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ABSTRACT
We present a method to probe rare molecular dynamics trajectories directly using reinforcement learning. We consider trajectories that are
conditioned to transition between regions of configuration space in finite time, such as those relevant in the study of reactive events, and
trajectories exhibiting rare fluctuations of time-integrated quantities in the long time limit, such as those relevant in the calculation of large
deviation functions. In both cases, reinforcement learning techniques are used to optimize an added force that minimizes the Kullback–Leibler
divergence between the conditioned trajectory ensemble and a driven one. Under the optimized added force, the system evolves the rare
fluctuation as a typical one, affording a variational estimate of its likelihood in the original trajectory ensemble. Low variance gradients
employing value functions are proposed to increase the convergence of the optimal force. The method we develop employing these gradients
leads to efficient and accurate estimates of both the optimal force and the likelihood of the rare event for a variety of model systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057323

I. INTRODUCTION

Rare but important events play a significant role in pheno-
mena occurring throughout the sciences, ranging from physics1 and
chemistry2 to climate science3 and economics.4 As a consequence,
methods developed to study rare events can transcend disciplines.
In molecular systems, rare events determine the rates by which
chemical reactions occur and phases interconvert,5 and they also
encode the response of systems driven to flow or unfold.6–10 Strate-
gies that afford a means of studying rare dynamical events in statis-
tically unbiased ways are particularly desired in order to deduce the
intrinsic pathways by which they occur and to evaluate their likeli-
hoods. Borrowing notions from reinforcement learning,11 we have
developed a method to generate rare dynamical trajectories directly
through the optimization of an auxiliary dynamics that generates an
ensemble of trajectories with the correct relative statistical weights.
Within this ensemble of trajectories, a variational estimate of the

likelihood of the rare event is obtainable from a simple expectation
value.

Much research has been devoted to the enhanced sampling of
molecular dynamics simulations, yet there remain active areas of
open research. Methods for sampling dynamical fluctuations, espe-
cially those away from equilibrium, are considerably less developed
than their equilibrium and configurational counterparts.12,13 Recent
work has sought to construct methods for finding an effective aux-
iliary dynamics,14–20 with the goal of sampling rare dynamical fluc-
tuations with the corresponding correct statistical weights directly,
by evolving simulations with additional parameterized forces. Such
methods are often designed to approximate the so-called Doob
transform,21–24 which is the unique force that evolves a trajectory
conditioned on a rare event.

A general approach to the optimization of a sampling dynamics
based on a variational principle for the Doob transform for diffu-
sive processes has recently been developed.25 Within this context
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of diffusive processes, optimal forces have been used to elucidate
mechanisms and rates of nonlinear response,26,27 to encode dynami-
cal phase diagrams,28–30 and to deduce inverse design principles.31,32

In this work, we aim to extend a reinforcement learning11 based
approach to the optimization of a sampling dynamics to diffusive
systems, building on the work of Refs. 25 and 33 and past literature
on reinforcement learning for continuous time processes.34–41

The techniques of reinforcement learning aim at learning the
best decisions to make in each state in order to achieve some goal.
Algorithms developed in this context have led to many significant
advancements in recent years across tasks requiring an intelligent
agent to interact with an environment, such as in gameplay42–44 and
robotics,45–47 with a variety of recent applications in physics.48–55

However, many of these situations are framed as discrete time prob-
lems, with relatively little work done in stochastic continuous time
control.34,35 For diffusive processes and importance sampling molec-
ular dynamics, we formulate a reinforcement learning procedure to
learn the correct force to influence the probability of choosing each
next state. From this perspective, we take a policy gradient based
approach,35,45,46,56,57 learning a generative model for the evolution
of the state. The optimized force found is such that rare events are
made typical while staying close to the original force, providing a
dynamics that can aid in efficiently sampling the targeted trajectory
ensemble.

A key advantage of the reinforcement learning techniques we
develop is the use of an additional learning process for a function
that guides the optimization of the dynamics, a so-called value func-
tion,58 which describes how relevant each state is to the rare events
of interest. This value function substantially reduces the variance
in estimates of the gradient of the parameters specifying a force,
allowing for the use of less data in each optimization step and sub-
sequently more complex approximations to the auxiliary dynamics.
We show how this approach can be successfully applied to both
finite time problems in which the dynamics is constrained to guar-
antee the occurrence of some rare transition like a barrier crossing
and to time-homogeneous problems where we are interested in the
statistics of time-integrated observables in the long time limit as
characterized by its large deviation function.

II. TRAJECTORY ENSEMBLE FORMALISM
We consider systems evolving with a diffusive dynamics over

time t of a configuration x. These configurations evolve according to
a force vector F(x, t) and noise vector of equal dimension W with
associated constant noise matrix G invertible within the stochas-
tically evolving subspace, represented by the following stochastic
differential equation (SDE):

dx = F(x, t)dt +G ⋅ dW, (1)

where the noise W follows a Wiener process, with increments dW
drawn from a Gaussian with zero mean and dt variance. Through-
out we will work in dimensionless variables that imply unit energy
scales and mobilities. The requirement of G being invertible within
the stochastic subspace may, in principle, be relaxed; however, in
that case, there may be multiple noise vectors corresponding to the
same change of state, making the evaluation of transition probabili-
ties necessary for our optimization approach difficult. We will follow

the Ito convention for ease of notation and implementation with
standard numerical integrators. Throughout, we do not assume in
Eq. (1) that the force is gradient or that the noise obeys a detailed bal-
ance, and thus, our approach is generally applicable to equilibrium
and nonequilibrium dynamics.

We aim to probe rare fluctuations in trajectory observables.
Here, we consider trajectories, X0,T , defined as the sequence of con-
figurations over an observation time T, although generalizations of
fluctuating observation times are possible.59 Generally, we will con-
sider observables that are functions of time-integrated variables over
the trajectory,

O[X0,T] = ∫

T

0
dt A[xt , t] + B[xt , t] ⋅ ẋ(t), (2)

where the first term is a state dependent observable, while the sec-
ond term depends on a stochastic increment, with both A[xt , t] and
B[xt , t] being state dependent. However, we will also consider cases
in which A[xt , t] is a function of a single time in order to impose end
point conditioning. Expectations of functions of such observables
are defined through path integrals of the form

⟨ f (O[Xt,t′])⟩p = ∫ DXt,t′dxt P[Xt,t′] f (O[Xt,t′]), (3)

where P[Xt,t′] is the total probability of a trajectory decompos-
able into P[Xt,t′] = p[Xt,t′ ∣xt]ρ(xt), where p[Xt,t′ ∣xt] is the transition
probability conditioned on starting in configuration xt with initial
probability ρ(xt).

Probabilities for trajectories between times t and t′ starting at
xt are defined by

p[Xt,t′ ∣xt] ∝ exp{−
1
2∫

t′

t
dt′′∣G−1

⋅ (ẋ − F)∣
2
} (4)

where we suppressed the arguments of xt and F[xt , t] for short-
hand. This is the standard Onsager–Machlop form for the diffusive
dynamics considered here.60 The measure over paths between times
t and t′ starting from position xt is defined such that

∫ DXt,t′p[Xt,t′ ∣xt] = 1, (5)

where the transition probability is normalized when integrated over
all trajectories. These path probabilities satisfy

p[Xt,t′′ ∣xt] = p[Xt′ ,t′′ ∣xt′]p[Xt,t′ ∣xt] (6)

and
DXt,t′′ = DXt′ ,t′′DXt,t′ (7)

due to the Markovian noise in Eq. (1).
Trajectories sampled with P[X0,T] will be dominated by the

most typical values of O[X0,T]. We will encode the rare trajectories
with atypical values of O[X0,T] by reweighting the original trajec-
tory ensemble defined by Eq. (4), multiplying each trajectory by
an observable dependent factor. Such reweightings occur naturally
in statistical studies of rare events and are isomorphic to extended
ensemble approaches in equilibrium configurational problems. The
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ensemble of events we are interested in is constructed by weight-
ing the probability of trajectories in the original dynamics by an
exponentially positive number,

Ps[X0,T] = e−sO[X0,T]−λ(s,T)P[X0,T], (8)

where Ps[X0,T] is denoted as a tilted path ensemble, biased by a sta-
tistical field s in such a way to promote rare fluctuations in O[X0,T].
The quantity λ(s, T) normalizes the tilted distribution, and it is
identifiable as a cumulant generating function (CGF),

λ(s, T) = ln Z(s, T) = ln ⟨e−sO[X0,T]⟩
p
, (9)

and it is equal to the logarithm of the tilted path partition func-
tion Z(s, T). The reweighted path ensemble generally defines a new
transition probability ps[Xt,t′ ∣xt] and initial condition. The evalua-
tion of λ(s, T) is a common objective in studies of diffusive systems
as it describes the statistics of O[X0,T]. Contributions to λ(s, T)
or Ps[X0,T] are dominated by trajectories with large or small val-
ues of O[X0,T] depending on the sign of s. The exponential bias,
exp(−sO[X0,T]), can also be constructed to function as a filter based
on fulfilling specific criteria. In such cases, Ps[X0,T] is identified as
the probability that a trajectory fulfills a specific conditioning and
its ensemble fulfills a corresponding conditioned path ensemble.
Common examples are Brownian bridges,61–63 where trajectories
are conditioned to end at xT = x′, in which O[X0,T] is 1 if xT = x′
and is 0 otherwise, and s is taken sufficiently negative that only
those trajectories for which the constraint is satisfied have significant
weight.

III. GRADIENT OPTIMIZATION FOR FINITE TIME
CONSTRAINED DYNAMICS

Our aim is to find a dynamics that generates trajectories
with probability as close to the reweighted trajectories ensemble
as possible. For the diffusive dynamics considered here, this is
exactly achievable, in principle, through the so-called generalized
Doob transformation.21,22,64–67 The generalized Doob transforma-
tion defines a modified dynamics with an added drift force that
is generally time-dependent but with an identical noise as in the
original SDE. However, constructing this transformation is often
not possible, in practice, as it requires diagonalizing a modified
Fokker–Planck operator, which in interacting systems is exponen-
tially complex.24 Here, we aim to parameterize a drift force with
tunable parameters θ to approximate the generalized Doob trans-
form. With the modified force, Fθ(x, t), we have a modified SDE

dx = Fθ(x, t)dt +G dW, (10)

with corresponding trajectory probabilities

pθ[Xt,t′ ∣xt] ∝ exp{−
1
2∫

t′

t
dt′′∣G−1

⋅ (ẋ − Fθ)∣
2
}, (11)

which still satisfy the Markovian properties of the original dynamics
and the same normalization constant. See Ref. 33 for a discussion
of problems in which the optimal dynamics is required to be non-
Markovian in the context of discrete time Markov processes.

