general 
background of this study with specific objectives and outlines the 
structure of the thesis. Chapter 2 provides an overview of some 
background to trip matrix estimation. Various conventional methods for 
estimating trip matrices are reviewed and their short-comings are
discussed. As an alternative to conventional methods, the advantages and 
disadvantages of the simplified methods for estimating trip matrices 
from traffic counts are addressed.

Chapter 3 identifies some fundamental issues in the formulation of 
the estimation problem using traffic counts. Two main types of traffic 
assignment methods - proportional assignment and capacity restrained 
assignment - are reviewed. Chapter 4 provides a detailed and up-to-date 
review of various existing methods for estimating trip matrices from 
traffic counts.

Chapter 5 proposes a new formulation and solution methods to 
estimate a trip matrix from traffic counts under equilibrium traffic
conditions. The simultaneous method is shown to be impractical in terms 
of computing time for large networks. As an alternative, an improved 
sequential method is proposed. Chapter 6 tests the proposed estimation
methods. Three test cases are investigated and their results are
reported in detail.

Finally, Chapter 7 draws the conclusions from the main findings of 

this study and a number of suggestions for further study are also given.
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CHAPTER 2. ESTIMATION OF TRIP MATRICES

2.1 Introduction

This chapter provides an overview of some basic background 
knowledge on trip matrix estimation. The estimation of trip matrices is 
an important step and also an expensive stage involving extensive 
resources in the transportation planning process. During the past 
decades, a large amount of effort by many researchers and practitioners 
has been devoted to develop methods of providing more accurate, more 
consistent and less expensive end products. As a result, a number of the 
methods have been developed. It is not possible and unnecessary for this 
research to investigate the details of all of those methods. This 
chapter reviews only some of the methods which are considered to be 
most important and relevant to this research.

This chapter is organised as follows. Section 2.2 makes a 
definition of a transport planning network, trip matrices, and their 
mathematical notations conventionally used in transportation planning 
studies. Section 2.3 reviews some of conventional methods for trip 
matrix estimation with a particular attention to their major 
shortcomings. Section 2.4 discusses leading motivations of developing 
simplified methods apart from complicated conventional methods. As an 
alternative to conventional methods, the method of estimating a trip 
matrix from traffic counts is assessed briefly and compared to 
conventional methods.

2.2 Modelling of study areas and trip matrices

A study area is modelled in transportation planning studies by a 
zoning system. A zoning system consists of zones and zone centroids. 
Each zone represents a sub-area of the study area, where each zone has a 
centroid as a center to represent activities within the zone. All trips 
are assumed to originate from zone centroids and terminate there. A 
study area can also be considered as divided into two areas: an internal 
one representing the area of interest itself, and an external one
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representing the rest of the transport system in so far as it affects 
the internal part. The internal area is expressed by internal zones and 
the external one by external zones.

A road network is expressed by a set of N nodes and a set of L 
links. In this study, emphasis is placed on the consideration of typical 
urban road networks. Nodes are usually associated with points of 
interest in the network such as junctions, and they are labelled 
consecutively from n=l to N. A link is represented by an ordered pair of 
nodes, if there is a link between two nodes. Links are always one way 
and for some purposes it is useful to associate successive numbers to 
them, a=l,2,...,L. Each link is associated with a number of attributes. 
The most important attributes include:

- link length: physical distance along the road, d a , measured in 
meters,

- design speed: average free flow speed, Sa, measured in k m / h r ,

- link capacity: maximum rate of making traffic passing, Qa, 

measured in vehs/h. It depends on factors such as number of lanes 
or width,

- travel time, ta , measured in minutes,

- travel cost, Ca, usually a weighted combination of travel time 
and distance,

- flow or traffic volume, Va, measured in pcu/h or vehs/h,

- a cost-flow relationship, ca(Va), a function of the amount of 
traffic using link ’a’ relating travel cost on the link to link 
volumes.

Centroid connectors are used to connect zone centroids with nodes 
in the network. The cost associated with their use represents the 
average cost of travelling over the local streets from the origin before
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joining the main network. This cost is normally considered to be 
independent of the traffic flow.

A trip between origin zone i and destination zone j will use a 
particular sequence of links called a path or route and Tijr will be the 
trips from i to j which use route r. The cost of travelling along this 
route is the sum of the costs of the individual links used and will be 
represented by Gjr. The variable 8?jr can be used to identify links 
used by route r between origin i and destination j. Then, the route cost 
is

Cijr=X CaSijr (2.1)
a

where 8 ? jr = l if link ’a’ is used by route r between i and j, and 
otherwise, 8?jr= 0 .

Preparation of study networks lays a basis for transportation 
planning studies. The study area should be defined with a greater care. 
The most important criterion is that it should include those routes 
which would be affected significantly by traffic rerouting as a result 
of any proposal. It is desirable that study area boundaries should 
coincide with administrative boundaries to facilitate the provision of 
data. After defining the study area, the zoning system and the road 
network in the study area will be modelled depending on the size of the 
study area and the type of the study. For example, large-scale strategic 
planning studies may be based on coarse networks, which mean a higher 
level of aggregation. Small scale traffic management studies require 
finer networks, which means a low level of aggregation. The definition 
of the study area, zoning system and road network is a compromise 
between conflicting requirements between the desire to improve the model 
by increasing its size and complexity and the practical considerations 
of keeping costs down and meeting targets of time scale and adequacy. 
Experience and professional judgment will often be important components. 
For more useful disciplines for defining study areas and modelling 
networks, see ’Traffic Appraisal Manual (DTp, 1981)* and ’Road and 
Traffic in Urban Areas (IHT and DTp, 1987)’
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The number of trips per unit time from origin i to destination j is 
represented by Tij and the complete set of trips covering all the study
area constitutes the trip matrix T={Tij}. Thus, a trip matrix is a 
representation of the trips made between pairs of zones in the study
area.

Trip matrices are an important element in the analysis of traffic
management and transport planning tasks. Trip matrices are often used to 
design and evaluate the new transport plans. For example, to assess the 
impacts of alternative traffic management schemes, one makes use of the 
trip matrices as an input to traffic assignment methods in order to 
determine variations in link flows on the network.

The trip matrix depends on two forms of aggregation, spatial and
temporal. Spatial aggregation involves the grouping of areas into 
discrete spatial units or zones. In large-scale modelling exercises, the 
number of zones can be thousands, whereas for small scale traffic 
management schemes 25 to 50 zones may be enough. But even in this latter 
case, the number of cells is quite large and many of them are likely to 
contain zeros or small numbers of the order of 1 trip per hour.

Temporal aggregation is concerned with the time interval during 
which trips between zones are considered. The choice of this time slice 
or interval has a major impact on the trip matrix and its usefulness in 
the analysis of particular problems. In a detailed analysis of a system 
of saturated traffic signals, time slices of the order of 15 minutes are 
used to follow the build-up and decay of queue lengths and travel times. 
On the other hand, most traffic management problems require 
discrimination at the hourly level only and many problems involving new 
road construction could be handled with trip matrices based on 16 or 24 
hours. Indeed, some analyses such as inter-city demand studies, use 
weekly, monthly or yearly trip matrices.

Trip matrices based on a small time slice present some particular 
problems. For a start, it may be difficult to allocate unequivocally 
trips to time slices. For example, consider the difficulty of allocating 
a trip starting at 9:10 a.m. and ending at 9:20 a.m. in the study area
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to either the 9:00 to 9:15 or 9:15 to 9:30 trip matrix. Thus, it is 
desirable to use time slices which are considerably longer than a
typical trip length in the study area. The second problem is sparsity:
the smaller the time slice, the greater will be the number of cells in
the trip matrix which contains fewer than 1 trip.

The objectives of a particular study requiring O-D information will 
help to define the spatial and temporal aggregation for the trip matrix 
used.

Trip matrices are subject to hourly, daily, weekly and seasonal 
variations in the same way as traffic counts or trip rates. One can
think of a distribution of trip matrices over, say, a year and it will
depend again on the objectives and resources of the study which matrix
can be said to be the trip matrix of interest.

2.3 Conventional methods for estimating trip matrices

This section provides an overview of conventional methods for 
estimating trip matrices. For a practical purpose, conventional methods 
are classified into two main types: direct estimation methods such as 
roadside interviews which use direct measurements of trip matrices and 
indirect estimation methods or synthetic methods such as distribution 
models which use other data to infer a trip matrix.

2.3.1 Direct estimation methods

Direct estimation methods rely on field observations, extensive 
surveys and interviews. The disruptive nature of interviews inevitably 
causes inconveniences to the travellers and delay to the traffic. Time 
and budget constraints also limit the number of interviews that can be
conducted. Therefore, errors will be inevitable wherever 100 per cent 
sampling cannot be achieved. Moreover, observation methods rely heavily 
on the reliability of interviewers and observers in data collection and 
interpretation. Hence, technical and human errors are likely to occur,
e.g. miscoding and misinterpretation of information. Perhaps, the most 
influential problem associated with this approach is the requirement of
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large amount of resources. Willumsen (1981a) provides a good review for 
various survey methods. More practical details are given in the ’Traffic 
Appraisal Manual (DTp, 1981)’. Major techniques frequently used are as 
follows:

(1) Home interview: This method is employed in conventional transport 
planning studies for large towns, major conurbations and regions. It is 
fairly expensive technique, usually involving large number of staff 
carrying out interviews in a sample of households or work places. The 
data thus collected covers a wide range of information about the origin 
and destination of trips which is given a good deal of attentions.
Because of the large cost of collecting and processing home interview
data, only a sample of all households is surveyed. Sampling rates
normally range between 1 and 10 per cent. As information of different 
sorts and for a variety of purposes is collected, the sampling rates are 
a compromise between theses objectives and survey costs.

(2) Roadside interview: This method requires vehicles to be stopped and 
questioned regarding the origin and destination of their journeys and
other data. These interviews are usually taken on the roads of a cordon 
at screen line points. Interview stations should be selected in such a 
manner that all relevant inter-zonal traffic can be sampled. This 
requires a careful definition of the zones and network in the study 
area. The number of interviews to be made at each survey station is 
defined according to sample considerations. Based on sample size and 
survey period, correction factors are applied in order to expand the 
original survey data to estimate a trip matrix for a different period.
Sampling fractions of 1 in 5 may be considered typical but they
certainly depend on traffic levels and manpower available. These
interviews tend to be expensive in manpower, delay and disruption to
trip makers.

(3) Flagging methods: This method requires observers located at each of 
the entry and exit points of a study area and the use of types of flags 
to identify vehicles. Colored or numbered stickers are attached on entry 
and recorded at intermediate and exit points. For small study areas, it 
is possible to identify vehicles by asking drivers at one entry point to
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switch their headlights on for a fixed period of time. Observers at key 
points then record the number of vehicles with their lights on for given 
intervals of time. The process is then repeated for different entry
points on successive days. This method can only be used during daylight
and for small study areas.

(4) Vehicle following method: The method requires observers to follow
vehicles through the study area recording its passage through key points 
in the network. This method seems more appropriate for route choice than 
O-D studies and probably is only advantageous in large and busy central 
areas.

(5) Aerial photography: This method is based on time-lapse aerial 
photography of a study area from a stationary helicopter hovering at a 
fixed altitude. The data collection stage is fast and inexpensive 
compared with alternative methods but this is achieved at the expense 
of processing effort. The method requires following individual vehicles 
frame by frame through the study area. This method will be more 
attractive when automatic identification of vehicles in the frames is 
available. In principle, a sampling ratio of 1 to 1 for the survey 
period could be achieved with this method, but practical reasons 
restrict sampling ratios to values similar to road side interviews.

All the direct estimation methods described above are fairly
expensive involving considerable resources and more importantly the end
products may well be short-lived and unreliable. Moreover, roadside 
interview method causes interruptions and delay to traffic. Also, all 
the methods imply sampling and thus they can only provide an estimate of 
the trip matrix for the survey period.

2.3.2 Indirect estimation methods

Trip matrices often cannot be obtained directly from surveys
mentioned above (e.g., because an excessively large survey is required 
or suitable survey locations are not available). Alternative techniques
are developed to derive a trip matrix from incomplete survey data by 
means of synthetic models. First, the conventional four stage approach
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is briefly described. Then, the two most frequently used distribution
models in urban transportation planning - the doubly-constrained gravity 
model and the partial matrix technique - are discussed.

The conventional four-stage approach used in most transportation 
planning studies consists of variants of the following sequence.

(1) Trip generation and attraction: The number of trips originating from 
and attracted to each zone is estimated. The generation and attraction 
for each zone are estimated by trip end models derived using planning 
data of the existing trip rates and the socio-economic, land use and 
transport system characteristics of the study area. This is an expensive 
process involving large volume of survey data.

(2) Trip distribution: The number of trips between each origin and
destination is estimated using the trip ends generated in the trip 
generation stage.

(3) Modal split: This stage models the choice of mode for trips made, 
usually car and one or more public transport mode. It is particularly 
required in planning public transport services.

(4) Trip assignment: This stage allocates the trips between zones to
various routes that are most likely to be taken in travelling between 
each pair of zones. The final output is a set of link flows and travel 
costs between each pair of zones. Various methods for assigning trips 
into the network will be discussed in greater detail in Chapter 3.

There are many other variations for the trip distribution models.
Here only the following two distribution models are discussed.

(1) The gravity model: The most widely used gravity model is the 
doubly-constrained gravity model (Wilson, 1967).

Tij=AiOiBjDjf(Cij) (2 .2 )
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where Oi and Dj are total number of trips generated and attracted to 
zones i and j, Ai and Bj are balancing factors calculated as

(2.3)

B j=  ------------
X A iO if(C ij)

(2.4)

and f(Cij) is a deterrence function or measure of separation with at 
least one parameter for calibration. The most popular form of the
deterrence function is the exponential type, f(Cij)=exp(-(3Cij) with the
cost perception parameter p. The parameters of the deterrence function
are usually calibrated so that the model produces a trip length
distribution which is as close as possible to that obtained from survey
data.

In principle, the parameters may not be transferable between study 
areas, since they are calibrated for each particular set of data. The 
gravity model is simple to calibrate, but it may have limitations in the 
representation of real trip-making behavior.

(2) Partial m atrix technique: Partial matrix techniques have been
developed in order to synthesize a trip matrix using incomplete data, it 
is used to fill in missing cells of a trip matrix. Completed cells are 
used to derive a relationship between interzonal trips, zonal
characteristics and interzonal travel costs from which missing cells are 
generated. The theoretical basis for this approach was put forward by
Kirby (1979) and it has been practically applied by Neffendorf and 
Wootton (1974) and many others. The technique is attractive because of 
its survey cost saving potential, but many questions remain regarding 
the errors involved and the choice of good survey patterns (Kirby,

A main feature of the conventional four stage approach is that it 
is sequential, as each stage is based on the output from the preceding 
stage. There might be internal inconsistencies within this sequence. For

1979).
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example, the trip generation stage - the estimation of trip ends - 
assumes implicitly a general level of service in the network. The trip 
distribution stage requires an explicit level of service such as travel 
costs in the network. The explicit level of service is calculated from
the trip assignment stage. However, the initial levels of service used
for trip generation and distribution are rarely revised to be consistent 
with the travel costs calculated by the trip assignment stage. This 
approach requires extensive input data for trip generation. The input 
data is not only expensive to collect but also they are likely to be 
unreliable and inaccurate.

2.3.3 Errors in trip  matrices estimated by conventional methods

Any trip matrix, whether obtained from direct surveys or indirect 
transport modelling exercises will only be an approximate representation 
of the actual trip matrix. Thus, the resulting trip matrix will not be 
free from errors. It is important to understand the errors and 
inaccuracies in the trip matrices estimated by conventional methods 
described in Sections 2.3.1 and 2.3.2. Willumsen (1981a) mentioned that 
the accuracy of a trip matrix obtained by the direct and indirect 
estimation methods are subject to a range of sources of errors as 
follows:

(1) Daily/seasonal variations and survey period expansion errors: This
type of errors occurs when correction factors are applied to convert the 
original survey data to get a different time slice or period trip matrix 
(for example to expand a 16 hour survey to 24 hour survey). It may well 
be the case if a trip matrix is to be produced for a longer time period 
but survey data is only available for a shorter time slice. These errors 
are mainly caused by the time variations of the trip matrix.

(2) Data collection errors: This type of errors occurs during the survey
period and is mainly caused by human errors, for example, misreporting 
of trips, misidentification of vehicles, incomplete questionnaires or
even errors while writing down information. This type of error is 
usually encountered and practically unavoidable. Good quality control 
can decrease but not eliminate these errors.
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(3) Data processing errors: This type of errors occurs in the process of 
transferring and compiling the raw data set and is mainly caused by 
human errors. Miscoding, incorrect typing of data, double counting, 
missing records, editing a checking list and creation of files, 
production of output tables and even programming errors are some of the 
main sources. Again a good quality control system may help to decrease 
these errors.

(4) Sampling errors: Traffic models are usually based on sampled data, 
which is taken to be representative of the population concerned. 
Provided the sampling frames are understood, confidence levels can be 
calculated for the values being estimated. This type of error occurs 
because, except in very simple cases, the survey cannot cover all the 
trips during the survey period. This may be due to the location of the
survey sites in roadside interviews or flagging methods which makes it 
impossible to sample all the trips. In this case sampling rates of less 
than 100% are required for practical considerations. It is possible to
reduce sampling errors by taking larger samples. However, beyond certain 
limits this is not worthwhile because the range of uncertainty will only 
diminish significantly with very large increases in the sample and also 
because possible errors due to other causes are likely to become more 
important.

In addition to these sources of error, the accuracy of a trip 
matrix obtained using an indirect method will be subject to the 
following additional ones:

(6) Calibration errors: Some items of the data required such as road
lengths can be measured very accurately, whereas other items such as
employment may only be estimates. This type of error occurs when 
inaccuracies in the data required for the calibration of parameter 
values of transport models lead to wrong parameter values. It may also 
be due to the use of an inadequate and inaccurate calibration procedure.

(7) Mis-specification errors: Forecasting models are based on fairly 
simplified representations of human behaviour even if they appear to be 
complex. They are, therefore, almost bound to be incorrectly, or
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inadequately specified. This type of error occurs when the assumed 
model for trip making behaviour does not conform to the real trip making 
behavior accurately. Hence, any approach will suffer from this type of 
error , although not all to the same extent. Errors on the form of 
equations used, or the omission of important explanatory variables may 
show up in comparisons with independent validation data but are more 
likely to emerge over time. The best guide to the adequacy of a model 
specification is an examination of the residual errors i.e. the 
difference between observed and modelled values. They should be normally 
distributed and should not show any bias. It should be possible to 
explain why the general form of the model makes sense, and why the 
dependent variable should vary with the explanatory variables.

The only type of error which has a standard theoretical treatment 
is the error due to the sampling fraction or sample size error . In this 
study, however, it is not necessary to discuss this issue in detail.

2.4 Simplified methods using traffic counts

As discussed in the previous sections, all of the conventional 
methods for estimating trip matrices are fairly expensive, involving 
considerable resources in terms of manpower, time, disruption to trip 
makers during the survey and lengthy data processing. Moreover, their 
end products are sometimes short-lived, unreliable and inaccurate.

In the report ’Urban Traffic Models: possibilities for
simplification’ published by OECD (1974), two main reasons for pursuing 
simplification in classical conventional types of urban transport 
modelling were raised. They are: (1) the high cost of collection and 
analysis of large volumes of data, (2) the extensive effort required to 
run complex and costly computer models. It was pointed out that the 
conventional approach is unwieldy, inflexible and slow and it is not 
certain that the level of detail and accuracy is well matched to the 
planning phase concerned. The report suggested that a greater research 
effort is required to develop and improve strategic models requiring 
less data, and less computer and manpower resources. The report also 
stressed the need to improve the applicability of the models to relevant
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policy questions and pointed out several outstanding problems regarding 
their internal consistency.

Transport studies using conventional models have been criticized 
frequently by many reviewers in the literature (Atkins, 1987). Their 
common criticism includes that conventional methods are inaccurate, 
inflexible, too complicated, costly, slow, policy-insensitive and lack a 
sound theoretical basis.

Realizing the dissatisfaction with conventional methods, the method 
for estimating trip matrices from traffic counts has received great 
attention in recent years. The estimation method using traffic counts 
can avoid at least some of the main disadvantages identified in 
conventional methods. First of all, traffic counts are relatively easy 
and inexpensive to obtain. They require less manpower and effort to 
survey, since they do not require preparation of questionnaires or
statutory powers. They might be available from other routine work of 
traffic management and control such as junction design, accident
analysis, monitoring of traffic flows, etc. Also, the automatic 
collection of vehicle counts is now well advanced and traffic counts on 
links having an automatic counter can be collected without any further 
survey. They can be processed easily by computer packages. Furthermore, 
traffic counts are collected without generating any delay or disruptions 
to vehicles or trip makers.

Secondly, traffic counts are more accurate and reliable than the
data used in conventional modelling. In fact, traffic counts are 
measured at a higher level of aggregation on links and they are less 
subject to survey errors. Moreover, all vehicles passing through
monitoring points are counted and they have smaller sampling errors.

Thirdly, traffic counts do not need lengthy data processing. They 
are simple to use and the information provided does not need further 
manipulation.

Fourthly, the estimation method using traffic counts does not go 
through the four-stage conventional modelling process. It simplifies
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four-stage process into a single stage. Thus, the simplified methods are 
internally consistent. They do not need much of the large volume of data 
required in four-stage modelling.

Moreover, traffic counts can be used to update an old trip matrix 
for example, from previous studies or surveys to be consistent with
existing flow observations. In other words, the method using traffic 
counts has a capability to evolve data base continuously. As data
sources age, their relevance and reliability become more dubious and 
publicly unacceptable. Costs of extensive new data-collection exercises 
would be prohibitive given the limited role of the current applications. 
It can no longer be argued that such costs are a small proportion of 
likely future infrastructure spending.

However, despite many advantages of the simplified method using 
traffic counts, it has some inherent weaknesses which may fail to be
recognized by practitioners. The models have no obvious facility to
predict future O-D movements, i.e. they cannot take account of future 
land-use developments or redistribution effects from a proposal. Also, 
because of the wide range of O-D patterns that can fit a set of traffic
counts, a great importance is attached to prior information. Thus if the
old transportation study is based on inadequate, poor or biased models,
the new estimates will be similarly flawed.

28



CHAPTER 3. THE ESTIMATION PROBLEM USING TRAFFIC COUNTS

3.1 Introduction

Following the brief introduction of the trip matrix estimation 
method using traffic counts in the previous chapter, this chapter 
further describes a mathematical formulation of the estimation problem. 
The basic idea of the estimation problem is to derive a trip matrix 
which closely reproduces traffic counts observed on links, when 
reassigned to the network. Traffic assignment plays an important role in 
the formulation of this problem, as it relates an estimated matrix to 
traffic counts.

Section 3.2 reviews various traffic assignment methods available 
ranging from a simple all or nothing assignment to a more advanced 
equilibrium assignment. Section 3.3 describes a general mathematical 
formulation of the matrix estimation problem. Section 3.3 ends by 
discussing some major difficulties inherent in the estimation problem.

3.2 Review of traffic assignment methods

The traffic assignment problem may be stated as follows:

Consider a road network representing the study area and a trip 
matrix {Tij} representing the number of trips made between 
origins and destinations in the network. Then, the objective of 
the traffic assignment is to determine traffic flows on the 
links of the network by modelling the routes taken by drivers 
through the network.

Route choice procedures attempt to simulate drivers’ behaviour in 
choosing the routes that drivers’ consider best. Different drivers often 
choose different routes between any given origin and destination, 
especially in urban areas. There might be numerous factors which affect 
the route selection of drivers such as:
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- time,
- distance,
- monetary cost,
- congestion and/or cost,
- type of road (e.g. motorway vs A-road),
- scenery,
- road works,
- safety,
- sign posts,
- habit.

To include all such behavioural factors in a model is clearly not 
possible and therefore approximations are necessary. A number of studies 
have attempted to identify the specific factors which motivate drivers. 
See, for example, Benshoof (1970), Ratcliffe (1972), Armstrong (1977), 
Outram and Thompson (1977, 1978), Lumm (1978), and Wootton, Ness and 
Burton (1981). However this research reviews only two very general 
reasons why drivers choose different routes:

(1) Difference in individual perceptions of cost known as stochastic 
effects: Drivers differ in their perception of what constitutes the best 
routes. For example, some drivers choose the fastest route and some the 
shortest. Such differences in perception will lead to a division of 
traffic between two routes.

(2) Capacity restraint or congestion effects: Increased travel costs due 
to congestion on heavily used links, making some routes less attractive 
and increasing the number of routes of similar cost between any two 
nodes.

Both stochastic effects and congestion effects may be modelled into 
the context of ’travel costs’. We may assume that each trip maker 
chooses his route so as to minimise his individually perceived travel 
cost and that trip makers vary in the way in which they perceive these 
costs. For example, a driver interested in a fastest route equates cost 
with time, the shortest route equates cost with distance, etc. The 
modeller must usually attempt to define a travel cost which represents
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in some sense an average travel cost taken over all drivers. The most 
common method is to define cost as a linear combination of time and 
distance.

Stochastic effects arise because different drivers perceive costs 
in different ways, whereas capacity restraint arises because costs - and 
in particular their travel time component - depend on flows. Stricdy 
speaking both effects operate together, particularly in urban areas, and 
a perfect route choice model would take both into account. However, it 
appears that stochastic effects are the dominant factor at low levels of 
traffic flow whist capacity restraint becomes dominant at higher flows.

Along with the route choice criteria - stochastic effects and 
congestion effects - traffic assignment methods may be classified into 
four ways: all or nothing, pure stochastic, Wardrop equilibrium
(Wardrop, 1952) and stochastic user equilibrium. For modelling the 
problem of trip matrix estimation from traffic counts, Robillard (1975)
has classified traffic assignment methods into two groups: proportional
assignment and non-proportional ones. In this classification, 
proportional assignment methods satisfy the following conditions:

(1) the total assigned flow on a link is the summation of all the flows
assigned if each O-D pair is assigned separately, and

(2) if all the elements of the trip matrix are changed by a certain 
fraction, then all the assigned flows on each link also changes by the
same fraction. For example, if all the entries of the trip matrix are
doubled, the assigned flow will double the flow assigned with the
original trip matrix.

Any trip assignment process which does not conform with these above 
two conditions is classified as non-proportional. All or nothing and 
pure stochastic assignments belong to the proportional assignment group. 
Wardrop equilibrium assignment and stochastic user equilibrium are 
non-proportional.
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3.2.1 Proportional traffic assignment methods

(1) All or nothing assignment: If we assume that all drivers perceive
travel costs in an identical fashion and that these costs are fixed 
independent of flows, then every driver from i to j must choose the same 
route. In certain circumstances such assumptions may be justified - for 
example, in a relatively sparse network of uncongested rural roads - but 
they are unlikely to apply to traffic in urban areas. However, all or 
nothing assignment is still the simplest and most efficient technique,
hence its widespread use. Having found the shortest path - minimum cost 
- between each origin and destination and loaded the trips onto the
network through these, then the total flow for each link can be 
calculated.

All or nothing assignment is the fastest and simplest method of
assignment and useful for simple networks where there are only few
alternative O-D paths or little congestion. In addition to this, the use 
of all-or-nothing assignment provides useful information to the traffic
planner in that it represents a ’desire line* assignment which the 
traffic planner might choose to use to plan new roads. It is also often 
necessary to use this assignment in considering how schemes, which are
designed primarily for peak hour conditions, operate during off-peak. 
Another important role of all or nothing assignment is to use for other 
assignment methods. For example, the iterative Frank-Wolfe algorithm for 
solving the equilibrium assignment problem uses all or nothing 
assignment to generate a set of auxiliary link flows. This will be
reviewed in detail later.

(2) Pure stochastic assignment: Pure stochastic assignment retains the 
assumption of flow-independent costs but takes into account variations 
in drivers’ perceptions on route choice. This type of assignment differs 
from all or nothing assignment in that it seeks to spread drivers across 
a range of different routes between each origin and destination, 
explicitly allowing non-minimum cost routes to be selected. Stochastic 
assignment is often useful for generating multi-routes in uncongested 
networks. A number of algorithms have been proposed to do so; see for 
example, Burrell (1968), Dial (1971), Van Vliet (1976), Florian and Fox

32



(1976), Daganzo and Sheffi (1977), Van Vliet and Dow (1979) and Sheffi 
and Powell (1981). Here two most widely used methods of stochastic 
assignment - Burrell’s and Dial’s methods - will be reviewed briefly.

Burrell’s assignment method assumes that the travel cost perceived
by individual drivers on each link of the network is distributed around
the mean cost. The model defines the actual mean link costs together 
with a form of the distribution about this mean of individually 
perceived travel costs on each link. The perceived travel costs on each 
link can then be generated by taking random samples of these link cost 
distributions. Random numbers, for example based on a rectangular 
distribution, are used repeatedly to select costs for each link. The 
model then finds and loads the fastest routes minimising the sum of 
their perceived travel costs. A number of variants on this basic theme 
are used in practice, based , for example, on different forms of the 
distribution. (See, for example, Brooks and Harris, 1972; Mason, 1972).

Burrell assignment satisfies the criterion that cheap routes are 
used more frequently than expensive ones. It also alleviates the
problems associated with parallel routes where an all-or-nothing 
algorithm tends to load all trips onto one route and none onto parallel 
routes. However, it does suffer from one major problem in that the flows 
generated are subject to stochastic fluctuations, so that in comparing 
two different schemes it is sometimes difficult to distinguish real
differences from stochastic ones. The solution is to repeat the random 
samplings a sufficiently large number of times to reduce the stochastic 
fluctuations to an acceptable level, but this may lead to unacceptably 
long computing times.

Dial (1971) proposed a probabilistic multi-route model whereby 
trips at each node are sub-divided amongst all feasible entry links in a 
probabilistic manner favouring minimum cost routes. An attractive 
feature of Dial’s assignment is that more costly routes are assigned 
less traffic. The user of the model has the facility to calibrate it to 
suit his needs.

33



3.2.2 Equilibrium traffic assignment methods

Equilibrium, or capacity restrained traffic assignment is based on
assumption that the travellers will consider the generalised travel
costs including the congestion effects when they choose their routes. 
Thus, the cost of travelling on a link depends on the level of the flows 
on all links, not just that link through the speed-flow relationship. 
However, this study will be interested in special cases that the cost on
a link depends only on the flows on that link.

Various methods for capacity restrained traffic assignment have 
been proposed. Initially, heuristic or approximate solution techniques 
were developed. Later, several convergent algorithms satisfying 
Wardrop*s equilibrium principle were devised. The most frequently used 
heuristic methods include repeated all or nothing, incremental loading
and iterative loading assignments:

(1) Repeated all or nothing: This involves the assignment of the trip 
matrix according to some pre-defined values of link costs, usually
obtained by an all or nothing algorithm. The link costs are then
adjusted according to the speed-flow relationship and the trip matrix is
reassigned according to the new link costs. This is repeated until the
change in link costs becomes sufficiently small. This procedure is not
in general convergent.

(2) Incremental loading: The idea is to assign the trip matrix onto the 
network in fractions and after each loading, the costs of the links are
adjusted based on the speed-flow relationship. This process is repeated 
until the whole trip matrix has been assigned. The accuracy of this
procedure depends on the number of fractions used.

(3) Iterative loading: This method is to assign the full trip matrix 
onto the network repeatedly and after each trip assignment, resulting 
link flows are linearly combined with the link flows from the previous 
iteration. There are different ways of choosing at each iteration but 
the most popular is due to Smock (1962) who suggested that should be 
made equal to the reciprocal of the number of iterations. It can be seen
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that this results in a small value for after some iterations, ensuring 
small changes of the flows and costs of links.

The basic principles defining traffic equilibrium conditions on 
congested networks have been first formally enunciated by Wardrop 
(1952). His first principle is:

Under equilibrium conditions traffic arranges itself in 
congested networks so that all routes used between any O-D pair 
have equal and minimum costs while the cost of any unused route 
is greater than or equal to this.

Mathematically, Wardrop equilibrium can be expressed as:

Wardrop* s first principle is simply a restatement of the basic 
premise that each driver chooses the route that offers him the minimum 
perceived cost. That is, traffic distributes itself in such a way that 
no driver can reduce his travel cost by switching to another route. 
Thus, under certain circumstances, Wardrop *s equilibrium is also 
referred to as being ’user-optimised’ (Dafermos and Sparrow, 1969). 
However, it was later recognised that Wardrop’s equilibrium condition 
and Dafermos and Sparrow’s user-optimised condition do not always 
identify the same points as equilibrium (Smith, 1984a; Heydecker, 1986). 
In particular, Smith (1984a) provided an example where Wardrop’s
equilibrium condition is satisfied but Dafermos and Sparrow’s
user-optimised condition is not.

Wardrop’s second principle states that the distribution of traffic
is such that the total travel cost on all routes in the system is
minimum. The marginal travel costs on all paths between an O-D pair are 
equal. Flows which satisfy Wardrop’s second principle are often referred 
as a system optimum.

Cijr — Cij if Tijr >  0
Cijr >  Cij if Tijr =  0

(3.1)
(3.2)

where Cij is the equilibrium travel cost between zone i and zone j.
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A major advance in equilibrium assignment was made by Beckmann 
McGuire and Winsten (1956) who recognised that the Wardrop equilibrium 
assignment problem is equivalent to a multi-commodity flow problem. They 
have shown that finding link costs and flows which satisfy Wardrop’s 
first principle is equivalent to finding an optimum solution to the 
following minimisation problem.

P 3.1
rVa

M in  Z(V) = £  C a(x) dx (3.3)
Y " a o

s.t.
£  £  Tijr 5?jr = Va (3.4)

'^ T ijr  = Tij (3.5)

Tijr > 0 (3.6)

where Tijr is the number of trips on route r between i and j, and 8!jr=l 

if link a is used by route r between i and j. and otherwise, 5!jr=0.

The objective function Z(V) in the problem P 3 .1  is a convex 
function if the link costs (ca(V)} are separable and non-decreasing 
functions of the link flows V. The problem then becomes a nonlinear 
programming problem with a convex objective function subject to two sets 
of linear equality constraints and a set of non-negativity constraints. 
The simple demonstration that solving the optimization problem yields a 
Wardrop equilibrium solution can be found in the literature (Van Vliet, 
1979; Eash, Janson and Boyce, 1979).

The great advantage of redefining equilibrium assignment as a 
minimisation problem is that it allows to use a convergent algorithm to 
find a Wardrop equilibrium solution (Van Vliet, 1979). A number of 
efficient algorithms suitable for solving even large-scale problems have 
been proposed and tested. See for example Leventhal, Nemhauser and 
Trotter (1973), Nguyen (1974b), LeBlanc, Morlok and Pierskalla (1975), 
Florian and Nguyen (1976), and Van Vliet and Dow (1979). It has been 
shown that those algorithm are special cases of methods of feasible 
directions in the mathematical programming (Nguyen, 1974a). Among those,
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the Frank-Wolfe algorithm is most commonly used to solve the problem. 
The Frank-Wolfe algorithm applied in the equilibrium assignment problem 
may be described as follows (Van Vliet and Dow, 1979).

A3.1
(Iteration I)

(1) Set all link costs to some predetermined values (generally those 
corresponding to Va=0).

(2) Build minimum cost trees and assign all Tij to them (all-or-nothing) 
to produce a set of auxiliary link flows, Fa0). Set the current main
flows Van)=  Fa0) where n=l.

(Iteration n)

(3) Alter the link costs in accord with the current main flows, Van\

i.e. set:

cin)= ca(v£n)) (3.7)

(4) Build a minimum cost tree using Can) for each O-D pair and assign 
all Tij to it by all-or-nothing assignment method. Repeat this for each 
O-D pair to produce a set of auxiliary link flows, Fan).

(5) Generate an improved set of main flows Van+1) as an interior linear 
combination of old and auxiliary flows:

v£n+1) = (l-X)Vin) + XFin) (3.8)

where 0<X<1, choosing X so as to minimise the objective function 
Z (y (n)).

(6) Increment n by 1 and return to step (3) unless certain termination 
conditions have been reached.
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The key element of Algorithm A3.1 is the choice of X. It should be 
noted that the algorithm does not make direct use of the path flows Tijr 

and that the choice of X only refers to combination of link flows and 
not path flows. One of the important features in equilibrium assignment 
is that the solutions are unique in terms of path costs, link flows and 
link costs, but not for path flows and route choice proportions using 
the individual links. The path flows and route choice proportions can be 
only extracted heuristically during the assignment process.

Another essential feature of the Frank-Wolfe algorithm is that it 
is basically iterative, while this algorithm is convergent (Frank and 
Wolfe, 1956). It may be impossible to find the exact equilibrium flows 
in a finite amount of computing time (LeBlank et al, 1975). The 
convergence characteristics of the algorithm are determined by the 
formulation of the algorithm as well as the initial solution which is 
used in the application of the algorithm. Rose, Daskin and Keppelman 
(1988) examined convergence error through an empirical study and 
reported that the joint selection of an initial solution and a stopping 
criterion may be important in determining the magnitude of the 
convergence truncation error.

It is well known that the Frank-Wolfe algorithm gets slower, when 
it approaches the optimum solution (Guelat and Marcotte, 1986). A number 
of modifications have been proposed to speed up convergence (Florian, 
1977; LeBlanc et al, 1982; Fukushima, 1984; Arezki and Van Vliet, 1990). 
Those modifications are basically accomplished by adapting PARTAN (short 
for parallel tangent) direction in the algorithm (Luenberger, 1986, pp 
254-257).

