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Abstract

We consider electromagnetic scattering by multiple absorbing dielectric ob-

jects using the PMCHWT boundary integral equation formulation. Galerkin

discretisation of this formulation leads to ill-conditioned linear systems, and

Calderón preconditioning, an operator-based approach, can be used to remedy

this. To obtain a stable discretisation of the operator products that arise in

this approach, the use of a dual mesh defined on a barycentrically refined grid

needs to be considered, increasing memory consumption. Furthermore, to cap-

ture the oscillatory solution of the electromagnetic waves, the mesh needs to

be refined with respect to frequency, making the simulation of high-frequency

problems very expensive.

This thesis presents two complementary approaches to minimising mem-

ory cost and computation time (for assembly and solution): modification of

the preconditioning operator, and a bi-parametric implementation. The for-

mer aims to minimise the number of operators used in the preconditioner to

reduce the additional matrix-vector products performed, and the memory cost,

while still maintaining a sufficient preconditioning effect. The latter uses two

distinct sets of parameters during assembly, to minimise assembly and solution

time as well as memory. The operator is assembled with a more expensive set

of parameters to obtain an accurate solution. The preconditioner, which is dis-

cretised using the expensive dual basis functions, is assembled with a cheaper

set of parameters.

The two approaches are explained in the context of a series of model

problems, then applied to realistic ice crystal configurations found in cirrus
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clouds. They are shown to deliver a reduction of 99% in memory cost and at

least 80% in computation time, for the highest frequency considered.

The accelerated formulations have been used at the Met Office to create a

new database of the scattering properties of atmospheric ice crystals for future

numerical weather prediction. A brief description of that work is also presented

in the thesis.
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duction in memory cost and at least an 80% reduction in total computation

time for the highest frequency considered. The open-source boundary element
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thesis will be used again at the Met Office, to generate new databases for dif-

ferent regimes of the electromagnetic spectrum and for different geometrical

configurations.
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Chapter 1

Introduction

Fast and accurate numerical methods that simulate electromagnetic scattering

by single or multiple scatterers of arbitrary shape (Figure 1.1) are an active

research area in numerical analysis and scientific computing. The scattering

problem can be described by Maxwell’s time harmonic equation

∇× (∇×E)−k2E = 0, (1.1)

for some wavenumber k, electric field E and subject to suitable boundary con-

ditions. Analytic solutions exist for simplified domains, for example spheres

or cylinders, and as such numerical methods are often used to find an approxi-

mate solution for more complex scatterers. One such numerical method is the

boundary element method (BEM).

Figure 1.1: Electromagnetic scattering by multiple scatterers of arbitrary shape.
Taken from [2].



32 Chapter 1. Introduction

BEM is a numerical method that allows us to solve certain types of partial

differential equations (PDEs) in homogeneous bounded/unbounded media. It

involves reformulating the PDE in terms of integral equations on the bound-

ary of the object of interest, the scatterer. The boundary of the scatterer is

subsequently discretised and the boundary integral equation (BIE) is trans-

formed into a system of linear equations which can be solved using some direct

or iterative method. Depending on the problem of interest, the solution can

then be extended from the boundary to the interior, exterior or far field of the

scatterer via representation formulae.

There are many advantages to using BEM compared to other numerical

methods. By reformulating the PDE as a system of boundary integral equa-

tions one reduces the dimensionality of the problem from a 3D scatterer to

a 2D manifold. The discretisation of the 2D manifold is faster and easier to

achieve and leads to a smaller system of equations that needs to be solved. At

the same time, BEM automatically incorporates radiation conditions at infin-

ity, while for example by using a Finite Element Method (FEM) one would

have to introduce artificial boundaries. On the other hand, the discretisation

of FEM leads to sparse matrices compared to BEM for which matrices are

usually dense, requiring fast approximation methods such as H-matrices [13],

H2-matrices [14, 15, 16] or Fast Multipole Methods (FMM) [17, 18, 19]. In

addition, the use of BEM requires the knowledge of a fundamental solution, in

order to allow for the transformation of the PDEs to BIEs [20], restricting its

use to specific problems. However, BEM can handle complicated geometries

making it appealing for scattering problems by complex domains, compared

to other methods that are restricted to rotationally symmetric particles, for

example T-matrix methods [21, 22, 23, 24].

The boundary element method is a popular method used for electromag-

netic scattering problems by single or multiple dielectric objects (transmission
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problems). The Maxwell scattering problem is reduced to a BIE of the form

Au = f , (1.2)

where A is a (collection of) boundary integral operator(s) (BIOs), u is the

unknown quantity of interest (for example traces of the scattered field) and

f some right-hand side data that depends on the source of excitation (for

example an incoming plane wave). Examples of such BIE formulations are the

PMCHWT formulation due to Poggio, Miller, Chang, Harrington, Wu and

Tsai [25, 26, 27, 28], the Müller formulation [29] and its variations [30].

The bounded linear operator A, typically consists of a combination of

compact and hypersingular operators which in their discrete versions have

eigenvalues accumulating at zero and infinity. Thus upon Galerkin discreti-

sation, (1.2) leads to an ill-conditioned linear system which then requires a

large number of iterations to be solved. Preconditioning is therefore required

in order to remedy the ill-conditioning of the discrete system.

Different preconditioning methods exist, ranging from algebraic (based

for example on H-matrix methods [5, 31] or FMM [32, 33, 34]) to operator-

based approaches [35]. In operator-based approaches, one is looking for some

operator P applied to (1.2), giving

PAu = Pf , (1.3)

where PA has better properties than A and its discrete version is easier to

solve numerically.

The overall computational cost of solving (1.3) is affected by both

(i) the choice of preconditioning operator P , and

(ii) the choice of discretisation for the operator product PA.

With regards to (i), the choice of P should lead to a smaller number of iter-

ations compared to A. At the same time, the operator product PA incurs
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additional matrix-vector operations, so the ideal preconditioner should con-

sist of as few operators as possible. Regarding (ii), the discretisation of PA

should be as cheap (memory and time-wise) as possible, while still producing

a sufficiently accurate numerical solution. To achieve a stable discretisation of

the operator product PA, one has to use both a primal and a dual mesh, the

latter defined on the barycentrically refined primal mesh leading to a 6-fold

increase in the number of elements required. To capture the oscillatory solu-

tion of the electromagnetic waves, the mesh needs to be refined with respect to

frequency. A dense assembly and storage of the matrix would therefore scale

as O(N2), where N are the degrees of freedom, or O(k4), making the simu-

lation of high-frequency problems very expensive. Fast approximations of the

Galerkin matrix, such as H-matrix, H2-matrix and FMM methods, are there-

fore of interest to the electromagnetic community dealing with high frequency

problems.