We seek to learn a set of parameters θ to minimize the
Kullback–Leibler (KL) divergence between the modified dynamics
and the reweighted trajectory ensemble defined by Eq. (8). The KL
divergence is defined as

DKL(pθ∣ps) = ⟨ln(
pθ[X0,T ∣x0]ρ(x0)

ps[X0,T ∣x0]ρ(x0)
)⟩

pθ

, (12)

where the expectation is taken with respect to the parameterized
dynamics. This quantity is a measure of the similarity between
the modified and reweighted trajectory ensembles. Achieving a
zero value when pθ is given by the generalized Doob transform,
the KL divergence has a unique minimum when this Doob trans-
formed dynamics is contained within the space of parameterized
dynamics, providing a variational estimate of the CGF. We note
that this definition of the KL divergence differs from much of the
literature, considering optimization of a parameterized diffusive
dynamics,17,68–70 where the parameterized dynamics pθ and target
dynamics ps appear in an opposite way. In principle, the initial
distribution should also be parameterized as it will be modified by
the reweighting; however, depending on the space of distributions
chosen, these can be hard to sample. We drop this modification for
simplicity.

A. Low variance gradient estimation
In order to optimize the force, Fθ, we follow techniques intro-

duced in the reinforcement learning literature.11,45,71–74 Substituting
the parameterized and reweighted trajectory probabilities into the
KL divergence, we may rewrite it as an average over a parameter
dependent time-integrated observable

DKL(pθ∣ps) = −⟨R[X0,T]⟩pθ + λ(s, T), (13)

where in the language of reinforcement learning, we define a return,
R[X0,T], as

R[X0,T] = −sO[X0,T] − ln(
pθ[X0,T ∣x0]

p[X0,T ∣x0]
), (14)

with the negative of the average of the second term measuring the KL
divergence, DKL(pθ∣p), between the parameterized dynamics and the
original dynamics. This return is analogous to a regularized form of
reinforcement learning72,74 similar to that considered in maximum-
entropy reinforcement learning.45,46,73 When evaluated at the gener-
alized Doob transform, the KL divergence vanishes and the return
evaluates to the CGF. Away from the Doob transform, the positivity
of the KL divergence results in the return, variationally bounding the
CGF from below.23

We aim to minimize the KL divergence through stochastic gra-
dient descent in the parameter space. For this, we need the gradient
of DKL(pθ∣ps) with respect to θ,

∇θDKL(pθ∣ps) = −⟨R[X0,T]∇θ ln pθ[X0,T ∣x0]⟩pθ , (15)

where we note that

⟨∇θR[X0,T]⟩pθ = 0 (16)
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due to conservation of probability.33 The factor multiplying the
return is commonly referred to as the Malliavin weight in the
stochastic analysis literature75 and corresponds to a particular case
of the eligibility traces found in reinforcement learning,11,58,76–78

which we denote as yθ(T) = ∇θ ln pθ[X0,T ∣x0]. It can be rewritten
by substituting the path probability,

yθ(t
′′
) − yθ(t

′
) = ∫

t′′

t′
dt ẏθ(t), (17)

where

ẏθ(t) = [G−1
⋅ (ẋ(t) − Fθ(t))] ⋅ [G−1

⋅ ∇θFθ(t)] (18)

is the integrand of the Malliavin weight.
Were we to stop at Eq. (15), we would proceed to optimize a

generative model (the diffusive dynamics with our parameterized
force) of the trajectories using a score-function based approach,
similar to standard unsupervised learning. However, following the
methods of reinforcement learning, we can use a combination of the
Markovianity of the generative model and other variance reduction
techniques to produce a gradient estimator, which is much more effi-
cient to estimate. To begin with, we can simplify Eq. (15) by noting
that due to Markovianity, the Malliavin weight only correlates with
the return in the future, and we can rewrite the gradient as

∇θDKL(pθ∣ps) = −⟨∫

T

0
dtR[Xt− ,T]ẏθ(t)⟩

pθ

= χMCR(θ, T), (19)

where we used t− as a shorthand for t − ϵ for some small positive
ϵ. We refer to the optimization of the modified dynamics using
this formulation of the gradient as χMCR, as it is analogous to the
Monte Carlo Returns (MCR) or the REINFORCE79,80 policy gra-
dient algorithm in reinforcement learning. In the long observa-
tion time limit, employing this gradient in stochastic optimization
reduces to previous variational Monte Carlo procedures.25

This estimator of the gradient is non-optimal for two rea-
sons. First, it requires evaluation of a two-time correlation func-
tion. In the steady state, stationarity can be invoked to elimi-
nate one of those integrals; however, under finite time condi-
tioning, this simplification is not possible. Second, it has a high
variance and requires significant averaging to converge accurate
gradients. This is because both the Malliavin weight and the
return undergo a random walk with linearly increasing variance.75

Building on the analogies with the reinforcement learning for-
malism, we define a value function as a path average of the
return,

V(x, t) = ⟨R[Xt,T]⟩pθ ,x, (20)

conditioned on starting at the position and time, xt = x. Introduced
into the gradients of DKL(pθ∣ps) in distinct ways, the value func-
tions can be used to tame both problems of the naive MCR gradient
estimate.

First, we introduce a value function as a baseline that only
depends on the state at the time t in order to reduce the variance of
the gradient. We note that ẏθ(t) is linear in the noise and thus aver-
ages to zero when multiplied by a function of the state at or before t.
Defining a temporal difference error

δ[Xt− ,T , t] = R[Xt− ,T] − V(xt , t), (21)

we write the dynamical gradient as

∇θDKL(pθ∣ps) = −⟨∫

T

0
dtδ[Xt− ,T , t]ẏθ(t)⟩

pθ

= χMCVB(θ, T) (22)

where we have formally subtracted zero. We refer to this gradient
estimator as χMCVB for Monte Carlo Value Baseline (MCVB).11 The
subtraction of the state point dependent value function reduces the
variance of the gradient by accounting for the mean uncorrelated
part of each return between t− and T with ẏθ(t), focusing on how
this return differs from the average behavior encoded by the value
function.

Second, we introduce a value function that encodes an estimate
of the return in the future in order to further reduce the variance
and also the complications associated with estimating the two-time
correlation function. We can replace part of the return by a value
function that is conditioned at some τ such that t− < τ < T,

⟨R[Xt− ,T]ẏθ(t)⟩ = ⟨V(xt+τ , t + τ)ẏθ(t)⟩ + ⟨R[Xt− ,t+τ]ẏθ(t)⟩, (23)

where we set the value function to zero for V(x, t) with t > T. Com-
bining this value function form of the kernel of the gradient with the
value baseline, we define another temporal difference error

δ′[Xt− ,t+τ , t] = V(xt+τ , t + τ) + R[Xt− ,t+τ] − V(xt , t), (24)

and we arrive at a distinct formulation of the gradient

∇θDKL(pθ∣ps) = −⟨∫

T

0
dt δ′[Xt− ,t+τ , t]ẏθ(t)⟩

pθ

= χAC(θ, T), (25)

which we denote as χAC(θ, T) for the actor–critic (AC) gradi-
ent estimator, for the analogous algorithm in reinforcement learn-
ing.11,45 Here, the value function is seen as criticizing the transitions
generated by the dynamics, i.e., the actor. Variance reduction in
gradient estimates is, therefore, achieved by replacing potentially
noisy return samples with the average behavior expected in the
future of the xt+τ state. In Sec. IV, we will compare the accuracy
and statistical efficiency of these three gradient estimators: MCR,
MCVB, and AC. Before that, we discuss how the value functions
are simultaneously parameterized and learnt alongside the modified
force.

B. Parameterizing value functions
While the gradient expressions are exact and the use of value

functions is expected to facilitate their convergence, using them
requires the knowledge of the exact value function for the modi-
fied dynamics, a formidable task in complex problems. In order to
make their use tractable, we optimize a representation of the value
function in addition to the modified force. Specifically, we introduce
a parameterization of the value function denoted as Vψ . To opti-
mize this approximation, we note that the value functions satisfy a
self-consistency equation called the Bellman equation,81
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V(x, t) = ⟨V(xt+τ , t + τ) + R[Xt,t+τ]⟩pθ ,x, (26)

which has a unique solution for a given dynamics and return [as
defined by the tilting observable and the dynamics via Eq. (14)].
We aim to minimize the error in this equation, thus optimizing our
parameterized value toward this unique solution. Our approach is to
minimize the squared difference between the two sides of Eq. (26)
with the true value function replaced by the parameterized value
function and apply gradient descent to it. Such an approach is the
subject of gradient temporal difference methods82–84 but produces a
gradient estimate, which is difficult to evaluate, containing products
of expectations, which require independent samples. A part of the
resultant gradient is, however, simpler to compute. We derive it by
substituting only the right-hand side of Eq. (26) with our parame-
terized value function to provide a fixed target for the left and defin-
ing a corresponding error function based on the squared difference.
To construct a loss, we integrate these errors along each trajectory
and average them over the trajectory ensemble. This results in a
loss function L(ψ,ψi), which we take as a function of two weights,
ψ and ψi,

L(ψ,ψi) =
1
2
⟨∫

T

0
dt{⟨Vψi(xt+τ , t + τ) + R[Xt,t+τ]⟩pθ ,x

− Vψ(xt , t)}2
⟩

pθ
, (27)

where the weight ψi is the weights after update i, used to provide
the fixed target estimate toward which we want to move the func-
tional of ψ. The derivative is then taken with respect to ψ before
setting ψ = ψi to find the gradient of this loss for the current para-
meters. Such an approach is referred to as the semi-gradient in the
reinforcement learning literature,11 used to achieve the majority of
the state-of-the-art reinforcement learning results, and proves to be
stable, provided that the data used to estimate the gradient are sam-
pled using a dynamics, which is close to pθ as we intend to do. As
mentioned above, alternative methods that additionally consider the
variation of the target with ψ can be found in the reinforcement
learning literature, allowing for the use of data sampled from an
alternative dynamics, utilized via importance sampling.82–84

Writing an approximate temporal difference for the value func-
tion parameterization within MCVB,

δψ[Xt− ,T , t] = R[Xt− ,T] − Vψ(xt , t), (28)

or for AC,

δ′ψ[Xt− ,t+τ , t] = Vψ(xt+τ , t + τ) + R[Xt− ,t+τ] − Vψ(xt , t), (29)

we have gradients of the form

∇ψL(ψ,ψi)∣ψ=ψi
= −⟨∫

T

0
dt δψi[Xt− ,T , t]∇ψVψ(xt , t)∣ψ=ψi

⟩
pθ

(30)

for the loss function from the value function parameterization,
where for the AC algorithm, δψi is replaced with δ′ψi . Given this value
function approximation, we can approximate the gradient of the
KL divergence by replacing the exact temporal difference with these
approximate temporal differences. We then use the same trajectories
to estimate the force and value function gradients and simultane-
ously learn both. For the MCVB algorithm, an approximate value

ALGORITHM 1. Gradient optimization using finite time trajectories.