Another different attempt to speed up convergence to the 
equilibrium solution is to use quantal loading rather than usual all or 
nothing assignments in the early stages of the equilibrium assignment 
(Van Vliet and Dow, 1979; Arezki and Van Vliet, 1985). In particular, at 
the early stages, the use of a quantal loading achieves faster 
convergence by providing the improved auxiliary flows for the optimum 
combination.
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The Wardrop equilibrium traffic assignment problem may also be 
formulated in terms of a variational inequality, and this formulation is 
more general than the Beckmann et al’s minimisation formulation (Smith, 
1979). Let V* be the vector of equilibrium link flows. Then the 
variational inequality form of Wardrop’s equilibrium states that V is 
an equilibrium iff

c(Y*)-(F-y*) > 0 (3.9)

where F is any vector of feasible link flows and c(V ) is a vector of 
link costs of the equilibrium flows V*.

Smith (1979) has given conditions which guarantee the existence, 
uniqueness and stability of Wardrop’s equilibrium. Furthermore, Smith 
(1984b) suggested a descent algorithm for solving a variety of monotone 
equilibrium traffic assignment problems formulated as a variational 
inequality.

3.3 The estimation problem

This section describes the general problem of estimating a trip 
matrix from traffic counts and discusses three fundamental issues - 
underspecification, errors in traffic counts and congestion effects in 
traffic assignment - in the estimation problem. More detailed modelling 
approaches for these issues will be reviewed in Chapter 4.

3.3.1 Description of the problem

We suppose the study area to be represented by a transport network 
consisting of zones, zone centroids, nodes and links. We suppose the
trip making activities between zones for a specified time period to be 
expressed as the number of trips made per unit time, Tij, whose 
journeys start at zone i and end at zone j. Furthermore, we introduce 
the notation of the trip matrix T={Tij} in order to express all the trip
activities in the network as a single symbol. The rows of the trip
matrix correspond to the trips generated within a zone and the columns
correspond to the trips attracted to a zone.
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The problem of estimating trip matrices in the network can be
treated in various ways depending on the input data available and the 
use which will be made of the trip matrix. In general, the problem can 
be viewed as containing three important elements: new information such 
as traffic counts, old information such as out-dated trip matrix and an 
estimated new trip matrix. These elements are connected by the matrix
estimation process. The matrix estimation process is to use traffic 
counts in order to update an old trip matrix. The problem is then to 
identify a suitable mechanism to estimate a new trip matrix from various 
old and new information.

A key issue in the estimation of a trip matrix from traffic counts 
is how to estimate a trip matrix whose modelled link flows reproduce 
traffic counts. The most common way to achieve this is to associate 
traffic counts with assigned link flows from the estimated trip matrix 
through the process of traffic assignment. Mathematically, this can be
expressed as:

V(T) = V (3.10)

where V(T) is the modelled link flows resulting from the assignment of
the matrix T to the network and V is a vector of observed link flows.

The way of estimating trip matrices from traffic counts is the
inverse process of road traffic assignment. This permits a convenient 
alternative to the first three stages of the conventional four-stage 
modelling exercise.

The modelled link flows are generated from traffic assignment, 
provided that a trip matrix is known. For the time being, we assume that 
the proportion of trips from origin i to destination j which use a
particular link a in the network is known explicitly. We shall use the
variable P = {Pij} to express this value.
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In general,

(3.11)

where the extreme values occur either when the link is not used by any 
trips from i to j or when it is used by all of them. If we use the 
proportion P, the equation (3.10) becomes:

This is M simultaneous linear equations with N(N-l) unknowns. 
However, in practice, the number of unknown variables is greater than 
the number of equations, as the number of O-D pairs is normally far
greater than the number of links in the network. Thus, the estimation 
problem is underspecified in most cases and in general there will be
more than one solution satisfying the equation, if traffic counts are
error-free and mutually consistent.

Consider the simple network depicted in Figure 3.1. This network
has two origins (a and b) and two destinations (c and d). The flows on 
all links are also shown in this figure.

Figure 3.1 Simple network showing an underspecified problem

It is possible to draw a set of linear equations from Figure 3.1 using 
the path and link flows relationship.

PT = V (3.12)
or,

(3.13)

41



Tac +  Tad — V 1 

Tbc +  Tbd =  V2

(3.14)
(3.15)
(3.16)
(3.17)
(3.18)

Tac +  Tad + Tbc +  Tbd =  V 3

Tac +  Tbc =  V4 

Tad +  Tbd =  V5

However, it can be shown that only three of five equations are 
independent (see Section 3.3.3). Therefore, the problem becomes 
underspecified, since the number of unknowns, 4, is greater than the 
number of equations, 3.

3.3.2 Treatment of underspecification

In Section 3.3.1, it was observed that the estimation problem is 
underspecified. Here, the discussion is extended to possible ways of 
determining a single trip matrix out of the infinite feasible solution 
set. For that purpose, some extra mechanism or principle is needed to 
reduce the number of unknowns of the estimation problem so that it 
becomes fully specified.

Approaches for reducing this underspecification problem have been 
developed by many researchers. One reasonable way to overcome this 
problem is to restrict the number of possible solutions by making 
assumptions about trip making behavior. For example, the most widely 
used assumption is based on the entropy maximization theory. The entropy 
maximization theory has been used widely to explain trip making behavior 
(Wilson, 1967). The more details about various modelling approaches on 
this issue will be covered in Chapter 4.

Another practical way for treating underspecification is to use old 
information such as out-dated trip matrices. In this case, it can be 
considered to update the old trip matrix using the new information.

3.3.3 Treatment of inconsistent link flows

In Section 3.3.1, we assumed that traffic counts are independent 
and consistent, but in reality, they are not. Certain combinations of

42



traffic counts might make it impossible to estimate a trip matrix to 
satisfy them. These problems are discussed in terms of dependence and 
inconsistency of traffic counts (Willumsen, 1981b).

(1) Dependence: Some link counts might be expressed as a linear 
combination of others. Such counts will fail to add any information,
i.e.

Va = I  yiVi (3.19)
i G  I - {a}

where Vi is observed link flows in link i, i e  I, 
yi is constant coefficient of link flows Vi,
I is the set of observed links in the network.

(2) Inconsistency: Two sources for inconsistencies in traffic counts in 
the matrix estimation are identified. The first one is that counting 
errors and asynchronous counting - often traffic counts are obtained on
different occasions (hours, days, weeks) - are likely to lead to 
inconsistency in the link flows. In this case, the set of link flows may 
fail to keep the principle of the conservation of the link flows, i.e.

E  Vim *  I  Vmk (3 .20 )
1 k

where Vim is observed link flows from node 1,
Vmk is observed link flows to node k.

For example, in Figure 3.1, if traffic counts in the link 3 were given 
as V3=20 instead of V3=15, the conservation of the link flows is not met 
and they become inconsistent.

The second source is a mismatch between the assumed traffic 
assignment model and traffic counts. For example, an assignment model 
may allocate no trips on a link having traffic counts. In these 
conditions, there will be no trip matrix reproducing the traffic counts
on the link using that assignment model.
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The existence of inconsistencies in traffic counts might lead to 
there being no feasible solution. There are two possible ways to resolve 
this difficulty. The first way is to correct errors before estimating
trip matrices. Although it is possible to have independent flows, the 
inconsistency between link flows are found to be more difficult to 
correct. The second way is to accommodate these errors within the 
formulation of the estimation problem. Although the first approach 
always has an advantage to produce a feasible solution, it might be far 
from true values. The second one tries to produce a solution close to a 
feasible solution. Further details on this issue will be reviewed in 
Chapters 4 and 5.

3.3.4 Treatment of traffic congestion effects

As reviewed in Section 3.3.1, traffic assignment plays an important
role in the estimation of a trip matrix from traffic counts. The 
estimated trip matrix can be only constrained by traffic counts through
the traffic assignment process. Thus, the use of an appropriate traffic 
assignment method is important in the determination of an estimated trip 
matrix.

As discussed in Section 3.2, there are two main types of traffic
assignment methods available. The first type, known as proportional 
assignment, including all or nothing assignment and stochastic 
assignment, does not consider any congestion effects on the choice of
routes. The second case, capacity restrained assignment including the 
Wardrop equilibrium assignment is based on the assumption that
travellers will consider the generalised costs including any congestion 
effects when they choose their routes.

In section 3.3.1, we introduced variable of the assignment 
proportions P with an assumption of being known explicitly. In this
section, we will have a more general discussion on the use of this 
variable.

In the case of proportional assignment, the level of trip demand
has no effects on the assignment proportions P. It is possible to
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identify the proportions P independently of the trip matrix estimation 
process. This approach is efficient and easy to use. However, there is a
considerable amount of empirical evidence that this approach cannot 
explain the route choices of all drivers in urban networks. For example,
see Van Vliet (1976), Outram and Thompson (1978), and Van Vliet and Dow
(1979).

In the case of capacity restrained equilibrium assignment, the 
assignment proportions of the trips choosing each route in the network 
are not constant when the level of travel demand varies. The partial 
derivative of P with respect to T is not in general equal to zero. Thus,

aP
—  * 0 (3.21)
al

For example, consider a simple network depicted in Figure 3.2. The
network has one origin o, one destination d and two links 1 and 2.

Link 1

A
Link 2

Figure 3.2 Simple network showing variable assignment proportions

We shall assume that the link costs on links 1 and 2 are given as

ci(Vi) = Vi, (3.22)
C2(V2) = K + V2, where K is a constant. (3.23)

Then, when the equilibrium conditions are met, we can obtain the 
following assignment proportions of the trips using each of links 1 and
2. When the demand Tod is less than K, all the trips use Link 1. As the
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demand Tod becomes greater than or equal to K, the trips are split into 
Link 1 and Link 2.

I f  0  <  Tod <  K, Pid =  1 and P^d = 0 (3.24)
(3.25)I f  K  <  Tod,

These results show that the assignment proportions P in the capacity 
restrained equilibrium assignment are not constant as the level of
travel demand varies.

Also, the assignment proportion P are not always differentiable. It 
is not possible to identify the proportions P independently of the 
matrix estimation process: as a trip matrix changes, the proportions P 
also change. Furthermore, the proportions P are not uniquely determined 
by the equilibrium assignment process. For these reasons, the estimation
problem combined with capacity restrained assignment becomes more 
difficult to solve.

In Section 3.3.2, it was noted that the estimation problem is
underspecified even with a fixed set of the assignment proportion. Now, 
the problem is further underspecified, since the assignment proportions
P are also unknown in addition to the N(N-l) unknowns of the trip 
matrix.
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CHAPTER 4. REVIEW OF RELATED METHODS

4.1 Introduction

As mentioned in Chapter 2, conventional methods for estimating trip 
matrices are economically expensive due to a difficulty of obtaining the 
required input data and more importantly their end products are likely 
to be short-lived and unreliable. As an alternative to conventional 
methods, simplified methods using traffic counts have received great 
attractions because of their practical advantages including an 
inexpensive acquisition of traffic counts. Since the potential 
advantages of simplified methods using traffic counts have been 
recognized, various modelling approaches have been proposed. Some of 
them have been already shown to be useful.

The main objective of this chapter is to provide a detailed and 
up-to-date review of the various methods for estimating trip matrices 
from traffic counts. Particular attention will be given to the methods 
which work with equilibrium traffic assignment.

First of all, Section 4.2 classifies various existing methods for 
estimating trip matrices from traffic counts according to the type of 
traffic assignment methods and the way of tackling the 
underspecification problem. This helps to carry out a systematic review. 
Following the classification, Section 4.3 reviews methods which use 
proportional traffic assignment methods. Section 4.3 is further divided 
into three sub-sections devoted to: methods for calibrating synthetic
demand models, methods based on information theory, and methods based on 
statistical inference. Section 4.4 reviews methods which use equilibrium 
traffic assignment methods. Again, it is further divided into three 
sub-sections, each for a particular method: Willumsen’s method, Nguyen’s 
method and Fisk and Boyce’s method.
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4.2 Classification of existing estimation methods

Based on a general description of the estimation problem described
in Section 3.3.1, this section classifies various methods for estimating 
trip matrices from traffic counts before a further detailed review. At 
the least, this usefully initiates the discussion of some common issues 
and ideas to proceed in a more or less systematic way.

For the first time, Willumsen (1978a; 1981b) provided a review for 
methods to estimate trip matrices from traffic counts. Willumsen 
identified the different behavioral assumptions used to tackle the 
underspecification of the estimation problem and then these have been 
used to group together similar methods. The estimation methods have been 
classified into three groups. A first group encompasses models which 
require the assumption that some form of the gravity model is capable of 
explaining most of the trip making behaviour in the study area. A second 
group exploits certain properties of equilibrium assignment techniques 
to provide an estimate of the trip matrix. Finally, a third group uses
entropy maximizing or related techniques to provide the most likely 
estimate of the trip matrix. However, he argued that this
classification, as any other, is not perfect and models exist with 
characteristics of more than one of these groups. For example, models in 
groups 1 and 3 assume proportional assignment to be sufficiently 
realistic but some of them can be extended to include, at least
partially, capacity restraint effects.

Later, another good review for the modelling and the algorithmic 
development for the estimation methods was carried out by Nguyen (1984). 
The basic idea used to classify the estimation methods in his paper was 
similar to Willumsen’s one. First of all, he introduced two basic 
formulations for estimating trip matrices from traffic counts. The first 
one was associated with the calibration of demand models and the other 
with the matrix estimation models mainly based on the maximum entropy 
formalism. Next, these models have been further divided into three 
cases: single route networks, multi-route networks and equilibrium-based 
networks. The cases of single route networks and multi-route networks 
are using the proportional assignment methods for deriving a fixed set
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of assignment proportions P. The case of equilibrium-based networks are 
using the equilibrium traffic assignment. In this case, the formulation 
is to integrate trip matrix estimation and equilibrium traffic 
assignment without using assignment proportions P as these are unknown. 
Again, he further divided the equilibrium-based estimation methods into 
two cases: using complete set of traffic counts and incomplete set of 
traffic counts. By comparison with Willumsen’s review, Nguyen placed 
more efforts on the role of traffic assignment taking into account the
new development of the methods using equilibrium traffic assignment 
methods.

Recently, Cascetta and Nguyen (1988) provided a general review of 
methods which apply techniques of statistical inference to estimate of 
trip matrices from traffic counts. Using a generic traffic assignment 
map, various statistical approaches have been classified into three 
basic cases: maximum-likelihood estimation method, generalized least
square estimation method, and Bayesian approach. Cascetta*s review was 
to reflect a recent development of statistical inference techniques for 
estimating trip matrices from traffic counts which has occurred, since 
the previous reviews by Willumsen and Nguyen.

Taking into account these three previous reviews and the main
objectives of this research, estimation methods are here classified in 
the following order. First, the estimation methods are classified 
according to the type of traffic assignment methods - methods using 
proportional assignment and methods using equilibrium traffic
assignment. Then, the methods using proportional assignment are further 
classified according to the methods used to accommodate the
underspecification - methods for calibrating synthetic demand models, 
methods based on information theory and methods including statistical 
inference. The methods using equilibrium assignment are further divided 
into: Willumsen’s method, Nguyen’s method and Fisk and Boyce’s method.

The main objective of this research is to develop a new method for 
estimating trip matrices from traffic counts, when congestion effects in 
networks are considered to be important. Therefore, the methods using 
equilibrium traffic assignment will be reviewed in greater detail than
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the methods using the proportional assignment.

4.3 Methods using proportional traffic assignment

As discussed in Section 3.3, it is possible to determine a set of 
fixed assignment proportions P under the assumption of using 
proportional traffic assignment. The combination of observed link flows 
and the assignment proportions P leads to a formulation of simultaneous 
linear equations. The observed flows Va on link a are equal to be the 
summation of the contributions of all trips between zones to that link. 
For convenience, Equation (3.13) is repeated again.

It has already been noted that Equation (3.13) is normally 
underspecified, as the number of the unknowns N(N-l) is far greater than 
the number of equations M. Because of this, Equation (3.13) requires a 
further mechanism in order to determine a single trip matrix from the 
many feasible ones. Nguyen (1984) stated the following two general 
formulations for tackling this underspecification. When the demand model 
is calibrated from traffic counts, the resulting formulation is:

(3.13)
i . j

P4.1
Min F (V (B ),V ) 
§  '  '

(4 .1 )

s.t.
PT = y((3)
Tij = D(Oi,Dj,(3,Cij) 
S  Tij = a i= l , . . . ,N

(4.2)
(4.3)
(4.4)

j
X Tij = Dj (4.5)
i

Tij > 0 (4.6)

where F(V ((3),V) is an objective function, Va((3) is the modelled flow on 
link a, § is a vector of parameters of the demand model, and Gj is a 
measure of the separation between zone i and zone j.



When the trip matrix T is estimated directly from traffic counts, the 
resulting formulation is:

P4.2
Min F(T,t) (4 .7 )

T

S.t.
PT =  V 
Tij >  0

(4 .8 )

(4 .9 )

where F(T,t) is an objective function and t is the prior trip matrix.

The objective functions used in Problem P4.1 and P4.2 may be any 
suitable distance metric, either between the modelled and observed link 
flows for Problem P4.1, or between the estimated T and the prior trip 
matrix t for Problem P4.2. For Problem P4.1, the most frequently used 
objective function is a least squares function and for Problem P4.2, the 
most frequently used ones are a least squares function or an entropy 
function.

4.3.1 Methods for calibrating demand models

Methods for calibrating demand models from traffic counts can be
further classified, according to the type of the models they use, into
two sub-groups: gravity model based and direct demand model based. In 
the following, each of these is reviewed and finally a comment is given.

4.3.1.1 Methods based on the gravity model

The gravity model was one of the first mathematical models used for 
making trip making behaviour in a study area. Because of its simplicity 
and a certain intuitive appeal, it has received great attention from
social scientists and engineers. It is not surprising then that the
first ideas on estimating a trip matrix from traffic counts were based 
on the gravity model.
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The gravity model assumes that the trip making behaviour in the 
area of interest can be explained in terms of three types of factors: 
trip generation or origin factors, trip attraction or destination
factors and separation or travel cost factors. That is, the number of 
trips from each origin to each destination is directly proportional to
traffic generating and attracting factors of the zones and inversely 
proportional to the separation or travel cost factors between the zones. 
A common form of the gravity model (Wilson, 1967) is then

Tij =  Ai Oi Bj Dj f(Cij) (4 .10 )

where Ai and Bj are balancing factors, Oi and Dj are the trip ends, and 
the function of f(Gj) and generalized costs Gj represent the
separation or deterrence factor between the zones.

The gravity model can be specified with different degree of 
sophistication. For example, the different form of the functions f(Gj) 
can be used to model the deterrence. Once a gravity model has been 
specified, the parameters of the model can be calibrated so that a 
measure of the errors between the modelled link flows and observed ones 
is minimized.

The first attempt of this kind based on traffic counts was put
forward by Low (1972). He specified a gravity type functional form from 
which trip probability factors between the zones are calculated:

x!T}= o ! ra)Dj(m) CiJ (4 .1 1 )

where
xSy}is the interzonal trip probability factor between zone i and j 

for purpose m,
Oim)and Djm)are the trip end totals for purpose m,
Gj is the deterrence function.

The modelled link flows were generated from the trip probability 
factors through all or nothing assignment:
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Xm = I  Pij x iT ' a=l,...,M, i=l,...,N, j=l,...,N. (4.12)
» . j

where
Xm is the modelled link flows for purpose m in link a, 
xlT} is replaced by Equation (4.11).

Finally, a linear model for each observed link has been proposed 
and calibrated from traffic counts by multiple regression analysis 
techniques. The proposed linear model was:

Va=bo + biX f + b2Xi + bsXs +...+bmXm. a=l,...,M. (4.13)

where
Va is the modelled flows in link a for all purposes, 
bin are the constants to be calibrated.

Equation (4.13) is used to forecast the future link flows by
re-estimating trip probability factors from the future trip end data.
The estimation procedure has been applied in Monongalia County 
Transportation Study in West Virginia in 1970-71. The result provided 
grounds for optimism. Later, Smith and McFarlane (1978) applied Low’s 
approach to the county of Fond du Lac in Central Wisconsin for the 
purpose of further evaluating Low’s approach. The result has showed that
the level of accuracy of the model in reproducing base year link flows
was certainly within the limits achieved by conventional methods.

The estimation procedure proposed by Low effectively combines the 
four-stage conventional modelling process into a single one. It has been 
noted that the primary advantage seems to lie in the fact that the 
approach can be used to produce traffic volume forecasts when the 
resources required to use conventional methods are lacking.

Other methods similar to Low’s have been developed and tested by 
different researchers. In this thesis, it is not necessary to introduce 
all of them in detail. Only the main characteristics of the methods 
which are interesting and relevant to this research will be described.

53



Other similar estimation methods based on the gravity model have 
been proposed by Overgaard (OECD, 1974), Robillard (1975), Hogberg 
(1976), and Holm et al (1976). Overgaard’s method includes a variable of 
car ownership levels that acts as a measure for trip making propensity 
which is lacking in Low’s approach. Robillard proposed a simple double 
factor functional form leading to the least squares problem. The 
proposed problem is solved by non-linear regression and it does not 
require a priori data about the generation and attraction power of each 
zone. The method only uses traffic counts to calibrate the model. The 
model put forward by Hogberg includes a more flexible deterrence 
function but requires non-linear regression for its calibration. An
interesting feature found in Holm et al’s method is the use of Smock’s 
(1962) assignment procedure to refine the traffic assignment proportions 
P iteratively. This represents a first attempt to take into account the 
dependency of the traffic assignment proportions and the interzonal 
travelling costs Gj over the trip demand in the estimation problem. The 
sequential approach similar to Smock’s one will be described in more 
detail together with other methods which use equilibrium traffic 
assignment in Section 4.4.

Recently, Wills (1986) developed a flexible gravity-opportunities 
model for trip distribution in which standard forms of the gravity and 
intervening opportunity models are obtained as special cases of a
general gravity- opportunity model. The idea of the intervening-
opportunity model is to represent the effects of varying density of trip 
end opportunities on trip making behaviours, whereas the gravity model 
is not sufficient in modelling them. Wills tested his models empirically 
to estimate a trip matrix from traffic counts and showed that a 
significant improvement is obtained over the gravity model. Following 
Wills’s approach, Tamin (1988) also explored more advanced flexible 
demand models - gravity, opportunity and gravity-opportunity models - 
and proposed three different solution methods - non-linear least 
squares, weighted non-linear least squares, and maximum likelihood
methods - to calibrate the demand models. He performed a wide range of 
the empirical tests and comparisons over the performance of the demand 
models and solution methods using the data surveyed in the town of Ripon 
in England. All methods were found to perform satisfactorily since each
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calibrated model reproduced the observed trip matrix closely. In 
particular, it was found that the gravity model and the 
gravity-opportunity model with the non-linear least squares method 
produce the best fit with the observed data in Ripon.

4.3.1.2 Methods based on direct demand models

Unlike the gravity model, in which the zonal trip end data are 
prepared separately, in direct demand models all the elements of 
generation, attraction, distribution between the zones are combined into 
a single model (Domencich and McFadden, 1975). In general, direct demand 
models are based on the assumption that the aggregate volume of trips 
between the zones may be directly modelled as a functional form of the 
following variables: socio-economic factors such as population and
employment, accessibility factors such as centrality and deterrence 
factors between the zones. Early examples include Domencich et al (1968) 
and Quandt and Baumol (1966). For instance, two of the more common forms 
(Carey, Hendrickson and Siddharthan, 1981) are a linear form:

where Xi and Xj are socio-economic characteristics of the two zones and 
bi (0<i<3) are the parameters to be calibrated,

and a multiplicative form:

As with the methods based on the gravity model, the parameters of 
direct demand models are calibrated by minimising the sum of squared 
errors between the modelled and observed flows. That is:

Tij =  bo+ bi Xi +  b2 Xj +  b3 Cij (4.14)

Tij =  bo X V 1 X r  t i jbi v b2 *b3 (4.15)

P4.3
M in (V - PT)'(V - PT) 

b " "" " "
where T is replaced by Equations (4.14) or (4.15).

(4.16)
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Wills (1978) proposed linear and nonlinear demand models and then 
calibrated them by the method described above. Carey et al (1981) 
presented a constrained least-square estimation model using a linear 
direct demand model and an incomplete data set. It is interesting to 
note that the model also includes the observed O-D flows in addition to 
the observed link flows. Later, Carey and Revelli (1986) extended the 
model by adding statistical inference properties. The work was also 
extended using a non-linear direct demand model and including inequality 
constraints. The formulation is more flexible, as any available 
information may be included in the form of constraints on the optimal 
process.

4.3.1.3 Discussion

The methods based on the gravity model or the direct demand model 
certainly have an intuitive appeal and most of them are fairly simple to 
apply.

In general, the number of parameters calibrated is far less than 
the number of traffic counts, so the demand models are overspecified. In 
order to overcome this difficulty, they are fitted over traffic counts 
by the least squares method. This leads to a feature that a trip matrix 
estimated is heavily structured over the values of the few parameters. 
Methods based on demand models are unlikely to be successful when 
applied in urban areas, where travel patterns tend to be less 
structured. The gravity model or the direct demand model have more sound 
grounds for applications to inter-city transport rather than urban 
transport. Unlike urban travel patterns, intercity travel patterns are 
more likely to be characterised by several influential factors such as 
population, level of economic activity, land use, travel deterrence 
between the zones, etc.

Except for Robillard’s approach, most of the methods reviewed in 
this section require the trip end data for the gravity model or the 
attraction and generation capacities for the direct demand models to be 
prepared along with the models selected before calibration. This 
contrasts with the methods reviewed in the following two sections, which
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require only traffic counts.

As earlier mentioned in Low’s approach, one of the main advantages 
of this type of approach is that it only needs simple and low-cost data,
whereas conventional methods require large amounts of data and
considerable technical resources. For instance, this type of approach 
might be especially useful in developing countries where there are many
difficulties for the use of conventional methods such as the fast rate
of change, poor quality of data and data collection practice, and lack 
of technical experience.

4.3.2 Methods based on information theory

In this type of estimation method, underspecified problems are 
solved by enforcing extra principles based on information theory and the 
most likely trip matrix is estimated from feasible ones. From a review 
of various literatures, the most frequently used principles for this 
purpose are: maximum entropy and minimum information. We still assume 
that traffic assignment proportions P are independent from the traffic 
demand to be estimated and can be determined exogenously. Related 
methods using these two principles will be reviewed in this section.

4.3.2.1 Methods using the maximum entropy principle

The application of the maximum entropy principle to transport and 
regional planning problems was initiated by Wilson (1967; 1970). Its 
best known application is in the derivation of a doubly-constrained 
gravity model by maximizing a measure of entropy subject to trip end and 
total cost constraints. The derivation of the entropy functions will be 
given in detail later in Chapter 5. The problem formulated by Wilson 
(1970) was:
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P4.4a
Max Si(T) = - I  Tij(log Tij - 1) (4.17a)

T ” e 
T » . J

s.t.
I  Tij = Oi, i=l,...,N (4.17b)

£II8nH
• (4.17c)

I  GjTij = C (4.17d)

> 0 (4.17e)
where C is the total (unknown) travel cost in the network.

Solving Problem P4.4a by forming the Lagrangian results in the 
doubly-constrained gravity model with the exponential deterrence 
function exp(-pQj). The general form of the gravity model has already 
given in Equations (2.2) and (4.10) in Sections 2.3.2and 4.3.1.

Tij = Ai a  Bj Dj exp(-pCij) (4.17f)

where Ai and Bj are balancing factors related to the trip ends 
constraints (4.17b) and (4.17c) and calculated as

Ai = T  Bj Dj exp(-pCij)
j

R -  1“  T 'A i  Oi exp(-pCij)
i

and p is the Lagrange multiplier related to the total cost constraint 
(4.17d) and represents the degree of the perception to the generalised 
travel cost, Gj.

Willumsen (1978a; 1978b; 1981a) developed a model based on the 
maximum entropy principle to estimate a trip matrix from traffic counts. 
Willumsen’s model is known as the Maximum Entropy Matrix Estimation 
(ME2) model. The ME2 model estimates a trip matrix consistent with 
traffic counts and any prior information available. The derivation of 
the ME2 model parallels the derivation of the gravity model but 
replacing trip ends and total cost constraints with constraints

(4.17g)

(4.17h)
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associated with traffic counts. The problem then formulated only with 
traffic counts is

P4.4
Max Si(T) = - £  Tij(log Tij - 1) (4.17)

I  1 ’ J
s.t.

£  Pij Tij = V ., a=l,...,M, i=l,...,N, j=l,...,N. (4 .18 )

lJij > 0 (4 .19 )

Problem P4.4 is one of convex programming since it consists of a 
strictly concave and continuous function subject to linear constraints. 
Any primal convex programming techniques may be used. The formal 
solution is obtained (Willumsen, 1981a) by forming the Lagrangian

M
L(T,A.) = - £  Tij(log Tij - 1) - £  Xa( £  PfjTij - Va) (4.20)- - e

i . j a = 1 l , j

where X*. is the Lagrange multiplier associated with link count a.

Differentiating this with respect to Tij gives: 

aL(T,X) m
 = -log Tij - £  kaPij (4.21)
d T i j a = 1

Thus, for stationarity,

M
Tij = exp(-£ta Pij) (4.22)

a = 1

and by making

exp(-Xa) = Xa (4.23)

we finally obtain

M p?.
Tij = n  X i 1J (4 .24)a = 1
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In order to determine the optimum solution T from Equation (4.24), 
it is necessary first to determine values for the Lagrange multipliers 
X. This can be done by substituting Equation (4.24) into the link flow 
constraints (4.18) and solving M non-linear equations simultaneously for 
the M Lagrange multipliers. In practice though, this approach requires 
considerable computer memory for practical size problems since the whole 
of the array for assignment proportions P must be available at all 
times. This leads to the consideration of efficient iterative row 
generation techniques in which only one constraint is considered at a 
time. This method known as the multi-proportional procedure has been 
studied extensively by Murchland (1977; 1978). Later, Lamond and Stewart 
(1981) showed that Kruithof’s double factor method (1937), Evans and 
Kirby’s tri-proportional method (1974) and Murchland’s 
multi-proportional method (1977) are special cases of efficient row 
generation balancing method studied by Bregman (1967). Bregman proved 
that the algorithm converges to a unique solution provided that the 
constraints are mutually consistent. The algorithm adopted by Willumsen 
(1981a) is as follows. The following algorithm requires setting up a 
list of observed links from a=l to M.

A4.1
(step 1) Obtain, using a suitable assignment method, the values of 

assignment proportions P and set the number of iterations n=0.

(step 2) Set Xan)= l  for all links.

(step 3) Set the counter a=0.

(step 4) Increase the link counter a by one. Take link a and calculate 
modelled flows.

i * j

Replace Xan)by Xan+1)=  Xan) Ya for each link a where Ya is 
obtained by solving
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Equation (4.26) may be solved by a unidimensional 
Newton-Raphson method.

(step 5) If a is less than L, proceed to (step 4).
Otherwise, move to (step 6).

(step 6 ) If the difference between {Van)} and { V a }  is within the 
convergence limit, calculate (Tij) using Equation (4.24) and 
terminate. Otherwise, set n=n+l and return to (step 3).

The ME2 model can also be extended to make use of prior information 
such as out-dated trip matrices. The resulting problem is:

P4.5
M ax Si(T,t) = - X Tij(log (Tij/tij) - 1) (4.27)

T " " i . j
s.t.

X Pij Tij = V a . a=l,...,M, i=l,...,N, j=l,...,N. (4.28)

Tij > 0 (4.29)

When no prior information is available, one could plausibly set tij 
=1 for all i and j, Problem P4.5 reverts to Problem P4.4. Again, Problem 
P4.5 is a convex optimization problem with linear constraints. It can be 
solved by the same process described earlier. In this case, instead of 
(4.24), we obtain for Problem P4.5:

M p? .
Tij = tij II X a J (4.30)a = 1 >

where Xa=exp(-Xa).

Equations (4.28) and (4.30) can be solved by the same multi-proportion 
procedure described above.



From Equations (4.24) and (4.30), it is interesting to note that 
the factor Xa is associated with the contribution of the observed link 
flows on link a to the formation of the trip matrix in Problem P4.4 or 
the modification of the trip matrix in Problem P4.5. The factor Xa plays 
a role analogous to the balancing factors in a doubly-constrained 
gravity model. In both cases, this contribution is weighted by the 
exponent P?j representing the proportion of trips between each O-D pair 
that use link a.

As described earlier in Section 3.3.3, in practice traffic counts 
are unlikely to be error-free. Errors in link flows occur partly because 
of counting errors and partly because counts may be carried out at 
different times or on different days. Two sources of errors in traffic 
counts have been identified. The first one, linearly dependent link 
flows, can be easily detected and removed. The second one, inconsistency 
in link flows, prevent the estimation problems from being feasible. 
There are two general approaches for dealing with inconsistent link 
flows. The first one is to develop trip matrix estimation methods in 
which inconsistent link flows are accommodated. This type of the 
estimation method will be reviewed in the next section on methods using 
statistical inference techniques. The second approach is to remove 
inconsistency and generate a better estimation of the link flows by 
using the maximum likelihood method before trip matrix estimation, thus 
adding the extra information. This approach has been studied by Van 
Zuylen and Willumsen (1980). Later, Van Zuylen and Branston (1982) 
extended this approach to the case when more than one count is available 
on some links of the network.

The ME2 model and the associated solution method have been tested 
empirically using the data collected by TRRL (Leonard and Tough, 1979) 
from a comprehensive vehicle license plate survey in the central area of 
Reading in England (Willumsen, 1981a; Van Vliet and Willumsen, 1981). 
The survey period covered four successive afternoon periods (16:10 to 
18:10) starting on Monday 18 October 1976. The road system in the study 
area was coded into a network with 39 trip end zones, 80 nodes and 159 
one-way links. The observations were then processed through the network 
to produce:

62



- an observed or sampled trip matrix,
- a set of observed paths and route choice proportions, and
- a set of 159 observed link volumes

in terms of passenger car units (pcu’s) for each of the four periods 
surveyed. These samples were not grossed up and the tests referred to 
this unexpanded level which represented a 7 per cent sample of all the
movements in the area. However, in order to maintain a correct treatment
of delays wherever speed-flow relationships were used, the link flows 
were expanded to represent 100 per cent volumes. In particular, instead 
of modelled traffic assignment proportions P, the observed route choice 
proportions could be used to carry out the sensitivity tests of the ME2 
model to the effects of the assignment methods.

Because of a close relationship between the ME2 model and this 
research, the detailed results of the validation tests of the ME2 model
are here described. The following major conclusions from the results 
have been made (Van Vliet and Willumsen, 1981).

(1) Comparison of observed trip matrices and link flows on different 
days as shown in Table 4.1: The day-to-day variations in the samples of 
observed trip matrices obtained at a high level of detail are relatively
high, implying that a true trip matrix is extremely difficult to 
measure. It is noted that the variations are much higher at the trip
matrix level than at the link flow level as some of the variations
average out at the more aggregate level.

Table 4.1 Comparison of observed trip matrices and link flows on 
different days (taken from Van Vliet and Willumsen (1981))

Dates 
I n d i e  ato r

Monday - T uesday Tuesday - W ednesday
M a tr ix Flow M atr ix F low

R M S E  * 1.9 19.9 1.7 19.  1
%RMSE* 160. 21. 135. 2 0 .

* Root Mean Square Error of two sets of quantities Tij and Tij is
T i 112given by RMSE = —- -Z(Tij-Tij) , and %RMSE is expressed as a
I N ( N - l )  j
L 1 • j J
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RMSEproportion of the mean, %RMSE =  xlOO(%), wherex , l m e a n

n s r I  Tij.
1 .J

(2) Comparison of observed vs estimated trip matrices using known route 
choice proportions as shown in Table 4.2: Trip matrices estimated by ME2 
using observed routes - so that one important source of error is 
effectively eliminated - are not very close to the observed trip 
matrices, indicating that traffic counts alone are not sufficient to 
estimate trip matrices. In particular, the use of trip end information 
appears to be valuable to improve the estimated matrix.

Table 4.2 Comparison of observed and estimated trip matrices using known 
route choice and all or nothing assignment on Tuesday (taken 
from Van Vliet and Willumsen (1981))

A s signment Known rou t e choice A ll or no thing

I n d i cator
no t rip 
ends

w i th  t r ip  
ends

no trip 
ends

w i t h  trip 
ends

R M S E 1 . 8 1.7 2.1 2.1
% R M S E 149 134 172 169

(3) Comparison of observed and estimated trip matrices using all or 
nothing assignment as shown in Table 4.2: even with a simple assignment 
model, all-or-nothing which we know to be fraught with errors, ME2 still 
yields matrices which are only marginally worse than the observed 
day-to-day variations.

(4) Finally, it was concluded that ME2 appears to be a reasonably robust 
model, as the estimated trip matrices are roughly speaking within the 
day-to-day variations of the observed trip matrices indicating that the 
model does indeed give reasonable answers.

Matzoros, Van Vliet, Randle and Weston (1987) reported the results 
from another interesting validation test on the ME2 method carried out 
using the data collected by Greater Manchester Council before and after
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the introduction of a pedestrian scheme implemented in the center of 
Manchester in November 1980. The main objective of this test was not to 
evaluate ME2 directly but rather to validate the use of the 
micro-simulation model SATURN (Van Vliet, 1987) and the ME2 model in 
the evaluation of traffic management measures. A network and trip matrix 
for the ’before’ network were set up using only data available before 
introduction of the pedestrian scheme. This was then used to estimate
the impacts of that scheme and these estimates were compared with the 
actual outcome. The network and trip matrix were supplied by GMC. The
trip matrix for the weekday morning peak hour (08:00 to 09:00) was
obtained from a number of separate sources and collected at considerable 
cost. The network taken from GMC was recoded to SATURN requirements and 
recalibrated. Calibration and evaluation were carried out primarily on
the ability of SATURN to reproduce observed traffic counts using 73 
’before’ counts and 35 ’after’ counts. A new trip matrix was estimated
using the ’before’ network and 73 ’before’ traffic counts as data for 
the ME2 model. This new trip matrix was assigned to the ’before’ and 
’after’ networks to estimate the link flows. These modelled link flows
were then compared with the observed ones.