We focus our attention to the PMCHWT formulation in this thesis but

note that our methods could be adjusted to other formulations. The predomi-

nant operator-based preconditioner used for the PMCHWT formulation is the

Calderón preconditioner, which leverages the Calderón identities to improve

the properties of PA. The traditional choice of Calderón preconditioner in

this case is P =A [36, 37, 38, 39]. This indeed reduces the number of iterations

required by iterative solvers but at the expense of an increased computational

cost per iteration as a result of additional matrix-vector multiplications per-

formed. A recent study by the author of this thesis [2], showed that even

though A2 has a reduced GMRES count, following a specific implementation

detailed later in Chapter 4, it does not perform any better than simple mass-

matrix preconditioning if one accounts for the overall matrix-vector products

performed.

We contribute to (i) by considering modified versions of the traditional

Calderón preconditioner in the context of single and multi-particle electro-

magnetic scattering. The modified preconditioners include only a portion of
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the original operators used in the traditional Calderón preconditioner aiming

to reduce assembly time and memory cost. Our work on this is discussed in

Chapter 4.

With regards to (ii), we demonstrate that the cost of discretising PA

can be reduced without sacrificing solution accuracy, by using a cheaper but

poorer quality matrix assembly routine for P than for A. This is based on an

adaptation of the bi-parametric implementation proposed in [40] for the electric

field integral equation (EFIE) for perfectly conducting scatterers, and later

used for Helmholtz problems [41]. By adopting an H-matrix approximation

for the assembly and storage of the discrete versions of P and A, we

a) use a weaker target tolerance for P than for A in the approximation of

admissible blocks by low-rank approximations; and

b) use lower order quadrature rules for P than for A.

In addition, going beyond the measures introduced in [40],

c) for P only, we assemble admissible blocks only if they satisfy sufficient

near-field conditions and discard any far-field contributions.

Our contributions to (ii) are presented in Chapter 5.

1.1 Motivation/Application
An application of large scale simulations of electromagnetic scattering by mul-

tiple homogeneous dielectric objects where such accelerating techniques are

required is that of electromagnetic radiation by ice crystals in cirrus clouds.

The scattering properties of atmospheric ice crystals are important in mod-

elling the radiation balance of cirrus clouds [4, 42, 43]. The ice crystals vary in

size and shape, and are generally non-spherical, taking complex forms such as

hexagonal columns, hexagonal plates, bullet rosettes and aggregates of those

[42, 44, 7]. Some examples can be seen in Figure 1.2. The frequency of the

incoming radiation also ranges from low to high, requiring methods that are

able to handle both extreme cases and those in between.
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Figure 1.2: Ice crystal models used to predict the light scattering properties of
cirrus: (a) a hexagonal column, (b) a hexagonal plate, (c) a six-branched bullet-
rosette, (d) a six-branched bullet-rosette with conical air cavities within each branch,
(e) a polycrystal, (f) a hexagonal ice aggregate, (g) an Inhomogeneous Hexagonal
Monocrystal, (h) a hexagonal chain aggregate, (i) a rosette-aggregate, (j) a droxtal,
(k) a Gaussian random sphere and (l) a Chebyshev polynomial. Taken from [4].

A number of different approaches are used by the atmospheric physics

community for the simulation of electromagnetic dielectric scattering, depend-

ing on the size parameter of the problem, defined as

X := πDmax

λe
, (1.4)

where Dmax is the maximum dimension of the scatterer (diameter of the small-

est sphere enclosing the entire scatterer configuration), and λe := 2π/ke is the
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wavelength of the incident wave. For particles of small to moderate size param-

eter there are “numerically exact” methods [45] such as the Discrete Dipole Ap-

proximation (DDA) [46, 47, 48], the Finite-Difference Time-Domain (FDTD)

[49, 50, 51] and Pseudo-Spectral Time-Domain (PSTD) [52] methods, and the

Extended Boundary Condition [22, 53, 23] and Invariant Imbedded [24, 54]

T-matrix methods. For particles of large size parameter one can use “approx-

imate” high-frequency methods such as Geometric Optics/ray tracing and the

Kirchhoff approximation (see e.g. [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66]).

A global method that can therefore handle both low and high frequencies

(or small and large size parameter problems respectively) is of interest and the

boundary element method is appealing in this case. BEM has no restrictions

on the shape of the scatterer (apart from Lipschitz continuity) and by using

fast approximations and accelerated preconditioning techniques, such as those

detailed earlier, one can also handle high frequency problems.

Even though BEM is well-established in the electrical engineering com-

munity it has only recently attracted the attention of the atmospheric physics

community. Early applications of BEM to the simulation of light scattering

by simple ice crystals include [67] and [68]. More comprehensive studies of

complex crystal shapes (including hexagonal columns with conventional and

stepped cavities, bullet rosettes and Chebyshev ice particles) have been given

recently by Groth et al. [5] and Baran and Groth [31], and more recently

boundary integral equations were applied to scattering by multiple dielectric

particles illuminated by unpolarized high-order Bessel vortex beams in the

work by Yu et al. [69]. We note that multi-particle scattering is well studied

in literature, for example in [70], but without the use of preconditioning and

accelerating techniques, applications were restricted to small size parameters

or simple domains.

With the use of the accelerating techniques discussed in Chapters 4 and

5, applications of BEM on fixed orientations of complex-shaped ice crystals of

larger size parameters were considered in [2] and [3]. We note that complex
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Figure 1.3: Ice crystal models representing a budding rosette of maximum di-
mension Dmax = 1190µm (left) and a rosette aggregate of maximum dimension
Dmax = 10235µm (right).

aggregates consisting of several monomers with little or zero separation touch-

ing at single points (for example (c), (f) and (i) in Figure 1.2) were treated

as a single particle problem in [5], with the individual monomers being con-

nected by a very small cube to ensure Lipschitz continuity of the boundary. In

[2], a different approach was taken by treating this as a multi-particle scatter-

ing problem taking advantage of reduced versions of Calderón preconditioners

that were better suited for multi-particle configurations. We give more details

about the single vs multi-particle approach in Chapter 6. We then apply the

methods of Chapters 4 and 5 to such realistic complex shaped ice crystal con-

figurations and investigate their performance (in terms of memory cost, and

assembly and solution time).

In addition, the accelerating methods of Chapters 4 and 5 have made it

possible to run large scale simulations of electromagnetic scattering by realistic

ice crystal configurations that would otherwise be too expensive (both in terms

of memory cost and total computation time) before. In particular, the single-

scattering properties (SSPs) and phase matrices of randomly-oriented budding

rosettes and rosette aggregates (examples of which can be seen in Figure 1.3),

are being computed at the Met Office using our accelerated BEM methods for a
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range of maximum dimensions and frequencies. The aggregates were generated

via Monte Carlo simulations by Westbrook et al. [71] and follow observed

mass and area dimension power laws [72]. The shapes represent observed ice

crystals in cirrus clouds [7] and are assumed to have the density of solid ice.