1: inputs dynamical approximation Fθ(x, t), value approximation
Vψ(x, t)

2: parameters learning rates αθ, αψ ; total optimization steps I; tra-
jectory length T consisting of J time steps of duration Δt each;
number of trajectories N

3: initialize choose initial weights θ and ψ, define iteration vari-
ables i and j, force and value function gradients δP, δV , temporal
difference δ (can be R[Xt− ,T] or δψ[Xt− ,T , t] or δ′ψ[Xt− ,t+τ , t] for
MCR/MCVB/AC)

4: i← 0
5: repeat
6: Using chosen method to generate trajectories X0,T with con-

figurations, times and temporal differences denoted by xj, tj and
δj, respectively.

7: j← 0
8: δP ← 0
9: δV ← 0
10: repeat
11: δP ← δP + δjẏθ(tj)Δt
12: δV ← δV + δj∇ψVψ(xj, tj)Δt
13: j← j + 1
14: until j = J
15: average δP, δV over N trajectories to get δP, δV

16: θ ← θ + αθδP

17: ψ ← ψ + αψδV
18: i← i + 1
19: until i = I

function does not bias the gradients as the future return that corre-
lates with the Malliavin weight stays intact and the expectation of the
Malliavin weight is identically 0. However, for the AC algorithm, an
approximate value function can introduce a bias into gradients as it
replaces the average of the future return, which it may not accurately
represent.

Employing gradients with or without value functions, we can
construct a stochastic descent algorithm to optimize the modified
forces, which can be used to estimate the likelihoods of rare events
and the trajectories by which they emerge. The algorithms require
the evaluation of the forces, value function, their parametric gradi-
ents, and noises over the course of simulating trajectories. Ensembles
of trajectories can then be used to construct an empirical estimate
of the gradient via computing the Malliavin weights, returns, and
the temporal difference. These empirical estimates then iterate the
two weights with respective learning rates αθ and αψ for the force
and value function, respectively. The resultant algorithm is outlined
in the pseudocode in Algorithm 1. Detailed versions of the indi-
vidual algorithms with computationally efficient on-the-fly imple-
mentations for simulating trajectories with discrete time steps are
presented in Appendix A.

IV. RARE FLUCTUATIONS IN FINITE TIME
We have used the algorithms discussed above to examine rare

fluctuations of trajectories of fixed duration, starting from a fixed
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point in configuration space. The specific observable we have inves-
tigated is an indicator function for reaching a desired region, Γ, in
configuration space, O[X0,T] = hΓ[xT], where

hΓ[xT] =

⎧⎪⎪
⎨
⎪⎪⎩

1, xT ∈ Γ,

0, otherwise,

at the final time T. Rare trajectories reaching a target basin in con-
figuration space are often of interest as transition paths for reactive
events, and significant development has been undertaken to effi-
ciently generate them.85–89 Computing optimal drift forces for gen-
erating these rare trajectories enables the study of reactive dynamics
in a direct manner. We expect these algorithms to find use in the
study of diffusive dynamics where Monte Carlo approaches have dif-
ficulty in sampling.90–93 Furthermore, as the modified force is used
with the original noise from the SDE, we have access to the full reac-
tive trajectory ensemble, allowing for the interrogation of the statis-
tics of the reactive events in a way that other direct path methods,
such as nudged elastic band and zero temperature string methods,
do not as they represent only the dominant path.94–97 As a conse-
quence, we expect that our method will find use when there is a large
path space entropy.

The CGF for an indicator variable is given by

λ(s, T) = ln ⟨e−shΓ[xT]⟩
p

(31)

as an average in the original reference dynamics. From Eq. (13), the
KL divergence being non-negative implies that the average return is
bounded above by the value of the CGF λ(s, T). The bound can be
saturated only by the unique optimal drift force. We compare the
value of the optimized return to the numerically exact estimates of
the CGF, given as

λ(s, T) = ln{1 + (e−s
− 1)∫

Γ
dx ρ(x, T)}, (32)

where the definition of the indicator function and the final time dis-
tribution ρ(x, T) evolved from a specific initial condition has been
used. This form demonstrates that the statistics of a single time
indicator observable is described solely by its mean,

⟨hΓ⟩p = ∫
Γ

dx ρ(x, T). (33)

For a rare fluctuation such that ⟨hΓ⟩p < 0.5, this form indicates that
there are two distinct regimes in the biased ensemble with s < 0.
For a small magnitude of the bias, the indicator function stays close
to the unbiased value. Below a critical value of s∗ = − ln[⟨hΓ⟩p/
(1 − ⟨hΓ⟩p)], the indicator crosses over to being close to 1. For all
our calculations, we choose a fixed value of s estimated to be smaller
than the threshold. With this value of s, we compute the right-
hand side of Eq. (32) using an eigen-expansion of the propagator
of the Fokker–Planck equation of the original dynamics and com-
pare with the value of the average return from the gradient descent
algorithms having the same value of s. The details of this calcula-
tion and comparison to an approximate Kramers escape rate are in
Appendix C.

A. Softened Brownian bridges
The first example we consider is a softened version of the so-

called Brownian bridge,61,98 in which a one-dimensional Brownian
motion starting from the origin is biased to end near a particular
point. The reference dynamics is simply given by free diffusion,

dx =
√

2dW, (34)

where comparing to Eq. (1), we have G =
√

2. We consider the tar-
get well, Γ(x), to be defined as {1 − ϵ ≤ x ≤ 1 + ϵ} with ϵ = 0.1. The
dynamics is simulated with a discrete time step of 0.001. We use
a tilting parameter s = −100 to bias the original ensemble toward
higher occurrence of the rare event.

We optimize a force and value function parameterized by lin-
ear combinations of Gaussian distributions with fixed variance and
mean. Given a set of means {(xm, tm)}

M
m=0 and variances {σm}

M
m=0,

the force and value function of a position x at time t are given by the
coefficients {θm}

M
m=0 and {ψm}

M
m=0 as

Fθ(x, t) = F(x) +
M

∑
m=0

θme−
(x−xm)2+(t−tm)2

2σm ,

Vψ(x, t) =
M

∑
m=0

ψme−
(x−xm)2+(t−tm)2

2σm ,

(35)

where the basis sets are initially a grid of 31 × 21 Gaussians in the
x–t space. The Gaussians in time are spaced uniformly between
t ∈ [0, T), with standard deviations equal to half the grid spacing.
A third of the Gaussians in space is placed between x ∈ [−4,−0.5],
a third in x ∈ (−0.5, 1.5), and a third in x ∈ [1.5, 5]. Each of these
three families of Gaussians has standard deviations half of the
corresponding grid spacings. We initialize all θm = ψm = 0.

We consider the performance of the three algorithms differing
in the gradient used to optimize them. These include an algorithm
that uses no value function (MCR), one that uses a value baseline
(MCVB), and one that uses a value function for future returns with
τ = 0.1 (AC). We evaluate the efficiency of the algorithms by com-
paring learning curves, convergence with respect to the basis, and
properties of the learned dynamics, shown in Fig. 1. All figures com-
paring different algorithms use the same noise history and the same
amount of statistics such that the differences are solely ascribed to
the learned dynamics. The MCR algorithm uses a learning rate of
αθ = 0.4. The MCVB algorithm uses learning rates of αθ = 0.4 and
αψ = 50, and the AC algorithm uses learning rates of αθ = 1 and
αψ = 0.05.

In Figs. 1(a)–1(c), we show learning curves for the total return,
the average of the indicator observable, and the KL divergence, gen-
erated with 12 trajectories at each optimization step for each of the
three algorithms. We have compared the results obtained with this
finite basis to the numerically exact value of the optimal return and
the corresponding observable average and KL divergence, obtained
from Eq. (32) where for free diffusion, the distribution is known.
We find that while all three algorithms quickly achieve a dynamics,
which mostly fulfills the indicator function conditioning, the MCR
algorithm struggles to optimize the KL divergence cost, while the
MCVB and AC algorithms achieve converged values efficiently. As
expected, each algorithm provides a variational estimate to the CGF
with the MCVB and AC outperforming MCR. Trajectories with
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FIG. 1. Softened Brownian bridges: (left column) smoothened learning curves showing running estimates of the CGF (a), the average value of the indicator observable
with the optimized dynamics (b), and the average cost function (c), as functions of optimization steps i, with the MCR (“A”, yellow), MCVB (“B”, green), and AC (“C”, blue)
algorithms. The horizontal gray dashed lines denote the numerically exact values. Middle column: 100 trajectories obtained with the final converged dynamics from the
three different algorithms but with the same noise history. Right column: [(g) and (h)] the smoothened convergence of a time slice of the force parameters, as a function of
optimization steps i, in the absence (MCR) and presence (MCVB) of a value function. (i) The convergence of the KL divergence cost with finer basis sets optimized with
the MCVB algorithm. The green (31x × 21t), black (31x × 41t), orange (31x × 81t), and brown (41x × 201t) curves show that in the increasing basis limit, the cost-function
estimate approaches the value expected from the numerically exact CGF.

the final learned dynamics for the three algorithms are plotted in
Figs. 1(d)–1(f). The MCR algorithm finds forces that constrain the
bridge trajectories too excessively, which results in the suboptimal
estimate of the KL divergence. The AC trajectories are closest to
the optimal bridge trajectories,61 while the MCVB trajectories lie in
between. The main reason for the difference in performance in the
three algorithms is the resultant suppression in the statistical errors
in the gradient estimate. This is illustrated in Figs. 1(g) and 1(h)
where the convergence of the gradients of the 31 Gaussian coeffi-
cients at a time slice of t = 0.7 is shown for both MCR and MCVB.
Since the αθ learning rate is the same in both algorithms, the large
suppression of fluctuations in the MCVB learning curves results
from a more statistically converged gradient estimate using a value
function. This suppression of gradient errors at limited statistics in
the MCVB and AC algorithms is directly illustrated in Appendix B.