Table 4.3 Comparison of the observed and modelled flows given by the 
mean absolute difference divided by the average observed flow
expressed as a percentage (taken from Matzoros et al (1987))

Network  
u sed

T r ip  M atr  ix

As s u rveyed 
by GMC

As e s t imated 
by  ME2

B e f o r e
Network 2 7 . 0 8. 5
A f t e r
Network 2 6 . 2 1 3 .0

Matzoros et al found that as shown in Table 4.3, the use of the 
SATURN and ME2 models approximately halves the errors in estimating the 
link flows in the ’before’ and ’after’ networks by comparison with the 
ones estimated from the conventionally surveyed trip matrix. In

65



particular, they ascribed most of the credit for the improvement in fit 
in terms of flows to the ME2 model. However, the ME2 method is designed 
to reproduce the observed link flows used in the estimation exactly. 
This means that the reduction in errors in link flows does not in itself 
prove anything about the greater validity of the ME2 model over 
conventional ones. Also, in cases where the traffic management measures 
taken have little impacts on traffic flows, the good fit between the 
observed and modelled link flows in the ’after* network does not 
indicate the validity of the ME2 model, either. Furthermore, the links 
used for comparison and validation should be independent of those used 
for matrix estimation so that any prejudice for the ME2 model may not be 
given.

In spite of the reasonable performance of the ME2 model, it still 
has some inherent weaknesses which require further investigations. One 
of the major weaknesses in the ME2 model is that it assumes fixed route 
choice proportions P which are invariant with traffic demand. This is 
far from the reality in congested networks. This will be reviewed in 
greater detail in Section 4.4 alone with other methods which use 
equilibrium traffic assignment.

Another weakness of the ME2 model is that the matrices estimated by 
it are strongly dependent upon the accuracy of the prior trip matrices 
(Robertson, 1984; Atkins, 1987). This is partly because traffic counts 
alone are not sufficient to update a prior trip matrix. This difficulty 
may be more or less removed in either of two ways. The first one is to 
use of better prior estimate of the trip matrix t either from an 
out-dated trip matrix, a larger study or even a travel demand model such 
as a simple gravity model. The second one is to use other additional 
information in the form of extra linear constraints such as trip end 
data or a trip length distribution to improve the accuracy of the 
estimated trip matrices (Willumsen, 1981a; Van Vliet and Willumsen, 
1981).

Robertson (1984) further noted that the ME2 model produces a worse 
estimate as measured bigger RMSE value than zero in the extreme case 
where the observed matrix is given as the prior one. He argued that this
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failure can only occur if there are faults in some of the assumptions 
about, for example, route choice and the specification of origins and 
destinations. As an alternative, he developed a method, called MODCOST 
(Modifying Origin and Destination Costs to Simulate Trips), of 
estimating trip matrices from traffic counts by simulating trip choices 
made by individuals whose different perceptions of the costs of options 
is represented by a random utility procedure. The method includes an 
iterative process between the simulation of trip choice and the 
correction of trips by matching them with the observed flows. This 
method does not use any abstract principles such as the gravity model or 
maximum entropy. The results from a test using data from the town of 
Reading showed that MODCOST achieves matrix estimates which compare 
favorably with other methods including the ME2 model. However, MODCOST 
lacks any well-established theoretical structure such as that which 
supports other methods.

A difficulty in the use of the ME2 model may arise when there has
been a significant growth (or decline) in the total quantity of traffic
between the time that the prior trip matrix was obtained and the time 
that the new traffic counts were made (Willumsen, 1984). Earlier, Van 
Zuylen (1981) recognized that ME2 gives counter-intuitive results in the 
case of uniform overall growth and proposed a modification to the ME2
method. In this, Van Zuylen described an alternative algorithm which
allows the prior trip matrix to be uniformly scaled up or down. Bell 
(1983; 1984; 1985) has also developed an improved version of the ME2 
model, referred to as the ’the log-linear model’. This improved version 
generates an estimated trip matrix which is invariant to the application 
of uniform scaling to the prior estimates. Bell’s work is described here 
in more detail, because it is related to the new formulation proposed in 
Chapter 5.

Bell (1983) derived a model which maximizes the joint probability 
of observing T subject to the link flow constraints, based on the 
assumption that trips are multinomially distributed. The model proposed 
by Bell (1983) was
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P4.6
Max So(T.t) = T..(log T..-1) - ZTij(log (Tij/tij)-l+log t..)* • e e e (4.31)

s.t.
(4.32)

i . j
Tij > 0 (4.33)

where T..=XTij and t..=Xfcj.

The formal solution to Problem P4.6 can be obtained by using the 
Lagrange method. That is

where <j>=T../t.. and Xa=exp(-ta).

The formal solution (4.34) differs from that from the ME2 model 
(4.30) only in so far as a scale parameter <j) is included. The final 
solution can be obtained by solving (4.34) together with the link flow 
constraints (4.32) using a Newton method. The Newton fitting procedure 
converges faster than the multiproportional method but requires more 
computer memory. Another important improvement on the ME2 model was to 
accommodate errors in traffic counts within the model. The model permits 
the calculation of asymmetric confidence intervals for the estimated 
trip matrix, given or assumed variances and covariances for the 
measurements of traffic counts.

Later, Maher (1987) also pointed out that the estimates produced by 
the ME2 model are biased in some cases. According to his analysis, in 
the case of uniform growth since the prior trip matrix, the ME2 method 
overestimates those O-D flows which have been counted many times 
relative to those which have been counted few times. Even when the 
growth is non-uniform, the bias is still present. These findings were 
confirmed algebraically by the use of small examples and numerically by 
the simulation of many somewhat larger examples. As another modification

M pa.
Tij = <b tij n Xa Ja = 1 (4.34)
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to the ME2 method, Maher proposed a method of using a simple two-stage 
algorithm. This was made by extending Van Zuylen’s approach (1981). The 
extended algorithm was

A4.2
(step 0) Initialize n=0 and set the initial prior matrix u (n)=t and

T<n )_y(n)

(step 1) Keep u (n) fixed, perform several iterations of the
multi-proportional algorithm described earlier to modify 
T (n)and set newly modified matrix to be T (n+1 \  If the 
difference between T (n)and T(n+1) is within the convergence 
limit, stop. Otherwise, move to (step 2).

(step 2) Keeping T (n+1) fixed, perform several iterations of the Furness 
procedure (Furness, 1965) to scale up the rows and the columns 
of uin) so that the trip ends of u (n)match those of T (n+1) and
set newly modified prior to be u(n+1). Set n=n+l and move to
(step 1).

This modified approach is particularly useful because the major 
merit of the ME2 method, i.e. the use of the multi-proportional 
procedure, is still maintained. Although the convergence of the 
algorithm has not been proved for the general case, in a small example 
Maher showed that this method recovers correctly the values of T whereas 
the ME2 method does not.

As an extension to the ME2 model, Willumsen (1984) suggested a 
model which incorporates the uncertainty in traffic counts directly into 
the estimation process. The model proposed by Willumsen (1984) was

P4.7
Min z  Tij (log Tij/tij-1) + CO Z  Va(l0g Va/Va-1) (4 .35)e e

T i . j i . j

s.t.
Z  TijPij = Va, a= l,...,M , i= l,...,N , j= l,...,N . (4 .36 )

1 Tij >  0  (4 .37)
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where Va is the flow on link a estimated by the model, and co is the 
relative weight to uncertainties and errors in the traffic counts 
compared to uncertainties in the prior trip matrix.

Recently, following Willumsen (1984), Brenninger-Gothe, Jomsten 
and Lundgren (1988) formulated the estimation problem as a 
multiobjective programming problem which allows the specification of 
different objectives depending on the beliefs in the prior trip matrix 
and traffic counts. According to their multiobjective programming 
formulation, the estimation problem can be interpreted as: one objective 
is to satisfy the prior trip matrix and a second objective is to satisfy 
the traffic counts values. However, there does not exist any clear way 
to specify the relative weights of these two objectives.

4.3.2.2 Information minimization approach

Van Zuylen (1978) developed a model to estimate a trip matrix from 
traffic counts based on the information minimization formalism. Since 
the information available in the traffic counts on the links is 
insufficient to determine a complete trip matrix, it seems reasonable to 
choose a trip matrix that adds as little information as possible to the 
knowledge contained in the link flow constraints. This approach has been 
followed using Brillouin’s information measure.

The information contained in a set of N observations where the 
state k has been observed n times is defined by Brillouin (1956) as:k

where is a priori probability of observing state k. If the
observations are counts on a particular link, it is possible to define 
state ij as the state in which the vehicle observed has been travelling 
between origin i and destination j. So,

I = - logN! 1e (4.38)

n!j = TijPfj (4.39)
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We can also express the a priori probability of observing state ij 
on link a as a function of a priori information about the trip matrix as

tijP i j
q a .= ----------  (4.40)

1J Z t i j P f j  
i . j

where tij is the a priori number of trips between i and j provided, for 
example, by an old trip matrix. The information contained in V a  counts 
on link a is then

( t • • P *  • / Q a \ T » j P » j

la  =  -  logVal.n. (4.41)
e 1 ,J  ( T i j P i j ) !

where Sa= Z  tijPfj.

Using Stiring’s approximation, it is possible to obtain

I . = X TijPij log Tij S‘ (4 .42 )
i . j * V a t i j

Summing up over all the links in the network with counts, the total
information contained in the observed link flows is

I = X X Tij p?j log Tij S* (4.43)
a i , j V a  t i j

The problem of finding a trip matrix consistent with the 
observations and adding a minimum of extra information to them is
equivalent to minimizing the measure I subject to the flow constraints.
That is

P4.8

M in  I = X X Tij Pfj log Tii S* (4.44)
T a i , j V a  t i j

S.t.
I  Pij Tij = V a , a=l,...,M. (4.45)

1 Tij > 0 (4.46)
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The formal solution to this problem can be obtained by 
differentiation of the Lagrangian. Finally, we obtain

The optimum solution T is obtained by solving Equations (4.47) and 
(4.45) simultaneously. This is again a case which can be efficiently 
solved by the multi-proportional method. It is interesting to see that 
the solution (4.47) is very similar to the solution (4.30) obtained from 
the ME2 model. The main difference between these two resides in the 
exponents, Pij/ZPij, for Van Zuylen’s model and simply Pij in 
Willumsen’s model. This difference has the form of weights to be 
associated with observations on link a. The similarity is not surprising 
as the close relationships between entropy maximization and minimum 
information principles have long been recognized as, generally speaking, 
the state of maximum disorder is equivalent to the one containing 
minimum information. Van Zuylen and Willumsen (1980) has showed that Van 
Zuylen’s minimum information model can also be derived using the entropy 
maximization principle.

4.3.3 Methods using statistical inference techniques

As described in Section 4.3.2, the estimation methods which use the 
principles of maximum entropy and minimum information assume that the 
prior trip matrix and traffic counts are known with certainty. In 
reality, prior trip matrices are subject to variations as they are 
obtained, for example, from old studies or sampling surveys. Also, 
measured traffic counts are random, variables due to various errors, and 
neither are the modelled assignment proportions P known with certainty. 
The group of estimation methods described below explicitly consider 
variations in the prior trip matrix and errors in measured traffic 
counts by using statistical inference techniques. In the end, the

M
(4.47)

where Xa=—--------
Z t i jPi j

i . J
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estimated trip matrix is expressed as a function of the variances and
covariances as well as the observed values of the prior trip matrix and 
traffic counts used in the estimation. However, it is still assumed that 
the modelled assignment proportions P are fixed.

In this section, three different methods - Bayesian, maximum
likelihood and least square methods - will be reviewed.

4.3.3.1 The Bayesian approach

As described in Section 3.3.1, the problem of estimating a trip
matrix from traffic counts is underspecified: there are many trip
matrices which satisfy the link flow constraints whenever these are 
feasible at all. In order to determine a unique solution, some other 
information is added in the form of the prior information (for example, 
a prior trip matrix). Then, the combination of prior information and
traffic counts produces a posterior estimate of the trip matrix T. In
the two previous methods - maximum entropy and minimum information - a 
unique solution is determined by using some objective functions, 
generally in the form of a generalised measure of distance between the
estimated trip matrix T and the prior one t. In these, the posterior
trip matrix is an amalgam of the prior trip matrix and the observations 
on some links, but in this amalgam as little weight as possible is given 
to the prior. Furthermore, in these previous methods only point values
are specified in the prior trip matrix but no measure of the degree of
belief in this prior matrix is given or allowed for.

The problem of combining prior beliefs and observations to produce 
posterior beliefs is a standard one in Bayesian statistical inference. 
If one has complete confidence in one’s prior beliefs, then no random 
observation, however remarkable, will change in one’s opinions and the 
posterior beliefs will be identical to the prior ones. On the other 
hand, if one has little confidence in the prior, the observations will 
play the dominant role in determining the posterior beliefs. It is
envisaged that the prior information may come from an old transportation 
study and also the observations made on the link flows will be subject 
to random error. The uncertainties in the prior beliefs and the

73



observations could be of comparable magnitude. An information minimizing 
approach, then, could well be throwing away useful information in the
prior. Furthermore, a greater degree of confidence may be held for some 
parts of the prior beliefs than for others. For example, a recent 
transport study may have been carried out on part of the current study
area and so some elements of the trip matrix may be known much more
accurately than others. In this case, then, there are varying degrees of
belief in different parts of the prior (Mater, 1983)0

Having considered variations in the prior matrix and the 
observations, Maher (1983) developed a method to estimate a trip matrix 
from traffic counts based on Bayes’ theorem which states that

where Q(0) is the prior probability density of the parameter 0, f(V|0) 
is the probability of the observations V given the parameter values 0 
and Q(01V) is the posterior probability density of 0 given the 
observations V.

Since the denominator in (4.48) is a constant for the prior 0, the 
posterior probability density of 0 is proportional to the product of the 
probability of the observations given the prior 0 and the prior 
probability density of 0:

Maher assumed the multivariate normal distributions (MVN) for the 
prior 0 and the random errors in the observations V. Despite some 
misgivings about its use for elements with small means, the multivariate 
normal distribution seems to be an appropriate choice for the 
distribution of both the prior and the random errors in traffic counts. 
Following these assumptions, Maher showed that the posterior 
distribution Q(0|V) is also MVN.

Let us assume that the prior distribution of the parameter 0 is

Q(0|V) =
f(V |0 )Q (0 )

(4.48)
0)Q(0)d0

Q(0|V) a  f(V|0)Q(0) (4.49)
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MVN(t,Zo) where Zo is dispersion matrix for 0, the distribution of the 
random errors e in the observations V is MVN(0,W) where W is the 
dispersion matrix for e and the posterior distribution for the parameter 
0 is MVN(T,Zi) where Zi is the dispersion matrix for the posterior 
estimated. Then we obtain the following updating equations for the mean 
and dispersion matrices of the posterior estimated (Maher, 1983):

The central calculation in (4.50) and (4.51) is the inversion of 
the symmetric matrix (W+PZoP'). Prior beliefs are modified by 
observations to produce posterior beliefs: the stronger the prior
beliefs the less influence the observations will have in determining the 
posterior beliefs. The posterior beliefs are a weighted average of the 
prior beliefs and the observations, and the relative weights in this 
average are determined by the relative magnitudes of the two dispersion 
matrices: W for the observation errors and Zo for the prior beliefs. The 
Bayesian method has the advantage of allowing more flexibility than 
previous methods in the degree of beliefs. Furthermore, it allows for 
different degrees of belief in different elements of the prior. The 
methods based on maximum entropy and minimum information are seen to be 
just extreme cases of a whole range of possibilities. Also, Maher 
suggested the incorporation of a sensitivity analysis in the Bayesian 
method so that the effects of small changes in the assumed values of the 
parameters on the solution can be investigated without repeating the 
entire estimation process.

Maher (1983) tested the Bayesian method for the problems of 
estimating turning flows at a junction and estimating a trip matrix from 
traffic counts on a network. The results from the Bayesian method were 
compared with those of the maximum entropy method. It was seen that 
there is close agreement in the solutions between two methods. The 
closeness of this agreement is influenced by both the prior means and 
the prior variances. From the computational point of view, the Bayesian 
method requires more storage for the inversion of the matrices but less 
computation time than the maximum entropy or minimum information

T = t + ZoP'(W + PZoP'y^V - Pt) 
and Zi= Zo - ZoP'(W + PZoP'^PZo

(4.50)
(4.51)
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approaches.

4.3.3.2 The maximum likelihood method

Spiess (1987) argued against the vague use of the prior information 
in the matrix estimation process. According to his finding, various
descriptions are used in the literature for the prior t such as initial 
estimate, out-dated trip matrix, a priori guess, target matrix and 
reference matrix. In previous methods, the matrix t is not essential to 
the formulation of the model so that it is possible to obtain an 
estimate of the trip matrix even in the absence of a prior matrix: that
is achieved by setting tsj=l, for all i and j. However, the results of 
these methods, when used without the prior matrix t, have so far not 
been very convincing. It has been recognized that the accuracy of the 
resulting estimates is highly sensitive to the information contained in 
the prior trip matrix t. For example, see Robertson (1984), Atkins 
(1987), and Lam and Lo (1990). Given this rather imprecise and perhaps 
confusing role of the prior trip matrix t, it is not surprising that 
previous methods lack statistical proofs of validity for the resulting 
estimates.

Following this criticism, Spiess (1987) developed a method of 
estimating a trip matrix from a prior trip matrix when the volumes on a 
subset of the links of the network and/or the total productions and 
attractions of the zones are known. In this method, the prior trip 
matrix is not optional but becomes an essential part. In his model, the 
prior matrix t obtained by sampling for each O-D pair is assumed to be a 
Poisson distributed random variable with unknown mean pT. The
coefficients p represent the sampling factor for O-D pair, i.e. the 
fraction of the population that has been observed. Thus, t is one
observation of a set of random variables that have independent Poisson 
distributions with means pT. Since traffic counts are usually collected 
on a day-to-day basis, they are considered to be more reliable compared 
to the prior information and therefore it is possible to assume that 
their true mean values are known, or at least good approximations 
thereof. Later, this assumption is relaxed and the model is extended to 
accommodate errors in observed link flows.
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Under the hypothesis that the prior matrix t is obtained by 
observing an independent Poisson process with unknown mean pT where the 
sampling fractions p are known, the joint probability of observing the 
prior t is

Furthermore, we know that the population satisfies the link flow 
constraints. Applying the maximum likelihood estimation technique to 
this problem amounts to finding the estimated matrix T which satisfies 
the given link flow constraints and yields the maximum probability of
(4.52) for observing the prior t. By replacing the probability (4.52) 
with its logarithm and discarding constant terms, the maximum likelihood 
model can be formulated as:

P4.9
M ax I  (tij log (Tij) - pijTij) (4.53)

T i j
s.t.

Problem P4.9 is convex in T. If the link flow constraints are 
feasible and mutually consistent, then the existence of a global optimum 
solution is assured. The solution to P4.9 may therefore be obtained by 
any standard solution method for convex programming problems. In 
practice, however, matrix estimation problems are typically of a large 
size. Solution methods that require access to all data simultaneously 
may be difficult to implement. Spiess (1987) suggested the use of the 
cyclic coordinate decent algorithm, which is based on the idea of 
successive relaxation of all but one of the link flow constraints. This 
solution method is similar to the multi-proportional method used to 
solve the maximum entropy model.

In the problem P4.9, it was assumed that the true values of the

Prob(t) = n (4.52)

E  Pij Tij = Va, a=l,...,M. (4.54)
. j

Tij > 0 (4.55)
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observed link flows V are known. However, in reality, this is not always 
possible. This leads to an extension of the model, in which we 
interpret the observed link flows, denoted {V*}, to be random samples 
from a Poisson distribution with unknown mean {x«Va}. The positive 
constants {Xa} are the sampling factors used in the observation of the 
link flows. If the observed link flows are obtained from mutually 
independent surveys and independently from the sampled prior matrix t, 
the maximum likelihood method yields the following model:

P4.10
Max I  (tij log (Tij) - pijTij) + E(Va log Va - X.Va) (4.56)T c c

1 t J a

s.t.
E  Pij Tij = Va, a=l,...,M, i=l,...,N, j=l,...,N . (4.57)

'fi j > 0 (4.58)

Problem P4.10 is also a convex programming problem which can be
solved by the same solution method as used for Problem P4.9. As
described in Section 4.3.2.1, Van Zuylen and Willumsen (1980) and later 
Van Zuylen and Branston (1982) also used a maximum likelihood method to
estimate a set of mutually consistent link flows from inconsistent ones.
They too assumed that the observed link flows are Poisson-distributed 
and mutually independent.

It is important to note that, in order to apply the maximum 
likelihood method, it is necessary to give a precise interpretation of 
the prior matrix t. While other assumptions on the probability 
distribution on the prior t could be possible and would lead to 
different maximum likelihood models, the Poisson-distributed observed 
prior matrix t is perhaps most appropriate in practice.

4.3.3.3 The generalized least squares method

McNeil and Hendrickson (1985a; 1985b) and Cascetta (1984) have 
proposed the use of the Generalised Least Squares (GLS) as a method for 
estimating trip matrices from traffic counts. A major attraction of the 
GLS method is that it allows the combination of the prior information
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with traffic counts, while taking into account the relative accuracy of 
these two sources of data. It can be shown that the GLS approach is 
formally the same as the Bayesian approach and is closely linked to the 
Entropy approach. For example, see Cascetta and Nguyen (1988).

Following the work by Carey et al (1981), McNeil and Hendrickson 
(1985a; 1985b) suggested use of the generalised least squares method to 
estimate trip matrices from traffic counts. The estimation problem 
formulated by McNeil and Hendrickson allows the uncertainty of the 
estimates to be forecast as well as explicitly including all available 
information in the form of constraints. For example, some information 
includes: (1) observations of some particular matrix entries, (2)
observed link flows collected in a part of links in networks, (3) 
observations of row and column totals.

The problem formulated by McNeil and Hendrickson (1985a) was

P 4 .ll
M in  (T-t)' Z '(T -t)

T ....................
s.t. PT = V

where Z is vector used to represent weights.

Problem P 4 .ll  is convex and quadratic in T and can be solved by any 
solution method for convex programming problems. The final solution in 
matrix form is given by

T = t + ZP'(PZP')‘(V-Pt) (4.61)

It can be shown that Equation (4.61) is a global optimum solution 
to P 4 .ll  if the matrix Z is non-singular and positive definite, which is 
likely to be true for typical specifications of Z.

Also, P 4 .ll can be reformulated as a general constrained least 
squares regression problem:

(4.59)

(4.60)
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P4.12
M in  e'e 

T
s.t.

(4.62a)

t = T + e 
PT = V

(4.62b)
(4.63)

where e is a vector of errors where E(e)=0 and Var(e)=o2Z

Solving Problem P4.12 by the least squares regression method leads 
to the same solution as Equation (4.61). In this case, the solution 
(4.61) can be interpreted as the best linear unbiased estimate of T for 
the problem P4.12. Furthermore, the variance-covariance matrix of the 
estimated matrix T is given by

By making some distributional assumptions about the error terms, 
confidence intervals for the estimate T can be calculated. Using a 
simple example, McNeil and Hendrickson (1985a) compared the results from 
the quadratic programming method with the results from other methods 
including the maximum entropy and information minimization methods. It 
was found that in these examples these methods yield similar numerical 
results.

Apart from McNeil and Hendrickson (1984a; 1985b), Cascetta (1984) 
also developed a generalized least squares model to estimate a trip 
matrix from traffic counts. The estimator resulting from the model is to 
combine the prior estimate, possibly obtained by a direct sample survey 
or demand model, with traffic counts. The model explicitly considers 
measurement errors in link flows, misspecification errors in the traffic 
assignment, and variations in the prior matrix. Two cases were 
considered: a more general one, in which the estimator was
stochastically constrained to the observed flows considered to be random 
variables, and another in which the estimator is deterministically 
constrained to the observed flows. The latter one with the deterministic 
observed flows results in the same quadratic programming formulation as

Var(T) = o ^ Z  - ZP'(PZP'ylPZ] (4.64)
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the one proposed by McNeil and Hendrickson (1985a). We here review only 
the general case.

If t is the prior estimate obtained by either direct survey or 
demand models, it can be expressed as

t = T + e (4.65)

where e is a vector of random errors with mean 11 and dispersion matrix 
Z.

Also, if V is the vector of observed link flows, it can be posed 

V = PT+ r| (4.66)

where q is a vector of random errors with mean 5 and dispersion matrix 
W.

Combining two linear equations (4.65) and (4.66) leads to a linear 
equation:

(4.67)t 1 e
= T+

V p 3.

where I is an identity matrix.

The minimum variance estimator or the generalized least square 
estimator T from Equation (4.67) can be found by solving the following 
quadratic programming problem:

P4.13

M in
T

t- T

V-PT

rz 'o

0 w -1
t-T

V-PT
(4.68)

s . t. T>0 (4.69)
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Under the hypothesis of inactive inequality constraints, the
generalized least square estimator T* is obtained by equating to zero 
the first partial derivatives of (4.68) with respect T. The result is:

t* = ( z ‘+ p'w'py'cz't + p'w'V) (4.70)

It can be shown that the mean of T is:

E(T*) = T + ( Z ' +  P'W '1P)‘‘(Z'V  + P W '8 ) (4.71)

and its dispersion matrix is:

D(T*) = ( Z ' l+ P'W‘1P)'1 (4.72)

It can be seen that there are strong formal similarities between 
the Bayesian estimators and the generalized least squares estimators 
(Cascetta, 1984; Cascetta and Nguyen, 1988). The main difference is that 
the Bayesian approach is based on the probability distribution - the 
multivariate normal distribution - on the prior matrix and traffic 
counts whereas the generalised least squares approach is based on the 
starting dispersion matrices without any distributional assumptions on 
the observations.

Cascetta (1984) carried out a small simulation exercise to get a 
rough idea about the effects of substituting different approximate 
dispersion matrices to the true ones and to compare the performances of 
the proposed estimator with those of the maximum entropy one. It 
resulted that the substitution of an estimated dispersion matrix in 
place of the true one produced only a slight worsening of the 
estimator’s characteristics and all the generalized least squares 
estimators considered had a mean square error lower than the maximum 
entropy estimator.

Recently, Bell (1991) proposed a method for solving a generalised 
least squares problem with inequality constraints, T>c where c is a 
vector of non-negative constants. The proposed method replaces earlier 
ad hoc approaches used by Cascetta (1984). According to Bell’s analysis,
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unless inequality constraints are introduced into the GLS problem, the 
GLS estimates of some smaller O-D movements can be negative, violating 
the constraints. Using small examples, it was shown that the proposed 
solution method solves the problem more satisfactorily than ad hoc 
approaches.
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4.4. Methods using equilibrium traffic assignment

The estimation methods reviewed in the preceding sections are based 
on the assumption that it is possible to obtain the route choice 
proportions P independently from the trip matrix estimation process. 
This is only possible for situations in which proportional assignment 
methods are considered to be sufficiently realistic. Whenever congestion 
in networks plays an important role in route choice, this assumption 
becomes unrealistic: the calculation of the assignment proportions P and 
the estimation of the trip matrix T become interdependent.

A number of methods have been proposed for the problem of 
estimating trip matrices from observed link flows when congestion 
effects are taken into account. They can be classified into three 
methods: Willumsen’s method, Nguyen’s method, and Fisk and Boyce’s 
method. In these methods, the equilibrium traffic assignment satisfying 
Wardrop’s first principle is used, since it is the most preferred choice 
for the traffic assignment in congested networks because of its 
practical and theoretical advantages. This section reviews each of these 
three estimation methods in detail.

4.4.1 Willumsen’s method

As an extension of the ME2 model into congested conditions, 
Willumsen proposed a use of a sequential solution method of alternately 
performing trip matrix estimation and equilibrium assignment (Hall, Van 
Vliet and Willumsen, 1980; Willumsen, 1981a; 1982). This heuristic
method was originally used by Holm et al (1976) for calibrating traffic 
demand models using traffic counts. It is intended ultimately to find 
mutually consistent equilibrium assignment proportions which are in turn 
used to achieve a trip matrix consistent with observed traffic counts. 
The proposed solution method (Willumsen, 1981a) includes the following 
sequential steps:
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A4.3
(step 1) Assign the prior trip matrix t using equilibrium assignment to 

obtain the route choice proportions P(0) and set n=l.

(step 2) Estimate using P(n l) and the observed link flows V by the 
ME2 model.

(step 3) Assign T(n) using the equilibrium assignment and obtain the new 
route choice proportions P (n).

(step 4) Set n=n+l. Return to (step 2) unless the changes in P (n)or T(n) 
have been sufficiendy small.

There are two main difficulties with this sequential solution 
method (Willumsen, 1981a; 1982). The first is that convergence is not 
guaranteed. The sequential method assumes fixed demand during the 
equilibrium assignment in (step 1) and (step 3), and fixed route choice 
proportions during the trip matrix estimation in (step 2). In reality, 
route choice proportions will vary with the demand due to congestion. 
Because of this, the method does not converge in all cases.

The first difficulty may be illustrated by using a simple example.

Link 1

Link 2

Figure 4.1 A simple example network used for testing of the convergence 
of the sequential solution method

As shown in Figure 4.1, the example network used has one origin o, one 
destination d and two links 1 and 2. We shall assume that the 
equilibrium flows on links 1 and 2 can be calculated directly from the
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following explicit relationships without performing the equilibrium 
assignment.

Y i =  Tod,

= 0.8Tod+240, 

V 2 =  0 ,

= 0.2Tod-240,

if Tod<1200 

if Tod>1200 

if Tod<1200

if Tod>1200

(4 .73)

(4 .74)

Suppose that the counts value of the prior trip matrix tod is 1600  

vehicles and that a single traffic count V2 = 1 0 0  vehicles is available on 
link 2. In this case, we can calculate the solution Tod=1700 

analytically, which gives assigned flows V 2 on link 2 which are equal to 
100. However, here we shall consider the estimation of a trip matrix by 
the sequential method. The algorithm A4.3 of the sequential method 
described above estimates a trip matrix in the following way. If the 
prior trip matrix Tod )=tod=1600 is assigned to the network, the 
equilibrium link flows V 2(0 )= 8 0  and the route choice proportion Pid=0.05  

are calculated using the relationships (4 .73 ) and (4 .74 ). From the link
2 m \

flow constraint PodTod=V2, we can estimate the trip matrix Tod =  2000. 

If is now assigned, V 2 (1 )= 1 6 0  and P?d=0.08 are calculated using the 
relationships (4 .73 ) and (4 .7 4 ). This gives the estimated trip matrix 
T $ * = 1 2 5 0  from the link flow constraint P^Tod-V2. By repeating the same 
process, the results shown in Table 4 .4  are obtained.

Table 4 .4  Estimating a trip matrix using the simple example by the 
sequential solution method

n P od(T od' ° )  Tod } V 2 (n) | V 2 ( n ) - V2 | | T o d - T o d ) |

0 _ 1 6 0 0 80 20 1 0 0
1 0 . 0 5 2 0 0 0 160 60 3 0 0
2 0 . 0 8 12 5 0 10 90 4 5 0
3 0 . 0 1 1 2 5 0 0 2 2 6 0 2160 1 0 8 0 0
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As shown in Table 4.4, the sequential method fails to converge to a 
mutually-consistent solution. Rather, it appears to oscillate 
divergently.

We consider a sequential scheme for determining the self-consistent 
solutions of two mutually-dependent sub-problems

y = f(x) and x = h(y) (4.75a)
where f  and h express each of the two mutually-dependent sub-problems.

The sequential method of solving the problems (4.75a) can be written in 
the equivalent form

Xn+l = h[f(xn)], n=0,l,...
= g(xn) (4.75b)

where g(xn) is the composite function h[f(xn)].

The convergence of the sequential scheme (4.75b) can be guaranteed by 
the Lipschitz condition (Isaacson and keller, 1966, pp 85-91). The 
Lipschitz condition states that the sequential scheme (4.75b) converges 
provided that for all x in a neighborhood for the solution,

dg
ax < L (4.76)

for some constant L in the interval [0,1).

Applying the Lipschitz condition to the simple example shown in
Figure 4.1, we shall derive a convergence condition for the sequential 
method which applied to this simple network. Let TolP be the trip matrix 
estimated at the iteration n. Let V2 (n) be the equilibrium link flows at 
the iteration n. Let the equilibrium link flows V2 n̂)of T&P be
calculated from the specific explicit assignment relationship

V2(Tod) = aTod+b (4.77)

Also, let Pod (Tod ̂ ) be the route choice proportion of TolP using
the link 2. Then, we can obtain the following recursive relationship
from the sequential matrix estimation procedure.

TS+1)= — 2 , ' (4.78)
Pld ( T^>)

V 2
v J(.iTff (479)
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Then, the Lipschitz condition (4.76) indicates that the sequential 
algorithm will converge provided that

(4.80)

Using Equation (4.77) and taking the derivative, we obtain

d ( V 2T  od V2 (aT,od+b-aTod) (4.81)
aTod  ̂ V2 ( T od) (aTod+b)2

Using the approximation aTod+b=V2, we have

aTod+b
b (4.82)

Finally, substituting (4.82) into (4.80), we obtain the following 
result:

’The sequential method converges if | b | <aTod+b. More specifically, 
if b>-V2, the sequential method will converge. Otherwise, if b<-V2, 
it can diverge.’

If this result is applied to the simple example, because
b=-240<-100=-V2, the sequential method need not converge starting with 
the initial solution TodJ=1600. Thus, the use of the Lipschitz condition 
provides a theoretical explanation for the observed divergence of the
sequential method in some cases.

From the results obtained above, a practical suggestion can be made 
for link observations when estimating trip matrices from observed link 
flows. The links on a network can be classified into two groups. The 
links which are used at the initial route choice are of the first group. 
The links of the first group will have positive link flows in the
initial all or nothing assignment. The links which are not classified as 
the first group are of the second group. Thus, the links of the second 
group do not carry any flow in the initial all or nothing assignment.
For example, in the case of the simple example, if the flows in link 1,
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which is of the first group, are observed, the sequential method will
converge, provided that an initial solution close to the final solution 
is given. In general, this result can be applied for making observations 
of the links when estimating trip matrices and so it will help the 
sequential method to converge.

The second difficulty is that, as described in Section 3.3.4, the 
route choice proportions P are in general not uniquely determined by the 
equilibrium assignment process. The sequential method extracts route 
choice proportions from the trees and optimum flow combination 
parameters X in the Frank-Wolfe algorithm described in Section 3.2.2.
This is only an ad hoc device chosen to explore ways of extending the 
ME2 model to equilibrium assignment conditions. The method used is to 
set:

P(n+1)= (l-X(n))P(n) + k (n)p V n)) (4.83)

where P*(c(n)) is the route choice proportions by all or nothing 
assignment using link costs c (n), P(n) is the route choice proportions 
up to iteration n, and is the optimum linear combination parameter
from the Frank-Wolfe equilibrium assignment at iteration n.

Willumsen (1981a; 1982) tested this sequential method using the 
Reading data which had already been used for the validation of the ME2 
model. The test was carried out using Tuesday 19 October data base with 
the extended set of counts (trip end counts included). The two hour
traffic counts (16:10 to 18:10) were appropriately scaled when used to 
update costs with the cost-flow relationships. First of all, Willumsen
tested how well the equilibrium assignment programs used reproduce the 
observed flows in the Reading area. In order to do this, the observed 
trip matrix was loaded by each of all or nothing and equilibrium and the 
resulting flows were compared with the observed ones. As shown in Table 
4.5, equilibrium assignment produces link flows which are closer to the 
observed ones than all or nothing assignment. It was also observed that 
all or nothing assignment produces reasonable flow levels suggesting 
that in this case it is not a bad approximation.
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Table 4.5 Observed vs loaded flows from 19 October trip matrices
(extracted from Willumsen (1981a))

Loading Technique
I n d i ca to r A ll or nothing E quilib rium  assignment

R M SE 18.8 16.0

% RMSE 20 16

Next, the new trip matrix was estimated by the sequential solution 
method of the ME2 model and this estimate was compared with the 
observed trip matrix. As goodness-of-fit statistics, the root mean 
square error (RMSE) and the percent root mean square error (%RMSE) 
between the estimated and the observed were used for comparing two
different trip matrices. From the final results, as shown in Table 4.6,
the following comments on the sequential method were made (Willumsen, 
1981a):

(1) The sequential method seems to produce an improved estimate of the 
sampled trip matrix albeit at a high cost in computing time. This
improvement is, however, not very large.

(2) The greatest improvement seems to be produced during the first 
cycle. Additional iterations did not improve the estimated matrix much.

(3) The method is not completely ’well behaved’, in the sense that after 
certain iterations the goodness of fit worsens, albeit only marginally.

(4) Although not apparent in Table 4.6, it was observed that full 
convergence of the ME2 model was not achieved because the flow 
constraints were not mutually consistent. The sequential method tends to 
generate certain route choice proportions which are not fully consistent 
with the observed link flows.