The SSPs of 65 different model aggregates, of maximum dimension between 10

and 10,000µm, at frequencies 50, 183, 243 and 664 GHz, and at temperatures1

190, 210, 230, 250 and 270 K are computed. This database is being constructed

to take advantage of forthcoming new observations from EUMETSAT’s (The

European Organisation for the Exploitation of Meteorological Satellites) next

generation of polar orbiting satellites that ought to improve numerical weather

prediction, and the simulation of airborne radiance observations using the Met

Office’s International Sub-millimetre Airborne Radiometer (ISMAR, see [43]).

To calculate the SSPs in random orientation, one traditionally fixes the

direction of the incident wave and rotates the scatterer. Once many orienta-

tions have been considered the SSPs in random orientation can be evaluated.

Fixing the direction of the incident wave and rotating the scatterer by some

rotation matrix R is equivalent to fixing the orientation of the scatterer and in-

stead rotating the direction of the incident wave by R−1; and this methodology

has also been considered in [9]. In this thesis we follow this second approach.

This is to avoid transitions between two reference frames that are used to de-

scribe the problem (for some details on this see Chapter 7 and for full details

Chapter 2.4 in [8]). In this case, we assemble the operator matrix and pre-

conditioner and re-use for all incident wave solutions. With the accelerating

techniques of Chapters 4 and 5, storage and assembly times of the operator

and preconditioner were minimised while GMRES solves were fast due to the

preconditioning effect of P and were distributed to different CPUs.

A total of 4352 orientations have been considered in other databases, such

as [73] using the DDA method of [47], in order to simulate random orientation.

We find that 14 incident waves are enough to simulate the SSPs in random
1We note that the temperature affects the refractive index of the scatterer [11, 12].
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orientation with 1% relative error for the smallest aggregates, while we use up

to 302 incident waves for the large ones. We discuss the database in detail in

Chapter 7.

1.2 Thesis Outline and Contributions
We begin this thesis by reviewing background material that is essential to

create the BIE formulations and obtain a stable discretisation of the Calderón

product, in Chapters 2 and 3. In particular, in Chapter 2, we describe the scat-

tering problem by multiple dielectric bodies in detail. We recall the function

spaces, traces, potential operators and boundary integral operators required to

form the BIE formulations. Using those, we present the PMCHWT boundary

integral formulation extended to the multi-particle setup.

In Chapter 3, we discuss the transition from the continuous to the discrete

setting, the available discrete spaces and the choice(s) we make for a stable

discretisation of Calderón preconditioning. We make the choice to discuss the

variational forms and discretisation before introducing the operator precon-

ditioner so that we can focus on its impact in the following chapters. The

fundamentals of H-matrix and quadrature methods are also discussed as they

are later used in Chapter 5.

Our contribution to current literature is presented in Chapters 4, 5, 6

and 7. The results presented in Chapters 4, 5 and 6 have been published in

[2] and [3]. We begin Chapter 4, by presenting the fundamentals of tradi-

tional Calderón preconditioning in current literature (for example in [36, 38]).

Our numerical experiments demonstrate that depending on the discretisation

scheme used, traditional Calderón preconditioning is no better than simple

mass-matrix preconditioning, regardless of the mesh size h. Our contribu-

tion with regards to (i) is presented through reduced versions of the original

Calderón preconditioner. Our numerical experiments demonstrate that a 50-

75% reduction in memory cost and 60-80% reduction in total computational

time is possible with the use of the reduced preconditioners, compared to the
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traditional one presented in [36].

In Chapter 5, we present our contribution to existing work with regards

to (ii). Our numerical experiments demonstrate that a 60-90% reduction in

memory consumption and a 50-60% reduction in total computational time

is achieved when a bi-parametric version of the traditional preconditioner of

[36] is used. Going further, a bi-parametric implementation of the reduced

preconditioners presented in Chapter 4 can achieve more than 95% reduction

in memory cost and about 80% reduction in total computation time.

In Chapter 6, we apply the accelerating methods of Chapters 4 and 5

to realistic complex ice crystal configurations such as those presented in [5]

and [6]. We demonstrate that for the highest frequency considered, 664 GHz,

an estimated 99% reduction in memory consumption and 80% reduction in

total computation time can be achieved by a bi-parametric reduced precon-

ditioner, completely alleviating the otherwise prohibitive cost imposed by the

barycentrically refined grid.

In Chapter 7, we present the scattering database that is being generated

for future numerical weather prediction at the Met Office using our accel-

erated BEM method. We briefly discuss the microphysical model used for

the database, although we note that this was not developed by the author of

this thesis but it is included for completeness. An overview of the far field

scattering properties and definitions is given along with the basics of random

orientation. We present an alternative way of simulating random orientation

and test our methodology against a T-matrix method for hexagonal columns

(e.g. Figure 1.2 (a)). We note that T-matrix methods are fast and accurate but

restricted to rotationally symmetric particles and therefore cannot be applied

to the aggregates considered for the database (e.g. Figure 1.3). We discuss the

accuracy of our database with respect to mesh refinement, number of incident

waves and number of polarisation vectors assumed and briefly comment on the

accuracy of other databases. We finish by presenting some early results from

our simulations and show how these compare with other databases.
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Concluding remarks and future research avenues are discussed in Chapter

8. All numerical experiments were performed using Bempp 2 [1] (Versions 3.3.4

and 3.3.5), an open-source boundary element library. Example notebooks for

Chapters 4, 5, 6 and 7 are also available on the author’s GitHub page 3.

2www.bempp.com
3Accelerated Calderón: www.github.com/ankleanthous/Accelerated_Calderon,

Random Orientation: www.github.com/ankleanthous/EMScattering

www.bempp.com
www.github.com/ankleanthous/Accelerated_Calderon
www.github.com/ankleanthous/EMScattering


Chapter 2

The scattering problem and the

PMCHWT formulation

We begin by describing the scattering problem by multiple isotropic homoge-

neous dielectric scatterers of arbitrary shape in Section 2.1. Before we present

the PMCHWT formulation in the context of multi-particle scattering, it is

important that we define the proper function spaces along with their proper-

ties (Section 2.2), the potential operators (Section 2.3) and then the boundary

integral operators (Section 2.4) that are required for the formulation. We de-

fine the function spaces and relevant operators for some generic domain, and

in Section 2.5 apply those in the context of the scattering problem presented

in Section 2.1. The main reference for the function spaces and operators is

the work by Buffa and Hiptmair [74] unless otherwise stated. For the multi-

particle scattering setup along with its PMCHWT formulation we refer to our

work in [2] with further references made within the following sections. For the

original source of the PMCHWT formulation for a single scatterer we refer to

[25, 26, 27, 28].
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2.1 The scattering problem
We consider M disjoint arbitrary 3D isotropic homogeneous dielectric scat-

terers occupying bounded domains Ωi
m ⊂ R3, m = 1, . . . ,M , with boundaries

Γm = ∂Ωi
m, in a homogeneous exterior medium Ωe =R3\∪Mm=1Ωi

m, as in Figure

1.1. The scatterers Ωi
m, m= 1, . . . ,M , are assumed to be Lipschitz continuous.

The electric and magnetic fields in the interior domains Ωi
m, m= 1, . . . ,M , and

the exterior domain Ωe, will be denoted (Ei
m,Hi

m) and (Ee,He) respectively.