We have studied the convergence of the KL divergence estimate
toward the optimal value extracted from the numerically exact CGF
using the MCVB algorithm with an increasing position and time
basis. We increased the number of time Gaussians, from 21 to 41 to
81, to observe the KL divergence cost shrinking as the finer-grained
force can better support the singular indicator function condition at
the end of the trajectory. We also ran the optimization with a much
bigger basis of 41x × 201t Gaussians and used 248 trajectories at
every optimization step and learning rates of αθ = 5 and αψ = 1000.
The Gaussians in x have standard deviations equal to half the grid
spacing, while the Gaussians in t have standard deviations equal
to a third of the grid spacing. While the estimate increased, in this

particular problem, obtaining the numerically exact KL divergence
would require the use of still finer-grained Gaussians in space and
time in order to represent the singularities of the edges of the target
region and of the last time step.

B. Barrier crossing with multiple reaction pathways
We now investigate the ability of the three algorithms to find

the optimal dynamics in two-dimensional barrier-crossing prob-
lems, the first involving a potential allowing for multiple reaction
pathways. The two-dimensional potential U(x) we consider99 has
two minima and two degenerate reaction pathways involving the
upper and lower halves of the x = (x, y) plane, as illustrated in Fig. 2.
Barrier crossing from one well to another is a rare event occurring
with one randomly chosen pathway.100 Without prior knowledge
of the possibility of multiple reaction paths, path sampling algo-
rithms typically need special techniques to discover them.101 We use
our reinforcement learning algorithms to compute an optimal force
Fθ(x, t) that reproduces unbiased and uncorrelated reaction paths.

The reference equation of motion we consider is

dx = −∇U(x) +
√

2dW, (36)

where the matrix G is proportional to the identity. We use a dis-
cretization time step of 0.001. The trajectories start from the mini-
mum of the left well, at (x, y) = (−1.11, 0), and are allowed to run
for a duration of T = 1.5 and checked for reaching the right target
well defined as x > 0, U(x, y) < 0. This small region centered around
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FIG. 2. Multiple reaction pathways: (left column) smoothened learning curves showing running estimates of the CGF (a), the average value of the indicator observable with
the optimized dynamics (b), and the average cost function (c), as functions of optimization steps i, with the MCR (yellow), MCVB (green), and AC (blue) algorithms. The
vertical gray lines denote the end of initialization and beginning of optimization run. The horizontal gray dashed lines denote the numerically exact values. The parameter
values from the end of the initialization with MCVB and AC have been called B0 and C0, respectively. The forces at the end of optimization with AC are called C. Middle
column: six representative trajectories obtained with forces B0 (d), C0 (e), and C (f). Right column: two-dimensional vectorial representation of the spatially dependent forces
as a function of time, at t = 1 (g), t = 1.3 (h), and t = 1.5 (i), obtained from the converged parameters at C.

(1.11, 0) is used as Γ for defining the indicator function observable.
The value of T has been chosen to be slightly greater than the typical
transition path timescale such that the optimized force should repro-
duce trajectories that follow the natural steady state fluctuations
of the system. As long as the choice of T is arbitrarily larger than
the typical transition path timescale, the optimally generated trajec-
tories will represent unbiased reactive transitions, with additional
times being spent in the initial or final metastable states.102 In the
absence of an approximate transition path time estimate, the opti-
mization can be performed over a range of T increasing by orders of
magnitude until one enters the regime where side–side correlation
functions for the dynamics of barrier crossing behave linearly.100 We
use a value of s = −500 to obtain the CGF. The force and the value
function are approximated again as a grid of Gaussians with opti-
mizable coefficients, a simple generalization of the one-dimensional
Brownian bridge.

The duration of the trajectories we consider, T, is much smaller
than the typical first passage time for the rare fluctuation we are
interested in studying. As such, a general complication arises in
initializing our algorithms in that in the absence of a modified
force, few trajectories satisfy the indicator function condition. Con-
sequently, the gradients for updating the modified forces are gen-
erally very small and noisy. In order to initialize our learning pro-
cess, we start with a softened version of the indicator function of
the form

h̃[xT] = −[(xT − x f )
2
+ (yT − y f )

2
], (37)

which is quadratic and non-vanishing across the full domain. After
optimizing the return with this observable, we obtain a force that
can surpass the barrier, and the optimization with the sharp indi-
cator function observable can begin. This technique of breaking
down the optimization of the return into two segments prioritiz-
ing each of the two terms of the return is analogous to curriculum
learning in reinforcement learning.103 In many-body systems, the
quadratic metric can be defined only in the space of the order param-
eter that distinguishes the initial and product states. For our multi-
channel problem, we initialize learning with (x f , y f ) = (1.11, 0) in
the softened indicator, which is the minimum of the target well. Our
approach consists of comparing the performance of the three algo-
rithms MCR, MCVB, and AC in the initialization with the quadratic
observable and then using the AC algorithm to optimize the return
with the indicator function observable.

Figures 2(a)–2(c) demonstrate the learning curves for the full
return, the average of the indicator function, and the KL divergence
cost. Each of the three initializations uses 60 trajectories at every
optimization step. The basis functions for the force and value func-
tion used are a grid of 21 × 21 × 41 Gaussians in the x − t space
for each component independently. The Gaussians are placed uni-
formly on the time axis t ∈ [0, T), while the position Gaussians
are distributed uniformly between x ∈ [−1.5, 1.5] and y ∈ [−1.5, 1.5].
The learning rates used in the initialization are αθ = 1 for MCR;
αθ = 1 and αψ = 0.5 for MCVB; and αθ = 1,αψ = 0.5, and τ = 0.001
for AC, and the learning rate for the final optimization is αθ = 0.2,
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αψ = 0.08, and τ = 0.1 in the AC algorithm. In the learning curves, we
compare the convergence of the return with the numerically exact
values obtained by computing the RHS of Eq. (32) with a spectral
expansion using a discrete variable representation basis.104 We see
that all three algorithms quickly find forces that satisfy the condi-
tioning, but the KL divergence cost is optimized best by the AC
algorithm. While each affords a similar variational estimate after
the initial optimization, we find qualitative differences in the fam-
ily of barrier-crossing trajectories obtained from the MCR/MCVB
and from the AC algorithm.

Typical trajectories obtained with forces from the end of ini-
tialization with MCVB and AC, and at the end of optimization with
AC, are shown in Figs. 2(d)–2(f). The force obtained from MCVB
spontaneously breaks the symmetry in the potential and chooses
one reaction path out of the two. This force solution is a local opti-
mum in the MCR and MCVB algorithms, and it does not natu-
rally relax to a symmetric force that would be representative of the
degeneracy of the reaction paths. Trajectories from the AC algo-
rithm spend significant amount of time exploring the initial well
such that the discovered forces recognize the presence of multiple
pathways approximately. These forces are further refined during the
second optimization such that the reactive trajectories obtained at
the end are restored to be almost fully symmetric like the natural
barrier-crossing fluctuations of the system are expected to be. These
symmetric two-dimensional forces obtained at the end of the AC
optimization are plotted at three slices of time in Figs. 2(g)–2(i). The
forces grow in magnitude as a function of time and generally fol-
low the contours of the underlying potential, and toward the end,
they gather support in unlikely parts of the potential. The ability
of the AC algorithm to discover time-dependent forces that lead
to exploration of multiple reaction pathways can prove valuable in
uncovering reactive trajectories in systems where such degeneracies
are not known a priori.

C. Barrier crossing with a long-lived intermediate
Another difficult problem in the generation of transition paths

and reactive trajectories typically comes from the presence of long-
lived intermediates. In order to study the usefulness of our learning
algorithms in this context, we consider as an example the dynamics
on the so-called Müller–Brown potential.105 This two-dimensional
potential surface has been used extensively as a testing case for meth-
ods relying on the instantonic approximation for barrier-crossing
trajectories.102,106 The potential is a sum of four Gaussians,107 where
three local minima are separated by two barriers, as illustrated
in Fig. 3. We employed our algorithms to find forces that gener-
ate uncorrelated trajectories that cross both barriers, starting from
a local minimum and ending in the global minimum, that are
positioned on the either side of the third metastable minimum.

The system evolves with diffusive Langevin dynamics of the
same form as Eq. (36) using a time step of 0.000 1. We are interested
in trajectories starting from x = (0.63, 0.03) in the rightmost local
minimum and ending near the global minimum, centered around
x = (−0.5, 1.5), with the indicator function region Γ being defined
by U(x) < 145). The trajectories are chosen to be of a fixed duration
of T = 0.15, which is on the order of the expected total transition
path timescale from Kramers theory added to the expected relax-
ation time in the intermediate well.102,108 For initializing the forces,

we use a softened quadratic modification of the indicator, in Eq. (37),
with s = −10 000, while we use a bias value of s = −2000 with the
indicator observable to compute the CGF. To represent the x and y
components independent of the time-dependent optimal force and
to represent the value function, we use a basis of Gaussians with
optimizable coefficients placed on a 21 × 21 × 21 grid in x − t. The
time Gaussians are placed uniformly between t ∈ [0, T), while the
space Gaussians are placed uniformly between x ∈ [−1.5, 1.5] and
y ∈ [−0.5, 2].