(5) On the whole it cannot be said that the sequential method is
entirely satisfactorily.
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Table 4.6 Tests with the sequential method for estimating trip matrices
(extracted from Willumsen (1981a))

I n d i e  ator

1st cycle 2nd cycle 3rd cycle
i te ra tio n  

1 2 3 4 5
ite ra tio n  
2 3 4

lte ra tio n  
2 3 4

R M S E
% RM SE

2.1 2.1 2 .0  2 .0  2 .0  
169 167 163 164 162

2 .0  2 .0  2.1 
162 160 179

2 .0  2 .0  2 .0  
160 161 160

Note (1) Each cycle is an equilibrium assignment.
(2) Each iteration is a Frank-Wolfe iteration within the 

equilibrium assignment.
(3) Trip matrices are updated by the ME2 process after each 

iteration of the assignment.

This sequential method of the ME2 model to estimate a trip matrix 
from traffic counts under congested conditions has been adopted for use 
with the SATURN suite (Hall, Van Vliet and Willumsen, 1980). SATURN - 
Simulation and Assignment of Traffic in Urban Road Networks - is a 
simulation-assignment model for the evaluation of traffic management 
schemes developed at the Institute for Transport Studies, University of
Leeds. The simulation part of the SATURN model treats junctions in great
detail, thus providing a good representation of the way in which 
equilibrium might be achieved in urban areas.

The procedure adopted in SATURN is shown in Figure 4.2 and it 
follows the sequential method which performs equilibrium assignment and 
trip matrix estimation alternately. Moreover, the assignment can be 
either a single equilibrium assignment with fixed flow-delay curves as 
represented by ’Inner Loop’ or a full run of simulation and equilibrium 
assignment as represented by ’Outer Loop’. The paths represented by both 
’Inner’ and ’Outer’ loops can be viewed as almost interchangeable, and a 
complete run of the model could pass through each several times.

This heuristic procedure adopted in SATURN was applied to a project 
of evaluating a number of alternative traffic management schemes for the 
town of Harrogate in North Yorkshire (Hall, Van Vliet and Willumsen, 
1980). The procedure was used to update an old trip matrix from traffic
counts. It was shown that the trip matrix updated through the SATURN
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procedure halves the mean absolute difference between the assigned and 
observed flows by comparison with those of the old trip matrix. It was 
suggested that the matrix updating method implemented in SATURN has led 
to a substantial improvement in the goodness-of-fit between observed and 
predicted flows and are a valuable addition to the modelling of limited 
area traffic management schemes.

A prior matrix

Network data

Traffic counts

A prior matrix

Estimated matrix

no
flow-delay curves ?

INNER-LOOP
yes

SATASS

SATME2

SATSIM-SATASS Current trip matrix

OUTER-LOOP

Figure 4.2 Estimating a trip matrix by the sequential ME2 method in the 
SATURN (taken from Van Vliet (1987))

Recently, Fisk (1988) proposed a formulation which solves the two 
sub-problems of equilibrium assignment and maximum entropy matrix 
estimation simultaneously. Fisk incorporated the equilibrium conditions 
as a constraint in the entropy maximizing problem by adopting the form 
of the variational inequality used originally by Smith (1979). The 
proposed formulation was:

P4.14
Max Si(T,t)= -Z Tij(log Tij/tij -1 ) (4.84)

T ’ " i . j
s.t. £  5arhr =  V a , a=l,...,M, i=l,...,N, j=l,...,N. (4.85)

r e P i j

Z  hr = Tij, (4.86)
r e P i j
c(h)(g-h) > 0 ,  for all g (4.87)

hr,Tij > 0 ,  (4.88)
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where h is the vector of path flows
c(h) is the vector of costs associated with path flow h
g is a vector of feasible path flows
Pi] is a set of paths through the network between i and j

This is an infinitely constrained problem generally known as the
Fritz-John problem (Fisk, 1988). Solution procedures for problems with a 
similar structure have been investigated by Marcotte (1983) in
connection with equilibrium network design problems. Following the
approach of Fisk (1984b), other formulations of P4.14 can be obtained by
expressing the constraint (4.87) in other equivalent ways. This is 
important for solution purposes because it broadens the range of
solution procedures. If c(h) is a monotone function, i.e.

[c(h)-c(g)Kh-g) > 0

and W(h) = M in c(h)(g-h) 
6

(4.89)

(4.90)

then the constraint (4.87) is equivalent (Smith, 1979) to

W(h) = 0 (4.91)

Thus, for monotone path cost functions, P4.14 is equivalent to

P4.15
Max Si(T,t) 

T
(4.92)

(4.93)

W(h) = 0 (4.94)

Z  hr -  Tij (4.95)
i € P i j

As discussed in Fisk (1984a), W(h) has the properties of a penalty 
function; in particular for any h, W(h)<0 and W(h)=0 iff h solves the 
constraint (4.87). Then, P4.15 has the approximate penalty formulation:



P4.16
Max Si(T,t) + pW(h) (4.96)

T
(4.97)

X  hr =  Tij 
r^Pij

(4.98)

where p is a positive constant.

Since Si(T,t) and W(h) are separable functions of T and h 
respectively and for any T it is possible to find h for which W(h)=0, 
this latter condition will hold at the solution for any value of p.. In 
other words, the sequential approach of P4.16 approximates a solution to 
P4.15. Replacing W(h) by Equation (4.90), P4.16 takes the form of a 
max-min problem: possible solution algorithms for problems of this kind 
are given in Fisk (1984b).

However, Fisk’s formulation retains the flow constraints (4.97) 
which associate the observed link flows with estimated path flows. While 
these constraints remain, there might be no feasible solution due to 
inconsistencies in the observed flows. Fisk did not provide any 
explanation of how to deal with these constraints.

4.4.2 Nguyen’s method

In an equilibrium based approach to the problem of estimating a 
trip matrix from traffic counts, Nguyen (1977) proposed two mathematical 
models whose solutions are trip matrices which satisfy equilibrium 
assignment conditions and are consistent with observed link flows. The 
main advantage of these models is that they estimate trip matrices from 
traffic counts without using the route choice proportions P which are 
unknown and not well defined in equilibrium assignment.

The first method proposed by Nguyen uses traffic counts for all 
links of the network. The proposed method was as follows. Let { V a }  

denote the observed flows on link a and {Cij} the travel costs on all 
used routes between origin i and destination j. For each O-D pair there
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is one value of Gj since {Va} is assumed to be in the equilibrium 
state. {G j} may be computed on the network by determining a shortest 
route between i and j: the link costs being {ca(Va)}. If {Tij} is the 
trip matrix corresponding to the observed flows {Va}, then the
equilibrium state is expressed by the following equality:

I  CijTij =  I  Ca(Va)Va (4.99)
i . J a

Hence necessary conditions for an estimated trip matrix {Tij} to be 
equal to {Tij} are:

X Gj Tij = X Ca(Va) Va (4.100)
i . j a

and
Gj = Cij, for all i-j pairs (4.101)

where {Gj} is the modelled cost on all used routes between i and j when 
{Tij} is assigned onto the network by the equilibrium assignment.

A trip matrix T satisfying (4.100) and (4.101) reproduces the 
observed interzonal travel cost {Gj}, the total network costs Xca(Va)Vaa
and the observed link flows {Va}. Nguyen showed that a trip matrix 
satisfying conditions (4.100) and (4.101) can be obtained by solving the 
following problem:

P4.17

Min Z(Y) = X
T ~ a

S.t.

X  5arhr =  Va, i=l,...,N, j=l,...,N. (4.103)
r e P i j

X hr = Tij, (4.104)
r€ P i j

hr, Tij > 0, (4.105)

X  GjTij = X Ca(Va) Va (4.106)
i . j a

where hr is flow on route r between i and j and 5ar=l if hr uses link a, 
5ar=0 otherwise.

JVa
Ca(x)dx (4.102)
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Using Kuhn-Tucker conditions, Nguyen proved the equivalence between 
P4.17 and the equilibrium conditions (4.100) and (4.101). Thus, the trip 
matrix obtained by solving the problem P4.17 reproduces the observed 
link flows (V a).

As a solution procedure to solve the problem P4.17, Nguyen 
suggested an application of the Frank-Wolfe algorithm. The solution 
procedure proposed was:

A4.4
(Step 1) Select an initial feasible {Tij}, for example Tij=K/Z£od where 

K = £  Ca(Va)Va. Determine an initial flow pattern {Va} using 
{Tij}.

(Step 2) Determine a shortest route between each O-D pair and let Gj be 
the travel cost on this route.

(Step 3) Find the O -D  pair ’rs’ for which Cre/Crs=MioGj/Cij and load 
’K/Cn* trips onto the shortest route from r to s. Let {Va} be 
the resulting link flows.

(Step 4) If | Zca(Va)(Va-Va)/Z(Va) | < e for a suitably chosen convergence 
parameter e, terminate. Otherwise, continue to (Step 5).

(Step 5) Find an optimum combination X minimizing
Z ((l-^ )V a U V a ) subject to 0<X<1. (4 .107)

(Step 6) Revise the trip matrix and link flows as follows:

Tij=(l-A,)Tij for all ij^rs 
Tr,=(l-X)Tn+X.f— j

V .= (l-k )V .+ X V .

Return to (Step 2).

The first model proposed by Nguyen is only suitable for small 
networks where observed link flows for all links are easily obtained. 
Furthermore, the solution procedure may not be efficient for a large

(4.108)
(4.109)

(4.110)
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number of O-D pairs. These considerations led to the development of the 
second model which has reduced the input requirements. The input data 
required for the second model is only a set of the interzonal travel 
costs {Cij}. The proposed formulation was:

P4.18
f V a

M in Zi(y,T) = X Ca(x)dx - I  CijTij 
T a 0 i , j

S.t.

X  8rahr = Va, for all i-j pairs 
rePi}
X  hr = Tij 

r€E P i j
hr, Tij>0

Problem P4.18 reflects the situation in which the observed link
flows constitute an equilibrium. For the special case in which no
congestion effects are present, Ca(x) is constant and the first term of 
the objective function becomes simply ZcaVa. This results in a linear 
programming problem. Using the associated Kuhn-Tucker conditions, Nguyen 
proved that the optimal solution of problem P4.18 satisfies the 
equilibrium conditions (4.100) and (4.101). Furthermore, it was shown
that this solution has a unique set of link flows. However, Nguyen
pointed out that the solution to Problem P4.18 is in general not unique 
and there may be more than one trip matrix which could produce the same 
equilibrium link flows.

The problem P4.18 has the same form as the formulation of the
equilibrium traffic assignment problem with elastic demand. This
structural similarity allows application of any equilibrium procedure 
for traffic assignment with elastic demand to solve the problem P4.18,
such as the algorithm stated by Nguyen (1976).

Nguyen tested both formulations P4.17 and P4.18 on a small 
synthetic network with 4 zones and 19 one-way links. A known observed 
trip matrix was used to generate a set of the observed link flows. It
was shown that trip matrices estimated from both methods closely 
reproduce the observed trip matrix and the observed link flows.

(4.111)

(4.112)

(4.113)

(4.114)
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As a way of choosing a single trip matrix amongst the multiple 
optima for Problem P4.18, Jomsten and Nguyen (1979) proposed an 
approach which combines the maximum entropy objective function with 
Problem P4.18. Let Q be the set of all optimal trip matrices of Problem 
P4.18. Then, the most likely trip matrix consistent with the observed 
link flows V is that trip matrix which solves

P4.19
Max -X Tij log Tij (4.115)

T i .  j
s.t.

X Ty = T.. (4.116)
i . j
T e n  (4.117)

Since the set of candidates Q is not known explicitly, an immediate 
approach for solving Problem P4.19 would be to approximate Q by a 
polyhedron defined by a finite number of linear constraints. 
Accordingly, as a solution procedure for Problem P4.19, Jomsten and 
Nguyen suggested a decomposition-relaxation approach. The resulting 
computational scheme consists essentially of postoptimising at each 
iteration a multiproportional problem and an equilibrium assignment 
problem. More precisely at a general iteration ’n’, the steps are:

A4.5

(step 1) Solve the following multiproportional problem for T (n),

P4.20
Max -X Tij log Tij

T e
1 * J

S.t.
Z  Tij = T..

> . j
Z  CijTij = Co

'z V if T i j  < Cn 
» . j

(4.118)

(4.119)

(4.120)

(4.121)

98



Tij > 0 (4 .1 2 2 )

(step 2) Determine the equilibrium link flows V (n) and the minimum route 
travel costs Ci?) for the current trip matrix T (n) and
calculate the new constraint

£  d ? +1)Tij <  Cn+i (4 .1 2 3 )
i . j

where Co=Ica(Va)Va and C n =Ica(V in))Vaa a

If the resulting total network travel cost Cn in (step 2) is
equal to the observed total cost Co, terminate.

Another way of choosing a trip matrix of multiple optimum trip 
matrices produced from Nguyen’s second approach was suggested by Gur, 
Tumquist, Schneider, LeBlanc and Kurth (1 9 7 9 ), and Tumquist and Gur 
(1979). The method uses an externally generated trip matrix - the target 
trip matrix - to provide information on the structure of the unknown
trip matrix. Gur et al (1 9 7 9 ) and Tumquist and Gur (1979) proposed the
problem of using a least squares objective function for finding the trip
matrix reproducing observed link flows as closely as possible and lying 
closest to the target trip matrix. That approach involves solving
Nguyen’s second problem with a heuristic variation of the Frank-Wolfe 
technique. The variation is in the construction of search directions,
which are changed so that the estimated trip matrix at each iteration 
lies close to the target trip matrix. The solution algorithm (Tumquist
and Gur, 1979) includes the following steps:

A4.6
(step 1) Specify an initial trip matrix T(1) and a flow-delay function 

for each link.

(step 2) Assign T(I) to the unloaded network by using free flow 
conditions to obtain a set of modelled link flows y (1). Denote 
this current solution (V(1\  T (1)).

(step 3) Set n=l.
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(step 4) Determine link costs at the current flow y (n)and again build
the shortest routes. Denote the resulting interzonal travel 
costs C(n).

(step 5) Given T ^ , C and C(n), find a correction trip matrix T* that
is closer to a solution.

(step 6) Assign T* to the routes built in (step 4) to obtain the
correction link flows V*.

(step 7) Find a optimum combination X such that 0<A<1 and the new
solutions (Yfr+1lT°,+1))==3l(Y*,T*)+(l-X.)(Y0,).T0,)) minimizing 
the objective function Zi(V,T) of Problem P4.18.

(step 8) Check the convergence criterion. If it is met, stop; otherwise,
set n=n+l and return to (step 4).

Within the basic framework of this algorithm, there are a number of 
opportunities for variation. According to their investigation, the 
solution appears to be sensitive to: (1) choice of the initial trip
matrix (2) choice of link flow-delay functions (3) choice of computing 
correction trip matrix. In particular, the choice of the initial trip
matrix is important as the method tends to estimate a final trip matrix 
which is similar to the starting one. This property led to devoting a 
substantial attention to constructing a reasonable starting trip matrix.
For this purpose, a special gravity type trip distribution model was
developed to generate a target trip matrix with desirable attributes.
Another sensitive factor to be specified is the selection of link 
flow-delay functions. Nguyen (1977) proved that the problem solution 
will replicate observed link flows as long as the link cost functions
satisfy two simple criteria: (1) They must be strictly increasing
functions of link flows, and (2) they must take the value of observed
link cost at the observed link flow. As the best link cost function,
Tumquist and Gur used a piece wise linear form, since this function
provided superior empirical performance in terms of both the speed of
convergence and the quality of the final solutions. Finally, Tumquist
and Gur tested several heuristic methods for estimating the correction

100



trip matrix in (step 5) of the algorithm A4.6. They found that the best 
approach was to make

The feasibility of the proposed estimation method was tested in 
Hudson County, New Jersey. The network had 58 zones and 369 links. In 
assigning the initial trip matrix to the network by using the 
equilibrium assignment, a RMS error of 42.7 per cent between the 
observed flows and the modelled ones was found. The estimated trip 
matrix, when assigned, showed a RMS error of about 13.5 per cent in link 
flows.

Finally, as a further improvement to Nguyen’s second approach, 
LeBlanc and Farhangian (1982) developed a more efficient solution method 
to solve the same estimation problem posed by Gur et al (1979). The 
problem was solved in two stages. First, Nguyen’s second problem P4.18 
is solved and the value Zi is found for the objective function Zi(y,T). 
Then, in order to choose a trip table to be closest to the target trip 
matrix the following auxiliary problem was set up:

if Cij > d;> 
if Cij < d ?

(4.124)

where Ci? is the travel cost for i-j pair on the free -flow conditions.

P4.21
M in  X  (Tij -tij)2 

T  i . j
(4.125)

s.t
X  Sarhr =  Va, i= l ,. . . ,N , j= l, . . . ,N .

r e P i j
(4.126)

I  hr =  Tij
r e P i j

(4.127)

X  f Ca(x)dx- X Cij
a 0 i . j

(4.128)

Tij, hr >  0 (4.129)

LeBlanc and Farhangian solved P4.21 by taking the partial 
Lagrangian with respect to the single constraint (4.128). The resulting



Lagrangian problem is:

P4.22
-Va

Min h(X)=X(Tij-tij)2+ X.(lfc,(x)dx-SCijTirZi) (4.130)
T,X, i , j  ' ■ a O  i , j  '

S.t

X 5arhr=Va, for all i-j pairs (4 .1 3 1 )
tGP  i j

X  hr=Tij (4 .1 3 2 )
rG  Pi}

Tij, hr >  0  (4 .1 2 9 )

Evans’s iterative algorithm (Evans, 1976) was used to solve the
problem P4.22 for different values of X. The proposed solution method 
was tested with a simple network with 24 zones and 76 one-way links on 
which a known trip matrix had been loaded using equilibrium link 
assignment and the resulting link flows were used as the observed flows. 
Two different starting trip matrices were used, resulting in different 
optimal trip matrices. Both of these optimal trip matrices reproduced
very closely the observed link flows. However, both trip matrices were 
significantly different from the trip matrix originally used to produce
the observed flows. Furthermore, the solution method was not considered
to be suitable for large networks because of the extensive computing 
requirement.

4.4.3 Fisk and Boyce’s method

Fisk and Boyce (1983) suggested an approach of estimating a trip 
matrix by calibrating the combined distribution and assignment model 
using traffic counts. As described in Section 2 .3 .2 , the conventional 
transport planning process deals with four sequential stages: trip
generation, trip distribution, modal split and trip assignment. The 
process has to be iterated to find a consistent solution in congested 
networks because of the interdependence between the first three stages 
and the trip assignment stage. The combined distribution and assignment 
model treats the second and fourth stages simultaneously thus avoiding 
the sequential approach for these two stages. The Combined Distribution 
and Assignment (CDA) problem has been studied by many researchers (for
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example, Florian, Nguyen and Ferland, 1975; Evans, 1976 and Erlander, 
1977). A CDA problem is equivalent to the following mathematical 
programming problem (Fisk and Boyce, 1983):

P4.23

(4.133)

s. t.
I  T i j  = Dj j = l , . . . , N . (4.134)

(4.135)I  T i j  = O i i = l , . . . , N .

I  hr  = Ti j 
P i j

(4.136)

£  S a r h r  = V a  i = l , . . . , N  , j = l , . . . , N .
r€ P i j
h r ,  T ij  > 0

(4.137)

(4.138)

where (3 is a parameter to be calibrated.

A number of the solution methods are available for the problem 
P4.23, . For example, see Florian et al (1975) and Evans (1976). For a 
specified value of the parameter p, the optimal solutions of the problem 
P4.23 are a doubly constrained gravity model

where Cij is the interzonal travel cost on the shortest route, and Ai 
and Bj are the balancing factors related to the trip end 
constraints,

and a set of equilibrium link flows consistent with the interzonal 
travel costs {Cij} used in the gravity model.

In order to use the CDA model to estimate a trip matrix, the value 
of the cost perception parameter p has to be determined a priori. 
According to Erlander et al (1979), the problem P4.23 can be 
reformulated as the following CDA problem:

Tij =  AiOiBjDjexp(-pCij) (4.139)
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P4.24

(Y,T> i.j
Min Z T i  j log Ti j
■ x t  rr\  e

(4.140)

a u
(4.141)

(4.142)

(4.143)E  Ti j = Oi , i = l , . . . , N

E hr = T i j
r € P i j

(4.144)

I  8  a r h r =  Va , i = l , . . . , N ,  j = l , . . . , N .
rG P i j

(4.145)

h r , T i  j >  0 (4.146)

It was shown that the problem P4.24 is equivalent to the problem 
P4.23 since the optimal conditions to both problems are same.
Furthermore, if {Va(p)J is the equilibrium flow solution to P4.24 for a 
given p value, then, as shown in Erlander et al (1979), the integral

is monotone function, implying that p is uniquely determined from P4.24. 
The remaining task is how to estimate the cost C (p) using any extra 
information available. In the past, a sampled trip data was used to 
calculate the value of C(p). Fisk and Boyce (1983) suggested a method of 
estimating the value of C (p) from traffic counts. If observed link flows 
{Va} are available for all links, C (p) can be estimated directly from

More realistically, only a sample of link counts may be available. 
Since the sample is typically not random, an unbiased procedure for

a 0
(4.147)

rV a
C (p) =  I  Ca(x)dx 

«J na 0
(4.148)
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estimating the value of C(P) is to stratify the sample into K groups of 
the links classified by link type. Let

a - s r ? J .k aE Lk 0
X  Ca(x)dx (4.149)

be the mean value of the cost function for the group k where Lk is the 
set of links in group k and nfc is the number of links in Lk. Then, C(P) 
may be estimated as

where Qk is the number of links in group k.

In a recent paper, Fisk (1989) emphasized that this approach
requires little computing effort and also is flexible enough to deal 
with errors in the observed link flows implying the existence of
feasible solutions. In particular, this approach is attractive compared
to other methods such as those of Willumsen and Nguyen, in the sense 
that the future link flows can be predicted.

However, despite some advantages advocated by them, Fisk and 
Boyce’s method is just an extension of a doubly constrained gravity
model whose applications may not be suitable for urban transport 
studies. As described in Section 4.3.2.1, the doubly constrained gravity
model has the extra total travel cost constraint and an uniform
perception to travel costs is assumed. In this respect, their approach 
is different from entropy maximizing approaches in which no uniform 
perception to travel costs is assumed. Furthermore, as described above, 
their approach uses observed flows in a more aggregate way than other 
methods implying that the estimated trip matrix may not use the
information contained in traffic counts fully.

K
C(p)=X QkCk (4.150)

k = 1
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CHAPTER 5. SIMULTANEOUS ESTIMATION OF TRIP MATRICES

5.1 Introduction

As reviewed in Chapter 4, the problem of estimating a trip matrix 
from traffic counts when the route choice proportions are fixed over 
traffic demands is well researched. However, when congestion effects in 
networks play an important role in the traffic assignment, the route 
choice proportions are not normally fixed and the estimation process 
becomes more complicated because of the equilibrium conditions. Three 
methods - Willumsen’s method (1981a), Nguyen’s method (1977), and Fisk 
and Boyce’s method (1983) - have been developed to tackle this problem. 
However, as reviewed in Section 4.4, none of these three methods solves 
the problem satisfactorily. In particular, the sequential method of the 
ME2 model developed by Willumsen (1981a) appears to be attractive 
because of its advantages such as the simple data requirement and the 
low computing cost. On the other hand, the sequential method is only a 
heuristic, as it solves the equilibrium assignment and the entropy 
maximization problem alternately. The sequential solution method might 
fail either to converge or to estimate optimal solutions.

Among other equilibrium based approaches to the estimation problem, 
Nguyen’s method has the form of a traffic assignment problem with 
elastic demand and it uses a set of the interzonal travel costs as the
input data which may be obtained from traffic counts. Fisk and Boyce’s 
method is an extension of a doubly constrained gravity model whose
applications may not be suitable for urban transport studies. These two 
models are distinguished from the ME2 model in the sense that they
require the different level of the detail in the input data.

In this chapter, a new formulation and solution method is proposed 
to estimate a trip matrix from traffic counts under equilibrium traffic 
conditions, as an alternative to the sequential method of the ME2 model. 
The new formulation is to maximize entropy values whilst the link flows 
modelled under equilibrium assignment of the estimated trip matrix 
reproduce the observed ones. As an objective function in the new
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formulation, two different entropy functions, So(T,t) and Si(T,t), are
derived and compared. The proposed solution method which solves the 
equilibrium assignment problem and the matrix estimation problem 
simultaneously requires a considerable computing demand. A heuristic 
method is developed which uses a linear approximation fitted by 
regression to the equilibrium link flows. Extrapolation and perturbation 
methods have also been used to speed up the solution process. An
important feature of the new formulation is that it requires the same
input data and can use the same entropy objective function Si(T,t) as 
the ME2 model. This enables us to carry out some theoretical and
empirical analysis of the differences between the solutions estimated by
different methods: the sequential ME2 method and the simultaneous
method.

In spite of the use of extrapolation and perturbation methods, the 
simultaneous method still has a considerable computational requirement
for large networks. Because of this, it may be impractical in large 
networks. An improved sequential method which uses a penalty function 
method is proposed. This method estimates an optimum solution by 
approaching the feasible region progressively, while fixed route choice
proportions P are used.

This chapter is organized as follows. Section 5.2 describes a new 
formulation of the matrix estimation method. The new formulation will be 
compared with that of the ME2 model. Section 5.3 describes a
simultaneous solution procedure proposed to solve the new formulation. A 
constraint approximation method and the sequential unconstrained 
optimization technique are described there in detail. In order to reduce 
the heavy computational demand of the proposed solution method, some 
heuristic methods such as an extrapolation method and a perturbation 
method are described. Finally, Section 5.4 describes an improved 
sequential estimation method.
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5.2 Formulation

The simultaneous formulation of estimating trip matrices from 
traffic counts adopts the same underlying idea as the ME2 model but with 
two distinct modifications to the ME2 model. These are: (1) the new 
formulation can use either of the entropy functions So(T,t) and Si(T,t) 
as an objective function in the formulation of the problem. (2) the new 
formulation sets assigned link flows equal to observed link flows 
instead of using the assignment proportions of the estimated trip 
matrices. In the following sub-sections, each of these modifications is 
described in detail.

5.2.1 Entropy objective function

Entropy is most commonly known in the physics and engineering 
fields in connection with the second law of thermodynamics - the entropy 
law. This states that the entropy, or amount of disorder, in any closed 
conservative thermodynamic system tends to increase. A fundamental step 
in using entropy in information theory was provided by Shannon (1948). 
Shannon showed that entropy, which measures the amount of disorder in a 
thermodynamic system, also measures the amount of entropy or uncertainty 
in a probabilistic sense. Shannon discovered that the amount of entropy 
in any discrete probability distribution is proportional to

- 2  p. logep. (5.1)
N

where p. is the probability of event i and X p. = 1.
1 i = l 1

Shannon’s entropy function (5.1) has several useful properties. For 
any fixed N, Equation (5.1) is a continuous and symmetric concave 
function with respect to all its arguments. It has first and second 
derivatives and has a global maximum when all the probabilities are 
equal.

The next key step in opening up new applications for the Shannon 
measure of entropy was taken by Jaynes (1957). Jaynes suggested that the 
Shannon entropy measure could be used in a reverse sense to generate or
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infer a probability distribution which would have maximum entropy. Since 
entropy is a measure of uncertainty, a maximum entropy distribution must 
have maximum uncertainty, must be maximally non-committal and must 
therefore contain minimum bias. If we have any partial information about 
some random process, we should not arbitrarily choose some probability 
distribution to fit but we should choose that probability distribution 
which maximizes the Shannon entropy measure subject to the partial
information we have. The probability distribution which results from 
this constrained maximization process will then be one which introduces 
minimum bias into the probability estimation process. Jaynes’s work is 
often referred to as the Maximum Entropy Principle.

As already reviewed in Section 4.3.2, Wilson (1967; 1970) adapted 
the maximum entropy principle to transport and regional planning 
problems. Wilson derived a doubly constrained gravity model by
maximizing an entropy measure subject to trip end and total cost 
constraints. Following the derivations by Wilson (1970), and Batty and 
March (1976), we here derive measures of entropy associated with a trip
matrix T={Tij) and optionally with a prior trip matrix t= {tij}.

The number of micro-states associated with a trip matrix {Tij} is given
by

(5.2)

where T..=X Tij.
i . j

If a prior trip matrix t is available, (5.2) becomes

W(T,t)=-------------
IITij 
i . j

t . . !  ni . j  t.. (5.3)

where t..=X tij 
* . j
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Taking the logarithm of (5.3),

log W(T,t) = log T..! + LTij(log Uj-log t..) -.S .log  Tij! (5.4)
e -  -  c 1 , j e e i , j e

Using S t i r l i n g ' s  formula: log Tij! = Tij(log Tij-1), we obtain a full
e e

entropy function from (5.4),

So(T,t) = T..(log T..-1) - ZTij(log (Tij/tij) - 1 + log t.) (5.5)
-  -  e e e

i . j

If we assume that the total demand T.. is fixed, we have the simplified 
entropy function

Sl(T,_t)= - X Tij(log^Tij/tij)

= So(T,t) + K 

where K is a constant.

If we ignore prior information t, that is, set tij=l for all i and j, 
So(T,t) and Si(T,t) become

So(T) = T..(log T..-1) - E  Tij(log Tij - 1)
e c

i t J
and

Si(T)= - Z  T ijdogjij - 1) 
i . j

As reviewed in Section 4.3.2.1, Bell (1983) also derived a full
entropy function So(T,t) based on the assumption that the trips of Tij 
are multinomially distributed. Bell derived So(T,t) by maximizing the
joint probability of observing the trip matrix T given the prior trip 
matrix t. As shown in Equations (5.6) and (5.7), the entropy function
Si(T,t) can be given as a simplified form of So(T,t) by assuming that 
the total demand T.. is constant. In particular, the ME2 model uses 
Si(T,t) as an entropy objective function. In deriving the ME2 model, 
Willumsen (1981a) assumed that the total demand T.. is fixed. However, 
in practice the total demand T.. is unknown and so it should be treated 
as a variable than a constant. In addition to that, it can be shown that 
the full entropy function So(T,t) differs from the simplified one

(5.8)

(5.9)

- 1) (5.6)

(5.7)
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Si(T,t) with respect to the following properties:

(1) The value of So(T,t) is invariant to the application of uniform 
scaling to the prior trip matrix. That is, So(T,t) = So(T,A,t), for all 
A>0, where A. is a scaling factor. It was revealed in Section 4.3.2.1 
that the use of Si(T,t) in the ME2 model fails to estimate unbiased
solutions, especially when the significant change in traffic demand is 
made since the estimation of the prior trip matrix. On the other hand, 
the use of So(T,t) allows control over the total demand of the estimated 
trip matrix and accordingly such bias found in the solutions produced by 
the ME2 model could be avoided.

(2) Si(T,t) is the sum of a number of strictly convex functions and so 
it is strictly convex (Willumsen, 1981a). On the other hand, it can be

proven that So(T,t) is convex but not strictly (Bell, 1983). 
Furthermore, the entropy function So(T,t) has the maximum value 
So(T,t)=0 at the stationary points T = Xt, where X > 0.

5.2.2 Link flow constraints

The estimated trip matrix can only be constrained from observed 
link flows through the traffic assignment process. In the case of
capacity restrained equilibrium assignment, the route choice proportions 
P of the trips are not constant when the trip matrix varies. 
Furthermore, the route choice proportions P are not uniquely determined 
by the equilibrium assignment process. For these reasons, we propose an 
alternative approach to the method of using the route choice
proportions. Instead of using the route choice proportions, the new 
approach sets assigned equilibrium link flows equal to observed ones. 
That is

V I(T ) =  Va, a e l (5 .10 )

where Va(T) is assigned equilibrium flows on link a,
Va is observed link flows on link a,
I is the set of links for which observations are made.
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5.2.3 A new formulation

Following the entropy maximization approach taken by Wilson (1967) 
and Willumsen (1981a), the problem formulated is to maximize the entropy 
measures subject to assigned link flows reproducing observed ones when 
the estimated trip matrix is assigned to the network. The proposed 
formulation (Oh, 1989a) is

P5.1
Max So(T,t) or Si(T,t) (5.11)

T
s.t.

vI(T)=Va, a e l  (5.12)

The problem P5.1 is a single optimization problem containing both 
trip matrix estimation and, in the constraints, equilibrium assignment. 
It is expected to have better convergence properties than the ME2 
method, especially in congested networks. Furthermore, as equilibrium 
link flows are determined uniquely by equilibrium assignment, it does 
not suffer from the ill determination of the route choice proportions P. 
This implies that the solutions obtained from the new formulation might 
yield higher entropy values than the ME2 model. Finally, the problem 
P5.1 can use either the full entropy function So(T,t) which does not 
assume that the total demand T.. is fixed or the simplified one Si(T,t). 
Because of this, the problem P5.1 produces unbiased solutions in the 
same counter-example used by Maher (1987).

5.3 A simultaneous solution method

The problem P5.1 is an optimization problem with a convex 
objective function and non-linear equality constraints. Furthermore, the 
equilibrium link flows (Va(T)} in the constraints of the problem P5.1 
cannot be expressed in a closed functional form, but rather are found by 
solving equilibrium assignment problems. Any solution method which 
requires analytical expressions for gradients of constraints cannot be 
used. This leads to an application of the sequential unconstrained 
optimization methods (Luenberger, 1984). These methods approximate the
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solutions of the original constrained optimization problems by solving a 
sequence of unconstrained ones in which the objective function has been 
modified to penalize to some extent any violation of the constraints of 
the original problem. Its main advantage is that the constraints need 
not be dealt separately and any methods for solving unconstrained 
optimization problems can be applied. In the next sub-section,
sequential unconstrained optimization methods are introduced in detail 
and their application to Problem P5.1 is described.

5.3.1 Use of sequential unconstrained optimization methods

Sequential unconstrained optimization methods, which are also known 
as the penalty and barrier methods, are procedures for approximating 
constrained optimization problems by solving a sequence of unconstrained 
ones. A sequence of unconstrained problems is generated from the
original constrained problem by sequentially increasing the magnitude of 
the penalty parameter by which the penalty function of the constraints 
is multiplied. The approximation is accomplished in the case of the 
penalty method by adding to the objective function a penalty term that 
prescribes a high cost for violation of the constraints. In the case of 
the barrier method, a similar effect is achieved by adding a term that 
favors points interior to the feasible region over those near the
boundary. In general, the barrier method is used when the objective 
function is not defined outside the feasible region. In the case of the 
problem P5.1, the penalty function method is more suitable.

Problem P5.1 is transformed into a sequence of unconstrained
sub-problems. This transformation is done by defining an appropriate 
auxiliary function - the penalty function - and a series of the penalty 
parameter values. The penalty function G(T,V) is chosen amongst those 
which satisfy the following properties (Luenberger, 1984, pp 365-395):

(1) G(T,V) is continuous
(2) G(T,V) > 0 for all T
(3) G(T,V) = 0 iff Tg S, where S is the feasible solution set.
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This study uses a quadratic function as the penalty function, while 
other forms such as a likelihood function are also possible. The 
quadratic penalty function is simple and easy to use. The resulting 
transformed problem to Problem P 5 .1  (Oh, 1989a) is:

P 5 .2

Max So(T,t) + iinG(T,V) (n=0,l,2,...) (5.13)
T

where G(T,V) = £  (Va(T)-Va)2 is the penalty function representing the
a  G  I

gap between the modelled flows and the observed ones, and the penalty 
parameter (in (n=0,l,2,...) is negative and decreasing in n.

The penalty function G(T,V) in Problem P 5 .2  satisfies the 
properties required to the penalty function. Unlike the Lagrangian 
method, the penalty function method uses fixed values for fin within each 
subproblem. As the penalty parameter fin decreases sequentially, the 
solution points will approach the feasible region and also converge to a 
solution which is also optimal for the original problem P 5 .1 .

The values of the penalty function parameter fin in Problem P 5 .2  are 
specified externally and there are a number of possibilities to set 
them. In general, a sequence of the parameter values to Problem P 5 .2  is 
generated from the following relationship

fin+i =  fine, where c>l and n=0,l,2,... (5.14)

The solutions and the computing times incurred to solve the 
problems is sensitive to the following factors: (1) the choice of the 
initial parameter value fio, (2) the choice of the value of the 
multiplier c and (3) the number of the subproblems to be solved. The 
initial penalty parameter value fio is normally chosen to be such as 
| fio | <8 where £ is small enough and the value of the multiplier c is set 
to be such as c>l. The number of the subproblems required to reach the
final solution depends on the initial penalty parameter value fio and the
value of the multiplier c. In particular, when the problems solved are
ill-conditioned or have multiple optima, better solutions might be
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achieved by starting with a small initial penalty parameter value such 
as |io=±10’3 and then to be increased in magnitude gradually by using the 
value of the multiplier c such as c=2. According to Fiacco and McCormick 
(1968, pp 188-191), the extrapolation method introduced later in Section
5.3.4 can be a powerful computational tool to approximate the final 
solution using the sequence of the solutions already obtained. This 
method helps to accelerate the solution process, especially when started 
with small initial penalty parameter values.

Problem P5.2 is one of unconstrained non-convex maximization. It 
can be solved by the sequential application of any uni-dimensional line 
search method. Line search methods such as the golden section search 
method are procedures for solving one-dimensional or higher dimensional 
optimization problems by executing a sequence of successive line 
searches (Luenberger, 1984, pp 199-200). However, their application to 
Problem P5.2 leads to a considerable computational requirement, 
especially in view of the number of equilibrium sub-problems that are 
required to be solved. Furthermore, the non-linear nature of equilibrium 
link flow constraints results in non-convexity and this can lead to 
ill-conditioning of the problem. At least, there could exist multiple 
local optimum solutions for Problem P5.2.