They are assumed to satisfy the time-harmonic Maxwell equations

∇×Ei
m = iωµmHi

m, in Ωi
m,m= 1, . . . ,M , (2.1)

∇×Hi
m =−iωεmEi

m, in Ωi
m,m= 1, . . . ,M , (2.2)

and

∇×Ee = iωµeHe, in Ωe, (2.3)

∇×He =−iωεeEe, in Ωe, (2.4)

together with the transmission boundary conditions

Ei
m(x)×nm = Ee(x)×nm, x ∈ Γm, m= 1, . . . ,M , (2.5)

Hi
m(x)×nm = He(x)×nm, x ∈ Γm, m= 1, . . . ,M . (2.6)

Here we assume a time-dependence of the form e−iωt, with angular frequency

ω > 0. The parameters εm, εe and µm, µe, represent respectively the electric

permittivity and the magnetic permeability of the domains, and nm is the unit

normal vector on Γm pointing into Ωe.

In the scattering problem, an incident field (Einc,Hinc) (for instance, a

plane wave) gives rise to internal fields (Ei
m,Hi

m) in Ωi
m and a scattered field

(Es,Hs) in the exterior domain Ωe. The latter is assumed to satisfy the Silver-



2.2. Function Spaces 45

Müller radiation condition

√
µeHs× x

|x|
−
√
εeEs =O

(
1
|x|

)
, as |x| →∞, (2.7)

and the total exterior field is then the sum of incident and scattered fields

Ee=Einc +Es, in Ωe, (2.8)

He=Hinc+Hs, in Ωe. (2.9)

It is sufficient to solve for either the electric or magnetic fields and then

recover the remaining fields by (2.1)–(2.2) and (2.3)–(2.4). In what follows,

we will solve for the electric fields Ei
m, Ee, which satisfy

∇× (∇×Ei
m)−k2

mEi
m= 0, in Ωi

m, m= 1, . . . ,M , (2.10)

∇× (∇×Ee) −k2
eEe = 0, in Ωe, (2.11)

where km = ω
√
µmεm and ke = ω

√
µeεe are the wavenumbers in the respective

domains.

2.2 Function Spaces
Let Ωi ⊂ R3, represent the interior of some domain, Ωe = R3\Ωi its exterior

and Γ = ∂Ωi its boundary surface. We use Ω⊆R3 to denote any of the subsets

Ωi, Ωe or R3. In what follows, the subscript loc should be dropped when Ω

refers to a bounded domain, i.e. Ωi. We follow [74] for the following sections.

2.2.1 Function Spaces in the domain
We denote the space of complex, vector valued, locally square integrable func-

tions by L2
loc(Ω) for some u : Ω→ C3 and the Sobolev space Hs

loc(Ω), s ≥ 0,

s ∈ R. Let H := H0 (i.e. Hs with s = 0). Let d and d be some scalar and

vector differential operators. Then for any s≥ 0 we can define the ‘d’ and ‘d’
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spaces by

Hs
loc(d,Ω) := {u ∈Hs

loc(Ω) : du ∈Hs
loc(Ω)}, (2.12)

Hs
loc(d,Ω) := {u ∈Hs

loc(Ω) : du ∈Hs
loc(Ω)}, (2.13)

and the ‘d-free’ and ‘d-free’ spaces

Hs
loc(d0,Ω) := {u ∈Hs

loc(Ω) : du = 0}, (2.14)

Hs
loc(d0,Ω) := {u ∈Hs

loc(Ω) : du = 0}. (2.15)

The above definitions can then be used to define the spaces of div- and curl-

conforming functions H(div,Ωi) and H(curl,Ωi) and the spaces of div-free and

curl-free functions H(div0,Ωi) and H(curl0,Ωi) on Ωi. Since u is a locally

square integrable solution satisfying (2.10) or (2.11), then curl curl u is also

locally square integrable. The solution to the electric/magnetic wave equation

with constant coefficients will be contained in the space Hloc(curl2,Ω).

2.2.2 Function Spaces on the boundary Γ
One can define Sobolev spaces on the manifold Γ denoted by Hs(Γ) and Hs(Γ),

s ∈ [−1,1], for scalar and vectors spaces respectively. To map from Sobolev

spaces in the domain to Sobolev spaces on the boundary we use trace operators.

The Dirichlet (tangential in [74]), Neumann and normal traces on Γ are

defined as follows, for p∈Hloc(curl,Ω), q∈Hloc(curl2,Ω) and r∈Hloc(div,Ω)

γ±Dp(x) := p(x)×n, x ∈ Γ, (2.16)

γ±Nq(x) := 1
ik
γ±D (curl q(x)) , x ∈ Γ, (2.17)

γ±n r(x) := r(x) ·n, x ∈ Γ, (2.18)

where the superscripts + and − denote the exterior and interior traces respec-

tively and p(x), q(x) and r(x) exist either in Ωe or Ωi respectively, and n is

the unit normal vector on Γ pointing into Ωe. Note that we use a different def-
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inition for the Neumann trace than that in [74] which differs by a factor of 1/i.

The interpretation of that is that if we normalise the magnetic permittivity

and electric permeability to 1, the definition of (2.17) is the tangential trace

of the magnetic field [75]. The jump and mean combinations of the traces are

given respectively by

[γ·]Γ := γ+
· −γ−· , (2.19)

{γ·}Γ := 1
2(γ+
· +γ−· ). (2.20)

We define the space of square integrable tangential vector functions on

the boundary [75]

L2
t(Γ) :=

{
u ∈ L2(Γ) : u ·n = 0

}
. (2.21)

We define the tangential trace space

H
1
2
×(Γ) := γ−D(H1(Ωi)) =

{
γ−Du : u ∈H1(Ωi)

}
, (2.22)

with its dual H−
1
2
× (Γ) with respect to the antisymmetric product

〈a,b〉τ :=
∫

Γ
a · (n×b), for a, b ∈ L2

t(Γ). (2.23)

Remark 1. The dual space of some Hilbert space H, denoted by H∗, is the

linear space of linear continuous functionals on H, which is also a Hilbert space.