In Figs. 3(a)–3(c), we have compared the learning curves with
MCR, MCVB, and AC algorithms during initialization with the
smooth indicator function in Eq. (37) and the AC algorithm for
the final optimization of the full return with the sharp indicator
function. Each algorithm uses 60 trajectories at every optimization
step to estimate the gradient. The learning rates for the initializa-
tion are αθ = 1 for MCR; αθ = 1 and αψ = 1 for MCVB; and αθ = 0.5,
αψ = 0.2, and τ = 0.0001 for AC, and the learning rates for the final
optimization are αθ = 0.1,αψ = 0.01, and τ = 0.01 for AC. The learn-
ing curves have been compared with the approximately calculated
values of the CGF and the KL div obtained with a Kramers escape
rate estimate along the minimum energy path.94

We find that all the three algorithms optimize the quadratic
observable relatively quickly, but the AC algorithm performs the best
at optimizing the KL divergence cost. In Figs. 3(d)–3(h), we illustrate
a few uncorrelated trajectories generated with the modified forces
at various stages of the initialization and optimization with the AC
method and the end of the initialization with the MCVB method.
We find that the forces with the AC algorithm are such that the tra-
jectories discover and cross the two barriers and the metastable well
between them one after another. At the end of the AC initialization,
the trajectories have discovered the metastable well and have crossed
both barriers to end in the target well. The AC algorithm by this stage
of optimization has also moved the major part of the short trajectory
from staying in the initial well to the metastable well. This feature is
constant throughout the AC optimization, with only minor changes
in the force being carried out inside the target end well. The force
from the MCVB initialization, on the other hand, only generates
trajectories that connect the initial and target well without relax-
ing significantly in the metastable well. This would be contrary to
the instantonic relaxation mechanism in the system, as the stochas-
tic action is minimized by the local relaxation in the metastable well.
In Fig. 3(i), we have plotted the potential energy as a function of time
for 100 uncorrelated barrier-crossing trajectories, which are driven
by the final force from the AC algorithm. The trajectories cross the
two barriers at roughly fixed times and spend majority of the time in
the metastable well.

The comparison of the three algorithms illustrates the signifi-
cant improvement of convergence performance of the MCVB and
AC algorithm over the naive MCR approach afforded by value func-
tions. For rare reactive events, we have found that the AC algorithm
is best suited to find trajectories that explore configuration space the
most in search for the easier barriers to cross and thus is closest in
resembling the natural fluctuations of the system. The errors in the
converged values of the CGF depend on the truncation of the force
basis and statistical uncertainties. The MCVB and AC algorithms
preserve the computational scaling of the MCR with the trajectory
duration and only change the prefactors of the scaling by a small
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FIG. 3. Müller–Brown potential: (left column) smoothened learning curves showing running estimates of the CGF (a), the average value of the indicator observable with the
optimized dynamics (b), and the average cost function (c), as functions of optimization steps i, with the MCR (yellow), MCVB (green), and AC (blue) algorithms. The vertical
gray lines denote the end of initialization and beginning of optimization run. The horizontal gray dashed lines denote the approximate values from a Kramers escape rate
approximation. On the AC learning curve in (a), the parameter values at i = 70 and i = 80 (the vertical dashed lines) have been called C0 and C1, respectively. The values
at the end of initialization with MCVB and AC are called B0 and C2, and those at the end of AC optimization are called C. Middle column: four representative trajectories
obtained with forces C0 (d), C1 (e), and C2 (f). Right column: four representative trajectories obtained with forces C (g) and B0 (h). (i) Potential energy as a function of time
for 100 representative trajectories driven with the force parameters C.

fraction, making them viable methods for applications to complex
systems. The AC algorithm with a small τ will incur a systematic
error in the gradients if the value approximation is not accurate,
which goes away at an intermediate τ but at the expense of a larger
memory cost that may slow down the algorithm without any change
in the scaling. Nevertheless, it is possible to use these algorithms
with useful combinations of hyperparameters to achieve efficient
convergence with a small amount of averaging. The value functions
obtained during the optimizations serve as dynamical equivalents
of the committor function in that they encode the expected value
of the probability to reach the target well and the associated KL
divergence cost while starting from any point in configuration space
at any point in time. Understanding these connections to reaction
coordinate design is likely a fruitful future direction of research.

V. GRADIENT OPTIMIZATION FOR INFINITE
TIME DYNAMICS

We now generalize the approach of Sec. IV to focus on the
statistics of time-integrated quantities in the long time limit. While
for finite time, the generalized Doob transform is time-dependent,
under mild assumptions in the long time limit, the optimal dynamics
is time-homogeneous.21 As a consequence, the parameterization of
the modified force and value function is simplified and only explic-
itly dependent on the instantaneous configuration of the system. The
generalization of the algorithms to this case consists of two main
changes. First, we employ online learning since there is no end to

each trajectory. Second, a modified definition of return and value is
required to avoid divergences in the infinite time limit.

We formulate the infinite time problem by adapting an
approach in reinforcement learning based on time-averaged
returns.57,109–111 Specifically, we consider the long time average of
the KL divergence of the trajectory ensemble. Under assumptions of
time-independence and ergodicity,

dKL(pθ∣ps) = lim
T→∞

1
T

DKL(pθ∣ps)

= −⟨r(x, ẋ)⟩pθ + λ(s), (38)

the time average KL divergence reduces to an average over the steady
state distribution of the instantaneous change in the return r(x, ẋ).
Above, we have defined a scaled CGF (SCGF),

λ(s) = lim
T→∞

1
T

ln Z(s, T), (39)

which is finite as long as the cumulants of the time-integrated
observable are time extensive. The reward, r(x, ẋ), is defined as

r(ẋ, x) = − sA[x] − sB[x] ⋅ ẋ

+
1
2
{∣G−1

⋅ (ẋ − Fθ)∣
2
− ∣G−1

⋅ (ẋ − F)∣2} (40)

and is time-independent and evaluable within the steady state. A
gradient expression analogous to MCR can be derived straightfor-
wardly.25
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The previous definition of the value will diverge in the infinite
time limit. A simple modification to address this issue is to remove
the average reward scaled by the length of the trajectory segment,
defining a differential return

ΔR[Xt,t′] = R[Xt,t′] − (t′ − t)⟨r(ẋ, x)⟩pθ (41)

and corresponding differential value function

V(x) = lim
T→∞
⟨ΔR[X0,T]⟩pθ ,x, (42)

which satisfies a modified Bellman equation

V(x) = ⟨V(xτ) + ΔR[X0,τ]⟩pθ ,x, (43)

containing the differential return between states, rather than the
standard return, and relating the value of states separated by a period
of time τ.

This modified Bellman equation can be simply rearranged to
give an alternative equation for our time-averaged KL divergence

dKL(pθ∣ps) = −
1
τ
⟨V(xτ) + R[X0,τ] − V(x)⟩pθ ,x + λ(s), (44)

which we note holds for all x. Differentiating the right-hand side of
this equation with respect to θ does not involve the gradient of the
stationary state. Therefore, taking the derivative and then averaging
over the stationary state under Fθ,112 we can write an estimate of the
dynamical gradient as

∇θdKL(pθ∣ps) = −
1
τ
⟨δ[X0,τ′]yθ(τ)⟩pθ , (45)

where we have defined the differential temporal difference error

δ[X0,τ′] = V(xτ′) + ΔR[X0,τ′] − V(x0), (46)

reached after introducing an additional baseline in the form of
τ′⟨r(ẋ, x)⟩pθ . In this equation, we have arrived at a gradient estimate,
which only depends on the gradient of the transition probabilities,
contained in the Malliavin weights yθ(τ), and not on the gradient of
the stationary state itself. This can thus be easily calculated during a
simulation using the parameterized dynamics.

Note the period of time τ′ over which the temporal difference
is calculated is independent of the period of time τ over which the
Malliavin weight is calculated, provided that the former is longer.
The specific algorithm we consider involves taking the time τ small
enough so that the Malliavin weight can be approximated by τẏθ[x0],
which is possible due to the time-homogeneous steady state we
average within. We thus calculate the estimate as

∇θdKL(pθ∣ps) = −⟨δ[X0,τ′]ẏθ(0)⟩pθ
= χAC(θ), (47)

which we denote as the actor–critic gradient in the long time limit.
In practice, we will take τ′ = Δt, a single time step in a numeri-
cal simulation. A long time limit generalization of the MCVB gra-
dient could be constructed similarly, but this is not considered
here.

ALGORITHM 2. KL regularized differential actor–critic.

1: inputs force approximation Fθ(x), value approximation Vψ(x)
2: parameters learning rates αθi , αψi , αR

i ; total updates N
3: initialize choose initial weights θ and ψ, initial average r̄, define

iteration variable i, individual error δ
4: i← 0
5: repeat
6: Generate a transition from x to x′ according to the dynamics

given by Fθ(x) and noise vector w ∼ N(0, 1)
7: ẏθ = wTG−1

∇θFθ√
Δt

8: δ ← Vψ(x′) + r(x, x′) − r̄ − Vψ(x)
9: θ ← θ + αθi δẏθ
10: ψ ← ψ + αψi δ∇ψVψ(x)
11: r̄ ← r̄ + αR

i δ
12: i← i + 1
13: until i = N

As in the finite time case, to construct this estimate, we also
need an approximation to the value function, Vψ(x). Following a
similar construction for the loss function as before, averaging the
error over the stationary state, we estimate the gradient by which to
update the value function parameters as

∇ψL(ψ) = −⟨δψ[X0,τ′]∇ψVψ(x0)⟩pθ
, (48)

with the approximate temporal difference

δψ[X0,τ′] = Vψ(xτ′) + ΔR[X0,τ′] − Vψ(x0), (49)

which also replaces the exact temporal difference in gradient esti-
mates for the dynamics. Finally, we also have flexibility with our
estimate of the scaled CGF. This can be done using a running average
of the reward,

⟨r⟩pθi
= ⟨r⟩pθi−1

+ αr(⟨r⟩pθi
− ⟨r⟩pθi−1

), (50)

where αr is the learning rate and the subscript pθi denotes the
parameters from the ith iteration. Alternatively, a lower variance,
higher bias estimate may be constructed by noting that we can
rearrange Eq. (43) to find

⟨r⟩pθi
= ⟨r⟩pθi−1

+ αr⟨δψ[X0,τ′]⟩pθi
, (51)

an alternative equation for the average. After discretization, an
algorithm based on utilizing single-transition estimates of these
gradients is outlined in the pseudocode in Algorithm 2.