Some of these difficulties can be alleviated by adopting a suitable 
functional form as an approximation to actual equilibrium link flows. 
The requirements for such an approximation are that it should be 
convenient to fit, reasonably accurate, and simple in form. Once fitted, 
approximation of this kind can be evaluated at minimal computational 
cost and can also be used to provide gradients for use in solution 
methods. In the next section, a method to approximate equilibrium link 
flows is presented.

At this stage, it is necessary to explain the distinction between 
the ME2 method and the simultaneous method in using the word 
’sequential’. The ME2 method solves the two sub-problems of matrix 
estimation problem and equilibrium assignment sequentially. On the other 
hand, the simultaneous method solves two sub-problems simultaneously by 
executing a sequence of multi-dimensional optimisation problems, each of
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which respects the interaction between the matrix estimation and the 
assignment problems

5.3.2 Linear approximation to equilibrium link flows

In order to reduce the computational burden and to overcome the
non-convexity of the penalty function G(T,V), a heuristic method has 
been developed to approximate the equilibrium link flows by estimating 
linear functions of each Tij (Oh, 1989b; 1989c).

Let V*(T) = P(T)T be the equilibrium link flows generated by the
trip matrix T. Let 5T be a perturbation from the trip matrix T. In the
following, the trip matrix T is assumed to be perturbed for each i-j 
pair in turn and then the element 5Tij in the perturbation matrix 5T is
such that

15Tij | = 5oi5dj 16T | (5.15)

where 6oi5dj = 1, if i=o and j=d, and 5oi5dj = 0, otherwise.

Then, applying Taylor’s formula, we have the following polynomial 
expression

aP(T)
V (T+5T)= P(T)T + (T + P(T))8T + R2 (5.16)

-  -  -  —

where R2 is of second order in | ST | .

If |5 T | is small enough, the residual R2 can be ignored. Then, Equation 
(5.16) becomes

aP(T)
V*(T+8T)= P(T)T + (T + P(T))8T (5.17)

aT ' "
so,

vI(T+5T)= Oaij + Pa 8T a e l (5.18)
= OCaij + paij 8Tij aG I

where {(Xaij) and {paij} are parameters to be estimated for each (i,j) 
pair.
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Equation (5.18) is a first-order Taylor series approximation to the 
true relationship Equation (5.16). The simultaneous solution method 
using this approximate relationship is contrasted with the sequential 
ME2 method in . a respect that the approximation relationship includes the 
term SP(T)/aT in Equation (5.17). Because of this, the simultaneous 
solution method retains the dependence between the trip matrix and 
equilibrium link flows.

In Equation (5.17), the coefficients, {(Xaij} and { p a ij} , are 
estimated for each of observed links ae I by using least squares
estimation method over a set of particular values of T+5T and
equilibrium link flows using T+8T. This is done anew for each (i,j) 
pair. The number of points for regression is to be specified. In
principle, the goodness of fit between equilibrium link flows and
approximated ones is subject to the combination of two major errors: the 
truncation error due to the lack of convergence in the equilibrium
assignment, and the mis-specification error due to the assumption of the 
simple linear model. These two major errors are systematic rather than
random in the sense that they can be controlled by taking some measures. 
For example, the truncation error can be reduced as the convergence
criterion of the assignment algorithm is made more stringent but at a 
high cost in computing time. On the other hand, the mis-specification
error can be reduced by increasing the number of points used in the 
regression but again at a high cost in computing time. Under the
circumstance of the limited computing resources, the goodness of fit may 
be improved by allocating the computing resources optimally between the 
two measures: thus the choice lies between performing more assignment 
iterations at fewer points and performing fewer assignment iterations at 
more points. However, there is no apparent optimum strategy for this
allocation. For a small range of perturbations, the mis-specification 
error is considered to be small and thus two regression points will be 
enough. On the other hand, as the range of perturbations increases, more 
than two points will be useful to improve the goodness of fit.

5.3.3 A solution algorithm
Replacing the constraints of Problem P5.2 with Equation (5.18), we 

obtain the following modified problem:

P5.3
M ax So(T+5T,t) 
8 T  "

(5.19)

s.t.
(Xaij +  (3a ST  =  Va, a e l (5.20)
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Transforming Problem P5.3 into a sequence of unconstrained problems 
by using the penalty function method, we have:

P5.4
Max So(T+8T,t) + ^inG(T+ST,V) (5 .21)
8T

where G(T+5T,V) = E  (ouij + p» 5T - V.)2
aG I

Problem P5.4 is one of a sequence of unconstrained optimization
problems and is convex for each uni-dimensional line search. Problem
P5.4 which is a multi-dimensional problem can be solved by performing a 
sequence of uni-dimensional line searches or uni-dimensional gradient
searches. Differentiating the objective function 0(T+8T) = So(T+8T,t) + 
finG (T+8T,V) of Problem P5.4 with respect to STij. we obtain the
following first-order necessary conditions:

dO ( T+8T)
  -------  =log(T..+8Tij) - log(Tij+8Tij) + log tij - log t.. +
s S T i j  e e e c

2fln X  [Jaij((Xaij+{3a*8T-Va) =  0  (5 .22)
aG I

Equation (5.22) is monotonic but non-linear, though the solutions
Tij+STij to Equation (5.22) can be obtained efficiently by a root
finding method.

The remainder of this section describes the algorithm used to solve
the problem P5.4. The main process is based on the sequential
unconstrained optimization structure. As shown in Figure 5.1, it 
searches for the solution to a constrained problem by finding a sequence 
of solutions to unconstrained subproblems, as the values of the penalty 
parameter fin changes. The algorithm includes the following major steps:

A5.1
(step 1) Set the initial penalty parameter value fio and initialize T=t.

(step 2) Set a feasible search interval [Xl, Xu] for each Tij.

(step 3) Set i=l and j= l.
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Figure 5.1 Flow chart of the simultaneous solution method (A5.1)
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(step 4) Select five values of 5Tij from the specified search interval.
Perform equilibrium assignment at each of five values using the 
perturbation method described in Section 5.3.5 and regress the 
resulting equilibrium link flows over five corresponding values
of 8Tij to fit the approximate linear relationships 
Va(T+8T)=otaij+(3a 5T, ae I.

(step 5) Solve Equation (5.22) for the optimal value 5Tij.

(step 6) If there is another O-D pair to be considered, set another O-D 
pair and return to (step 4). Otherwise, check for convergence. 
If convergence is achieved, proceed to (step 7). Otherwise,
return to (step 3).

(step 7) Check gap, the value of the penalty function G(T,V). If the gap 
value is sufficiently close to zero, stop. Otherwise, set the 
next search interval using the extrapolation method described
in Section 5.3.4 and increase the magnitude of the penalty
parameter and return to (step 3).

In (step 4) of the algorithm A5.1, a different number of values of 
5Tij other than five values could be specified for regression. Also, in
(step 5), it is possible that the solutions are on the boundary of the
search interval and hence better solutions lie outside the search
interval. If this occurs, the search interval is extended to include the
better solutions.

The algorithm A5.1 uses a sequential approach in solving the
multi-dimensional problem. This performs sequentially a number of 
uni-dimensional searches, while each uni-dimensional search solves 
entropy maximization and equilibrium assignment simultaneously.
Therefore, the proposed algorithm is simultaneous in the sense that the 
dependence of the equilibrium link flows and the trip demand is
respected during the optimization. Although the sequential solution
procedure in solving the multi-dimensional problem will ultimately
converge, the successful progress of the proposed solution procedure
will depend on the goodness of fit between equilibrium link flows from
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the assignment and approximate link flows from the regressed linear 
relationship. In particular, the goodness of fit between two flows much 
depends on the degree of convergence to equilibrium link flows in the 
assignment.

As discussed in Section 3.3.4, traffic counts are not normally
error-free and they are unlikely to be consistent with the traffic 
assignment model. It was revealed that because of this there might be no 
feasible solutions to the matrix estimation problem. The penalty
function method approximates the final solutions by progressively 
increasing the magnitude of the penalty parameter value. This allows the 
simultaneous solution method proposed in this study to be more flexible 
in dealing with inconsistent link flows than the existing sequential ME2 
method: the process can be terminated at any stage if no further 
improvement in fit is forthcoming.

Another important feature of the simultaneous solution method is 
that it is modular and so it can accommodate other objective functions
or penalty functions without fundamental modification. This will be 
discussed further in Section 7.3 of Chapter 7.

5.3.4 Use of an extrapolation method

For the sake of reducing the computing complexity, two heuristic 
methods are adopted in the solution method. The first one is the use of 
an extrapolation method developed by Fiacco and McCormick (1968, pp
188-191). Fiacco and McCormick suggested that as a powerful
computational tool, the extrapolation method can be used to accelerate
convergence when solving constrained optimization problems using 
sequential unconstrained method. This method is based on the existence
of a unique trajectory of constrained local maxima. It uses information 
on such a trajectory to estimate the solution to the next subproblem and 
the final solution. In particular, the extrapolation method is used to
establish the starting point and the initial search interval for the 
local maximum of the next sub-problem, as mentioned in the simultaneous 
solution algorithm A5.1.
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Following Fiacco and McCormick (1968, pp 188-191), suppose that 
X(|ii) is the solution of the ith sub-problem using the penalty parameter 
p.i. Also, suppose that X(fii) can be approximated using the polynomial 
formula:

Xftu) =PIaj(pO*j (5.23)
j =o

where aj is the vector of jth coefficient.

Then, the limiting solution as pi -> -<*> can be approximated by a<> in 
Equation (5.23). However, it is not possible to calculate the value of 
ao from (5.23). As a practical method, Fiacco and McCormick developed a 
simple recursive scheme for computing a series of estimates of the 
limiting solution. This scheme is based on a particular structure of the 
penalty parameter, that is, pi=poc1 where c>l.

After p sub-problems have been solved, approximation to X(pi) can 
be made using polynomials of order j (l<j<p-l). Let Xij (l<i<p, 
0<j<i-l) signify the estimate of X(-<») using solutions to sub-problems 
(p-(i-l),p-(i-2),...,p) and a polynomial approximation of order j.

The best approximation to X(-<») is then given by

X(-oo) « Xp.p-1 

= ao

(5.24)
(5.25)

In the case where pi=poc1 (c>l), the values Xij can be calculated 
without estimating ak (0<k<j) by use of the recursive formula:

dX ij-l - Xi-l.j-I
Xij =  — ----- :------ :------- (2<i<p, l<j<i-l) (5.26)

cJ - 1

Xi.o = X(pO (l<i<p) (5.27)

The solution to sub-problem p+1, X(pp+i), can be estimated by 
Xp+ifo using the approximation that Xp+i,p-i=XPtP-i. Again, using 
| I p + i = j i i c p , this is done by the recursive formula:
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(c * -l)  Xp+lj 4- Xp,j+1
Xp+ij-i = ------------:-------------- :-------  (5 .2 8 )

d

When sub-problem p+1 has been solved to give an accurate value for 
X(|ip+i), the value of p can be incremented and the formula (5.26) used 
again.

The estimate Xp+i,o and the error between the previous maximum XP,o 
and the estimate XP,o, |XP,o-XP,o|, can be used to establish the next 
search interval using a value such as Xp+i.o ± |Xp.o-XP,o|.

5.3.5 Use of the perturbation method

The second heuristic is the use of a perturbation method in solving 
the equilibrium assignment problem, as used in the simultaneous solution 
algorithm A5.1. First, the method calculates feasible link flows, 
V(T+5T), for a perturbation ST to the trip matrix T from the previous 
equilibrium link flows V*(T), rather than performing an equilibrium 
assignment from the beginning. Starting with perturbed link flows, some 
iterations of the usual Frank-Wolfe equilibrium assignment procedure are 
performed to yield new equilibrium link flows V*(T+8T).

There are many ways depending on the rules of calculating the 
feasible link flows from the previous equilibrium link flows. In this 
study, two ways are considered and the first one was used for the tests 
described later in Chapter 6. The first one is to use the previous route 
choice proportions P. That is:

Y(T+8T) = y*(T) + P 8T (5.29)

where V(T+8T) is the vector of perturbed link flows.

This method is simple to understand, but it requires the retention 
of the whole array of the route choice proportions P which makes this 
perturbation method impractical for large networks.
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An alternative method is to use the minimum cost paths and the 
maximum cost paths for assigning the perturbed trip matrix. The proposed 
solution method A5.1 considers in turn each element of the trip matrix 
T. Let STij be an element of 8T. Then it follows that

16Tij| =  8oi8dj|5T | (5 .30 )

where 5oi8dj=l, for o=i and d=j, otherwise, 8oi8dj=0.

We separate two cases, positive 5Tij and negative STij, and apply 
different rules for calculating V (T + 5 T ) from V*(T).

Case I: Positive STij

A5.2
(step 1) Find the minimum cost paths, p*., using the previous link 

* 1  ̂
costs, c(V(T)) between zone i and zone j.

(step 2) Add STij to link flows V(T) only on the minimum paths and thus 
produce V(T+8T), i.e.

Y (T + 5T ) =  y* (T ) +  y ( 8 T )  (5 *31)

where Y (S T )= {V a(8T )} and V a (8 T )= |5 T  |5aPr.
*

where 8aP* = l  if link a lies on path pij r r ij
=0 otherwise

(step 3) Perform some iterations of the equilibrium assignment to get 
Y(T+ST).

Case II: Negative STij

A5.3
(step 0) Set AT=|ST | .

(step 1) Find the maximum cost paths, p+ , using only links of positive♦ ® b
link flows, such as V (T ) > 0. Let Vmin be the minimum link flow 
on the maximum cost paths. The maximum cost path is the most
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expensive path amongst the feasible ones satisfying the 
following conditions:

(1) No link in the path is used more than once,
(2) zone centroids are not used in the path, except as the 

origin and destination.

(step 2) If AT>Vmin. deduct Vmin from all the links on the maximum cost 
paths. Set AT=AT-Vmin and return to (step 1). Otherwise 
AT<Vmin, deduct AT from all the links on the maximum cost path.

(step 3) Perform some iterations of the equilibrium assignment starting 
with the feasible link flows V(T+8T) to get the equilibrium 
link flows Y<;T+5T).

5.3.6 Interface with an equilibrium assignment program

The proposed solution method performs many equilibrium assignments 
in order to calculate the equilibrium link flows for the estimated trip 
matrices. This can be achieved efficiently by establishing an interface 
between the solution methods and an existing equilibrium assignment 
program. In this study, the solution method has been interfaced with the 
equilibrium assignment program of the SATURN suite (Van Vliet, 1987).

SATURN is a computer model for the analysis and evaluation of 
traffic management schemes. SATURN uses two models, the assignment model 
and the simulation model, in order to achieve realistic assignments in 
networks. The assignment model is used to obtain an estimate of flows in 
links and the simulation model is used to estimate capacity, queues and 
delays at junctions. As shown in Figure 4.2 in Section 4.4.1, several 
iterations of the assignment-simulation cycle could be performed to 
produce a self-consistent set of flows and costs. However, in this 
study, only the assignment model has been considered and delays are 
represented by link-based user defined speed-flow relationships. As a 
traffic assignment model, SATURN provides most features of standard 
assignment packages such as generalized cost, all-or-nothing, Wardrop’s 
equilibrium, stochastic assignment, etc. SATURN is also linked with the
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ME2 model for estimating trip matrices from traffic counts. In 
particular, the ME2 model in SATURN can be used for comparison.

5.3.7 Computational demand of the simultaneous solution method

The heavy computational demand of the simultaneous solution method 
appears to be the main drawback. The simultaneous solution method 
requires many equilibrium assignments to be performed. The number of 
equilibrium assignments required depends on the network size and the 
level of congestion of the network. For example, in a network with 30 
zones, the number of equilibrium assignments required for performing one 
iteration of the optimisation for all Tij cells of the trip matrix would 
be about 4350 if one uses 5 points for the linear regression for each 
Tij. The amount of computing time required to solve each equilibrium 
assignment depends on the level of congestion in the network and the 
network size. If the network is more congested, more Frank-Wolfe 
iterations will be needed for convergence to the equilibrium link flows. 
In order to reduce the computing burden, the perturbation and 
extrapolation methods are applied.

In spite of the use of the perturbation method and the 
extrapolation method, the simultaneous method still has an uncertainty 
about the practicality in computing for problems with large networks. 
However, computing capability is improving rapidly and this advance in 
computing technology will permit the simultaneous method to be more 
practical in the near future.

5.4 An improved sequential solution method

The simultaneous solution method proposed to solve two sub-problems 
of matrix estimation and equilibrium assignment simultaneously appears 
to be impractical because of the heavy computing demand in large 
networks. This led to the development of an alternative estimation 
method which can be practical in terms of computing demand and also can 
deal with congestion effects reasonably well.
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The sequential solution method used in the ME2 model estimates a 
trip matrix from traffic counts under traffic equilibrium conditions by 
solving the two sub-problems of equilibrium assignment and entropy 
maximization alternately. The main feature of that method is to use the 
route choice proportions P which are in general not fixed over variation 
in trip demand in congested networks. The sequential method intends 
ultimately to find mutually consistent equilibrium route choice 
proportions and trip matrix given the traffic counts. The prior trip 
matrix is used to generate initial route choice proportions which are 
then used to estimate an improved trip matrix. In general, the 
convergence of this sequential solution method depends on the degree of 
the coupling between the route choice proportions and the trip matrix 
estimation. One would expect that the convergence of the sequential 
method (ME2) might be hampered by attempting to satisfy the feasibility 
condition from the start. Any large change in the trip matrix will lead 
to large changes in the route choice proportions and again the large 
changes in the route choice proportions leads to the large changes in 
the estimated trip matrix. This process could continue until reasonable 
convergence is achieved. Better convergence might be achieved by 
imposing the feasibility condition progressively rather than from the 
start, while the route choice proportions are still being used. As a way 
to impose the feasibility conditions progressively, the sequential 
unconstrained optimisation method already used for the simultaneous 
solution method can be used to solve the problem. The main difference 
between the improved sequential method and the simultaneous one is that 
the improved sequential method uses the route choice proportions, whilst 
the simultaneous method uses approximate link flows in the constraints.

The improved sequential solution method uses a similar formulation 
to the ME2 model but a different solution method. This does use the 
route choice proportions to relate the estimated trip matrix to observed 
link flows.

P5.5
Max So(T,t) or Si(T,t)

T

s.t. PT=V

(5.32)

(5.33)
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Problem P5.5 includes convex constraints with fixed route choice 
proportions P. Instead of using Lagrangian and multi-proportional
methods, the sequential unconstrained optimisation method is applied to 
solve the problem P5.5. As described in Section 5.3.1, the sequential
unconstrained optimisation method approximates the optimum solution by 
approaching the feasible region progressively. Problem P5.5 is 
transformed into a sequence of unconstrained problems.

P5.6
Max So(T,t) + ^nG i(T ,V ) (n=0,l,2,...) (5 .34)

where G i(T ,V )= X  E(PfjTij-Va)2 is a penalty function and the penalty 
a i . j

parameter fin (n=0,l,2,...) is negative and decreasing in n. Also, the
penalty function Gi(T,V) in the problem P5.6 satisfies the properties
required to the penalty function.

Each of unconstrained problems in P5.6 can be solved by using the 
first order necessary optimum conditions. Differentiating the objective 
function <9i(T)=So(T,t)+finG i(T ,V ) of Problem P5.6 with respect to Tij, we 
obtain:

aO i(T)
 — = lOgT.. -logTij+lOgtij-lOgt.. +2|ln]£Pij(^(PodTod-V a) = 0 (5.35)
A r i i  C 6  C C3T i j  aG I o , d

Equation (5.35) is non-linear and the solutions to Equation (5.35) can 
be obtained efficiently by using a root finding method.

The solution algorithm proposed for the simultaneous method can be 
used after making only minor modifications. The modified algorithm whose 
flow chart is shown in Figure 5.2 includes the following major steps:

A5.4
(step 1) Set the initial penalty parameter value fio and initialize T=t.

(step 2) Set a feasible search interval [Xl, Xu] for each Tij.
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Figure 5.2 Flow chart of the improved sequential solution method (A5.4)
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(step 3) Perform the equilibrium assignment for the trip matrix T using 
the perturbation method and retain the route choice proportions 
P.

(step 4) Solve Equation (5.35) for the optimal values {Tij} iteratively.

(step 5) Check for convergence. If convergence has been achieved,
proceed to (step 6). Otherwise, return to (step 3) to update 
the route choice proportions P using the improved trip matrix.

(step 6) Check gap, the value of the penalty function Gi(T,V). If the 
gap value is sufficiently close to zero, stop. Otherwise, set
the next search interval using the extrapolation method and 
decrease the penalty parameter value and return to (step 3).

The modified algorithm A5.4 greatly reduces the computing time by 
performing a single equilibrium assignment for all Tij values rather 
than performing several equilibrium assignments for each Tij. The
modified solution method is sequential as it uses the fixed route choice
proportions. An important feature of this improved sequential method is 
that it is practical in terms of computing time, although more
equilibrium assignments are required compared with the ME2 method.

As described in Section 5.3.3, the improved sequential solution
method also has the same features as does the simultaneous one: (1) it
can accommodate inconsistent link flows without any prior modification, 
and (2) it is modular and so it can be applied with other objective
functions or penalty functions.
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CHAPTER 6. TESTS OF THE ESTIMATION METHODS

6.1 Introduction

The sequential method (Hall, Van Vliet and Willumsen, 1980) to 
estimate trip matrices from traffic counts under traffic equilibrium 
conditions is only a heuristic, as it solves the two-subproblems of 
equilibrium assignment and entropy maximization alternately. It is noted 
(Willumsen, 1982; Fisk, 1988) that the sequential method might fail 
either to converge or to estimate optimal solutions. As an alternative 
to the sequential method, a new formulation and solution method has been 
proposed in Chapter 5. The proposed solution method solves the problems 
of equilibrium assignment and entropy maximization simultaneously. 
However, it is noted that the heavy computational demand is a major 
difficulty facing the simultaneous method. For the sake of reducing the 
computational burden, an improved sequential method which takes 
advantages of some features of the sequential unconstrained optimization 
method (the penalty function method) was also proposed in Chapter 5.

The main objective of this chapter is to test the proposed 
estimation methods. In order to do this, three test cases are designed 
and tested and the results are reported. Another important objective of 
this chapter is to provide a good understanding of the solutions by the 
sequential method. This is done by comparing the solutions by different 
estimation methods: the sequential method, the improved sequential
method and the simultaneous method.

This chapter is organized as follows. Section 6.2 reports on tests 
using a simple network. This is designed to investigate some theoretical 
aspects of the solutions by the sequential method. Section 6.3 reports 
on tests using a more complicated example network taken from Nguyen 
(1977). The test is designed to investigate various interesting topics 
on the performance of the estimation methods. These include the 
congestion effects and the inconsistency in traffic counts. Finally, 
Section 6.4 reports on tests using the real network and data collected 
in the town of Ripon in North Yorkshire. The tests in Section 6.4 are
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designed to investigate how well various estimation methods perform in 
the real network.

6.2 Tests with a simple network
6.2.1 Introduction

A simple network was prepared to have the following features: (1) 
route choice in the network should be sufficiently sensitive to traffic 
demand and (2) the network should be simple enough to admit an explicit 
relationship to calculate the equilibrium link flows. As shown in Figure 
6.1, the simple network was designed to have two origin zones, one 
destination zone and two links. Origin zone 1 is connected to both links 
but origin zone 2 is connected only to link 2. Therefore, trips between 
zone 1 and zone 3, Ti3 can use either of two routes. However, trips 
between zone 2 and zone 3, T23, can use only one route.

Link 1
->o~

A

Link 2

Figure 6.1 The simple example network

Capacity restraint in the network is achieved by separable 
link-based speed-flow functions whereby the travel time on each link is 
assumed to be a function of the flows only on that link. As shown in 
Figure 6.2, the travel time on link 1 was designed to be less than that 
on link 2 until an equilibrium link flow, V*, is reached. The speed-flow 
curve in link 2 was designed to be constant with respect to traffic 
demand. Thus, trips T 13 use only link 1 until V* is reached and then all 
further flows use link 2. In other words, the maximum allowed link flows 
in link 1 is V*.
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Link travel time Link 1

Link 2

0 V V
Link f low

Figure 6.2 The speed-flow curve for the simple network

Using the assignment program of the SATURN Suite (Van Vliet, 1987), 
for the specific network input data given, the equilibrium link flow, 
V*=877 (veh/h), was obtained.

In this example, an explicit form of the equilibrium link flow 
conditions could be used in the calculation. This is useful, as the 
equilibrium link flows for the estimated trip matrix can be obtained 
without performing the Frank-Wolfe algorithm, although this is not 
possible in more complicated networks. These explicit equilibrium 
conditions are expressed as follows:

Another feature of this example is that the route choice
proportions P are determined uniquely for any given trip matrix by the
equilibrium traffic assignment. It follows that the sequential method
using this simple network works on unique route choice proportions,
although this cannot be done in most cases.

Vi = Min (877,T 13)
V2 = T23 + Max(0,Ti3-877)

(6.1)
(6.2)

where Vi is the equilibrium flow on link 1, 
V2 is the equilibrium flow on link 2.
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Trip matrices containing two non-zero values are estimated from one 
observed link flow on link 2. Thus, the estimation problem is 
underspecified. If observed link flows are available for both links, the 
problem is not fully underspecified, as the total number of the 
estimated trip matrix is known. Two different set of observed link flows 
have been used. The lower flow, V2=500 (veh/h) was chosen to be lower 
than V*=877, and V2 = 1 1 0 0  (veh/h) was chosen to be higher than V*=877.

Trip matrices are estimated by three solution methods: the
sequential method, the simultaneous method using Si(T,t) as the
objective function, the simultaneous method using So(T,t). For the
sequential method, the computer programs - SATASS and SATME2 - in the 
SATURN programs (Van Vliet, 1987) were used to estimate trip matrices. 
The main procedure to estimate trip matrices from traffic counts in the 
SATURN programs has been described in Section 4.4.1. In particular, the 
specification of an initial trip matrix used to generate the initial 
route choice proportions could be important, as the use of the different 
initial matrices leads to the different estimated ones. Normally, the 
prior trip matrix is used as the initial trip matrix, if it is 
available. If it is not specified, a uniform prior matrix possibly 
calculated from traffic counts is specified.

The simultaneous solutions have been produced analytically by using 
the Lagrange method to the following optimization problem.

P6.1
Max Si(T,t) or So(T,t) (6.3)

T

S.t.
T 23 + Max(0,Ti3-877) = V 2 (6.4)

where Si(T,t) = -XTij(log (Tij/tij)-l)~ • . C
So(T,t) = T..(log T..-l)-ETij(log (Tij/tij)-l+log t.)- - e e e

i . j
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Case 1: The simultaneous solutions (SIM-Si) using Si(T,t).

If Ti3<877, P6.1 becomes 

P6.2
Max Si(T,t) (6.5)

T

S.t. T23=V2 (6 .6)

By using the Lagrange method, P6.2 becomes

L(T,k)= - ZTij(log(Tij/tij)-1 )-^(T23-V2) (6.7)e
i . J

where X is a Lagrange multiplier.

The necessary conditions for the stationary points are

= -loge(Ti3/ti3) = 0 (6.8)

=  -lo g e (T23/t23)-X = 0 (6.9)

= -(T23-V2) = 0 (6.10)

By solving (6.8), (6.9) and (6.10) simultaneously, the stationary points 
are

Tl3=tl3, T23=V2 (6.11)

If Ti3>877, P6.1 becomes 

P6.3
Max Si(T,t) (6.12)

T

s.t. T23+Ti3-877=V2 (6.13)

By the same process as used for P6.2, we obtain the following stationary 
points for the problem P6.3.
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T'3=(t7̂ W 877+V2>- T“=TtT̂ W877+V2) (6‘14)
If ti3>877, the solution (6.11) becomes infeasible, and if 
Ti3~ ^ i * ^ 23^(877+V2)<877, the solution (6.14) becomes infeasible. If 
(6.11) and (6.14) are infeasible, we have a non-stationary optimum point 
at the extreme point, (877,V2).

Case 2: The simultaneous solutions (SIM-So) using So(T,t).

If Ti3<877, P6.1 becomes 

P6.4
Max So(T,t) (6.15)

T

S.t. T23=V2 (6.16)

By the same process as used for Case 1, we obtain the following
stationary points for the problem P6.4.

Tn4^-V2, T23=V2 (6.17)t23

If Ti3>877, P6.1 becomes 

P6.5
Max So(T,t) (6.18)

T

s.t. T23+Ti3-877=V2 (6.19)

By the same process as used for Case 1, we obtain the following
stationary points for the problem P6.5.

Tl3=ItT̂W877+V2>’ T23=(tlHW877+V2) (6-20)
ft

The solution (6.17) becomes infeasible if 7—V2>8 7 7 , and the solutionv ' t23
(6.20) becomes infeasible if t̂ i^ 2 3 ) (877+V2)<877. However, at least 
one of these points is feasible.
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6.2.2 Results and comments

The results are presented in Table 6.1. Table 6.1 shows detailed 
estimates produced from using different prior trip matrices, different 
observed link flows and different solution methods: the sequential
method (ME2), the simultaneous method using Si(T,t) (SIM-Si) and the 
simultaneous method using So(T,t) (SIM-So). The results in Table 6.1 can 
be summarized as follows. These results are discussed in terms of 
optimality, stationality and convergence of the solution method. In 
Table 6.1, the annotation ’optimum* means that the solution achieved is 
optimum, ’stationary’ means that a stationary optimum solution is 
achieved, ’converged’ means that the solution achieved is non-optimum, 
’not stationary’ means that the solution achieved is non-stationary 
optimum and ’not converged’ means that the solution method fails to 
converge, etc.

(1) The sequential method ME2 converges to the values 
(Ti3,T23)=(ti3,V2), whenever ti3<877. In this case the estimate (ti3,V2) 
is optimal and stationary with respect to the objective function 
Si(T,t). However, if ti3>877, the sequential solution method either does 
not converge or converges to a feasible solution, which is not optimal 
in all cases.

(2) The simultaneous method using the objective function Si(T,t) has the 
stationary local optimum solution (ti3,V2), whenever ti3<877. However, 
if ti3>877, it has the stationary local optimum solutions, 
[(877+V2)ti3/(ti3+t23), (877+V2)t23/(ti3+t23)], and the global optimum
solution (877,V2) which is not stationary.

(3) The simultaneous method using the objective function So(T,t) has the 
two stationary local optimum solutions ( V 2 t i3 / t 2 3 ,V 2 ) ,  and 
[ ( 8 7 7 + V 2 ) t i3 / ( t i 3 + t 2 3 ) ,  ( 8 7 7 + V 2 ) t 2 3 / ( t i 3 + t 2 3 ) ]  for any values of t i3 .  In 
particular, the use of a uniform prior trip matrices leads to estimates 
with an equal distribution, that is ( V 2, V 2)  for V 2 < 8 7 7  and 
[ ( 8 7 7 + V 2 ) / 2 , ( 8 7 7 + V 2 ) / 2 ]  for V 2> 8 7 7 .
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Table 6.1 Results of the tests using the simple example network
(a) V=500 (veh/h) and uniform-prior trip matrices &

8 o 1 u tio n  
M e t hods

T r ip
T 1 3

Mat r ix 
T 2 3  T . .

Entropy 
So Si N otes

P r i or 400 400 800 0 800 _

ME 2 400 500 900 -6 788 opt  i mum
S IM  - Si 400 500 900 -6 788 s t a t  i o n a r y
S IM  - So 500 500 1000 0 111 s t a t  i o n a r y

P r i or 1000 1000 2000 0 2000 _

ME 2 966 458 1424 -93 1815 con v c r g ed
S IM  - Si 877 500 1377 -52 1838 no t  s t a t  i ona r y
S IM  - So 500 500 1000 0 1693 s t a t  i o n a r y

P r i or 1100 1100 2200 0 2200 -

ME 2 - - - - - no t  c o n v e r g e d
S IM  - Si 877 500 1377 -52 1970 not  s t a t  i onar y
S IM  - So 500 500 1000 0 1788 s t a t  i o n a r y

(b) V2=500 (veh/h) and non-uniform prior trip matrices

S o 1 u tio n  
Me t hods

T r ip
T 1 3

M at r ix 
T 23 T ..

Entropy 
S o  S i N otes

P r i or 400 1000 1400 0 1400 _

ME 2 400 500 900 -51 1247 opt i mum
S IM  - S i 400 500 900 -51 1247 s ta t ion ary
S IM  - So 200 500 700 0 1185 stat  ion ary

P r i or 800 400 1200 0 1200 _

ME 2 800 500 1300 -8 1188 opt i mum
S IM  - S i 800 500 1300 -8 1188 stat  ionary
S IM  - So 918 459 1377 0 1188 stat  ionary

P r i or 1000 400 1400 0 1400 -

ME 2 994 383 1377 0 1400 opt i mum
S IM  - S i 994 383 1377 0 1400 stat  ion ary
S IM  - So 994 383 1377 0 1400 stat  i o n ary

P r i or 1000 1200 2200 0 2200 _

ME 2 - - - - - not converged
S IM  - S i 877 500 1377 -92 1930 stat  ionary
S IM  - So 417 500 917 0 1719 stat  ionary

P r i or 1200 900 2100 0 2100 _

ME 2 - - - - - not converged
S IM  - S i 877 500 1377 -12 1946 not s t a t  ionary
S IM  - So 667 500 1167 0 1853 stat  ionary
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Table 6.1 (cont.)

(c) V2 = 1 1 0 0  (veh/h) and uniform prior trip matrices

S o l  u tio n  
M e t hods

T rip
T 1 3

M at r ix 
T 2 3  T . .

Entropy 
So  S i N otes

P r i or 700 700 1400 0 1400 -
ME 2 700 1100 1800 -45 1303 opt i mum
S IM  - S i 700 1100 1800 -45 1303 s t a t  ionary
S IM  - So 988 988 1976 0 1295 s t a t  i on a ry

P r i or 1000 1000 2000 0 2000 _
ME 2 998 981 1979 - 1 1999 con v c r g ed
S IM  - S i 988 988 1976 0 2000 s t a t  ionary
S IM  - So 988 988 1976 0 2000 s t a t  ionary

P r i or 1200 1200 2400 0 2400 -
ME 2 1118 861 1979 -17 2344 con v e r g ed
S IM  - S i 988 988 1976 0 2360 s t a t  ionary
S IM  - So 988 988 1976 0 2360 s t a t  ionary

(d) V2 = 1 1 0 0  (veh/h) and non-uniform prior trip matrices

S o  1 u tio n  
M e t hods

T rip
T 1 3

M at r ix 
T 2 3  T . .

Entropy 
S o  S i N otes

P r i or 400 1000 1400 0 1400 _

ME 2 400 1100 1500 - 1 1395 opt i mum
S IM  - Si 400 1100 1500 - 1 1395 s t a t  ionary
S IM  - So 440 1100 1540 0 1393 s t a t  ionary

P r i or 800 400 1200 0 1200 _

ME 2 800 1100 1900 -240 787 loc a 1 op t i mum
S IM  - Si 1318 659 1977 0 990 s t a t  ionary
S IM  - So 1318 659 1977 0 990 s t a t  i on ary

P r i or 900 1300 2100 0 1400 _

ME 2 897 1082 1979 -8 2181 con v e r g ed
S IM  - Si 877 1100 1977 -5 2183 not s t a t i o n a r y
S IM  - So 761 1100 1861 0 2172 s t a t  ionary

P r i or 1000 400 1400 0 1400 _

ME 2 1194 783 1977 -55 1239 con v e r g ed
S IM  - S i 1412 565 1977 0 1295 s t a t  ionary
S IM  - So 1412 565 1977 0 1295 s t a t  ionary

P r i or 1200 1500 2700 0 2700 _

ME 2 1086 891 1977 -4 4 2549 con v e r g ed
S IM  - S i 879 1098 1977 0 2593 sta t ionary
S IM  - So 879 1098 1977 0 2593 s t a t  ionary
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The following comments are made on these results.

(1) It has been found empirically that the sequential method does not 
always converge, and even if it does converge, it generally yields 
non-optimum solutions whenever ti3>877. This result can be interpreted 
as follows. The condition ti3>877 means that traffic demand of T 13 uses 
both routes. The route choice proportions become variable between 
successive iterations of trip matrix estimation and equilibrium 
assignment. However, the route choice proportions used are assumed to be 
fixed by the ME2 process and this is imposed implicitly as an extra
constraint during each trip matrix estimation.

(2) In the sequential method, the total demand T.. is assumed to be
fixed during the trip matrix estimation. It has been found empirically 
that during the operation of the sequential method, this assumption is 
not valid.

(3) In this example, the route choice proportions resulting from 
equilibrium assignment are uniquely specified. If this property does not
obtain, the sequential method might well produce poorer results.

(4) Even in this simple example, the problem of estimating the trip
matrix does not have a single relative optimum. That is, the problem is 
not convex. This fact implies that the simultaneous method might 
identify one of many stationary points.
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6.3 Tests with Nguyen’s network
6.3.1 Introduction

In the previous section, a simple example network was used to 
investigate various solutions estimated by the sequential method and the
simultaneous one. In that case, it was possible to obtain the
equilibrium link flows for the estimated trip matrices explicitly and 
without performing equilibrium assignment. However, this is not possible 
in more complicated networks. Instead, the proposed solution methods 
need to be interfaced with a suitable equilibrium assignment program in 
order to calculate the equilibrium link flows for the estimated trip 
matrices. For this purpose, in this study the SATURN assignment program 
(Van Vliet, 1987) was interfaced with the simultaneous solution method.
In particular, the use of the SATURN program is helpful as it also 
includes a matrix estimation procedure of using the sequential ME2
method.