For practical applications, it is often convenient to work with realisations [76]

of the dual space instead of the actual dual space. By a realisation of H∗, we

mean a pair
(
Hdual,L

)
where Hdual is a Hilbert space and L : Hdual→H∗ is

an isomorphism, i.e. a bounded linear operator with a bounded inverse, from

which we define

〈u,v〉Hdual×H := (Lu)(v), u ∈Hdual, v ∈H. (2.24)
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When we say H−
1
2
× (Γ) is the dual of H

1
2
×(Γ) with respect to the antisym-

metric product of (2.23), this should be interpreted as
(
H−

1
2
× (Γ),〈·, ·〉τ

)
being

a realisation of the actual dual space of H
1
2
×(Γ). The duality pairing 〈·, ·〉τ

on H−
1
2
× (Γ)×H

1
2
×(Γ) is extended from the duality pairing of (2.23) due to the

density of H
1
2
×(Γ) in L2

t.

For smooth surfaces, the scalar surface divergence of γ±Du, for u ∈

Hloc(curl,Ω) is given by

divΓ(γ±Du) = γ±n (curlu). (2.25)

In the case of piecewise smooth boundaries this becomes more complicated

as the Dirichlet trace is discontinuous across edges of Γ. Assuming that Γ

consists of a finite number of smooth faces (as is the case when the boundary

is approximated by flat triangles during discretisation), we can express this as

Γ :=
N⋃
j=1

Γj , (2.26)

for the faces Γ1, . . . ,ΓN , N ∈N. Then for u ∈C∞(Ω), the scalar surface diver-

gence is given by

divΓγ
±
Du :=


divj(γ±Du)j , on Γj ,(
(γ±Du)j ·nij + (γ±Du)i ·nji

)
δij , on Γj ∩Γi,

(2.27)

where uj is the restriction of u to the face Γj , nij is the outward pointing

tangential normal to Γi restricted to the edge Γj∩Γi, divj is the 2D-divergence

computed on the face Γj , and δij is the delta distribution in local coordinates

with support on the edge Γj ∩Γi [74, 75]. By density, this operator can be

extended to functionals u ∈H−
1
2
× (Γ) [74].

We define the space of surface-div-conforming functions by

H−
1
2
× (divΓ,Γ) := {u ∈H−

1
2
× (Γ) : divΓu ∈H−

1
2 (Γ)}. (2.28)
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The space H−
1
2
× (divΓ,Γ) is self-dual with respect to the antisymmetric dual

form (2.23) [77]. This should be interpreted as a realisation of the dual space,

in the sense described in Remark 1. The scalar surface curl is defined as [77]

curlΓu := divΓ(u×n), u ∈H−
1
2
× (Γ). (2.29)

and the space of surface-curl-conforming functions by

H−
1
2
× (curlΓ,Γ) : = {u ∈H−

1
2
× (Γ) : curlΓu ∈H−

1
2 (Γ)} (2.30)

= {u×n : u ∈H−
1
2
× (divΓ,Γ)}. (2.31)

The space H−
1
2
× (curlΓ,Γ) can also be seen as dual to H−

1
2
× (divΓ,Γ) with respect

to the standard L2 product (again, as described in Remark 1).

The above definitions allow us to obtain properties of the trace operators:

the Dirichlet and Neumann traces

γ±D : Hloc(curl,Ω)→H−
1
2
× (divΓ,Γ), (2.32)

γ±N : Hloc(curl2,Ω)→H−
1
2
× (divΓ,Γ), (2.33)

are continuous and surjective [74]. For proofs we refer to [78] for Lipschitz

polyhedra and [77] for general Lipschitz domains.

2.3 Potential Operators
Potential operators allow us to map boundary data to analytic functions de-

fined everywhere off the boundary and are later used in the representation

formulae allowing us to construct the field off the boundary from the ob-

tained boundary solution. For electromagnetic Maxwell problems, two po-

tential operators are required; the electric and magnetic potential operators

E , H : H−
1
2
× (divΓ,Γ)→Hloc(curl2,Ωi∪Ωe)∩Hloc(div0,Ωi∪Ωe) defined by

Ev(x) := ik
∫

Γ
v(y)G(x,y)dΓ(y)− 1

ik
∇x

∫
Γ
∇y ·v(y)G(x,y)dΓ(y), (2.34)



50 Chapter 2. The scattering problem and the PMCHWT formulation

Hv(x) :=∇x×
∫

Γ
v(y)G(x,y)dΓ(y), (2.35)

where G(x,y) is the fundamental solution of the Helmholtz equation given by

G(x,y) = exp(ik|x−y|)
4π|x−y|

. (2.36)

We note that the definition of E differs from the one in [74] by a factor of i to

account for the modified definition of γ±N in (2.17).

The potentials satisfy the following symmetry relations on H−
1
2
× (divΓ,Γ)

curl E = ikH, (2.37)

curl H =−ikE , (2.38)

and both potentials are Maxwell solutions, satisfying

curl curl E(u)−k2E(u) = 0, (2.39)

curl curl H(u)−k2H(u) = 0, (2.40)

for u ∈H−
1
2
× (divΓ,Γ), while also satisfying the Silver-Müller radiation condi-

tions. The following continuity properties hold: The mappings

E : H−
1
2
× (divΓ,Γ)→Hloc(curl2,Ωi∪Ωe)∩Hloc(div0,Ωi∪Ωe), (2.41)

H : H−
1
2
× (divΓ,Γ)→Hloc(curl2,Ωi∪Ωe)∩Hloc(div0,Ωi∪Ωe), (2.42)

are continuous.

Given that E and H satisfy the Maxwell equations, the Silver-Müller radi-

ation conditions and are continuous mappings, we can use them to express the

Maxwell solutions in terms of integral equations. This is done via the Stratton-

Chu representation formulae as follows. Any Maxwell solution u∈H(curl2,Ωi)
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satisfies

H
(
γ−Du

)
+E

(
γ−Nu

)
=


u(x), x ∈ Ωi,

0, x /∈ Ωi.
(2.43)

Any Maxwell solution u ∈Hloc(curl2,Ωe) that also satisfies the Silver-Müller

radiation conditions can be written as

−H
(
γ+
Du

)
−E

(
γ+
Nu

)
=


u(x), x ∈ Ωe,

0, x /∈ Ωe.
(2.44)

2.4 Boundary Integral Operators
By taking traces of the potential operators we can define boundary integral

operators. The electric and magnetic boundary integral operators on Γ are

defined as follows

S := {γD}E , (2.45)

C := {γD}H, (2.46)

for S, C : H−
1
2
× (divΓ,Γ)→H−

1
2
× (divΓ,Γ). Due to the symmetry relations (2.37)–

(2.38) the following properties hold

γ±NE = γ±DH, (2.47)

γ±NH =−γ±DE , (2.48)

allowing us to also express S and C through Neumann traces

S :=−{γN}H, (2.49)

C := {γN}E . (2.50)
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The following continuity properties hold: The mappings

S : H−
1
2
× (divΓ,Γ)→H−

1
2
× (divΓ,Γ), (2.51)

C : H−
1
2
× (divΓ,Γ)→H−

1
2
× (divΓ,Γ), (2.52)

are continuous.