VI. RARE FLUCTUATIONS IN THE LONG TIME LIMIT
Here, we apply our approach to study the statistics of time-

integrated currents in the long time limit. Persistent currents are the
hallmark of a nonequilibrium system, and their fluctuations have
been studied intensively.26,113–115 Foundational results have been
derived that constrain the symmetries of current fluctuations and
relate their cumulants. For example, the fluctuation theorems dictate
that the CGF satisfies a reflection symmetry about the driving force
for the current due to the microscopic reversibility of the underlying
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stochastic dynamics.116,117 A number of numerical approaches have
been developed to evaluate the scaled cumulant generating function,
an example of a large deviation function.1,85,118–122 These functions
provide information of the long time behavior of stochastic systems
and encode response relationships and stability. Within this context,
our approach is similar to other controlled dynamics14–19,25,123 based
means of evaluating large deviation functions in the continuum and
can be used directly as we show below or in concert with Monte
Carlo algorithms.

To study the accuracy and efficiency of the algorithm, we con-
sider statistics of the velocity of a particle on a ring of length L = 2π
with position x moving in a periodic potential. The periodic poten-
tial has the form U(x) = U0cos(x) with magnitude U0 and is driven
by a constant force f such that

F(x) = −
dU(x)

dx
+ f (52)

is the total force for the particle on the ring. The observable we
consider is the integrated current, O[X0,T] = J[X0,T], given by

J[X0,T] = ∫

T

0
dt ẋ(t). (53)

This observable has a different interpretation depending on whether
the dynamics are under- or overdamped, both of which we consider
below. In the underdamped case, the current is simply a function of
the state with A(x) = v and B = 0, while in the overdamped case, it
depends on the stochastic increment, A(x) = 0, B(x) = 1.

The corresponding scaled CGF we aim to compute is

λ(s) = lim
T→∞

1
T

ln ⟨e−sJ[X0,T]⟩
p
. (54)

The first derivative of λ(s),

v(s) = −
dλ(s)

ds
, (55)

reports on the average velocity in the tilted ensemble and is a useful
indicator of the tails of the reference distribution. The scaled CGF
exhibits a Lebowitz–Spohn symmetry116 such that

λ(s) = λ(− f − s), (56)

where f is the affinity for the current. The scaled CGF can be
computed by the numerical solution of a generalized eigenvalue
problem,25 which we use for this low dimensional system to compare
the accuracy of our results.

Despite its simplicity, this system has been shown to present
non-trivial non-equilibrium phenomena due to the competition
between ballistic motion and diffusive motion.122,124,125 Here, the
overdamped regime acts as a simple benchmark, which can be easily
solved by diagonalizating a projection of the Fokker–Planck
equation.125 The underdamped regime is a much more difficult
problem to solve due to a higher dimensional state space and long
relaxation time. Indeed, despite the access to the SCGF via diago-
nalization,125 accurate results for the force in the underdamped case
have been elusive. However, the actor–critic approach can solve this
problem easily.

A. Current fluctuations of an overdamped particle
In the overdamped case, the evolution equation for the particle

on a ring is given by

dx = F(x)dt +
√

2dW, (57)

which is a dimensionless one-dimensional SDE. We integrate this
equation with a time step of 0.001. Since the position is periodic, an
ideal representation of both the force and value function is given by
a Fourier series

Fθ(x) = F(x) + aθ +
M

∑
i=1

bθi sin(ix) + cθi cos(ix) (58)

FIG. 4. Overdamped current fluctuations: (a) learning curves showing running estimates of the SCGF, (b) time-averaged KL divergence to the original dynamics dKL(pθ(s,i)∣p)
during training for bias s at step i, and (c) the time-averaged velocity. The color of each curve indicates the value of the bias s, corresponding to the colors of the data points
in the lower plots. Estimates of the (d) SCGF, (e) time-averaged KL divergence with the original dynamics, and (f) time-averaged velocity for the final dynamics found at
each value of the bias s indicated on the x axis. The inset of (d) shows the absolute error with numerical diagonalization results, represented by the gray circles in (d).
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and

Vψ(x) = aψ +
M

∑
i=1

bψi sin(ix) + cψi cos(ix), (59)

with coefficients aθ, aψ , {bθi , cθi }
M
i=1, and {bψi , cψi }

M
i=1 truncated to

dimension M.
The results of the differential AC algorithm are shown in Fig. 4.

We have truncated the basis with M = 5 and used learning rates
of αθ = 0.1 and αψ = 0.01. We annealed across the range s consid-
ered, first learning the dynamics at s = −0.5, before sweeping across
to s = 1.5 in steps of Δs = 0.1. The reward learning rate began at
αR = 10−5 and decreased linearly to αR = 10−6 throughout training
at each value of s to enable rapid convergence to an accurate result.

We detail estimates of three quantities calculated during the
learning process. In Fig. 4(a), we show the estimate of λ(s), the quan-
tity the algorithm is attempting to maximize. In Fig. 4(b), we show
an estimate of the time-averaged KL divergence. In Fig. 4(c), we
show an estimate of the time-averaged velocity. These estimates are
running averages calculated using the samples taken from each tran-
sition, with learning rates of 0.1αR. Learning curves are plotted for
training at each individual bias s during the annealing process. For
small changes of s, we see that convergence to an accurate estimate of
the scale CGF is achieved in ∼106 training steps, each utilizing data
from a single transition. This results in a speed of up to two orders
of magnitude over the MCR algorithm.25

In Figs. 4(d)–4(f), we plot the end points of each of these
learning curves for the three observables plotted in Figs. 4(a)–4(c).
In Fig. 4(d), we see the expected Lebowitz–Spohn symmetry with
reflection about s = 1/2 for the scaled CGF. The inset of Fig. 4
shows the absolute error compared to the diagonalization of the
Fokker–Planck equation, ϵ(s), which illustrates quantitative accu-
racy across the s values considered. The maximal error is on the
order of 1%. Likewise, we see the expected anti-symmetry in the
time-averaged KL divergence and velocity in Figs. 4(e) and 4(f). Both
of these are also quantitatively accurate. This antisymmetry implies

that the optimal force differs from the reference force more for s > 1
than s < 0. This demonstrates that the regular production of trajec-
tories with significant negative time-integrated velocities requires
a substantial change in the systems dynamics, in contrast to those
with a significant positive velocity. Nevertheless, the learning algo-
rithm employed here is capable of parameterizing the modified force
sufficiently well to work across these regimes.

B. Current fluctuations of an underdamped particle
In the underdamped case, the position and velocity evolve

according to two coupled SDEs, given by

dx = vdt,

dv = F(x)dt − vdt +
√

2dW,
(60)

where the noise acts only on the velocity, v, and the friction, inverse
temperature, and mass are taken as unity. As mentioned before, we
discretize our equations with a time step of 0.001. For the under-
damped case, the modified force and value function depend on both
the position and velocity of the particle. The approximation needs to
only provide a single output for a force applied to the velocity, as the
optimal dynamics cannot change the evolution of the position since
the position is not directly influenced by noise. To do accomplish
this, a simple approach we have taken is to discretize the force and
value function approximation along the velocity dimension. More
precisely, we can adapt the Fourier series from the overdamped
case,

Fθ(x, v) = aθ(v) +
M1

∑
i=1

bθi (v) sin(ix) + cθi (v) cos(ix), (61)

with velocity dependent coefficients given by

aθ(v) = a0I0(v) + aM2+1IM2+1(v) +
M2

∑
j=1

ajIj,j+1(v), (62)

FIG. 5. Underdamped current fluctuations: (a) learning curves showing running estimates of the SCGF, (b) time-averaged KL divergence to the original dynamics
dKL(pθ(s,i)∣p) during training for bias s at step i, and (c) the time-averaged velocity, calculated as the dynamics is trained. The color of each curve indicates the value
of the bias s, corresponding to the colors of the data points in the lower plots. Estimates of (d) the SCGF, (e) time-averaged KL divergence with the original dynamics, and
(f) time-averaged velocity of the final dynamics for each value of the bias s indicated on the x axis. The inset of (d) shows the absolute error with numerical diagonalization
results, represented by the gray circles in (d). The results with estimated corrections using the algorithm in Ref. 25 are shown as triangles in (d) and its inset. The dashed
curves in (d)–(f) show the results for the overdamped case for comparison.
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where

Ij,j+1(v) =

⎧⎪⎪
⎨
⎪⎪⎩

1, v0 + jΔv < v < v0 + ( j + 1)Δv,

0, else,
(63)

and the boundary cases I0(v) and IM2+1(v) return 1 for v less than
v0 or greater than v0 + (M2 + 1)Δv, respectively. We employ anal-
ogous equations for bθi (v) and cθi (v). To achieve accurate results,
we find a spacing of Δv = 0.02 that is sufficient, with v0 = −8 and
M2 = 700, providing a broad enough range to encompass all rele-
vant velocities at the biases considered. We use a Fourier basis with
M1 = 5. As mentioned before, we use the same functional for the
value function as for this modified force.

Figure 5 shows estimates of same three quantities as the over-
damped case throughout the same annealed learning process. Here,
we increased the value learning rate to αψ = 0.1, retain a dynamics
learning rate of αθ = 0.1, and keep the scaled CGF learning rate fixed
to αR = 10−6 throughout training. The curves in Figs. 5(b) and 5(c)
are produced from data calculated using the same learning rate as
the scaled CGF before using a windowed average over 100 steps to
smooth the curve. We generally see fast convergence to an accurate
result in ∼108 transitions worth of updates. The large learning time
compared to the overdamped results reflects the significantly finer
basis employed for the underdamped model.

The ends of these curves are plotted below in Figs. 5(d)–5(f). In
the inset of Fig. 5(d), we see that we find accurate results compared
to the numerically exact answers across the range of s considered.
We see analogous results to the overdamped case, reproduced by
the dashed lines in Figs. 5(e) and 5(f); the underdamped system
obeys the expected Lebowitz–Spohn symmetry. Compared to the
overdamped system, the features of the KL divergence and average
velocity in underdamped system are sharper.

There are three distinct behaviors for the system as a function
of s. For large negative s, the velocity increases significantly. For very
large positive s, the velocity decreases analogously. For small and
intermediate positive s, there is a broad plateau where the velocity
is close to zero. These distinct regions are clearly demonstrated in

FIG. 6. Modified forces and their dynamics: the final forces learnt during the opti-
mization process for biases s = −0.3 (a), 0.0(b), 0.5 (c), and 1.3 (d) with three
sample trajectories of length T = 10 for each force.