In this section, a more complicated artificial example network is 
used to test the simultaneous solution method and the improved 
sequential solution method and to make comparison with the solutions by 
the sequential solution method. The use of an artificial network and 
associated data base in testing the methods has both advantages and 
disadvantages. As major advantages, it gives the analyst full control 
over data errors and a variety of different cases can be investigated, 
and also it is useful to test the computer program. In this study, a 
small artificial example is useful to explore various aspects of the 
proposed estimation methods with only limited computing effort. However, 
the artificial data will not be realistic in all respects and the test
using the artificial data can only give a general indication of how the
proposed methods will perform in practice.

The example network used in this test, as shown Figure 6.3, is
based on the test network used by Nguyen (1977). The network consists of 
2 origin zones, 2 destination zones, 9 nodes, 11 one-way links and 8
zone centroids connectors. Only four origin-destination pairs 
{(1,3),(1,4),(2,3),(2,4)} allocate flow to the network: for convenience, 
the trip matrix is denoted by an ordered set of 4 O-D pairs
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corresponding to (Ti3,Ti4,T23,T24). Although it is a small network, it 
appears to be suitable for a test network, as it has a number of 
alternative routes between each of the four O-D pairs when the network 
becomes congested. The table of the network data used to specify link 
cost functions in SATURN is given in Appendix 2.

. Y

/ l \

Figure 6.3 Nguyen’s (1977) example network

6.3.2 Objectives and design of tests

The main objectives of the tests are to answer the following two 
questions: (1) How well do the proposed solution methods perform in 
estimating a known trip matrix from a set of observed link flows ? and
(2) How different are the trip matrices estimated by the simultaneous 
method, the improved sequential method and the sequential one ?

First of all, some main elements which might affect the results of 
the tests are considered in order to answer these questions. These are:

(1) The choice of the solutions methods: Three solution methods are used 
to estimate a trip matrix from traffic counts. These are: the sequential 
ME2 method (ME2), the improved sequential method (ME3) and the 
simultaneous method (SIM).
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(2) The choice of the entropy objective functions: Two different entropy 
functions combined with the prior trip matrices: Si(T,t) and So(T,t) are 
used as the objective functions for ME3 and SIM. Thus, ME3-Si denotes 
the improved sequential method using the entropy objective function 
Si(T,t), ME3-So denotes the improved sequential method using So(T,t), 
SIM-Si denotes the simultaneous method using Si(T,t) and SIM-So denotes 
the simultaneous method using So(T,t). The sequential ME2 method 
implemented in SATURN (Van Vliet, 1987) can only be used with the 
objective function Si(T,t).

(3) The congestion levels in the network: Various levels of network 
congestion are considered to investigate the effects of congestion on 
the performance of the various estimation methods.

(4) The level of errors in traffic counts: Various levels of 
inconsistency in link flows are generated to investigate the effects of 
errors in traffic counts.

(5) The number of links observed: different numbers of observed links 
are considered to investigate its effects.

(6) The use of different prior trip matrices.

(7) The selection of links observed.

Starting from these seven elements, the following tests were designed:

(1) Base test
(2) Tests with various congestion levels
(3) Tests with inconsistent link flows
(4) Tests with determinate matrix total
(5) Tests with different prior trip matrices
(6) Tests with different sets of links observed.

Each of these tests is described in detail together with the numerical 
results in the following sections.
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In the following tests, the performance of the estimation methods 
will be assessed on the basis of three major abilities: convergence of 
the solution method, optimality of the solution achieved and goodness of 
fit of the estimated trip matrix to a known one.

(1) Convergence: Convergence is the ability to approach a solution as 
the number of iterations increases. This can be checked by investigating 
discrepancy (gap) between the modelled link flows and the observed link 
flows. Discrepancy (gap) is measured by the root mean square error 
(RMSE) between these two link flows:

1/2
-J-- I  (v;.v.)2l (6.21)

a €  I  J

(2) Optimality: Optimality is the ability to find a feasible solution 
which maximises (or mimimises) the objective criterion. This can be 
checked by examining the entropy measures: Si(T,t) and So(T,t).

(3) Goodness of fit: Goodness of fit is the ability how closely the 
estimated trip matrix is to the observed trip matrix. This is measured 
by the root mean square errors between the two matrices:

Fit = [mr, * (TijTii)2] (6.22)
L i . j J

In each of the tests, the measures to use for comparison are as follows.

(1) Estimated trip matrices: the cell values of the estimated trip
matrices for each of five estimation methods are compared and
convergence of matrix cell values is examined as the number of
iterations or the magnitude of the penalty parameter increases.

(2) Total demand: the total demands of the estimated trip matrices for 
each of the five estimation methods are compared and their convergence 
is examined as the number of iterations or the magnitude of the penalty 
parameter increase.

(3) Entropy: two measures of entropy calculated from each of two
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different entropy functions So(T,t) and Si(T,t) are compared.

(4) Gap: RMSE values between the modelled link flows and the observed 
ones are compared.

(5) Goodness of fit(Fit): RMSE values between the estimated trip 
matrices and the observed trip matrices are compared.

6.3.3 Base test
6.3.3.1 Introduction

The performance of the estimation methods might be affected by 
various elements such as congestion effects, errors in link flows, the 
number of links observed, the prior trip matrices and selection of links 
observed. A number of test cases can be designed by various ways of 
combining these elements. The base test is designed as a case which is 
considered to be representative of real problems. It estimates a trip 
matrix from a data set which simulates a realistic situation by 
including various elements properly. In this sense, the base test is 
compared with other test cases in which a single particular aspect of 
the estimation methods is tested. For example, when we investigate the 
effects of congestion on the performance of the estimation methods, 
error-free observed link flows are used.

An artificial data set was constructed to test the base case. 
First, a trip matrix, (Ti3,Ti4,T23,T24)=(300,300,300,300) was chosen as 
a known observed trip matrix to generate a certain level of network 
congestions for the test. The level of congestion on links is measured 
by a value of V/C, an average ratio between link flows and the link 
capacity on links observed. In this test, a value of V/C=0.8 was chosen. 
Error-free link flows were produced from the observed trip matrix by 
equilibrium assignment. Four links - (6,7), (6,10), (9,10), (10,11) - 
are selected as observed link flows. Because of continuity of flows at 
node 10, as shown in Figure 6.3, if there were no errors in observed 
link flows, one of the three counts on links (6,10), (9,10) and (10,11) 
is redundant. Inconsistency in observed link flows is generated by 
adding random quantities within the range of ±20% of the calculated
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equilibrium link flows using a rectangular distribution. Finally, a trip 
matrix (350,250,150, 50) which is not a uniform scaling of the observed 
matrix was chosen as a prior trip matrix.

The performance of the various estimation methods is investigated 
by comparing the cell values of estimated trip matrices, total demand, 
entropy objective values, gap values and goodness of fit of estimated 
trip matrices for each of five estimation methods: ME2, ME3-Si, SIM-Si, 
ME3-So and SIM-So.

6.3.3.2 Results

It is interesting to see the performance of the sequential 
estimation method of ME2 as the number of iterations between equilibrium 
assignment and matrix estimation increases. The results of this test - 
estimated trip matrices, entropy values, gap values and the goodness of 
fit of estimated matrices - are presented in Table 6.2. The evolution of 
performance indicators presented in Table 6.2 are depicted graphically 
in Figures 6.4a-6.4d. It can be seen from Figure 6.4a that the 
sequential method reduces gap rapidly during the first three iterations 
and makes relatively small changes to it thereafter.

Table 6.2 Results of the base test by ME2

I t e r a t i o n T13
T r i p
T14 T23

M a t r i x  
T24 T . .

E n t r o p y  
SO SI

Gap
RMSE %RMSE

F i t  
RMSE %RMSE

O b s e r v e d 3 00 300 300 300 1200 - 2 6 7 446 39 12 0 0
P r i o r 3 50 250 150 50 800 0 80 0 133 42 150 50

1 523 127 329 50 1030 - 1 2 3 646 83 26 189 63
2 644 164 359 52 1219 - 1 2 6 580 50 16 225 75
3 4 50 104 502 47 1104 - 2 7 0 478 39 12 203 68
4 435 349 454 73 1310 - 9 4 570 50 16 155 52
5 692 240 418 58 1409 - 1 0 3 509 54 17 240 80
6 4 70 122 451 50 1093 - 2 0 7 545 34 11 191 64
7 494 257 386 70 1207 - 6 9 641 49 16 158 53
8 746 128 378 60 1312 - 1 9 0 473 52 16 270 90
9 420 112 493 48 1073 - 2 5 6 501 44 14 194 65

10 384 330 4 70 80 1265 - 1 2 4 562 47 15 146 49
11 693 238 447 56 1435 - 1 1 9 478 54 17 245 82
12 376 211 484 50 1122 - 1 8 0 563 47 15 166 55
13 595 187 496 50 1329 - 1 8 1 473 45 14 224 75
14 761 83 414 51 1309 - 2 7 5 389 44 14 289 96
15 504 108 455 50 1117 - 2 2 6 519 34 11 203 68
16 536 234 374 69 1213 - 7 2 636 60 19 172 57
17 702 41 385 54 1183 - 3 1 9 401 32 10 272 91
18 677 28 426 50 1181 - 3 7 1 350 30 9 272 91
19 787 21 389 50 1247 - 4 0 3 290 42 13 311 104
20 584 32 433 50 1099 - 3 4 2 408 45 14 241 80
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Figure 6.4 Results of the base test by ME2
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However, as shown in Figures 6.4a-6.4c, an inspection of the other 
indicators - goodness of Fit with the observed trip matrix and cell 
values of estimated trip matrices - shows that they are subject to 
considerable fluctuations throughout the 20 iterations of the test. 
Finally, the existence of a trade-off relationship between entropy 
values and gap values of estimated trip matrices was examined by 
plotting these two values against each other as shown in Figure 6.4d. It 
can be said from Figure 6.4d that it is difficult to identify any 
trade-off relationship after the first two iterations.

The simultaneous methods SIM-So and SIM-Si use a sequential 
unconstrained optimization technique for approximating the original 
constrained problem. This process is accomplished by increasing the 
magnitude of the penalty parameter during the sequence of optimisations. 
The results of these tests are presented in Tables 6.3 and 6.4. The 
results presented in Tables 6.3 and 6.4 are depicted graphically in 
Figures 6.5a-6.5d and Figures 6.6a-6.6d.

Table 6.3 Results of the base test by SIM-So

P e n a l t y
p a r a m e t e r T13

T r i p
T14 T23

M a t r i x  
T24 T . .

E n t r o p y  
SO SI

Gap 
RMSE %RMSE

F i t
RMSE %RMSE

0 . 0 0 0 350 250 150 50 80 0 0 800 133 42 150 50
0 . 0 0 1 362 277 236 73 947 - 1 4 773 129 40 123 41
0 . 0 0 2 540 4 57 385 90 1471 - 2 8 547 46 14 183 61
0 . 0 0 4 441 369 390 78 1278 - 5 4 625 62 20 143 48
0 . 0 0 8 529 469 445 72 15 15 - 5 6 491 47 15 196 65
0 . 0 1 6 464 224 399 83 1 17 0 - 9 4 631 35 11 150 50
0 . 0 3 2 437 223 42 0 93 11 73 - 1 1 3 611 32 10 143 48
0 . 0 6 4 446 196 459 73 11 75 - 1 5 1 572 30 10 165 55
0 . 1 2 8 459 193 444 72 1169 - 1 4 1 585 31 10 165 55
0 . 2 5 6 487 182 463 30 1162 - 1 7 6 552 30 10 193 64
0 . 5 1 2 481 205 485 5 1175 - 2 1 8 506 30 9 202 67
1 . 0 2 4 479 210 493 1 1184 - 2 3 4 486 30 9 204 68
2 . 0 4 8 492 193 481 1 1167 - 2 3 3 493 30 9 206 69

Table 6.4 Results of the base test by SIM-Si

P e n a l t y  
pa r a m e t e r T13

T r i p
T14 T23

M a t r i x  
T24 T . .

Ent ropy  
SO SI

Ga p 
RMSE %RMSE

F i t  
RMSE %RMSE

0 . 0 0 0 350 250 150 50 8 00 0 800 133 42 150 50
0 . 0 0 1 359 268 209 54 8 90 - 6 789 107 33 135 45
0 . 0 0 2 377 245 274 56 953 - 2 9 757 77 24 131 44
0 . 0 0 4 390 236 338 67 1031 - 6 1 708 57 18 130 43
0 . 0 0 8 435 226 393 64 1118 - 9 2 652 38 12 148 49
0 . 0 1 6 434 224 398 75 1131 - 9 6 644 37 12 145 48
0 . 0 3 2 462 201 415 68 1147 - 1 1 5 618 32 10 160 53
0 . 0 6 4 449 192 4 57 62 1161 - 1 5 3 576 30 10 169 56
0 . 1 2 8 467 190 434 69 11 60 - 1 3 5 595 31 10 167 56
0 . 2 5 6 477 175 418 83 1153 - 1 3 5 597 32 10 164 55
0 . 5 1 2 4 90 182 466 16 1154 - 1 9 4 537 30 9 199 66
1 . 0 2 4 480 210 4 88 2 1180 - 2 2 6 495 30 9 203 68
2 . 0 4 8 488 204 481 1 1174 - 2 2 7 497 30 9 206 69
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Figure 6.5 Results o f the base test by SIM-So
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The following comments are made from these results.

(1) Figures 6.5a and 6.6a show that as the magnitude of the penalty 
parameter increases, SIM-So and SIM-Si reduce the gap value gradually 
despite of the existence of a small fluctuation in the result by SIM-So. 
It is identified that SIM-So fails to improve the solution in the third 
sub-problem. Nevertheless, both of the simultaneous methods SIM-So and 
SIM-Si produce better convergence than the sequential ME2 method.

(2) Figures 6.5a and 6.6a also show change in the goodness of fit of the 
estimated trip matrices by SIM-So and SIM-Si. Figure 6.5a shows that
SIM-So improves the goodness of fit during the first iteration and 
thereafter the goodness of fit gets worse. On the other hand, as shown
in Figure 6.6a, SIM-SI improves the goodness of fit during the first few 
sub-problems and thereafter the goodness of fit gets worse as the gap 
value and entropy value are further reduced.

(3) Figures 6.5b-6.5c and 6.6b-6.6c show the total demand and cell 
values of estimated trip matrices as the magnitude of the penalty 
parameter increases. It is noted that SIM-So tends to overestimate the
total of the estimated trip matrix during the beginning of optimisation 
whereas SIM-Si tends to underestimate. Later, both methods approach the 
value 1200 which is equal to the total demand of the trip matrix
(300,300,300,300) which was used to generate the observed flows.

(4) Figures 6.5d and 6.6d show that a clear trade-off curve exists for 
each of these solution methods between gap values and entropy values. It 
is interesting to note that in each case after the first five or six 
sub-problems the entropy value is further reduced without reducing the 
gap. This trade-off curve could be a useful practical tool, because it 
allows the selection of the estimated trip matrices to be controlled 
depending on the relative accuracy of the prior trip matrices and 
observed link flows that are input.
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Similar results to the simultaneous methods are obtained by the 
improved sequential methods ME3-So and ME3-Si. The results obtained by 
the improved sequential methods are presented in Tables 6.5 and 6.6. 
These results are depicted graphically in Figures 6.7a-6.7d and Figures 
6.8a-6.8d.

Table 6.5 Results of the base test by ME3-So

P e n a l t y
P a r a m e t e r T13

T r i p
T14 T23

M a t r i x  
T24 T . .

E n t r o p y  
SO SI

Gap 
RMSE %RMSE

F i t  
RMSE %RMSE

0 . 0 0 0 350 250 150 50 -800 0 8 00 133 42 150 50
0 . 0 0 1 551 366 285 85 1287 - 6 6 69 89 28 169 56
0 . 0 0 2 504 367 302 87 126 0 - 1 2 676 84 26 151 50
0 . 0 0 4 4 80 354 334 89 1258 - 2 5 664 58 18 142 47
0 . 0 0 8 493 329 361 86 1270 - 3 7 646 62 19 148 49
0 . 0 1 6 531 232 405 82 1250 - 8 9 603 54 17 171 57
0 . 0 3 2 578 142 401 81 1201 - 1 5 4 559 41 13 201 67
0 . 0 6 4 627 111 398 67 1203 - 1 9 3 519 35 11 227 76
0 . 1 2 8 637 100 415 61 1212 - 2 2 0 48 9 31 10 237 79
0 . 2 5 6 648 67 415 44 1175 - 2 7 7 447 30 9 252 84
0 . 5 1 2 699 4 400 26 11 28 - 4 5 5 28 5 27 9 288 96
1 . 0 2 4 746 1 386 19 1152 - 4 8 5 247 30 9 306 102
2 . 0 4 8 757 1 381 9 1148 - 5 0 3 231 28 9 312 104

Table 6.6 Results of the base test by ME3-Si

P e n a l t y
p a r a m e t e r T13

T r i p
T14 T23

M a t r i x  
T24 T . .

E n t r o p y  
SO SI

Gap 
RMSE %RMSE

F i t  
RMSE %RMSE

0 . 0 0 0 350 250 150 50 8 00 0 8 0 0 133 42 150 50
0 . 0 0 1 397 286 215 59 957 - 4 78 1 101 32 137 46
0 . 0 0 2 406 277 271 61 1015 - 1 9 754 81 25 132 44
0 . 0 0 4 428 261 327 64 1080 - 4 4 712 55 17 137 46
0 . 0 0 8 510 301 344 65 1221 - 3 6 669 66 21 159 53
0 . 0 1 6 475 234 373 62 1144 - 7 3 662 43 14 156 52
0 . 0 3 2 548 161 381 65 1155 - 1 2 3 608 38 12 189 63
0 . 0 6 4 609 117 412 48 1186 - 1 9 5 524 36 11 226 75
0 . 1 2 8 676 82 383 47 1189 - 2 4 0 47 8 37 12 255 85
0 . 2 5 6 657 41 401 33 1131 - 3 2 8 412 30 9 263 88
0 . 5 1 2 7 10 1 394 23 1128 - 4 7 2 268 28 9 293 98
1 . 0 2 4 743 1 388 13 1144 - 4 9 4 241 27 8 306 102
2 . 0 4 8 753 1 379 2 1135 - 5 2 1 217 29 9 312 104
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The following comments are made from these results.

(1) Figures 6.7a and 6.8a show that as the magnitude of the penalty 
parameter increases, ME3-So and ME3-Si reduce the gap value gradually 
despite of the existence of a few small fluctuations. The improved 
sequential methods produce better convergence than the sequential 
ME2 method.

(2) Figure 6.8a also shows that ME3-Si improves the goodness of fit 
during the first few subproblems and thereafter the goodness of fit gets 
worse as the gap value and entropy value are further reduced. Figure 
6.7a also shows that although ME3-So fails to improve the goodness of 
fit during the first subproblem, a similar result to ME3-Si is made by 
ME3-So after this.

(3) Figures 6.7b-6.7c and 6.8b-6.8c show the cell values of the 
estimated trip matrices as the magnitude of the penalty parameter 
increases. It is noted that, as in the case of the simultaneous methods, 
ME3-So tends to overestimate the total of the trip matrix during the 
beginning of optimisation whereas ME3-Si tends to underestimate it. 
Later, both methods approach the value 1200 which is equal to the total 
demand of the observed trip matrix.

(4) Figures 6.7d and 6.8d show that clear trade-off curves exist between 
the gap values and entropy values for each of these methods.

For comparison purposes, the final results obtained by each of five 
estimation methods are summarized in Table 6.7 and depicted graphically 
in Figure 6.9. As observed in the results presented above, it is not 
straightforward to select a final solution for each of the competing 
methods because of fluctuations from iteration to iteration. Here, the 
final solution for the sequential ME2 method was selected at the 20th 
iteration and the final solutions for the improved sequential methods 
and the simultaneous methods were selected when convergence in gap is 
achieved. The performances for the estimation methods are also compared 
with those of the observed matrix and the prior matrix.
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Table 6.7 Summary of the results of the base test by various methods

S o  I ut ion 
Me t hods T 1 3

Trip
T 1 4

Matrices
T 2 3 T 2 4 T . .

Entropy 
So Si

Ga p 
RMSE %RMSE

Ei t
RMSE %RMSE

O b s erved 300 300 3 00 300 1200 -267 446 39 12 0 0
P r i or 350 250 1 50 50 800 0 800 1 33 42 1 50 50
ME 2 584 32 4 33 50 1099 -342 408 45 14 24  1 80
ME 3 - Si 609 117 4 1 2 48 1186 -195 524 36 1 1 2 2 6 75
S IM - Si 449 192 4 57 62 1161 -153 576 30 10 1 69 56
ME 3 - So 627 111 3 98 67 1203 -193 519 35 1 1 2 2 7 76
S IM - So 446 196 4 56 73 1175 -151 572 30 10 1 65 55

E n t ro p y  or  RMSE

- 4 0 0   ̂ ] ■ 1 1 - 1 1 —
O b s e r v e d  ME2 ME3-S1 SIM-S1 M E 3 - S 0  SIM-SO

Estimation methods
H M  E n tr op y (S o )  H H  Entropy(SI )  H H  Gap  G o o d n e s s  of  fit

Figure 6.9 Summary of the results of the base test by various methods

It is seen from Table 6.7 and Figure 6.9 that there is no general 

agreement between the entropy objective values and the goodness of Fit 

o f the estimated trip matrix. The higher entropy objective values o f the
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simultaneous methods do not necessarily correspond to the better
goodness of fit of the estimated trip matrix. The simultaneous
estimation methods perform better than the sequential method ME2 and the 
improved sequential methods ME3-So and ME3-Si in terms of the entropy 
objective values and gap values. In particular, it is interesting to 
note that the entropy values So=-342 and Si =408 of the estimated
matrices obtained by the sequential ME2 method are less than those 
values So—267 and Si =446 obtained from the known observed trip matrix 
which was used to generate the observed link flows. This indicates that 
the solution estimated by the sequential ME2 method is not optimal in 
terms of the entropy objective values. This is contrasted with the
results estimated by the simultaneous methods whose entropy values are 
higher than those of the observed trip matrix. The solutions obtained by 
the simultaneous methods are better than the observed trip matrix. 
However, the simultaneous methods fail to improve the goodness of fit of 
the estimated trip matrix compared with that of the prior trip matrix, 
since the RMSE values of the estimated trip matrix for the simultaneous 
methods are higher. Perfect agreement between entropy objective values 
and the goodness of fit for the estimated trip matrices was not seen in 
this test.

Also, Table 6.7 and Figure 6.9 show that the improved sequential 
methods ME3-Si and ME3-So perform better than the sequential ME2 method. 
This suggests that the use of the sequential estimation method combined 
with the penalty function approach can produce better solutions than the 
sequential ME2 method. This is an important observation because the 
improved sequential method is still practical for larger networks in 
terms of computing time.

It is also found from Table 6.7 that the methods using the entropy 
objective function So(T,t) tend to estimate trip matrices with totals 
T„ which are greater than those estimated from the methods using the 
entropy objective function Si(T,t). In this test, however, it is not 
possible to identify any clear difference between the solutions 
estimated by the methods using each of two different entropy functions.
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6.3.3.3 Conclusions

It can be said that the simultaneous methods are better than the 
sequential ones in respect of the entropy objective values. Also, the 
improved sequential method seems to be a good practical alternative to 
the sequential ME2 method in view of the better performance and to the 
simultaneous method in view of the computing demand. In this test, 
however, there exists no good match between the entropy objective values 
and the goodness of fit for the estimated trip matrix. This suggests 
that the use of artificial data alone is not sufficient to perform a
full validation test.

6.3.4 Tests with various congestion levels
6.3.4.1 Introduction

As mentioned in Section 4.4, as a road network becomes more
congested, the sequential ME2 method might fail to converge or to 
estimate optimal solutions. As an alternative approach, the simultaneous 
estimation method has been proposed to solve the matrix estimation 
problem and equilibrium assignment problem simultaneously. It is 
expected that the simultaneous method will perform better than the 
sequential ME2 method in congested networks.

In this section, a test is designed to investigate the congestion
effects on the performance of the various estimation methods. This test 
can be carried out effectively by estimating trip matrices from each of 
various sets of observed link flows whose congestion levels on the
network are different. In order to generate the observed link flows with 
different levels of congestion, first six different trip matrices - 
(100,100,100,100), (200,200,200,200), (300,300,300,300),
(400,400,400,400), (500,500,500,500), (700,700,700,700) - were chosen as 
the observed trip matrices. Each of these trip matrices was then 
assigned by equilibrium assignment in order to generate the associated 
observed link flows. Three links - (6,7), (6,10) and (9,10) - were 
selected for observation. The levels of congestion on links are measured 
by calculating values of the volume to capacity ratio. Six discrete 
values of mean V/C ratio obtained were such as 0.3, 0.5, 0.8, 1.0, 1.2
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and 1.6. In order to remove the effects of inconsistent link flows, 
observed link flows were kept error-free. Finally, six non-uniform trip 
matrices corresponding to each of six observed trip matrices were chosen 
as the prior trip matrices.

The performance of the estimation methods for each of six different 
congestion levels was investigated by comparing the values of estimated 
trip matrices, entropy values and RMSE values for link flows and
estimated trip matrices.

6.3.4.2 Results

The results of the tests conducted for each of six different 
congestion levels are summarized in Table 6.8. As shown in Table 6.8, 
all the estimation methods reduce the gap successfully below the level 
of the prior trip matrix, since the %RMSE values of the gap of the 
estimated trip matrices are less than 10 percent. This suggests that it
is not useful to use the gap values for comparing the performance of the 
different estimation methods as they all perform equally well. 
Furthermore, there is no general agreement between the entropy objective 
values and the goodness of fit of the estimated trip matrices either. 
Therefore, it is decided that in the following analysis the values of
the objective functions will be used as an index for comparing the
results.

Table 6.8 Results of the tests with various congestion levels

( a )  V / C = 0 . 3

S  o  1 u  11 o n  
M e  t  h o d s T 1 3

T r i p
T 1 4

M a t r i c e s  
T  2 3 T 2 4 T . .

E n t r o p y  
S o  S i

( J a  p  
R M S E  % R M S E

E l  t
R M S E  % R M S E

O b  s  e r v e d 1 0 0 1 0 0 1 0 0 1 0 0 4 0 0 - 7 7 1 6 6 0 0 0 0
P r i o r 1 2 0 8 0 5 0 2 0 2 7 0 0 2 7 0 3 9 3 9 4 9 4 9

M E  2 1 0 1 1 3 3 1 3 2 3 0 3 9 7 - 3 9 2 0 5 0 0 4 2 4 2
M E  3  -  S i 1 0 2 1 3 3 1 3 3 3 0 3 9 7 - 3 9 2 0 5 0 0 4 2 4 2
S I M  - S i 1 2 3 9 2 1 0 6 7 0 3 9 0 - 3 8 2 0 8 7 7 2 0 2 0

M E  3  -  S o 1 0 0 1 2 5 1 3 0 3 6 3 9 1 - 3 8 2 0 8 1 1 3 8 3 8
S  I M  -  S o 1 2 2 9 2 1 0 3 8 2 3 9 9 - 4 9 1 9 4 5 5 1 5 1 5
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Table 6.8 (cont.)

( b )  V /  C=0.5

S o l  u t i on 
M e  t h o d s T 1 3

T r i p  
T  1 4

Mat ri ce s  
T 2 3 T 2 4 T . .

Entropy 
So Si

(Ja p 
R MS E %RMSE

El t
R MS E %RMSE

O b  s e r v e d 2 0 0 2 00 2 0 0 20 0 800 - 1 9 3 277 0 0 0 0
P r i o r 2 3 0 170 1 0 0 30 5 3 0 0 5 30 8 0 4 4 1 0 1 5 0

ME 2 58 173 3 2 7 162 7 2 0 - 3 6 3 136 1 2 7 9 8 4 9
ME 3 - Si 62 197 3 2 7 144 72 9 - 3 2 8 169 9 5 9 8 4 9
S I M  - Si 185 2 10 2 2 3 191 8 10 - 1 9 4 272 4 2 15 8

ME 3 - So 52 2 00 3 3 0 158 7 4 0 - 3 6 5 128 6 3 1 0 1 5 0
S I M  - So 198 231 2 0 7 160 7 9 6 - 1 3 6 337 9 5 2 6 13

( c ) V / C = 0 . 8

S o l  u t i o n  
M e  t h o d s T 1 3

'1'rip
T 1 4

Mat ri ce s  
T 2 3 T 2 4 T.  .

Entropy 
So S i

( i a  p 
RM SE  %RMSE

El t
R M SE  %RMSE

O b  s e r v e d 30 0 30 0 3 0 0 3 0 0 1200 - 2 6 7  4 4 6 0 0 0  0
P r i o r 35 0 2 5 0 1 5 0 50 8 0 0 0 8 00 1 1 9 4 5 1 5 0  5 0

ME 2 103 199 3 7 6 403 1081 - 6 9 1  65 9 3 1 2 8  4 3
M E 3 - Si 52 349 3 0 7 4 7 6 11 84 - 8 4 5  - 1 25 5 2 1 5 4  51
S I M  - S i 4 6 0 2 25 4 4 5 84 1213 - 1 2 3  5 85 6 2 1 5 7  5 2

ME 3 - So 4 5 0 263 4 4 0 102 1255 - 1 0 8  5 82 5 2 1 4 4  4 8
S I M  - So 503 347 4 9 7 89 14 36 - 1 0 3  493 8 3 1 7 8  5 9

( d )  V / C = 1 . 0

S o l  u t i on  
Me  t h o d s T 1 3

T r i p
T 1 4

M at ri ce s  
T  2 3 T 2 4 T . .

Entropy 
So St

(Ja p 
RM S E  %RMSE

El t
RM S E  %RMSE

O b  s e r v e d 4 0 0 4 0 0 4 0 0 4 0 0 16 00 - 3 5 6  5 96 0 0 0 0
P r i o r 4 7 0 3 30 2 0 0 67 1067 0  1067 1 3 2 5 3 2 0 0  5 0

ME 2 378 528 5 9 8 116 16 20 - 2 0 8  7 3 6 6 2 1 8 5  4 6
M E 3 -  Si 66 0 5 09 4 9 5 77 174 2 - 5 1  837 4 I 2 2 0  5 5
S I M  -  Si 7 2 7 283 5 18 48 15 76 - 1 3 6  825 2 1 2 5 4  6 4

ME 3 -  So 6 26 57 8 4 3 5 104 1742 - 3 2  856 3 1 2 0 7  5 2
S I M  -  So 671 5 26 4 6 6 107 17 70 - 3 3  8 42 5 2 2 1 2  5 3

( e )  V / C = 1 . 2

S o l  u t i o n  
M e  t h o d s T 1 3

T r i p
T 1 4

M a t r i ce s  
T  2 3 T 2 4 T . .

Entropy 
So Si

(Ja p 
RM SE  %RM SE

El t
R M S E  %RMSE

O b  s e  r v e d 5 0 0 5 0 0 5 0 0 5 0 0 2 0 0 0 - 4 6 0  7 2 4 0 0 0  0
P r i o r 5 8 0 4 2 0 2 5 0 80 13 30 0 1330 1 5 0 3 8 2 5 1  5 0

ME 2 34 6 44 3 5 7 1 46 3 1823 - 5 5 5  6 93 3 1 8 9 2  18
M E 3 - Si 6 1 0 5 88 6 8 8 93 1980 - 1 5 3  1040 2 0 5 2 3 5  4 7
S I M  - Si 86 4 4 9 2 6 6 2 73 20 91 - 1 1 4  1031 1 3 3 2 9 2  5 8

ME 3 - So 7 4 2 541 6 3 7 145 2 0 6 4 - 9 3  1064 1 2 3 2 2 6  4 5
S I M  - So 7 7 4 548 6 6 0 100 20 81 - 9 9  1050 10 3 2 5 6  51

( f  ) V / C = 1 . 6

S o l  u t l on 
M e  t h o d s T 1 3

T r i p  
T  l 4

Ma tr i ce s  
T 2 3 T 2 4 T . .

Entropy 
So Si

(Ja p 
RMSE  % RMSE

Ei t
R MS E %RMSE

O b  s e  r v e d 7 0 0 7 0 0 7 0 0 7 0 0 2 8 0 0 - 6 1 0  1059 0 0 0 0
P r i o r 8 2 0 5 80 3 5 0 120 1087 0 1870 2 1 3 3 7 3 4 9 5 0

ME 2 511 9 23 1 0 0 1 191 2 62 7 - 4 3 6  1298 2 7 5 3 3 0 4 7
ME 3 - Si 883 86 7 8 4 5 138 2 73 3 - 1 4 1  1555 2 3 4 3 15 4 5
S I M  - Si 1115 73 5 7 5 2 161 2 76 3 - 6 1  1624 18 4 3 4 1 4 9

ME 3 - So 10 15 8 06 8 2 2 196 2 83 8 - 9 4  1560 1 3 3 3 0 8 4 4
S I M - S o 11 16 78 7 7 7 5 178 2 8 5 5 - 6 1  1586 13 3 3 3 9 4 8
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Figure 6.10 Results of the tests with various congestion levels
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It can be seen from Table 6.8 and Figure 6.10 that the sequential 
ME2 method produces good results at low congestion levels (V/C=0.3) and 
at the high congestion levels (V/C=1.0 or 1.6) compared with the results 
by the improved sequential methods. The sequential ME2 method produces 
its worst results at the congestion level of V/C=0.8. The entropy values 
of the trip matrices estimated by the sequential ME2 method are higher 
than the observed one at the congestion levels V/C=0.3, 1.0 or 1.6. 
However, at the congestion levels V/C=0.5, 0.8 and 1.2, the sequential 
ME2 method estimates trip matrices having lower entropy entropy values 
than those of the observed trip matrices.

The improved sequential methods ME3-Si and ME3-So produce similar 
results to the sequential ME2 method at lower levels of V/C but perform 
much better at higher levels. It is interesting to observe that the 
improved sequential methods produce the same solution at low congestion 
level V/C=0.3 as does the ME2. However, the improved sequential ME3-Si 
method produces the worst result of all the five estimation methods at 
the congestion level V/C=0.8, although it produces better results than 
the sequential ME2 method at other congestion levels, especially at 
higher levels.

The simultaneous methods SIM-Si and SIM-So produce the best results 
of all the estimation methods. Also, the simultaneous methods estimate 
trip matrices having higher entropy values than the observed ones in all 
the cases, although perfect feasibility is not obtained for the
solutions.

In this test, as shown in Table 6.8, it is difficult to identify 
any particular differences between the methods on the basis of the
results from the use of different entropy objective functions. However, 
as observed from the results of the base test in Section 6.3.3, the
solutions estimated from the use of the entropy objective function
So(T,t) tend to have greater total trip demand than those from the use 
of the entropy objective function Si(T,t).
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6.3.4.3 Conclusions

The results of the tests with various congestion levels show that
the sequential ME2 method tends to have a difficulty to produce good
results in moderately congested networks compared with the simultaneous
methods. On the other hand, the simultaneous methods produce the best
solutions of all the estimation methods consistently at any congestion
levels.

6.3.5 Tests with inconsistent link flows
6.3.5.1 Introduction

The use of mutually inconsistent traffic counts might lead to there 
being no feasible solution in the matrix estimation problem. Two sources 
of inconsistency in traffic counts were identified in Chapter 3. The
first one is that errors in the counts may lead to situations in which
the total flow into a node is not equal to the total flow out of the
same node, thus violating the flow conservation conditions. The second
source is due to a mismatch between the assumed traffic assignment model 
and the observed flows. This type of inconsistency occurs whenever path 
flow continuity is not met. The fact that path flow continuity
conditions are not met seems to reflect errors in assignment whereas the 
link flow discontinuities are a reflection solely of errors in the
traffic counts.

The proposed simultaneous and improved sequential estimation 
methods are expected to be more flexible in dealing with inconsistency 
in link flows than the sequential ME2 method. This is due to the use of 
the quadratic gap function and the penalty function approach in which 
full feasibility is not necessarily required. Therefore, it is 
interesting to investigate any differences in the performance of the
estimation methods when traffic counts are not error-free.

In this section, a test is designed to investigate the effects of 
inconsistent link flows on the performance of various estimation 
methods. This test was accomplished by estimating trip matrices from
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inconsistent link flows. By assigning a known trip matrix

(300,300,300,300), the flows on some particular links are obtained. Four 

links - (6,7), (6,10), (9,10) and (10,11) - were selected for

observation. Artificial errors having a rectangular distribution were

then added to these assigned link flows. Five error dispersions in link 

flows were selected. These six levels were within a range of ±0%, ±10%, 

±20%, ±30% and ±50% of the mean flows. Finally, a trip matrix 

(350,250,150,50) which is non-uniform to the observed trip matrix was

chosen as a prior trip matrix.

The performance of the estimation methods for each o f five

different error levels is investigated by comparing the values of

estimated trip matrices, entropy values, gap values and the goodness of

fit o f the estimated trip matrices.

6.3.5.2 Results

It is interesting to see how the estimation methods behave as the 

level o f error in link flows increases. Figures 6.11a-e show the

reduction of gap by various estimation methods.