To describe the behaviour of the potentials when crossing Γ, we also need

jump relations. For the Maxwell setup, the following jump relations hold [74]

[γD]E = [γN ]H = 0, (2.53)

[γN ]E = [γD]H =−I, (2.54)

where I : H−
1
2
× (divΓ,Γ)→H−

1
2
× (divΓ,Γ) is the identity operator mapping every

function to itself. Using the definitions (2.45)–(2.46), (2.49)–(2.50) and the

jump relations (2.53)–(2.54) the following also hold

S = γ±DE =−γ±NH, (2.55)

C = γ±NE ±
1
2I = γ±DH±

1
2I. (2.56)

Following the definition of the electric potential operator (2.34) and the relation

(2.55), we can express the electric boundary integral operator S by

S = ikSs− 1
ik
Sh, (2.57)

where Ss is smooth and Sh hypersingular. This decomposition is crucial in

the need of preconditioning, and is discussed in detail in Chapter 4.

Applying interior Dirichlet and Neumann traces to the interior Stratton

Chu formula (2.43) and using (2.55)–(2.56) we can get

γ−Du =
(
C+ 1

2I
)

(γ−Du) +S(γ−Nu), (2.58)

γ−Nu =−S(γ−Du) +
(
C+ 1

2I
)

(γ−Nu), (2.59)
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and similarly by applying exterior traces to the exterior formula (2.44)

γ+
Du =−

(
C − 1

2I
)

(γ+
Du)−S(γ+

Nu), (2.60)

γ+
Nu = S(γ+

Du)−
(
C − 1

2I
)

(γ+
Nu). (2.61)

The above can be written as

(1
2I + Ã

)γ−Du

γ−Nu

=

γ−Du

γ−Nu

 , (2.62)

(1
2I− Ã

)γ+
Du

γ+
Nu

=

γ+
Du

γ+
Nu

 , (2.63)

where Ã : H−
1
2
× (divΓ,Γ)2 → H−

1
2
× (divΓ,Γ)2 and I : H−

1
2
× (divΓ,Γ)2 →

H−
1
2
× (divΓ,Γ)2 are

Ã =

 C S

−S C

 , I =

I 0

0 I

 . (2.64)

The operators
(

1
2I + Ã

)
and

(
1
2I− Ã

)
: H−

1
2
× (divΓ,Γ)2→H−

1
2
× (divΓ,Γ)2 are

the interior and exterior Calderón projectors and by the Stratton-Chu repre-

sentation formulae satisfy

(1
2I + Ã

)2
=
(1

2I + Ã
)

, (2.65)(1
2I− Ã

)2
=
(1

2I− Ã
)

(2.66)

Expanding (2.65)–(2.66) leads to the following property

(
Ã
)2

= 1
4I, (2.67)
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which can then be expanded to reveal the following Calderón identities

S2 =−1
4I+C2, (2.68)

CS+SC = 0. (2.69)

These identities and their properties are fundamental in operator-based

Calderón preconditioning, and will be discussed later in Chapter 4. The op-

erator C is compact on smooth domains [79] and therefore C2 is also compact.

Equation (2.68) implies that S2 is a second-kind integral operator, i.e. of the

form “scaled identity plus compact operator” with eigenvalues accumulating

at −1
4 . This is known as the “self-regularising” property of S [80], and is a

crucial part of Calderón preconditioning discussed later in Chapter 4.

2.5 Boundary Integral Formulations
Now that we have defined the fundamental spaces and operators required we

can apply those in the context of scattering by multiple scatterers as was

described in Section 2.1. We refer to Table 2.1 for the new notation of the

operators adapted to the multi-particle setup. The main reference for this sec-

tion in the context of multi-particle notation is our work in [2]. We begin with

the boundary conditions (2.5)–(2.6) that can be written in terms of Dirichlet

traces as follows

γ−D,mEi
m = γ+

D,mEe, m= 1, . . . ,M , (2.70)

γ−D,mHi
m = γ+

D,mHe, m= 1, . . . ,M . (2.71)

Given that we are interested in solving (2.10)–(2.11) for the electric fields

Ei
m, m = 1, . . . ,M , and Ee we can get rid of the magnetic fields in the above

traces by using (2.2) and (2.4). Using the definition of the Neumann trace

(2.17) and (2.8) we can write the transmission boundary conditions as

uim = usm+uincm , m= 1, . . . ,M , (2.72)
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Notation Interpretation
(γ−D,m,γ−N ,m) (γ−D,γ−N ) for Γ = Γm and k = km, for m= 1, . . . ,M
(γ+
D,m,γ+

N ,m) same as above but with k = ke

(E im,Him) (E ,H) for Γ = Γm and k = km, for m= 1, . . . ,M
(Eem,Hem) same as above but with k = ke

(Cim,Sim) (C,S) for Γ = Γm and k = km, for m= 1, . . . ,M
(Cem,Sem) same as above but with k = ke

(Cem`,Sem`) map from Γ` to Γm and are defined for a boundary
vector field v` on Γl by

Cem`v` := (Ceṽl)|Γm , Sem`v` := (Seṽl)|Γm ,
where ṽl denotes the vector field on ∪Mj=1Γj which equals
v` on Γ` and zero on Γj , for j 6= `; |Γm its restriction to Γm;
and (Ce,Se) are (C,S) for Γ = ∪Mj=1Γj and k = ke

Im I for Γ = Γm, for m= 1, . . . ,M

Table 2.1: Interpretation of the operators in the context of multi-particle scatter-
ing.

where

uim =


γ−D,mEi

m

km
µm

γ−N ,mEi
m

 , usm =


γ+
D,mEs

ke
µe
γ+
N ,mEs

 , uincm =


γ+
D,mEinc

ke
µe
γ+
N ,mEinc

 . (2.73)

The next step is to re-write the Stratton Chu representation formulae

(2.43)–(2.44) in the context of scattering by multiple particles as follows: The

interior and exterior fields Ei
m, m= 1, . . . ,M and Es can be represented as

Him
(
γ−D,mEi

m

)
+E im

(
γ−N ,mEi

m

)
=


Ei
m(x), x ∈ Ωi

m,

0, x /∈ Ωi
m.