FIG. 7. Comparison between AC and MCR algorithms: (a) learning curves plotted
vs the amount of data used during training for the AC algorithm (solid, colored
lines) and the MCR algorithm (colored crosses and gray dashed lines). The curves
and crosses are color coded by the value of the bias s being trained for. (b) Final
results for the AC algorithm (colored crosses) and the MCR algorithm (gray trian-
gles), with absolute errors to the value from numerical diagonalization shown in
the inset.

Fig. 6 where we plot the final optimized forces for a set of s, along
with sample trajectories generated by these forces. We see differ-
ent behaviors for biases of s < 0, 0 < s < 1, and 1 < s. For s < 0, the
trajectories regularly loop round the ring in the positive direction.
For 0 < s < 1, the trajectories generally do not transition round the
ring and instead remain in a small region of space. For s > 1, the
trajectories loop around the ring in the negative direction.

For comparison, we have optimized the same functional form
using the MCR algorithm, as analogous to Ref. 25. The AC algo-
rithm provides more accurate results than MCR, when optimized
using the same amount of statistics.25 The MCR results are produced
by annealing across from s = 1.5 down to s = −0.5 in steps of 0.1.
Training for each value of s involves 20 updates constructed using
50 trajectories with 106 time steps each for a total of 109 transi-
tions worth of data. After optimizing the hyperparameters, we see
in Fig. 7 that the convergence in the MCR algorithm is still much
slower than the AC algorithm. As a consequence, the best results we
can achieve using the same amount of transitions fail to converge to
the correct values of the scaled CGF for biases close to s ≳ 1. This
demonstrates one key advantage of utilizing value functions. Due to
the reduction in variance of gradient estimates using a small amount
of data, we can perform many more updates using the same amount
of transitions, improving convergence.

VII. CONCLUSIONS
In this paper, we have demonstrated how regularized rein-

forcement learning algorithms can be used to optimize a diffusive
dynamics to effectively sample rare trajectories. A key ingredient of
our approach is a value function that estimates how relevant each
state is to the rare dynamics, a function learnt while simultaneously
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guiding optimization of the dynamics, allowing for reduced data
generation and more detailed function approximations. Across a
range of systems and observables, we found that the lower variance
estimate of the gradient employing value functions enabled accurate
and efficient characterization of rare dynamical fluctuations. In finite
time problems, the AC algorithm, in particular, was able to solve
particularly challenging problems associated with multiple reactive
channels and long-lived intermediates. In the long time limit, the
AC algorithm reproduces exact results for the cumulant generat-
ing function by directly optimizing to an accurate representation
of the Doob dynamics, removing the need to calculate additional
corrections or do additional importance sampling.

While we have focused here on the simulation of rare event
dynamics and the direct evaluation of their likelihoods, the methods
of finding optimized forces developed here can be straightforwardly
combined with trajectory importance sampling methods, such as
transition path sampling85 or cloning,120 to correct for inaccura-
cies associated with an incomplete basis. Indeed, previous work has
demonstrated that auxiliary dynamics can significantly improve the
statistical efficiency of trajectory sampling methods.25,126–128 Fur-
thermore, Monte Carlo approaches can be used to generate data
to train the optimal dynamics in a feedback routine as previously
demonstrated.14,15 This could emphasize the parts of the state space
relevant to the rare events earlier than by simply generating data
with the current dynamics, thus speeding up optimization. Appli-
cation to more complex models, such as many-body systems, will be
an important development of this line of research. Accurate approx-
imation of the force in many-body problems may require the use
of more sophisticated function approximations, such as neural net-
works; however, a difficult balance will need to be struck between the
representative power of the approximation and the computational
cost to calculate it. More powerful function approximations will also
necessitate the use of more sophisticated algorithms as training such
approximations can become unstable when using correlated data, as
we do here.
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APPENDIX A: DISCRETE TIME STEP
IMPLEMENTATIONS OF FINITE TIME ALGORITHMS

We now describe how the time-continuous equations of the
reinforcement learning algorithm are efficiently implemented in
simulations with a fixed discrete timestep Δt, though variable
timesteps may be easily used. We use an Euler propagator to inte-
grate the SDE in Eq. (10) as

xt+Δt = xt + ΔtFθ(xt , t) +GΔWt , (A1)

where ΔW is a Gaussian random variable with mean 0 and variance
Δt. The trajectory probability from Eq. (11) is now given by products
of stepwise probabilities

pθ[Xt,t+Δt ∣xt] =
exp{− 1

2Δt ∣G
−1
(xt+Δt − xt − ΔtFθ(xt , t))∣2}

2πΔt det(G)
. (A2)

Next, we discretize the gradient of the logarithm of trajectory proba-
bilities using the Ito convention. We propagate the Malliavin weights
from Eq. (18) as

yθ(t + Δt) = yθ(t) + [G−1
(xt+Δt − xt − ΔtFθ(xt , t))][G−1

∇θFθ(t)].
(A3)

We also write the full return (14) through a sum of stepwise
rewards as

R[xt− ,t+τ] = ∑
j:jΔt<τ

r(xj+1, xj, t + jΔt), (A4)

where the time step index j starts from −1 in this sum, with the
notation t− accounting for the time step before the current one, and
the subscript j refers to the time t + jΔt. The reward at each step is
defined as

r(xj+1, xj, t + jΔt) = − s(AjΔt + Bj ⋅ (xj+1 − xj) + A(xj+1)δjn)

+
[G−1

(xj+1 − xj − ΔtFθ(xj, tj))]
2

2

−
[G−1

(xj+1 − xj − ΔtF(xj, tj))]
2

2
, (A5)

using the definition of the observable from Eq. (2) and accounting
for an additional singular reward at the end of the trajectory after
the last time step n. Here, the first three terms come from the observ-
able and the last two terms represent the KL divergence between the
original and optimized dynamics.

Now, we combine the rewards, Malliavin weights, and value
functions in multiple ways to produce the gradients in the different
algorithms. The pseudocodes of efficient implementations of these
are presented below.

1. Monte Carlo returns
The gradient in the Monte Carlo returns algorithm can be

rewritten from Eq. (19) as
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χMCR(θ, T) = −⟨∫
T

0
dt R[Xt− ,T]ẏθ(t)⟩

pθ

= −⟨∫

T

0
dt ẏθ(t)∫

T

t−
dt′ Ṙ(t′)⟩

pθ

= −⟨∫

T

0
dt Ṙ(t)∫

t+

0
dt′ ẏθ(t

′
)⟩

pθ

= −⟨∫

T

0
dt Ṙ(t)yθ(t

+
)⟩

pθ
, (A6)

where the return has been written as a time integral of its differential
changes and t+ is shorthand for t + ϵ for some small positive ϵ. This
has converted the double time integral into a single time integral,
which is then evaluated on-the-fly while propagating the trajectory.
An implementation of this algorithm with a fixed time step Δt is
described in the pseudocode in Algorithm 3.

2. Monte Carlo returns with a value baseline
We use a similar technique to rewrite the double time inte-

gral for the gradient in the Monte Carlo value baseline algorithm,
Eq. (22), using a single time integral as

χMCVB(θ, T)

= −⟨∫

T

0
dt {R[Xt− ,T] − Vψ(xt , t)}ẏθ(t)⟩

pθ ,ψ=ψi

= −⟨∫

T

0
dt {Ṙ(t)yθ(t

+
) − Vψ(xt , t)ẏθ(t)}⟩

pθ ,ψ=ψi

. (A7)

ALGORITHM 3. Finite time MCR.

1: inputs dynamical approximation Fθ(x, t)
2: parameters learning rate αθ; total optimization steps I; trajec-

tory length Tconsisting of J time steps of duration Δt each;
number of trajectories N

3: initialize choose initial weights θ, define iteration variables
i and j, force gradient δP, stepwise rewards r representing the
increments in return

4: i← 0
5: repeat
6: Using chosen method to generate trajectories X0,T with con-

figurations, times, noises, Malliavin weights and rewards
denoted by xj, tj,ΔWj, yθ(tj) and r(xj+1, xj, tj) = rj, respec-
tively.

7: j← 0
8: δP ← 0
9: yθ(t0) ← 0
10: repeat
11: yθ(tj+1) ← yθ(tj) + ΔWj ⋅ [G−1

∇θFθ(xj, tj)]

12: δP ← δP + rjyθ(tj+1)

13: j← j + 1
14: until j = J
15: Average δP over N trajectories to get δP

16: θ ← θ + αθδP
17: i← i + 1
18: until i = I

We rewrite the gradient of the value error in Eq. (30) similarly as

∇ψL(ψ,ψi)∣ψ=ψi
= − ⟨∫

T

0
dt {Ṙ(t)(∫

t+

0
dt′∇ψVψ(t′))

− Vψ(t)∇ψVψ(t)}⟩
pθ ,ψ=ψi

= − ⟨∫

T

0
dt {Ṙ(t)zψ(t+) − Vψ(t)żψ(t)}⟩

pθ ,ψ=ψi

,

(A8)

where the arguments of the value function Vψ(xt , t) have been sup-
pressed as Vψ(t) and the integral of the gradient of the value func-
tion up to and including current time has been denoted as zψ(t+).
We explicitly set V(xt , t) to 0 for any t ≥ T, i.e., after the last time
step, in these expressions. The single time integral is then evalu-
ated on-the-fly as the trajectory is propagated. If the force and the
value function approximations use the same set of basis functions as
we do with a fixed grid of Gaussians, the MCVB algorithm incurs
no additional computational cost over the MCR algorithm. An

ALGORITHM 4. Finite time MCVB.

1: inputs dynamical approximation Fθ(x, t), value approximation
Vψ(x, t)

2: parameters learning rates αθ, αψ ; total optimization steps I;
trajectory length T consisting of J time steps of duration Δt
each; number of trajectories N

3: initialize choose initial weights θ and ψ, define iteration vari-
ables i and j, force and value function gradients δP, δV , stepwise
rewards r representing the increments in return

4: i← 0
5: repeat
6: Using chosen method to generate trajectories X0,T with con-

figurations, times, noises, Malliavin weights, integral of value
function gradients, and rewards denoted by xj, tj,ΔWj, yθ(tj),
zψ(tj) and r(xj+1, xj, tj) = rj, respectively.