(a) ME2

RMSE in Gap
160

10% 20% - S -  30% X  -* 7  50%
140

120

100

60

No of iteration

Figure 6.11 Results of the tests with inconsistent link flows
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Figure 6.11a shows the reduction of gap by the sequential ME2 
method as the number of iterations increases. Figure 6.11a shows that 
the sequential ME2 method oscillates more as the level of error in link 
flows increases. On the other hand, as shown in Figures 6.11c and 6.lie , 
the simultaneous methods SIM-Si and SIM-So tend to converge well 
compared with the sequential ME2 method, as the magnitude of the penalty 
parameter increases. Also, as shown in Figures 6.11b and 6.lid , the 
improved sequential methods ME3-Si and ME3-So perform better than the 
sequential ME2 method, although there exist small fluctuations.

The final results of the tests are summarized in Table 6.9. It can 
be seen from Table 6.9 that the simultaneous methods perform best in 
terms of gap and entropy values. The improved sequential methods perform 
better than the sequential ME2 method, but it tends to be more unstable 
compared with the simultaneous methods. It can be also observed that the 
sequential ME2 method fails to reduce the gap value, as the level of 
error in link flows increases.

It can be seen from Figures 6.11c and 6 .l ie  that the simultaneous 
method SIM-Si performs better at the early period of the sequence than 
the simultaneous method SIM-So. At the end, both of the methods produce 
similar results. In the case of the improved sequential methods, as 
shown in Figures 6.11b and 6.lid , ME3-So performs better than ME3-Si. 
However, it is not possible to identify any significant difference 
between the results due to the use of different entropy functions 
So(T,t) and Si(T,t).

Table 6.9 Results of the tests with inconsistent link flows

( a  ) 0 % ______________
S o  I u t i o n  
M e  t h o d s T l 3

T r i p
T m

Mat ri ce s  
T 2 3 T 2 4 T . .

Entropy 
So Si

(Ja p 
R M SE  %RMSE

El t
R MS E %RMSE

0  b s e r v ed 30 0 300 3 0 0 30 0 1200 - 2 6 7 4 4 6 0 0 0 0
P r i o r 35 0 2 50 1 5 0 50 8 00 0 8 00 1 3 9 4 4 1 5 0 5 0

ME 2 90 2 25 3 6 0 4 33 1109 - 7 4 5 2 7 2 1 3 4 4 5
ME 3 - Si 26 2 245 5 9 5 83 1185 - 3 1 6 4 0 4 1 9 6 1 8 6 6 2
S I M  - Si 4 69 235 4 4 2 91 1237 - 1 1 6 5 82 4 1 1 5 6 5 2

ME 3 - So 4 6 4 266 4 3 7 101 1268 - 1 0 2 5 82 4 1 1 4 7 4 9
S I M  - So 481 263 4 6 8 72 1284 - 1 1 7 5 59 4 1 1 6 9 5 6
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Table 6.9 (cont.)

( b ) 10%
S o 1 ut i on 
M e  t hod s T 1 3

T r i p  
T 1 4

Ma t ri ce s  
T 2 3 T 2 4 T . .

Entropy 
So Si

(ja p 
RM SE  %RMSE

El t
R M S E  %RMSE

O b  s er  v ed 3 00 30 0 3 0 0 3 00 1200 - 2 6 7 4 4 6 1 9 6 0 0
P r i or 3 5 0 25 0 1 5 0 50 8 00 0 8 00 1 3 5 41 1 5 0 5 0
ME 2 663 25 3 7 9 48 1116 - 3 4 5 4 0 0 2 2 7 2 6 3 8 8
ME 3 - Si 5 0 9 201 4 2 6 66 1202 - 1 21 59 2 2 0 6 1 7 6 5 9
S I M  - Si 4 8 6 207 4 0 0 81 1175 - 1 0 2 62 2 1 8 6 1 5 9 5 3

ME 3 - So 50 5 183 4 3 5 84 1208 - 1 3 9 5 72 1 8 6 1 7 4 5 8
S I M  - So 4 6 0 233 4 4 0 86 1219 - 1 1 6 5 9 0 1 5 5 1 5 4 51

( c ) 20%
S o 1 ut i on  
M e  t h o d  s T 1 3

T r i p  
T 1 4

M at r i ce s  
T 2 3 T 2 4 T . .

Entropy 
So Si

( i a  p 
R M S E  %RMSE

El t
R M S E  %RMSE

O b  s er  v  ed 30 0 3 00 3 0 0 30 0 1200 - 2 6 7 4 4 6 3 9 12 0 0
P r i or 3 5 0 2 5 0 1 5 0 50 80 0 0 8 0 0 1 3 3 4 2 1 5 0 5 0

ME 2 5 8 4 32 4 3 3 50 109 9 - 3 4 2 4 08 4 5 14 2 4 1 8 0
ME 3 - S i 6 0 9 117 4 1 2 48 118 6 - 1 9 5 5 24 3 6 1 1 2 2 6 7 5
S I M  - Si 4 4 9 192 4 5 7 62 1161 - 1 5 3 5 76 3 0 10 1 6 9 5 6

ME 3 - So 62 7 111 3 9 8 67 1203 - 1 9 3 519 3 5 1 1 2 2 7 7 6
S I M  - So 4 4 6 196 4 5 6 73 1175 - 1 51 5 72 3 0 10 1 6 5 55

( d ) 30%
S o 1 ut l on  
M e  t h o d s T l  3

T r i p
T l 4

M a t ri ce s
T  2 3 T 2 4 T . .

Entropy 
So S i

( ja  p 
R M S E  %RMSE

E'l t
R M S E  %RMSE

O b  s e r  v e d 3 0 0 3 00 3 0 0 30 0 1 20 0 - 2 6 7 4 4 6 5 8 18 0 0
P r i or 3 5 0 25 0 1 5 0 50 80 0 0 80 0 1 3 5 4 2 1 5 0 5 0
ME 2 5 3 2 152 5 8 3 50 1317 - 2 8 2 379 6 7 2 1 2 3 4 7 8
ME 3 - Si 6 3 4 79 3 8 6 44 1143 - 2 3 7 4 99 5 1 16 2 4 2 81
S I M  - Si 4 5 7 168 4 7 2 41 1137 - 1 8 8 5 49 4 6 14 1 8 6 6 2

ME 3 - So 5 6 6 145 4 0 1 71 1183 - 1 5 0 5 7 0 5 8 18 1 9 9 6 6
S I M  - So 4 4 7 20 2 3 7 5 87 1111 - 9 3 6 53 5 2 1 6 1 4 3 4 8

( e ) 50%
S o 1 ut i on  
M e  t h o d  s T 1 3

Trip  
T 1 4

M a t r i ce s  
T  2 3 T 2 4 T . .

Entropy 
So Si

(Ja p 
R M S E  %RMSE

El t
R M S E  %RMSE

O b  s er v ed 3 0 0 300 3 0 0 3 0 0 12 00 - 2 6 7 4 46 9 7 31 0 0
P r i or 3 50 2 5 0 1 5 0 50 8 00 0 8 0 0 1 4 6 4 7 1 5 0 5 0

ME 2 671 349 4 5 7 50 1527 - 7 5 46 4 1 1 7 3 7 2 3 8 7 9
ME 3 - Si 6 20 81 3 6 6 38 11 04 - 2 2 3 525 9 1 2 9 2 3 7 7 9
S I M  - Si 4 3 6 122 4 9 2 28 1079 - 2 5 5 5 02 7 9 2 5 2 0 1 6 7

ME 3 - So 6 09 117 3 7 0 47 11 44 - 1 7 2 563 9 2 2 9 2 2 3 7 4
S I M  - So 3 92 169 4 2 3 80 1064 -1 51 6 09 8 0 2 5 1 4 9 50

6.3.5.3 Conclusions

The results show that the simultaneous methods and the improved 
sequential methods are less disrupted than the sequential ME2 method by 
the existence of errors in link flows. Furthermore, the sequential ME2 
method cannot accommodate errors in link flows and fails to converge to 
a stable solution when the error range exceeds 30% of the mean link 
flows.
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6.3.6 Tests with determinate matrix total
6.3.6.1 Introduction

The problem of estimating a trip matrix from traffic counts is 
underspecified in most cases. Furthermore, when the estimation problem 
is solved under equilibrium traffic conditions, the estimation problem 
is further underspecified because the values of the route choice 
proportions in the equilibrium assignment are not defined uniquely. The 
entropy objective functions are used to determine a trip matrix from 
many feasible trip matrices.

In Chapter 5, two different entropy objective functions Si(T,t) and 
So(T,t) were introduced. It was noted that the entropy function Si(T,t) 
is equivalent to So(T,t) if the total demand T.. of the estimated trip
matrix is fixed. However, in practice the total demand is unknown and it 
should be treated as a variable rather than a constant. It was revealed 
in Section 4.3.2 that the use of the entropy function Si(T,t) leads to 
estimation of the incorrect solutions in some cases. As an alternative,
the full entropy function So(T,t) in which the total demand T.. is not a 
constant has been proposed. At this stage, it is interesting to
investigate whether there are any differences on the performance between 
these two entropy objective functions.

In this section, a test is designed to investigate the effects on 
the performance due to the use of two different entropy functions. This 
test can be accomplished by comparing the results from tests of using 
two different sets of observed link flows. The first test is to estimate
a trip matrix from observed link flows from which the total demand of 
the estimated trip matrix is not determined. The second one is to 
estimate a trip matrix from observed link flows from which the total 
demand of the estimated trip matrix is known prior to the matrix 
estimation. For example, the data for the second test can be obtained by 
observing the flows of links located on a screen line of the network. In 
this test, for the first test, three links - (6,7), (6,10), and (9,10) - 
were selected for observation and for the second test five links - 
(12,8), (6,7), (6,10), (9,10) and (9,13) - were observed.
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6.3.6.2 Results

The results of the tests are summarized in Tables 6.10a-b. It can
be seen from this table that the totals of all of the trip matrices
estimated with a determinate matrix total tend to be very close to the
given total T..=1200 compared with the results estimated with 
indeterminate matrix total. Table 6.10a shows that use of either entropy
functions fails to estimate a trip matrix whose total is equal to the
total of the observed trip matrix. In particular, a comparison of the
results of two tests indicates that the simplified entropy function 
Si(T,t) tends to estimate trip matrices with totals that are lower than 
the total of the observed matrix. On the other hand, the full entropy
function So(T,t) tends to estimate trip matrices with totals that are
greater than the totals of the observed matrix.

Table 6.10 Results of the tests with determinate matrix total

(a) with undetermined matrix total

b o  1 u t i o n  
M e  t hods T l  3

T r i p  
T  1 4

M a t r i c e s  
T 2 3 T24 T . .

Entropy  
So S i

G a p  
R M S E  %RMSE

Ei t
RM SE  %RMSE

O b  s e r v e d  . 300 3 0 0 3 0 0 3 00 1 20 0 - 2 6 7 4 4 6 0 0 0 0
P r i or 3 50 2 5 0 1 5 0 50 8 0 0 0 8 0 0 1 19 4 7 1 5 0 5 0

ME 2 103 199 3 7 6 4 0 3 1081 - 6 9 1 65 9 3 1 2 8 4 3
ME 3 - Si 52 3 49 3 0 7 4 7 6 1 18 4 - 8 4 5 - 1 2 5 5 2 1 5 4 51
S I M  - Si 4 6 0 22 5 4 4 5 84 1 21 3 - 1 2 3 585 6 2 1 5 7 5 2

ME 3 - So 4 50 263 4 4 0 102 1 25 5 - 1 0 8 5 8 2 5 2 1 4 4 4 8
S I M  - So 503 34 7 4 9 7 89 1 43 6 - 1 0 3 49 3 8 3 1 7 8 5 9

(b) with determinate matrix total

S o 1 u t i o n  
M e  t hods T 1 3

T r i p  
T 1 4

M a t r i ce s  
T 2 3 T24 T .  .

Entropy 
So Si

U a  p 
R M S E  %RMSE

El t
RMSE %RMSE

O b s e r v e d 3 00 3 00 3 0 0 30 0 1 20 0 - 2 6 7 4 4 6 0 0 0 0
P r i or 350 2 50 1 5 0 50 8 00 0 8 00 1 0 9 4 6 1 5 0 5 0
ME 2 389 44 3 4 9 42 7 1 20 9 - 6 7 6 34 1 1 4 1 5 2 51
ME 3 - Si 308 86 4 2 0 385 1 20 0 - 6 0 4 110 8 3 1 2 9 4 3
S I M - S i 366 203 3 15 311 11 95 - 2 9 6 4 2 0 1 9 8 5 9 2 0
ME 3 - So 281 99 4 5 6 365 1201 - 5 9 1 122 7 3 1 3 2 4 4
S I M  - So 35 4 2 35 3 7 0 247 1207 - 2 2 3 4 88 2 7 1 1 61 2 0
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It is interesting to note from Table 6.10b that there is a good 
agreement between entropy objective values and the goodness of fit of 
the estimated trip matrices. That is, the estimated trip matrices which 
have higher entropy values also have better goodness of fit between the 
estimated matrix and the observed one. This good match is obtained 
because the estimation problem in the second test is more constrained by 
allowing more links to be observed than the first test.

It can be said from Tables 6.10a-b that the simultaneous estimation 
methods produce better performance than either the sequential ME2 method 
or the improved sequential ME3 methods, although the gap values for the 
trip matrices estimated from the simultaneous method are slightly worse 
than those from ME2 or ME3.

6.3.6.3 Conclusions

Both of the entropy objective functions Si(T,t) and So(T,t) fail to 
estimate a trip matrix whose total is equal to the total of the observed 
trip matrix when the estimation problem is underspecified and the 
information of the total demand is not determined from observed link 
flows. The results show that use of the entropy objective function 
Si(T,t) tends to underestimate the totals of the estimated trip matrices 
whereas use of the entropy objective function So(T,t) tends to 
overestimate the totals. Use of observed link flows which determine the 
matrix total reduces the difference between the matrices estimated using 
each of the objective functions.

6.3.7 Tests with different prior trip matrices
6.3.7.1 Introduction

The estimation problem can be interpreted as a process of finding a 
new trip matrix which is as similar as possible to the prior trip matrix 
and which reproduces observed link flows. Thus, the prior trip matrix 
plays an important role for estimating a trip matrix from observed link 
flows. This is particularly so when, as is usual, the estimation problem 
is underspecified. Furthermore, when trip matrices are estimated subject
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to equilibrium traffic constraints, in the case of the sequential 
estimation method the prior trip matrix is used to generate initial 
route choice proportions for the matrix estimation process. In the case 
of the simultaneous method, the prior trip matrix provides an initial 
search interval from which the solutions are found.

In this section, a test is designed to investigate any effects on 
the performance of the estimation methods due to the quality of the 
prior trip matrix. In this test, the quality of the prior trip matrix is
judged by the difference between the prior trip matrix and the one used 
to generate observed link flows, although this is not possible in real 
problems. Three different prior trip matrices t were used in the test 
The first prior trip matrix - (200,200,200,200) - was uniformly scaled
from the observed trip matrix (300,300,300,300). The second one -
(260,230,340,280) - was selected to be similar to the observed one. The 
third one - (350,250,150,50) - was chosen to have a different trip 
distribution pattern.

63,1.2 Results

The results of the tests for each of three prior trip matrices are 
shown in Tables 6.1 la-c. In the case of the first prior trip matrix, it
is possible to know the optimal solution to the methods using the 
entropy function So(T,t) before matrix estimation, which should be equal 
to the observed trip matrix. This can be used to check the optimality of 
the solutions estimated by these estimation methods.

Table 6.11 Results of the tests with different prior trip matrices

(a) with prior trip matrix uniformly scaled from the observed matrix

S o  1 ut ton  
M e  t hods T 1 3

T r i p
T m

M a t r i ce s  
T  2 3 T 2 4 T . .

Entropy 
So Si

U a  p 
R MS E %RM SE

hi  t
RM S E  %RMSE

O b s e r v e d 300 300 3 0 0 3 00 12 00 0 713 0 0 0 0
P r i or 200 200 2 0 0 2 0 0 8 0 0 0 8 00 8 4 3 5 1 0 0 3 3

ME 2 150 182 3 5 8 4 4 4 1135 - 1 0 6 6 32 6 2 1 2 3 4 1
ME 3 - Si 173 142 4 5 5 3 58 11 28 - 1 2 1 61 9 1 2 5 1 3 1 4 4
S I M  - Si 419 248 3 7 3 22 6 126 6 - 4 3 643 6 2 8 3 2 8

ME 3 - So 307 307 3 0 7 30 7 122 9 0 701 3 1 7 2
S I M  - So 335 330 3 2 2 325 1311 0 663 6 2 2 8 9
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Table 6.11 (cont.)

(b) with prior trip matrix clo se  to the observed trip matrix

S o 1 u t i o n  
M e  t hods T I 3

Tr ip
T 1 4

M at ri ce s
T 2 3 T 2 4 T.  .

Entropy 
So Si

(Ja
RMSE

p
%RMSE

El t
RMSE %RMSE

O b s e r ve d 300 300 3 0 0 300 1200 - 1 2 1094 0 0 0 0
P r i or 26 0 230 3 4 0 280 1110 0 1110 6 7 2 2 4 6 15

ME 2 159 199 3 2 8 4 59 1145 - 7 3 1037 I 0 I 19 4 0
ME 3 - Si 2 06 135 4 6 5 35 4 1161 - 5 7 1051 9 3 1 2 9 4 3
S I M  - Si 431 221 3 8 8 212 1251 - 51 1050 3 1 9 9 3 3

ME 3 - So 2 72 205 4 1 4 339 1229 - 9 1095 9 3 7 8 2 6
S I M  - So 318 270 3 9 7 338 1322 - 1 1090 12 5 6 0 2 0

c) with prior trip matrix not uniformly scaled from the observed matrix

S o I u t i o n T r i p M at r i ce s Entropy (Ja p El t
M e  t hods T 1 3 T 1 4 T 2 3 T 24 T . . So Si R MS E %RMSE R MSE %RMSE

O b  s e r v e d 3 00 300 3 0 0 30 0 120 0 - 2 6 7 4 46 0 0 0 0
P r i or 3 50 250 1 5 0 50 800 0 800 I 19 4 5 1 5 0 5 0

ME 2 103 199 3 7 6 403 1081 - 6 91 65 9 3 1 2 8 4 3
ME 3 - Si 52 349 3 0 7 4 76 1184 - 8 4 5 -125 5 2 I 5 4 51
S I M  - Si 4 6 0 225 4 4 5 84 1213 - 1 2 3 585 6 2 1 5 7 5 2

ME 3 - So 4 50 263 4 4 0 102 1255 - 1 0 8 5 82 5 2 1 4 4 4 8
S I M  - So 503 347 4 9 7 89 1436 - 1 0 3 493 8 3 1 7 8 5 9

It can be seen from Table 6.11a that both of the simultaneous
methods SIM-So and SIM-Si estimate the trip matrices which are close to 
the observed trip matrix, although the estimated trip matrices are not 
exactly equal to the observed one. In this test, the estimated trip 
matrix having higher entropy values also produces better goodness of fit 
between the estimated matrix and the observed one. Also, Table 6.11a
shows that the estimation methods using the entropy function So(T,t) 
perform better than the methods using Si(T,t).

Tables 6.11a-c show that the trip matrices estimated by the 
sequential methods ME2 or ME3 are not much affected from the different 
prior trip matrices compared with the results estimated by the 
simultaneous estimation methods, although the use of better prior trip 
matrices produces estimated trip matrices with higher entropy objective 
values. The sequential method ME2 and the improved sequential methods 
ME3-So and ME3-Si tend to estimate trip matrices with a similar
distribution pattern to each other. By contrast, in the case of the 
simultaneous methods, use of prior trip matrices closer to the observed
matrix leads to the estimation of trip matrices closer to the observed
matrix.
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6.3.7.3 Conclusions

It can be said from these results that the sequential method ME2 
and the improved sequential methods ME3-So and ME3-Si fail to reflect 
the information of the prior trip matrices in estimating trip matrices. 
This suggests that the sequential method and the improved sequential 
methods tend to find a feasible solution rather than an optimal one. By 
contrast, the simultaneous estimation methods SIM-So and SIM-Si tend to 
be more faithful to the information of the prior trip matrices.

6.3.8 Tests with different sets of links observed
6.3.8.1 Introduction

In Section 4.4.1, analysis of a simple example showed that
selection of links observed for traffic counts can have a profound
influence on the convergence of the sequential method ME2. It was 
suggested that the sequential method ME2 converges well when the links 
which have the flows loaded in the first (uncongested) all or nothing
assignment are observed for matrix estimation. On the other hand, it was 
shown that the sequential method ME2 can fail to converge when the links
which do not have flows loaded in the first all or nothing assignment
are observed for matrix estimation. In this section, this topic will be 
further investigated numerically using the Nguyen’s example network 
which is more complicated than that analyzed earlier.

A test was designed to investigate the effects on the convergence
of the estimation methods due to the location of observations of link 
flows. This can be carried out by comparing the results from the tests
using three different sets of observed link flows. The first test is to
estimate a trip matrix from flows observed on the links which are loaded 
in the first all or nothing assignment. The second one is to estimate a 
trip matrix from flows observed on links which are not loaded in the
first all or nothing assignment. The third one is to estimate a trip
matrix from link flows observed for a mixed selection of links. An 
observed trip matrix (300,300,300,300) was assigned to obtain the
observed link flows. The selection of links for each of three tests was 
made by examining the assigned flows from the first all or nothing
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assignment. Among the links - (12,8), (6,7), (6,10), (9,10) and (9,13) - 

located on a cordon line, the links (6,7) and (9,10) have flows loaded 

in the first all or nothing assignment but the links (12,8), (6,10) and 

(9,13) do not. Accordingly, the first test was designed to estimate a 

trip matrix from link flows observed on the links (6,7) and (9,10). The 

second test was designed to estimate a trip matrix from link flows 

observed on the links (12,8), (6,10) and (9,13). The third test was

designed to estimate a trip matrix from link flows observed on the links 

(6,7) and (6,10). A trip matrix (350,250,150,50) which is not uniformly

scaled from the observed one was used as a prior trip matrix in all 

these tests.

6.3.8.2 Results

Figure 6.12a shows the gap achieved by the sequential ME2 method 

during the first 20 iterations. It can be seen that this method reduces 

the gap rapidly in the first test in which only links with flows in the 

first all or nothing assignment are observed for matrix estimation.

However, the sequential ME2 method fails to reduce the gap in the second 

and third tests in which links without flows in the first all or nothing

assignment are also observed for matrix estimation. These results 

contrast with the results obtained by the simultaneous methods SIM-Si 

and SIM-So as shown in Figures 6.12c and 6 .12e.

(a) ME2
RMSE in Gap '  '

160

~W -—  m ix e d  se le c t io nw ith o u t initial flow■ — w ith initial flow s
140

120

100

40

No of iteration

Figure 6.12 Results of the tests with different sets o f links observed
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Figure 6.12 Results of the tests with different sets o f links observed



Inspection of the results of the simultaneous methods indicates 
that it reduces the gap well in all the three tests. Thus, the 
simultaneous methods are less dependent upon the the selection of the
observed links for matrix estimation. Figures 6.12b and 6.12d show the 
result by the improved sequential methods ME3-S1 and ME3-So. Both of the 
improved sequential methods ME3-Si and ME3-So have severe oscillations
in the second and third tests in which links without initial flows are
observed for matrix estimation. As shown in Figures 6.12c and 6.12e, the 
simultaneous methods SIM-Si and SIM-So produce similar results to each 
other. This indicates that the use of different entropy functions makes 
no substantial difference on the performance of the estimation methods. 
In the case of the improved sequential methods, as shown in Figure 6.12b 
and 6.12d, use of the entropy function So(T,t) produces even worse 
results compared with those of Si(T,t).

The results of the tests by all of the estimation methods are 
summarized in Tables 6.12a-c. It can be said from these results that the 
simultaneous method performs best in terms of entropy values and gap 
values, thus indicating their robustness with respect to selection of
links for flow observations.

Table 6.12 Results of the tests with different sets of links observed

(a) Using only links with initial flows

S o 1 u t i o n  
M e  t  hods T 1 3

Trip
T m

Ma t r i c e s  
T  2 3 T 2 4 T . .

Entropy 
S o  S i

(Ja p 
R M SE  %RMSE

E l  t
RMSE %RMSE

O b  s e r v e d 3 0 0 300 3 0 0 3 0 0 1 2 0 0 - 2 6 7 4 4 6 0 0 0 0
P r i or 3 5 0 250 1 5 0 50 80 0 0 8 0 0 1 4 5 6 3 1 5 0 5 0
ME 2 126 90 4 18 3 53 9 8 6 -69 1 89 1 0 1 5 1 5 0
ME 3 - Si 84 58 4 0 7 3 8 4 9 33 - 8 4 2 - 5 2 1 0 1 7 6 5 9
S I M - Si 4 6 9 161 4 1 6 107 1153 - 15 1 581 2 0 1 5 7 5 2

ME 3 - So 5 38 389 4 4 7 106 1480 - 6 1 509 0 0 1 7 6 5 9
S I M  - So 541 453 4 3 2 87 1513 - 4 6 503 5 1 1 9 0 6 3
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Table 6.12 (cont.)

(b) U sing only links without initial flow s

S o I u t i o n  
M e  t hods T 1 3

T r i p
T m

M at ri ce s
T 2 3 T 2 4 T.  .

Entropy 
So Si

( ja p 
R M S E  %RMSE

El t
RMSE %RMSE

0  b s e r ve d 30 0 300 3 0 0 30 0 1200 - 2 6 7 4 46 0 0 0 0
P r i or 350 250 1 5 0 50 800 0 800 7 5 4 4 1 5 0 5 0
ME 2 5 14 171 1 5 0 3 86 1221 - 4 0 5 3 00 4 5 2 7 1 5 2 51
M E 3 - Si 30 9 183 1 5 0 334 976 - 3 4 4 4 38 3 9 2 3 9 7 3 2
S I M  - S i 37 6 2 46 2 5  1 2 62 1135 - 1 8 8 5 50 2 6 1 6 5 6 19

ME 3 - So 467 247 2 3 3 3 02 1249 -221 471 5 5 3 3 9 4 31
S I M  - So 328 261 2 5 9 32 0 1168 - 2 8 3 443 2 1 3 3 11

(c) Using links both with or without initial flows

S o  1 ut i o n  
M e  t hods T 1 3

T r i p
T 1 4

M a t r i ce s  
T 2 3 T 2 4 T . .

Entropy 
So Si

<ia p 
R M S E  %RMSE

Ei t
RM SE  %RMSE

O b s e r ve d 3 00 300 3 0 0 30 0 1200 - 2 6 7 4 4 6 0 0 0 0
P r i or 350 250 1 5 0 50 800 0 8 00 2 8 14 1 5 0 5 0

ME 2 361 73 3 7 4 50 858 - 2 0 3 595 4 2 21 1 7 6 5 9
ME 3 - Si 455 263 4 17 50 1185 - 9 3 62 6 5 2 1 5 9 5 3
S I M  - Si 309 278 2 8 9 46 92 2 - 4 6 745 2 1 1 2 8 4 3
ME 3 - So 388 217 1 6 7 51 824 - 5 795 3 4 17 1 5 3 51
S I M  - So 328 276 2 8 3 55 941 - 3 7 751 1 0 1 2 4 41

6.3.8.3 Conclusions

It can be said from these results that the sequential ME2 method 
and the improved sequential methods ME3-Si and ME3-So fail to converge 
when flows are observed for matrix estimation on links which do not have 
the initial flows in the first all or nothing assignment. On the other 
hand, the simultaneous methods SIM-Si and SIM-So perform well with 
respect to selection of links for matrix estimation.

From these results, we might make a useful suggestion for link 
observations when estimating trip matrices from traffic counts. That is, 
the observation of links which have the initial flows in the first all 
or nothing assignment could help the sequential method or the improved 
sequential method to converge.
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6.4 Tests with the Ripon network
6.4.1 Introduction

In the previous sections, small example networks have been used to 
test the proposed estimation methods. These tests were useful, because a 
variety of different cases could be investigated effectively using 
synthetic data generated artificially within a limited amount of
computing time. However, the tests using small artificial networks can 
not tell how likely the method is to perform well in practice. In order
to do this, it is necessary to test the proposed estimation methods
using realistic networks. The test of an estimation method for
estimating a trip matrix from traffic counts requires a real data set
ideally consisting of:

(1) network data e.g. link distance, capacity, speed-flow relationship,

(2) an independently observed trip matrix of reasonable accuracy,
obtained for example through direct survey methods.

(3) a set of observed link flows on the network,

This type of data set, in particular its second element, is difficult to 
obtain.

A data set collected in the town of Ripon was examined for an
application to this study. Ripon is a busy market town in North
Yorkshire, England, lying north of Harrogate on the A61. North Yorkshire 
County Council (NYCC) was considering plans for a by-pass for Ripon and 
therefore conducted O-D surveys in May 1978 and May 1985. These two 
surveys, in conjunction with separate traffic counts collected by Steer, 
Davies and Gleave Ltd (SDG) in November 1985, form a basis of this data 
set (Steer, Davies and Gleave, 1987). The Ripon data base consists of 
the following data sets:

(1) The 1985 network description: A map of the town of Ripon is depicted 
in Figure 6.13 and the 1985 network description is shown in Figure 6.14.
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The study area is divided into 26 zones of which 19 are internal and 7 
are external. The road network contains 82 nodes and 188 one-way links. 
In order to overcome congestion around the city centre during the peak 
hour, a one-way scheme was introduced and this was also modelled.

(2) The 1985 observed trip matrix: This is a 24 hour, annual average 
daily traffic (AADT) trip matrix, compiled from a roadside interview 
survey collected by NYCC in May 1985. The 1985 observed trip matrix was 
used as the basis of the observed trip matrix for the test.

(3) The 1985 observed traffic counts: There are 63 observed traffic 
counts collected throughout Ripon by Steer, Davies and Gleave (SDG) Ltd 
in November 1985 and by NYCC in May 1985 in conjunction with their 
roadside interview survey. The sites of collecting traffic counts are 
also shown in Figure 6.14. Two automatic traffic counters were laid down 
by NYCC. One was on the main North-South route (between nodes 60-61) and 
the other was on the main West-east route (between nodes 43-48) through 
Ripon. All other counts were taken manually. The automatic traffic 
counts enabled SDG to estimate a factor to convert the results of manual 
counts to 24 hour counts. A factor was derived for each site, in each 
direction, for each day of the counts. As eight factors only ranged from 
1.7 to 1.8, the uniform factor of the flow-weighted mean value 1.758 was 
applied to the manual traffic counts. The traffic counts were found to 
be similar between May and November 1985 given that some seasonal 
variation is to be expected and that the November traffic counts were 
taken over one day only. All of the November traffic counts are within 
±10% of the May counts at the sites where a comparison is possible.

(d) The prior trip  matrix: Besides the data sets mentioned above, the 
matrix estimation method may require a prior trip matrix. The 1978 trip 
matrix compiled from roadside interview data by NYCC could serve as a 
good prior. However, this data was not available for the present study. 
As an alternative, in this study a uniform prior trip matrix which is 
considered to be close to the 1985 observed trip matrix was used. The 
uniform prior trip matrix used in this test was created by minimising 
the gap between its assigned link flows and the link flows assigned from 
the 1985 observed one.

181



The test in this study requires a peak hour real trip matrix and 
peak hour traffic counts corresponding to the real trip matrix for the 
test. However, the 1985 observed trip matrix and 1985 traffic counts 
were only available as whole day data. It is not possible to convert 24 
hour trip matrix and 24 hour traffic counts to peak hour trip matrix and 
traffic counts by using peak hour scaling factor such as those given in 
Traffic Appraisal Manual (DTp, 1981). The use of a peak hour factor 
gives only peak hour data uniformly scaled from whole day data. The real 
peak hour trip matrix might be quite different from these uniformly 
scaled data for example due to the existence of tidal flows between O-D 
pairs. Furthermore, the scaled peak hour real trip matrix has no 
corresponding relationship with peak hour traffic counts because of the 
inherent non-linearity of the assignment process. Consequently, it is 
not possible to perform an ideal test by using only the data sets 
available in the Ripon data base.

Under these constraints, the following two tests were designed to 
investigate the performance of the estimation methods. The first test 
was to estimate a trip matrix from artificial traffic counts. These 
counts were the modelled flows obtained by assigning the peak hour trip 
matrix to the Ripon road network. The peak trip matrix used here was 
obtained from the 1985 AADT real trip matrix by using peak hour factor 
2.630/24 = 0.10958 given in Table 5A of Appendix D14 in Traffic 
Appraisal Manual (DTp, 1981). Therefore, traffic counts used in the 
first test are synthetic and error-free. The main reason to carry out 
this artificial test is to investigate the performance of the various 
matrix estimation methods in a realistic network. The second test was to 
estimate a trip matrix from peak hour traffic counts which is not 
error-free. Peak hour traffic counts used in the second test were 
obtained from the 1985 AADT real traffic counts by the same procedure 
used to calculate the peak hour observed trip matrix. In the second 
test, however, the comparison between the estimated trip matrix and the 
observed one is not possible, as the real trip matrix corresponding to 
traffic counts is not available. This second test was intended to 
investigate how well the various estimation methods accommodate 
inconsistent traffic counts in a real network.
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The SATURN program (Van Vliet, 1987) which implements the ME2 
method and whose assignment program is interfaced with the program of 
the proposed estimation methods was used to code the network data. As 
the computing tool, the mainframe AMDAHL 5890 at the University of 
London Computing Centre (ULCC) was used for the sequential method ME2 
and the improved sequential methods ME3-Si and ME3-So. The 
super-computer CRAY X-MP at ULCC was used for the simultaneous methods 
SIM-Si and SIM-So.

6.4.2 Tests with assigned link flows
6.4.2.1 Introduction

It is interesting to see how accurately the estimation methods can 
reproduce the original trip matrix from the error-free synthetic traffic 
counts. By assigning the original trip matrix onto the Ripon network 
using equilibrium assignment, we obtain the assigned flows on links 
which contain no sample or route choice errors. A subset of these flows 
was selected for the links as shown in Figure 6.14. These selected link 
flows were used with each of the various methods to estimate a trip
matrix. As mentioned above, a uniform prior trip matrix was used with 
cell values tij each equal to 5.

6.4.2.2 Results

The performance of the sequential estimation method of ME2 can be 
investigated by examining indicators such as totals of estimated trip 
matrices, entropy values, gap values and goodness of fit, as the number 
of iterations between equilibrium assignment and matrix estimation 
increases. The results obtained by ME2 are summarized in Table 6.13 and 
presented graphically in Figures 6.15a-d. Figure 6.15a shows the
evolution of the gap. It shows that the sequential method reduces gap
rapidly during the first two iterations and makes relatively small 
oscillations to it thereafter. In particular, most of reduction in gap 
is made during the first iteration. This suggests that congestion has
little effects on route choice proportions in the Ripon network and the 
use of fixed values for them is not bad. A similar result is obtained 
for the totals of estimated trip matrices, as shown in Figure 6.15c.
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Table 6.13 Results of the test using assigned link flows by ME2

I t e r a t i o n T. .
En tr o py  
SO SI

Gap 
RMSE %RMSE

F i t  
RMSE %RMSE

O b s e r v e d 3949 - 4 1 1 1 - 6 7 0 0 0 0
P r i o r 3250 0 3250 112 48 1 3 . 2 9 219

1 4552 - 2 4 2 3 596 30 12 1 4 . 2 0 234
2 4417 - 2 3 3 4 728 19 8 1 3 . 4 7 222
3 4521 - 2 3 4 7 683 12 5 1 3 . 5 3 223
4 4533 - 2 3 3 3 692 15 6 1 3 . 1 2 216
5 4638 - 2 4 8 1 508 11 4 1 3 .  96 230
6 4658 - 2 4 5 9 523 10 4 1 3 .  90 229
7 4622 - 2 4 6 2 532 14 5 1 3 . 4 7 222
8 4558 - 2 3 9 9 618 18 7 1 3 . 2 3 218
9 4620 - 2 5 2 9 466 18 7 1 3 . 5 3 223

10 4517 - 2 1 7 6 855 14 5 13 .  87 212
11 4568 - 2 3 1 5 698 13 5 1 3 .  05 215
12 4606 - 2 5 7 8 422 11 4 1 3 . 7 8 227
13 4582 - 2 4 2 7 581 17 7 1 3 . 5 2 224
14 4523 - 2 3 8 6 642 16 7 1 3 . 2 2 219
15 4679 - 2 7 3 3 241 12 5 1 4 . 0 2 231
16 4652 - 2 5 9 3 391 13 5 1 3 .  90 229
17 4684 - 2 8 6 9 103 14 6 1 4 . 3 8 237
18 4668 - 3 0 5 7 - 7 9 12 5 1 4 .  63 241
19 4693 - 3 1 8 6 - 2 1 7 20 8 1 5 . 1 1 249
20 4626 - 3 1 3 9 - 1 4 6 20 8 1 4 . 6 3 241

It shows that ME2 estimates the total of about 4600 trips after the
first iteration and makes small changes to it thereafter. However, as 
shown in Figure 6.15b, an inspection of the goodness of fit between the
estimated trip matrices and the observed trip matrix shows that they are
subject to considerable fluctuations throughout the 20 iterations of the 
test. It shows that the sequential ME2 method fails to improve the
goodness of fit compared with that of the prior trip matrix. Figure
6.15d shows the trade-off relationship between entropy (Si) values and 
gap values of estimated trip matrices. It shows that during the first
two iterations substantial improvements are made in both gap and
entropy, but it is difficult to identify any particular relationship
thereafter.
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Figure 6.15 Results of the test using assigned link flows by ME2
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The simultaneous method SIM-Si estimates a trip matrix by using a 
sequential unconstrained optimization method which approximates the
solution of the original estimation problem with increasing accuracy by
progressively increasing the magnitude of the penalty parameter. The 
results obtained by SIM-Si are summarized in Table 6.14 and presented
graphically in Figures 6.16a-d. Figure 6.16a shows reduction in gap as 
the magnitude of the penalty parameter increases. It shows that SIM-Si 
reduces the gap value gradually during the first six subproblems of the
sequence and it makes small reductions to it thereafter. Figure 6.16b 
shows the evolution of the goodness of fit of the estimated trip
matrices. It shows that SIM-Si improves the goodness of fit during the 
first six subproblems of the sequence and thereafter the goodness of fit 
becomes worse. Figure 6.16c shows the totals of estimated trip matrices. 
It shows that SIM-Si estimates the total of about 4600 trips after the 
first five subproblems. Figure 6.16d shows the trade-off relationship
between gap and entropy values. It shows that a clear trade-off curve
exists. It is noted that after the first six subproblems the entropy
value is further reduced without reducing the gap. A cross-examination 
of Figures 6.16b and 6.16d indicates that SIM-Si improves the goodness 
of fit during the first five sub-problems in which major reduction in 
gap is made.