(2.74)
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−
M∑
m
Hem

(
γ+
D,mEs

)
−

M∑
m
Eem

(
γ+
N ,mEs

)
=


Es(x), x ∈ Ωe,

0, x /∈ Ωe.
(2.75)

In a similar manner to the previous section, one can take appropriate

interior and exterior Dirichlet and Neumann traces of (2.74)–(2.75) and use

(2.55)–(2.56) to show that the boundary traces satisfy

(1
2Im+Ai

m

)
uim = uim, m= 1, . . . ,M , (2.76)(1

2Im−Ae
m

)
usm−

M∑
6̀=m

Am`us` = usm, m= 1, . . . ,M , (2.77)

where

Ai
m =


Cim

µm
km
Sim

−km
µm
Sim Cim

 , Ae
m =


Cem

µe
ke
Sem

−ke
µe
Sem Cem

 , (2.78)

Am` =


Cem`

µe
ke
Sem`

−ke
µe
Sem` Cem`

 , Im =

Im 0

0 Im

 . (2.79)

Here

Ai
m : H−

1
2
× (divΓm ,Γm)2→H−

1
2
× (divΓm ,Γm)2, (2.80)

Ae
m : H−

1
2
× (divΓm ,Γm)2→H−

1
2
× (divΓm ,Γm)2, (2.81)

Am` : H−
1
2
× (divΓ`

,Γ`)2→H−
1
2
× (divΓm ,Γm)2, (2.82)

Im : H−
1
2
× (divΓm ,Γm)2→H−

1
2
× (divΓm ,Γm)2. (2.83)

The matrices
(

1
2Im+Ai

m

)
and

(
1
2Im−Ae

m

)
are scaled versions of the

Calderón projectors and similar to (2.65)–(2.66) satisfy

(1
2Im+Ai

m

)2
=
(1

2Im+Ai
m

)
, (2.84)(1

2Im−Ae
m

)2
=
(1

2Im−Ae
m

)
. (2.85)
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Equations (2.76) and (2.77) hold for any solutions of the Maxwell equa-

tions (2.10)–(2.11). To obtain a solution for the specific dielectric scattering

problem, one needs to combine (2.76) and (2.77) with the transmission bound-

ary conditions (2.72). One can combine the three systems in different ways

to obtain different formulations such as the Müller formulation [29] and its

variations [30], or the PMCHWT formulation [25, 26, 27, 28]. We focus here

on the well-studied PMCHWT formulation.

2.5.1 The PMCHWT formulation
To obtain the PMCHWT formulation, we subtract (2.77) from (2.76) and

eliminate the interior boundary traces uim via the boundary conditions (2.72)

to obtain,

(
Ai
m+Ae

m

)
usm+

M∑
6̀=m

Am`us` =
(1

2Im−Ai
m

)
uincm , (2.86)

for each m= 1, . . . ,M . We can combine these M systems into a block system

Aus =
(1

2I−Di
)

uinc, (2.87)

where

A =



Ae
1 +Ai

1 A12 · · · A1M

A21
. . . . . . ...

... . . . . . . A(M−1)M

AM1 · · · AM(M−1) Ae
M +Ai

M


, (2.88)

Di =



Ai
1 0 · · · 0

0 . . . . . . ...
... . . . . . . 0

0 · · · 0 Ai
M


, I =



I1 0 · · · 0

0 . . . . . . ...
... . . . . . . 0

0 · · · 0 IM


, (2.89)
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us =



us1

us2
...

usM


, uinc =



uinc1

uinc2
...

uincM


, (2.90)

with

A :
M⊕
m=1

H−
1
2
× (divΓm ,Γm)2→

M⊕
m=1

H−
1
2
× (divΓm ,Γm)2, (2.91)

Ai :
M⊕
m=1

H−
1
2
× (divΓm ,Γm)2→

M⊕
m=1

H−
1
2
× (divΓm ,Γm)2, (2.92)

I :
M⊕
m=1

H−
1
2
× (divΓm ,Γm)2→

M⊕
m=1

H−
1
2
× (divΓm ,Γm)2. (2.93)

Equation (2.87) is the PMCHWT formulation, expressed in the context of

multi-particle scattering and can be reduced to the traditional PMCHWT

formulation for one scatterer by taking M = 1. The PMCHWT formulation

(2.87) has a unique solution for any frequency ([74] for M = 1 and [81] for

M > 1).



Chapter 3

Galerkin Method, Discretisation

and Matrix Assembly

Our goal in this chapter is to describe the Galerkin method used to discretise

the PMCHWT formulation (2.87) that was described in Chapter 2 and give

information on the methods used for matrix assembly. We begin this section

with the variational problem of an abstract equation in the continuous and

discrete setup. We work with an abstract form first for three reasons:

• the notation is easier to follow for an abstract operator A, instead of

working with the block-structure of the PMCHWT formulation (2.87),

• the variational problem and transition from the continuous to the dis-

crete setting can be used for other BIE formulations, such as the Müller

formulation [29] and its variations [30],

• it is easier to understand how and why we pick the specific discrete spaces

later.

We extend the variational problem in abstract form to the Maxwell transmis-

sion problem, using the PMCHWT formulation. We discuss available discrete

spaces and choices for a stable discretisation of the Calderón product. Fi-

nally, we detail our matrix assembly methods, namely H-matrix assembly and

quadrature rules. The main references for the variational forms are [82, 76],

for the choice of spaces for a stable discretisation [36, 75], and for H-matrix

assembly and quadrature rules [83, 14, 13, 84, 75].
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3.1 Variational forms: abstract formulation

3.1.1 Continuous setting
We consider an abstract equation Au = f , where A : HA,dom → HA,ran is

a linear operator mapping between the Hilbert spaces HA,dom and HA,ran.

Given f ∈HA,ran, to find a solution one would have to solve a problem of the

form: find u ∈HA,dom such that

Au = f . (3.1)

Let
(
HA,ran

)∗
be the dual space of HA,ran, i.e. the linear space of linear

functionals on HA,ran, which is itself a Hilbert space. Then the problem (3.1)

can be equivalently stated in variational form as: find u ∈HA,dom such that

`(Au) = `(f) , for all ` ∈
(
HA,ran

)∗
. (3.2)

In practical applications it is often more convenient to work with realisa-

tions of the dual space [76] instead of the actual dual space. We refer back to

Remark 1 from Chapter 2 for the definition of a realisation of a dual space.