7: j← 0
8: δP ← 0
9: δV ← 0
10: yθ(t0) ← 0
11: zψ(t0 ← 0)
12: repeat
13: ẏθ(tj) ← ΔWj ⋅ [G−1

∇θFθ(xj, tj)]/Δt
14: yθ(tj+1) ← yθ(tj) + Δtẏθ(tj)

15: żψ(tj) ← ∇ψVψ(xj, tj)

16: zψ(tj+1) ← zψ(tj) + Δtżψ(tj)

17: δP ← δP + rjyθ(tj+1) − Vψ(xj, tj)ẏθ (tj))

18: δV ← δV + rjzψ(tj+1) − Vψ(xj, tj)żψ(tj)

19: j← j + 1
20: until j = J
21: Average δP, δV over N trajectories to get δP, δV

22: θ ← θ + αθδP

23: ψ ← ψ + αψδV
24: i← i + 1
25: until i = I
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implementation of this algorithm with a fixed time step Δt is
described in the pseudocode in Algorithm 4.

3. Actor–critic
We rewrite the gradient in the actor–critic algorithm from

Eq. (25) using a shift in time origin as

χAC(θ, T) = −⟨∫
T

0
dt δ′[Xt− ,t+τ , t]ẏθ(t)⟩

pθ ,ψ=ψi

= −⟨∫

T+τ

τ
dt δ′[Xt−−τ,t , t − τ]ẏθ(t − τ)⟩

pθ ,ψ=ψi

, (A9)

where the change in the return and the value function for t ≥ T is
explicitly set to 0. We similarly write the gradient of the value error
from Eq. (30) as

ALGORITHM 5. Finite time AC.

1: inputs dynamical approximation Fθ(x, t), value approximation
Vψ(x, t)

2: parameters learning rates αθ, αψ ; total optimization steps I;
trajectory length T consisting of J time steps of durationΔt each;
temporal delay M = τ/Δt; number of trajectories N

3: initialize choose initial weights θ and ψ, define iteration vari-
ables i and j, force and value function gradients δP, δV , stepwise
rewards r representing the increments in return

4: i← 0
5: repeat
6: Using chosen method to generate trajectories X0,T with

configurations, times, noises, changes in Malliavin weights,
value function gradients, temporal difference, rewards and
cumulative rewards denoted by xj, tj,ΔWj,Δyθ(tj), żψ(tj), δ′j ,
r(xj+1, xj, tj) = rj and R[Xtj−τ,tj] = Rj−M,j, respectively, and
rj = V(x, tj) = 0 whenever j < 0 or j ≥ J

7: j← 0
8: δP ← 0
9: δV ← 0
10: R−M,0 ← 0
11: repeat
12: Rj−M,j ← Rj−M−1,j−1 + rj − rj−M
13: if j < J then
14: Δyθ(tj) ← ΔWj ⋅ [G−1

∇θFθ(xj, tj)]

15: żψ(tj) ← ∇ψVψ(xj, tj)

16: end if
17: if j ≥M then
18: δ′j ← V(xj, tj) + Rj−M,j − V(xj−M , tj−M)

19: δP ← δP + δ′jΔyθ(tj−M)

20: δV ← δV + δ′j żψ(tj−M)

21: end if
22: j← j + 1
23: until j = J +M
24: Average δP, δV over N trajectories to get δP, δV

25: θ ← θ + αθδP

26: ψ ← ψ + αψδV
27: i← i + 1
28: until i = I

∇ψL(ψ,ψi)∣
ψ=ψi

= − ⟨∫

T+τ

τ
dt δ′[Xt−−τ,t , t − τ]

× ∇ψVψ(xt−τ , t − τ)⟩
pθ ,ψ=ψi

. (A10)

These integrals are then evaluated on-the-fly along with trajectory
propagation. Since the gradients involve correlations of the differen-
tial return r with the differential Malliavin weight ẏθ and the value
function gradient żψ = ∇ψVψ from τ time in the past, this makes
it necessary to store and use this history, along with the reward
and the value function, for the past τ/Δt time steps. Aside from
this additional memory requirement, given a delay time τ, which is
much smaller than the trajectory duration, the actor–critic algorithm
has similar computational cost comparable to the MCR and MCVB
algorithms. This implementation of the algorithm is described in the
pseudocode in Algorithm 5.

APPENDIX B: COMPARING ERRORS IN GRADIENT
ESTIMATES

In Fig. 8, we have directly compared the three algorithms for
their ability to reduce the variance of the gradient estimates dur-
ing optimization in the softened Brownian bridge problem. We
have chosen the force and value function coefficients θ and ψ from
the i = 100 step of the MCVB optimization run in Fig. 1(b) in the
Brownian bridge problem. This value function is thus not exact for
the corresponding force but is representative of typical inaccuracies
encountered during learning. Keeping these coefficients fixed, we
have estimated the gradients of the KL divergence using the three
algorithms, while varying the number of uncorrelated trajectories
Nw over which the estimates are averaged. Plotted in Fig. 8 are
the total variance in the gradient estimate summed over all compo-
nents, ∑m Var[∇θm DKL(pθ∣ps)], from the different algorithms. The
variances are computed from fluctuations over ten uncorrelated sets
of Nw trajectories. The dependence on Nw in log–log scale corre-
sponds to a linear trend with a slope of −1 as expected from the
variance of sample means of uncorrelated samples. We find that
the use of the MCVB and AC algorithms greatly reduces the vari-
ance compared to the MCR approach, equivalent to a 5 to 100 times

FIG. 8. Statistical convergence of gradient estimates: total variance of the gradient
summed over all components using MCR (black), MCVB (red), AC with τ = 0.001
(blue), and AC with τ = 0.1 (green) as a function of the number of uncorrelated
trajectories Nw for averaging.
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increase in the amount of input trajectory data. We find that the
smallest variance corresponds to the AC algorithm with the smallest
possible τ, set to the time step of 0.001. However, this choice incurs
a systematic error in the expectation of the gradient due to the inac-
curacy in the value function, while neither MCVB nor AC with a
large τ is susceptible to it. This is manifested in the scaled L1 norm of
the error in the expected gradient from the algorithms. The expec-
tation is calculated over 105 trajectories, and the error in MCR is
zero by definition. The L1 norms of the errors, divided by that of the
true gradient, are 0.22, 7.49, and 1.16 from MCVB, AC (τ = 0.001),
and AC (τ = 0.1), respectively. This shows that the systematic error
incurred by AC at small τ can be reduced by having a larger τ while
still having significantly less variance than MCVB and MCR. The
crossover between the systematic and statistical errors in the AC
algorithm depending on τ is also the reason starting the optimiza-
tion with a small τ and later annealing with a large τ is an efficient
strategy, given that the memory requirement scales linearly with τ.
We note that the systematic error is formally zero by definition in
the expectation of the MCVB gradient estimate as well: the small
non-zero value stems from a finite number of samples being used to
estimate the expectation.

APPENDIX C: ALTERNATIVE CGF ESTIMATES
1. Numerically exact CGF

We have compared the CGF from the reinforcement learning
algorithms in Sec. IV B with numerically exact values obtained from
explicitly calculating ⟨hΓ⟩p in Eq. (33) by solving the correspond-
ing Fokker–Planck operator. The Fokker–Planck operator for the
original dynamics in Eq. (36) is given by

L = −∇.F(x) + ∇2, (C1)

where F(x) = −∇U(x) is the underlying conservative force.
We want to use this operator in order to find the probability

⟨hΓ⟩p as

⟨hΓ⟩p = ∫
Γ
dx ρ(x, T) = ∫

Γ
dx eLTδ(x − x0). (C2)

We exponentiate the operator in its spectral eigenbasis. Since the
forces in the original dynamics are conservative, diagonalizing L
becomes easier through a similarity transform into a Hermitian
operator L,61,130

L = eU(x)/2Le−U(x)/2

= ∇
2
−

1
4
(∇U(x))2

+
1
2
∇

2U(x). (C3)

We diagonalize L to obtain eigenvalues −λn and eigenfunctions
ϕn(x),

Lϕn(x) = −λnϕn(x). (C4)

Since L is Hermitian, the eigenfunctions {ϕn(x)} are mutually
orthonormal and can be used to introduce a resolution of identity

δ(x − x0) = ∑
n
ϕn(x0)ϕn(x). (C5)

The original operator L related by the similarity transform has eigen-
values−λn and eigenfunctions e−U(x)/2ϕn(x). This spectral expansion
of L can be used to estimate the probability ⟨hΓ⟩p as

⟨hΓ⟩p = ∫
Γ
dx eLTδ(x − x0)

= eU(x0)/2
∑

n
e−λnT

∫
Γ
dx e−U(x)/2ϕn(x). (C6)

The final time T that we use in our barrier-crossing simulations is
chosen such that τrlx < T < τrxn, where τrlx and τrxn are, respectively,
the timescale of relaxation in the starting or the ending well and the
timescale of the barrier-crossing reaction, which is expected to be the
slowest dynamical mode in the system. Hence, when the set {λn}

is ordered, the factor e−λnT should be negligible for all but the few
smallest values of n. The sum over n in Eq. (C6) is thus expected to
converge within a few terms.

We diagonalize the operator L using a discrete variable rep-
resentation basis constructed from Hermite polynomials104 in two
dimensions, χM,N(αx,αy), where α = 5 is a scaling factor. We obtain
identically converged estimates of ⟨hΓ⟩p with basis sizes ranging
from 50 × 50 to 100 × 100 using ten terms in the spectral expansion.
The CGF value is then calculated using ⟨hΓ⟩p in Eqs. (32) and (33).

2. CGF from Kramers escape rate
In one dimension, corresponding to a dynamics of

dq = −U′(q) +
√

2dW, (C7)

an approximate expression for the barrier-crossing probability in
time T is given by the Kramers escape rate in the overdamped
limit131 as

⟨hΓ⟩p ≈
T
2π
(U′′(qA)∣U′′(q†

)∣)
1/2e−(U(q

†
)−U(qA)), (C8)

where q is the reaction coordinate and qA and q† are the locations of
the initial well and the barrier, respectively.

In the case of the Müller–Brown potential, we assume the ideal
reaction coordinate to be along the minimum energy path obtained
using a nudged elastic band method.94–96 With the potential energy
U(q) computed along this path q, we use quadratic fits around
the initial well (qA) and around the largest barrier (q†) to find the
double-derivative terms. Finally, we use this approximate value of
⟨hΓ⟩p in Eqs. (32) and (33) to obtain the CGF.
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