Table 6.14 Results of the test using assigned link flows by SIM-Si

P e n a l t y
P a r a m e t e r T. .

En tr o py  
SO SI

Gap 
RMSE %RMSE

F i t
RMSE %RMSE

0 . 0 0 0 3250 0 3250 112 45 1 3 . 2 9 219
0 . 0 0 1 4103 - 1 3 4 2772 76 30 1 2 . 4 7 205
0 . 0 0 2 4320 - 3 1 9 2443 55 22 1 2 . 0 0 198
0 . 0 0 4 4503 - 5 9 2 2115 36 14 1 1 . 8 1 195
0 . 0 0 8 4612 - 8 8 3 1839 23 9 1 1 . 5 1 190
0 . 0 1 6 4693 - 1 1 3 0 1599 15 6 1 1 . 4 8 189
0 . 0 3 2 4759 - 1 3 4 5 1314 11 4 1 1 . 5 1 190
0 . 0 6 4 4844 - 1 5 9 7 1050 10 4 11 .  60 191
0 . 1 2 8 4921 - 1 8 2 9 688 9 4 11 .  77 194
0 . 2 5 6 4967 - 2 1 7 2 223 9 4 1 2 . 1 0 199
0 . 5 1 2 5123 - 2 5 6 9 223 9 4 1 2 . 6 5 208

186



(a)
 

Ev
ol

ut
io

n 
of 

ga
p 

(b
) 

Ev
ol

ut
io

n 
of 

go
od

ne
ss

 
of 

fit

wc/3
So£

S3ex,
S'*c3cu
ex

p
13>

T3
§
6<D

4—>o

o
co

o>
U3
o'

CX

£
8 8 8 8
OO VO TJ- <STj- TT ■'T •vj-

8 8 8 8 8oo VO Tl- 04 Oco co co co co

Uiocs
c*

laex
-  S'

>

O
£
o

J+-*<+-<01
<D

03X-c
H
xT

ex
GO
c
W
sOci

oo o oo o

Figure 6.16 Results of the test using assigned link flows by SIM-Si
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A similar result to SIM-Si was made by SIM-So. This result is shown 
in Table 6.15 and depicted graphically in Figures 6.17a-d. As shown in 
Figure 6.17c, a main difference in the performance between the methods 
SIM-Si and SIM-So is that the total demands of the trip matrices 
estimated by SIM-So are higher than those by SIM-Si, specially during 
the early subproblems.

Table 6.15 Results of the test using assigned link flows by SIM-So

P e n a l t y E n t r o p y Gap F i t
P a r a m e t er T. . SO SI RMSE %RMSE RMSE %RMSE

0 . 0 0 0 3250 0 3250 112 45 1 3 . 2 9 219
0 . 0 0 1 4916 - 1 3 1 2750 66 26 1 2 . 5 9 208
0 . 0 0 2 4985 - 3 1 9 2533 49 20 1 2 . 2 9 202
0 . 0 0 4 5019 - 5 7 0 2267 34 14 1 2 . 0 5 199
0 . 0 0 8 5069 - 8 6 9 1946 22 9 11 .  94 197
0 . 0 1 6 5085 - 1 1 1 5 1694 15 6 1 1 . 8 1 195
0 . 0 3 2 5115 - 1 3 4 0 1455 11 4 11 .  83 195
0 . 0 6 4 5216 - 1 6 0 3 1145 9 4 1 2 . 0 6 199
0 . 1 2 8 5252 - 1 9 7 6 755 9 4 1 2 . 4 4 205
0 . 2 5 6 5356 - 2 2 2 5 455 9 4 12 . 76 210
0 . 5 1 2 5381 - 2 6 6 1 7 8 3 1 3 . 2 4 218

188



(a)
 

Ev
ol

ut
io

n 
of 

ga
p 

(b
) 

Ev
ol

ut
io

n 
of 

go
od

ne
ss

 
of 

fit

w
CO

ooNO xr

3
13>

X)

6<D

734—‘o-t—>

o
ao

o>
W

H
8 8 8 88 8 8 88 8

P u

„ S'

<D
£PO

<DT3cdPh
H

cu
oO
c
w
COsc*

o o8 o oo

Figure 6.17 Results of the test using assigned link flows by SIM-So
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Further similar results to the ones by the simultaneous methods 
were produced by the improved sequential methods ME3-So and ME3-Si. The 
results of the improved sequential methods are summarized in Tables 6.16 
and 6.17. The results in Tables 6.16 and 6.17 are presented graphically 
in Figures 6.18a-d and Figures 6.19a-d.

Table 6.16 Results of the test using assigned link flows by ME3-Si

P e n a l t y
P a r a m e t e r T. .

E n t r o p y  
SO SI

Gap 
RMSE %RMSE

F i t
RMSE %RMSE

0 . 0 0 0 3250 0 3250 112 45 1 3 . 2 9 219
0 . 0 0 1 3821 - 1 1 4 3088 73 29 1 2 . 5 2 206
0 . 0 0 2 4030 - 3 1 3 2850 60 24 1 2 . 1 7 200
0 . 0 0 4 4166 - 6 2 7 2504 38 15 1 1 . 7 3 193
0 . 0 0 8 4276 - 9 2 2 2180 27 11 1 1 . 5 5 190
0 . 0 1 6 4309 - 1 2 1 1 1883 17 7 1 1 . 7 2 193
0 . 0 3 2 4378 - 1 4 1 1 1662 14 6 11 .  65 192
0 . 0 6 4 4351 - 1 6 4 4 1438 10 4 1 1 . 7 0 193
0 . 1 2 8 4468 - 1 8 6 9 1177 12 5 1 1 . 9 9 197
0 . 2 5 6 4480 - 1 9 8 8 1054 13 5 1 2 . 0 9 199
0 . 5 1 2 4447 - 2 1 2 0 933 10 4 1 2 . 2 3 201

Table 6.17 Results of the test using assigned link flows by ME3-So

P e n a l t y
P a r a m e t e r T. .

E n t r o p y  
SO SI

Gap 
RMSE %RMSE

F i t
RMSE %RMSE

0 . 0 0 0 3250 0 3250 112 45 1 3 . 2 9 219
0 . 0 0 1 4525 - 1 1 4 2914 70 28 1 2 . 5 8 207
0 . 0 0 2 4441 - 3 0 1 2754 55 22 1 2 . 2 1 201
0 . 0 0 4 4532 - 5 4 8 2478 38 15 1 1 . 8 6 195
0 . 0 0 8 4634 - 8 9 7 2093 30 12 1 1 . 8 2 195
0 . 0 1 6 4514 - 1 1 9 7 1834 16 6 1 1 .  65 192
0.  032 4640 - 1 4 6 8 1520 13 5 1 1 . 8 7 195
0 . 0 6 4 4633 - 1 6 0 1 1389 14 6 1 1 .  82 195
0 . 1 2 8 4679 - 1 9 4 3 1031 15 6 1 2 . 2 3 201
0 . 2 5 6 4694 - 1 9 6 5 1003 17 7 1 2 . 2 7 202
0 . 5 1 2 4773 - 2 3 2 5 613 13 5 12 . 81 211
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Figure 6.18 Results o f the test using assigned link flows by ME3-Si
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Figure 6.19 Results of the test using assigned link flows by ME3-So

192

-25
00

 
-20

00
 

-15
00

 
-10

00
 

-50
0 

0 
0 

1.0
00

E-
03

 
0.0

1 
0.1

En
tro

py
(S

o)
 

Va
lu

e 
of 

pe
na

lty
 

pa
ra

m
et

er



Figures 6.18a and 6.19a show the evolution of the gap value, as the 
magnitude of the penalty parameter increases. ME3-So and ME3-Si reduce 
the gap value gradually during the first five subproblems and thereafter 
they make small changes to it. Figures 6.18b and 6.19b show the goodness 
of fit between the estimated trip matrices and the observed one. They 
show that ME3-So improves the goodness of fit during the first five 
subproblems and thereafter the goodness of fit becomes worse. Similarly, 
ME3-Si improves the goodness of fit during the first four subproblems 
and thereafter the goodness of fit becomes worse. Figures 6.18c and 
6.19c show the totals of the estimated trip matrices for each method. 
They show that ME3-So estimates the total of about 4500 trips during the 
first subproblem and thereafter it makes relatively small changes. On 
the other hand, ME3-Si approaches the total of about 4500 trips 
gradually through the sequence. A comparison of the totals estimated by 
these methods suggests that ME3-So tends to overestimate and ME3-So 
tends to underestimate. Figures 6.18d and 6.19d show trade-off curves 
between gap and entropy values. They show that a clear trade-off curve 
exists in each case.

For comparison purposes, the trade-off curves of three alternative 
estimation methods ME2, ME3-Si and SIM-Si are all shown together in 
Figure 6.20a and those of ME3-So and SIM-So are also shown in Figure
6.20b. Figure 6.20a shows that ME3-Si and SIM-Si perform similarly and
they perform better than ME2 in terms of entropy and gap values. Also,
Figure 6.20b shows that ME3-So and SIM-So perform similarly, although
SIM-So produces slightly better performance than ME3-Si.

Another comparison is made for the goodness of fit of the estimated 
trip matrices by all five estimation methods ME2, ME3-Si, ME3-So, SIM-Si 
and SIM-So, as shown in Figure 6.21. Figure 6.21 shows that ME3-Si, 
ME3-So, SIM-Si and SIM-So all perform similarly and their goodness of 
fit of estimated trip matrices are all better than that of ME2.
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(b) By the methods using the entropy function So(T,t)
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Figure 6.20 Comparison of the trade-off curves estim ated from assigned 

link flows by various solution methods
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Figure 6.21 Comparison of the goodness of fit of the trip matrices 

estimated by various solution methods

Further comparisons are made for the goodness of fit against the 

gap value or the entropy values Si and So. These are shown in Figures 

6.22a-c. Figure 6.22a presents the relationship of the goodness o f fit 

against the gap. It shows that the simultaneous methods SIM-Si and 

SIM-So and the improved sequential methods ME3-Si and ME3-So improve the 

goodness of fit during the the first five subproblems in which major

reductions in gap are made. After the fifth subproblem, their goodness 

of fit gets worse, while there is no further reduction in gap. By 

contrast, the sequential method ME2 fails to improve the goodness o f fit 

progressively and rather it is subject to fluctuations. Figures 6.22b 

and 6.22c show the relationship of the goodness of fit against the

entropy values Si or So. They show that the simultaneous methods SIM-Si 

and SIM-So and the improved sequential ones ME3-Si and ME3-So improve 

the goodness of fit during the first five subproblems progressively and 

thereafter their goodness o f fit gets worse while entropy is further 

decreasing. The large decrease in entropy values without reducing gap

during the later subproblems is due to the role of the increased penalty 

parameter value given to the gap penalty function. On the other hand,

ME2 fails to improve the goodness o f fit progressively.
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(a) Goodness of fit vs Gap
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(b) Goodness  of fit vs Entropy(SI)
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Figure 6.22 Comparisons of goodness of fit vs gap, goodness o f fit vs 

entropy(Si), and goodness of fit vs entropy(So)
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(c) Goodness of fit vs Entropy(So)
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Figure 6.22 (cont.) Comparisons of goodness o f fit vs gap, goodness of 

fit vs entropy(Si), and goodness of fit vs entropy (So)

Finally, the computing times incurred to each of the alternative 

estimation methods are presented in Table 6.18. As shown in Table 6.18, 

the simultaneous methods SIM-Si and SIM-So are not practical at all in 

networks such as the Ripon network used in this test, as they require 

about 1000 times as much as cpu time of the improved sequential methods. 

On the other hand, the improved sequential methods ME3-Si and ME3-So are 

practical in terms of cpu times, even if they require more CPU times 

than does the sequential ME2 method.

Table 6.18 Computing times incurred to the alternative solution methods

S o l u t i o n
Me t hod s ME2 M E 3-S i S I M - S i M E3-So S I M- So

C P U  t i m e s  
( s e c o n d s ) 1 8* 30* 4500** 30* 4500**

* : On AMDAHL 5 890
** : On C R A Y  X-MP (1 second in CRAY = 8 seconds in AMDAHL)
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6.4.2.3 Conclusions

The following conclusions can be drawn from these results:

(1) The simultaneous methods SIM-So and SIM-Si and the improved 
sequential methods ME3-So and ME3-Si perform similarly in terms of 
entropy, gap, and goodness of fit. This might have important practical 
implications for the matrix estimation process, because the 
computational demands of the improved sequential methods ME3 are also 
practical.

(2) The simultaneous method SIM-Si and the improved sequential method 
ME3-Si perform better than the sequential method ME2 in terms of gap, 
entropy and goodness of fit.

(3) A clear trade-off curve can be identified between gap and entropy 
values of the trip matrices estimated for each of the proposed 
estimation methods SIM-So, SIM-Si, ME3-So and ME3-Si. This could be a 
useful and practical tool for transport planners, because it allows the 
selection of the estimated trip matrices to be controlled depending on 
the relative accuracy of the prior trip matrices and observed link flows
that are input. For example, convergence in gap can be a useful stopping 
criteria for selecting a trip matrix. In the results of this test, a 
most appropriate trip matrix is obtained at the fifth or sixth 
subproblems at which convergence in gap is somewhat achieved.

(4) The full entropy objective function So(T,t) tends to estimate trip 
matrices whose totals are larger than those by the simplified one
Si(T,t) during the sequence. However, their difference in respect of 
other performance indicators is shown to be not substantial.

6.4.3 Tests with real link flows
6.4.3.1 Introduction

In the previous section, error-free link flows obtained by 
assigning a known trip matrix to the network were used to estimate a
trip matrix. In this section, the real link flows observed as traffic

198



counts collected in the town of Ripon were used to estimate a trip
matrix. The main objective of this test is to investigate how well the
estimation methods can deal with inconsistent link flows in a real 
network. The proposed estimation methods SIM and ME3 are expected to be 
more flexible in accommodating inconsistent link flows than is the
sequential method ME2. However, as no observations were available of a 
trip matrix which corresponds to the traffic counts used in this test, 
it was not possible to carry out any calculation of the goodness of fit 
between the estimated trip matrices and the observed one. A uniform 
prior trip matrix with cell values fcj each equal to 5 was used as a 
prior trip matrix.

6.4.3.2 Results

The results of the test using the sequential method of ME2 - totals 
of estimated trip matrices, entropy values and gap values - are
summarized in Table 6.19. The evolution of these indicators is depicted 
graphically in Figures 6.23a-c.

Table 6.19 Results of the test using real link flows by ME2

E n t r o py Gap
I t e r a t i o n T. . SO SI RMSE %RMSE

O b s e rv e d 3949 - 4 1 1 1 - 6 7 168 70
P r i o r 3250 0 3250 184 77

1 3900 - 3 9 9 5 - 7 9 9 152 63
2 3920 - 4 4 7 0 - 1 2 0 4 154 64
3 4132 - 5 4 6 2 - 2 2 9 0 151 63
4 4166 - 4 5 6 0 - 1 2 9 1 151 63
5 4295 - 5 5 5 5 - 2 2 1 5 164 68
6 4153 - 5 8 8 8 - 2 5 8 3 155 65
7 4063 - 5 0 7 5 - 1 7 7 4 154 64
8 3977 - 4 4 1 2 - 1 1 4 9 152 63
9 4371 - 5 1 7 3 - 2 0 4 1 161 67

10 4073 - 4 7 3 2 - 1 4 5 8 147 61
11 4052 - 4 2 5 1 - 9 1 6 153 64
12 4156 - 4 6 9 6 - 1 4 8 1 150 63
13 4042 - 5 1 0 6 - 1 8 5 7 147 61
14 4079 - 4 4 0 7 - 1 2 3 1 154 64
15 3888 - 4 5 3 7 - 1 2 8 2 154 64
16 4070 - 4 2 7 1 - 1 0 5 3 158 66
17 4018 - 4 6 7 0 - 1 4 8 1 149 62
18 4163 - 4 7 5 6 - 1 5 6 7 161 67
19 4050 - 4 8 1 2 - 1 5 6 5 150 63
20 4190 - 4 8 6 6 - 1 6 2 8 157 66
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Figure 6.23a shows that ME2 reduces gap rapidly during the first 
iteration and makes considerable fluctuations thereafter. A similar 
performance to reduction in gap was obtained for the totals of the 
estimated trip matrices, as is shown in Figure 6.23b. Figure 6.23c shows 
the trade-off relationship between entropy values and gap values of 
estimated trip matrices. It shows that it is difficult to identify any 
clear trade-off relationship after the first iteration.

The results of the test using the simultaneous method SIM-Si are 
presented in Table 6.20 and depicted graphically in Figures 6.24a-c. 
Figure 6.24a shows that as the magnitude of the penalty parameter 
increases, SIM-Si reduces the gap value gradually, approaching the RMSE 
value in gap of 109 (46%). Also, it shows that a relatively small amount 
of reduction in gap is made by comparison with the large decrease in 
entropy. As shown in Figures 6.24b, SIM-SI fails to converge to any 
particular value of total demand and this is due to the rapid increase 
in the penalty parameter value.

Table 6.20 Results of the test using real link flows by SIM-Si

P e n a l t y E n t r o py Gap
P a r a m e t e r T. . SO SI RMSE %RMSE

0 .0 0 0 3250 0 3250 184 77
0 . 0 0 1 4153 - 3 9 6 2739 162 68
0 . 0 0 2 4271 - 8 5 1 2253 150 63
0 . 0 0 4 4660 - 1 6 6 6 1315 138 58
0 . 0 0 8 4787 - 2 7 3 4 198 129 54
0 . 0 1 6 5239 - 3 9 7 4 - 1 2 3 6 119 50
0 . 0 3 2 5622 - 5 0 9 7 - 2 5 5 6 116 48
0 . 0 6 4 5703 - 5 6 5 9 - 3 1 6 3 113 47
0 . 1 2 8 6245 - 6 8 9 4 - 4 7 2 8 112 47
0 . 2 5 6 6802 - 7 9 6 4 - 6 1 8 6 108 45
0 . 5 1 2 6804 - 8 3 6 0 - 6 5 8 3 109 45
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Figures 6.24c shows that a clear trade-off curve between gap values and
entropy values exist. It is interesting to note that after the first six
subproblems the entropy value is further reduced without any substantial 
reduction in the gap.

A similar result to the one by SIM-Si was obtained by the
simultaneous method SIM-So. The results are presented in Table 6.21 and 
depicted graphically in Figures 6.25a-c. As shown in Figures 6.24b and 
6.25b, the main difference in the performance between SIM-Si and SIM-So 
lies in the totals of the estimated trip matrices, as observed in the
results from other tests.

Table 6.21 Results of the test using real link flows by SIM-So

P e n a l t y E n t r o p y Gap
P a r a m e t e r T. . SO SI RMSE %RMSE

0 . 0 0 0 3250 0 3250 184 77
0 . 0 0 1 4788 - 4 0 1 2532 156 65
0 . 0 0 2 5069 - 9 7 6 1840 147 61
0 . 0 0 4 5173 - 1 9 5 9 810 133 56
0 . 0 0 8 5549 - 3 1 2 3 - 5 4 3 124 52
0 . 0 1 6 5527 - 3 7 8 9 - 1 1 9 6 125 52
0 . 0 3 2 5525 - 4 9 2 7 - 2 3 3 4 117 50
0 . 0 6 4 5834 - 5 5 2 4 - 3 1 0 3 117 49
0 . 1 2 8 5872 - 6 4 9 1 - 4 0 9 3 114 48
0 . 2 5 6 6298 - 7 1 1 6 - 4 9 8 3 111 46
0 . 5 1 2 6491 - 7 6 7 0 - 5 6 6 9 110 46
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Similar results to the ones of the simultaneous methods were 
produced by the improved sequential methods ME3-Si and ME3-So. The 
results were presented in Tables 6.22 and 6.23 and depicted graphically 
in Figures 6.26a-c and 6.27a-c. Figures 6.26a and 6.27a show that as the 
magnitude of the penalty parameter increases, ME3-Si and ME3-So reduce 
the gap value. They show that ME3-So performs better in the reduction in 
gap than does ME3-Si. As shown in Figures 6.26b and 6.27b, an 
examination of the totals of the estimated trip matrices shows that 
neither ME3-Si or ME3-So converge to any particular value, as was 
observed in the results of the simultaneous solution methods. Figures 
6.26c and 6.27c show trade-off curves between the gap values and entropy 
values for the estimated trip matrices. They show that there exist some 
small fluctuations in the trade-off curves.

Table 6.22 Results of the test using real link flows by ME3-Si

P e n a l t y
P a r a m e t e r T. .

E n t r o p y  
SO SI

Gap 
RMSE %RMSE

0 . 0 0 0 3250 0 3250 184 77
0 . 0 0 1 3723 - 2 3 1 29 8 6 165 69
0 . 0 0 2 3690 - 7 9 2 2429 157 66
0 . 0 0 4 3696 - 1 6 3 3 1588 147 61
0 . 0 0 8 3999 - 2 7 2 3 447 140 58
0 . 0 1 6 4236 - 3 6 3 6 - 5 2 2 144 60
0 . 0 3 2 4405 - 5 3 4 2 - 2 2 7 6 133 55
0 . 0 6 4 4699 - 6 4 2 9 - 3 4 6 2 128 53
0 . 1 2 8 4878 - 7 1 2 3 - 4 2 2 6 135 56
0 . 2 5 6 4829 - 7 3 1 2 - 4 3 9 5 132 55
0 . 5 1 2 4829 - 7 2 0 6 - 4 2 8 9 133 56

Table 6.23 Results of the test using real link flows by ME3-So

P e n a l t y E n t r o p y Gap
P a r a m e t e r T. . SO SI RMSE %RMSE

0 . 0 0 0 3250 0 3250 184 77
0 . 0 0 1 3946 - 2 3 5 2945 163 68
0 . 0 0 2 3936 - 8 9 6 2287 158 66
0 . 0 0 4 3876 - 1 5 7 0 1623 149 62
0 . 0 0 8 4082 - 2 7 0 9 442 143 60
0 . 0 1 6 4353 - 3 6 8 2 - 6 0 1 134 56
0 . 0 3 2 4467 - 4 9 4 1 - 1 8 9 5 140 58
0 . 0 6 4 4475 - 5 4 8 2 - 2 4 3 8 139 58
0 . 1 2 8 4856 - 7 0 2 8 - 4 1 2 2 129 54
0 . 2 5 6 5159 - 7 9 5 9 - 5 1 8 4 119 50
0 . 5 1 2 5548 - 8 4 0 1 - 5 8 1 9 121 51
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For comparison purposes, the trade-off curves of three alternative 

estimation methods ME2, ME3-Si and SIM-Si are shown together in Figure 

6.28a and those of ME3-So and SIM-So are shown together in Figure 6.28b.

(a) By the m ethods using the entropy function  S1(T,t)

RMSE in gap
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(b) By the m ethods using the entropy function  So(T,t)
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Figure 6.28 Comparison of the trade-off curves from real link flows by 

various solution methods
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Figure 6.28a shows that SIM-Si performs better than do ME3-Si and ME2. 
The performance of ME3-Si is not bad, although ME3-Si performs worse 
than SIM-Si. ME2 performs worst compared with the other two methods that 
use Si(T,t) as an objective function. This result contrasts with the 
result using the error-free modelled link flows in which the 
simultaneous method and the improved sequential method perform very 
closely. This suggests that the simultaneous methods deal with 
inconsistent link flows better than do the improved sequential methods 
or the sequential ME2 method. A similar comment to the result using 
Si(T,t) can be made on the result using the full entropy function 
So(T,t). As shown in Figure 6.28b, SIM-So performs somewhat better than 
ME3-So.

6.4.3.3 Conclusions

The following conclusions can be drawn from these results.

(1) The simultaneous methods SIM-So and SIM-Si perform best amongst all 
the estimation methods. It is interesting to note that the simultaneous 
methods SIM-Si and SIM-So perform much better than the improved 
sequential methods ME3-Si and ME3-So, especially when matrix is 
estimated from inconsistent real traffic counts. The performance of the 
improved sequential methods ME3-Si and ME3-So is not bad, although they 
perform worse than the simultaneous ones. However, the sequential ME2 
method fails to reduce the gap after the first one or two iterations 
when inconsistent link flows are used.

(2) When inconsistent link flows are used to estimate a trip matrix, the 
trade-off curves between the gap values and the entropy ones produced by 
the simultaneous methods or the improved sequential ones could be even 
more useful in the matrix estimation exercise than when a trip matrix is 
estimated from error-free link flows, as these curves allow us to select
a trip matrix depending on the relative accuracy of the prior trip
matrix and traffic counts that are input. If we apply the same stopping
criterion - convergence in gap - as mentioned in Section 6.4.2.3 to the 
results of this test, for example an appropriate trip matrix estimated
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by the simultaneous method SIM-Si is obtained at the sixth subproblem as 
convergence in gap is achieved.

(3) Use of the full entropy objective function So(T,t) tends to give 
rise to estimates of trip matrices whose totals are bigger than those 
estimates by comparable methods which use the simplified one Si(T,t). 
However, the difference in other performance indicators is shown to be 
not substantial.
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CHAPTER 7. 
CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

This chapter is organized as follows. Section 7.1 draws the
conclusions from the main findings of this research. Section 7.2
suggests some areas for further research.

7.1 Conclusions

The estimation of trip matrices is an important part in the
analysis of traffic management and transport planning tasks. The trip
matrices are often used to help design and evaluate new transport plans.

Conventional methods for estimating trip matrices appear to be 
inaccurate, disruptive and expensive. It was recognized that the use of 
traffic counts for estimating trip matrices can avoid at least some of 
the difficulties identified in conventional methods. In particular, 
traffic counts are relatively convenient and inexpensive to collect, and
moreover they can be used to update old trip matrices.

According to a review of the literature, the most common idea of 
estimating trip matrices from traffic counts is to find a trip matrix 
which, when assigned to the network closely reproduces some observed 
traffic counts. Three fundamental issues associated with the estimation 
problem were identified. These were: underspecification of the trip
matrix, inconsistency between traffic counts, and congestion effects. 
Each of these requires a special treatment in the matrix estimation 
method. In particular, the use of an appropriate traffic assignment 
method is important in the matrix estimation process, especially when 
congestion in networks plays an important role in route choice.

The main objective of this study was to develop new methods for 
estimating trip matrices from traffic counts when congestion effects in 
networks are considered.
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This study proposed a new formulation and solution method which 
solves the two subproblems of equilibrium assignment and entropy 
maximization simultaneously. The new formulation uses equilibrium link 
flows in the constraints rather than route choice proportions. One of a 
range of objective functions can be adopted and two different measures 
of entropy have been used.

As a solution method, the new formulation was first transformed 
into a sequence of unconstrained optimization problems by using a 
penalty function method. A heuristic method was developed to approximate 
the equilibrium link flows by fitting linear functions to represent the 
variation in link flows with respect to changes in trip matrix elements. 
This was found to be useful because it helps to reduce the computational 
burden and also to overcome the non-convexity of the equilibrium 
constraints. However, it was recognized that the goodness of fitting the
approximate linear relationship over sets of equilibrium link flows 
depends on the convergence to the equilibrium link flows from the 
equilibrium assignment.

In spite of the use of an extrapolation method and a perturbation 
method, it was found that the simultaneous method is impractical for use 
in large networks because of its considerable computational
requirements. An improved sequential method which uses a penalty 
function approach was therefore proposed. This method approximates an 
optimum solution by approaching the feasible region progressively. Fixed 
route choice proportions are used within each matrix estimation
subproblem and are updated by the equilibrium assignment subproblem.

The proposed estimation methods have been tested and their 
performances have been compared with that of the sequential ME2 one.
Three tests using both artificial and real networks have been carried 
out and the main findings from each of these three tests have been 
reported in detail. Here, we draw some general conclusions from those 
findings.
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(1) The simultaneous method SIM works successfully and performs better, 
especially in congested networks, than either the sequential method ME2 
or the improved sequential method ME3 with respect to gap, entropy and 
goodness of fit. However, the computational complexity of the
simultaneous method appears to be its main drawback and its application 
to real estimation problems is not practical with current computer
technology. However, computing capability is improving rapidly. This 
advance in the computing technology will permit the simultaneous method 
to be more practical in the future.

(2) The improved sequential method ME3 performs closely to the
simultaneous one SIM in terms of gap, entropy and goodness of fit. It
performs better than the sequential method ME2. The improved sequential
method ME3 is practical with respect to the computational demand, even 
if they require more cpu times than does ME2. The use of the improved 
sequential method ME3 is therefore recommended.

(3) Use of the full entropy function So(T,t) appears to give rise to
estimated trip matrices which have totals that are relatively bigger 
than those estimated using the simplified one Si(T,t). Despite the 
theoretical preference for So(T,t), the difference in other performance 
indicators such as gap and goodness of fit in congested networks is not 
substantial.

(4) A clear trade-off curve can be identified between entropy and gap 
during the solution process of the simultaneous method SIM and the 
improved sequential method ME3. This could be a useful and practical 
tool for transport planners because it allows the selection of estimated
trip matrices to be controlled depending on the relative accuracy of the 
prior trip matrices and traffic counts that are used as input.

(5) The new formulation and solution method - the improved sequential
solution method ME3 - can be equally applied to the matrix estimation in 
uncongested networks without any modifications. The new method is more 
flexible to deal with inconsistent traffic counts and it does not 
require any prior corrections to inconsistent traffic counts. Moreover, 
the trade-off curves between entropy and gap values could be useful for
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the selection of a trip matrix.

(6) An interesting feature of the new formulation and solution methods 
is that they are modular and so they can accommodate without any 
modifications objective functions or penalty functions other than the 
ones used in this study. Some suggestions for other objective functions 
or penalty functions will be given in Section 7.2.

(7) Despite its theoretical weakness, the sequential method ME2 has been 
being used in the field because of its practical advantage in terms of 
computing time. The evidence discovered in this study indicates that in 
several cases the sequential method ME2 either fails to converge to an 
optimal solution or cannot improve the goodness of fit of the estimated 
trip matrices. Its performance is subject to considerable fluctuations. 
However, where it is used, examination of its performance indicators 
such as entropy and gap could be useful for both the decision of the 
number of iterations required and the selection of an estimated trip 
matrix.

7.2 Suggestions for further study

During this research, a number of areas for further research have 
been identified. The most important ones among these are outlined below.

(1) Further tests with real data sets: One of the main difficulties of 
using the Ripon data base was that a real peak-hour trip matrix observed 
independently from traffic counts is not available for the present 
study. Consequently, it was not possible for this study to perform an 
ideal test in which the trip matrices estimated from traffic counts are 
compared to the real observed trip matrix. Further tests using the real 
observed trip matrix and traffic counts are required to see how well the 
proposed methods perform in practice.

(2) Extension for other objective functions: Although the entropy 
functions are useful as objective functions, it is also possible to 
accommodate other objective functions such as a quadratic function used
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by McNeil and Hendrickson (1984a), Cascetta (1984) and LeBlanc and 
Farhangian (1982) and a likelihood function used by Spiess (1987).

(3) Extension for other penalty functions: The gap penalty function used 
in this study can be replaced with a likelihood function. A likelihood 
function can be derived by assuming that observed flows follow a Poisson 
distribution. This gives a log-likelihood function:

LCY?T) I Y) = I  (Va-vl) + Va log (Va/Va) (7.1)
a G I  6

The log-likelihood function L(V(T) | V ) is less than or equal to 0 and has 
value 0 iff Va=Va for all a and is continuous. Furthermore, it satisfies 
all the properties required of a penalty function. One main feature of 
maximizing this likelihood function is that it does not restrict the
search to strictly feasible solutions.

(4) Application for the network design problem: The problem of designing 
elements of a road network while traffic flows vary corresponding to any
design changes is known as the equilibrium network design problem. The
network design problem can be viewed as a bi-level decision making 
problem (Heydecker, 1986): at the upper level, planners seek to optimize 
the operational performance of the network, whilst at the lower level, 
individual derivers make choices with regard to route, mode, origin and 
destination which they perceive to be best for themselves. The network 
design problem can be expressed as a similar mathematical formulation to 
the matrix estimation problem in which two subproblems of equilibrium 
assignment and matrix estimation are solved simultaneously. A method of 
constraint approximation of equilibrium link flows developed in this
study can also be applied to transform the network design problem into a 
sequence of sub-problems with linear constraints (Heydecker and Khoo, 
1990).
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APPENDIX 1. LIST OF MAJOR NOTATION

A 1.1 Roman letters

Ai Balancing factor related to trips Oi generated from origin i
Bj Balancing factor related to trips Dj attracted to destination j
Ca(Va) Cost on link a when link flow is Va

Cij Travel cost between origin i and destination j
Cij Observed travel cost between origin i and destination j
Cij Travel cost in the equilibrium condition between origin i 

destination j
and

Cijr Route cost used by route r between origin i and destination j
Dj Total number of trips attracted to Zone j
f(Cij) Deterrence function used in the gravity model
G (T ,V ) Gap penalty function used in the simultaneous method
G i(T ,V ) Gap penalty function used in the improved sequential method

g r Feasible flows on path r

s= (g r ) Vector of g r
hr Equilibrium flows on path r
h={hr} Vector of hr

I Set of observed link flows
L Set of links in the network
M Number of links observed
N Number of zones in the network
Oi Total number of trips generated from Zone i

PTi Proportion of trips using link a between origin i 
destination j

and

P={Pfj} Vector of P?j

Pa Set of paths through the network between origin i 
destination j

and

So(T,t) / * “ Full entropy function
So(T) Full entropy function when tij=l for all i and j
Si(T,t) / " " Simplified entropy function
Si(T)
tij

Simplified entropy function when tij=l for all i and j 
Prior trips between i and j

t={tij} Prior trip matrix
t.. Total number of prior trip matrix
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>
1 

l> 
l>

Tij Estimated trips between origin i and destination j
T={Tij} Estimated trip matrix 
T.. Total number of estimated trip matrix
Tij Observed trips between origin i and destination j
Tijr Number of estimated trips for route r between origin i and

destination j 
Va Modelled flows on link a

Vector of Va 

Observed flows on link a 
Vector of Va 

Va Equilibrium flows on link a
Va Vector of Va

Vmin Minimum link flows on the maximum cost paths
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A1.2 Greek letters

OCaij Coefficient related to link a for the i-j pair

P"j Coefficient related to link a for the i-j pair

P Cost perception parameter to be calibrated in the gravity model
8ar Sar=l, if link a is used by route r, 8ar=0, otherwise.
Sijr 8?jr=l if link a is used by route r between i and j, and

5ijr=0, otherwise.
5Tij Perturbed trips between origin i and destination j
5 T Vector of 5Tij

AT Absolute value of 8T

<!> Scale parameter
X Optimal linear combination parameter in the Frank-Wolfe

equilibrium assignment method
Xa Lagrange multiplier related to the flow constraint of link a.

h Penalty function parameter

Hi Penalty function parameter of the ith sub-problem.

Pij Sampling factor for the i-j pair
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APPENDIX 2. NGUYEN’S EXAMPLE NETWORK DATA

c NA NB So Sc Cap WS da P I

c 1 5 5 5 9999 IS 100 1 . 0 1
c 1 12 5 5 9999 IS 100 1 . 0 2
c 2 5 5 5 9999 IS 100 1 . 0 3
c 2 9 5 5 9999 IS 100 1 . 0 4

5 6 60 30 500 IS 500 1 . 0 5
5 9 50 40 400 IS 500 1 . 0 6
6 7 70 35 300 IS 500 1 . 0 7
6 10 55 37 330 IS 500 1 . 0 8
7 8 70 40 400 IS 500 1 . 0 9
7 11 50 40 250 IS 500 1 . 0 10
9 10 70 55 500 IS 500 1 . 0 11
9 13 55 40 350 IS 1000 1 . 0 12

10 11 56 45 500 IS 500 1 . 0 13
12 6 70 50 350 IS 500 1 . 0 14
12 8 50 40 400 IS 1500 1 . 0 15

8C 3 5 5 9999 IS 100 1 . 0 16
11C 3 5 5 9999 IS 100 1 . 0 17
11C 4 5 5 9999 IS 100 1 . 0 18
13C 4 5 5 9999 IS 100 1 . 0 19

Note) Coded in the SATURN (SATNET) input format 
C: if the following node refers to a zone 
NA: the A node for the link 
NB: the B node for the link 
So: link speed (in kph) under free-flow conditions 
Sc: link speed (in kph) at capacity level 
Cap: link capacity (pcus/h)
W: one way/two-way indicator 
S: if speeds were defined 
da: link distance(in meters)
P: power to be used in the link flow-delay curve 
I: link index
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