Let
(
HA,dual,L

)
be a realisation of

(
HA,ran

)∗
, where HA,dual is a Hilbert

space and L : HA,dual→
(
HA,ran

)∗
is an isomorphism, i.e. a bounded linear

operator with a bounded inverse, from which we define the duality pairing

〈u,v〉HA,dual×HA,ran := (Lu)(v), u ∈HA,dual, v ∈HA,ran. (3.3)

The statement that
(
HA,dual,L

)
is a realisation of

(
HA,ran

)∗
is equivalent

to the statement that 〈·, ·〉HA,dual×HA,ran is bounded and satisfies an inf-sup

condition [83].

Given such a realisation of
(
HA,ran

)∗
, we can generate a realisation of(

HA,dual
)∗

with
(
HA,ran,L∗

)
where L∗ : HA,ran→

(
HA,dual

)∗
is an isomor-
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phism and the adjoint operator of L, i.e.

(L∗φ)(ψ) = (Lψ)(φ), (3.4)

giving the duality pairing

〈v,u〉HA,ran×HA,dual = (L∗v)(u) = (Lu)(v) = 〈u,v〉HA,dual×HA,ran , (3.5)

for u ∈HA,ran, v ∈HA,dual.

With these realisations, the variational problem of (3.2) is equivalent to

the variational problem: find u ∈HA,dom such that

〈Au,q〉HA,ran×HA,dual = 〈f ,q〉HA,ran×HA,dual , for all q ∈HA,dual. (3.6)

The ‘weak’ form of the problem is given by: find u ∈HA,dom such that

Ãu = f̃ , (3.7)

where Ã := L∗A : HA,dom →
(
HA,dual

)∗
and f̃ := L∗f ∈

(
HA,dual

)∗
. The

‘strong’ form of the variational problem is: find u ∈HA,dom such that

(L∗)−1 Ãu = (L∗)−1 f̃ . (3.8)

Note that (L∗)−1 exists by construction of the realisation of
(
HA,dual

)∗
.
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3.1.2 Discrete Setting
In this section we consider a special case of what was presented in Section 3.1.1,

by introducing the notation for finite dimensional spaces. We aim to connect

the two sections later in Section 3.1.3. Let HA,dom
h , HA,ran

h and HA,dual
h be

finite dimensional spaces with

N := dim
(
HA,dom
h

)
= dim

(
HA,ran
h

)
= dim

(
HA,dual
h

)
, N ∈ N. (3.9)

Let Ah : HA,dom
h →HA,ran

h and f ∈HA,ran
h . We now consider the problem of

the previous subsection in a discrete setting: find uh ∈HA,dom
h such that

Ahuh = fh. (3.10)

Let
(
HA,dual
h ,Lh

)
be a realisation of

(
HA,ran
h

)∗
, with Lh : HA,dual

h →(
HA,ran
h

)∗
being an isomorphism, and let

(
HA,ran
h ,L∗h

)
be a realisation of(

HA,dual
h

)∗
, with L∗h : HA,ran

h →
(
HA,dual
h

)∗
being an isomorphism and the

adjoint operator of Lh. Then the problem of (3.10) is equivalent to the varia-

tional problem: find uh ∈HA,dom
h such that

〈Ahuh,qh〉HA,ran
h ×HA,dual

h
= 〈fh,qh〉HA,ran

h ×HA,dual
h

, for all qh ∈HA,dual
h .

(3.11)

The ‘weak’ form of the problem is given by: find uh ∈HA,dom
h such that

Ãhuh = f̃h, (3.12)

where Ãh := L∗hAh : HA,ran
h →

(
HA,dual
h

)∗
and f̃h := L∗hfh ∈

(
HA,dual
h

)∗
. The

‘strong’ form of the variational problem corresponds to: find uh ∈HA,dom
h such

that

(L∗h)−1 Ãhuh = (L∗h)−1 f̃h. (3.13)
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By choosing the bases

{
φA,dom
i

}N
i=1
∈HA,dom

h ,
{
φA,ran
i

}N
i=1
∈HA,ran

h ,
{
φA,dual
i

}N
i=1
∈HA,dual

h ,

we can express the matrix of the weak form operator Ã by

Aij =
(
Ãhφ

A,dom
j

)
(φA,dual
i ) =

〈
Ãhφ

A,dom
j ,φA,dual

i

〉(
HA,dual

h

)∗
×HA,dual

h

=
〈
(L∗h)−1 Ãhφ

A,dom
j ,φA,dual

i

〉
HA,ran

h ×HA,dual
h

,

=
〈
Ahφ

A,dom
j ,φA,dual

i

〉
HA,ran

h ×HA,dual
h

, (3.14)

and the matrix form of the isomorphism L∗h is given by

(MA)ij =
(
L∗hφ

A,ran
j

)
(φA,dual
i ) =

〈
L∗hφ

A,ran
j ,φA,dual

i

〉(
HA,dual

h

)∗
×HA,dual

h

=
〈
φA,ran
j ,φA,dual

i

〉
HA,ran

h ×HA,dual
h

. (3.15)

The matrix MA is often referred to as the mass matrix and is invertible by

the assumption that L∗h is an isomorphism. Following the above matrix forms,

the weak and strong linear systems that correspond to (3.10) are

Ax = b, (3.16)

M−1
A Ax = M−1

A b, (3.17)

where x are the coefficients of the solution in HA,dom
h and

bi = (f̃)
(
φA,dual
i

)
=
〈
f̃h,φA,dual

i

〉(
HA,dual

h

)∗
×HA,dual

h

=
〈
(L∗h)−1 f̃h,φA,dual

i

〉
HA,ran

h ×HA,dual
h

,

=
〈
fh,φA,dual

i

〉
HA,ran

h ×HA,dual
h

, (3.18)
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3.1.3 From the continuous to the discrete setting
We now aim to connect the previous two subsections by discussing the transi-

tion from the continuous to the discrete setting. We consider the case where

HA,dom
h ⊂HA,dom, HA,ran

h ⊂HA,ran, HA,dual
h ⊂HA,dual. (3.19)

Take Lh to be the restriction of L to HA,dual
h ⊂ HA,dual so that

〈·, ·〉HA,ran
h ×HA,dual

h
is the restriction of 〈·, ·〉HA,ran×HA,dual to HA,ran

h ×HA,dual
h .

We define the projection operator ΠHA,ran
h

: HA,ran→HA,ran
h to be the solution

of the variational problem: find ΠHA,ran
h

w ∈HA,ran
h so that

〈
ΠHA,ran

h
w,qh

〉
HA,ran

h ×HA,dual
h

= 〈w,qh〉HA,ran×HA,dual , for all qh ∈HA,dual
h .

(3.20)

The above is well-posed by the assumption that 〈·, ·〉HA,ran
h ×HA,dual

h
is a stable

dual pairing. Then, by taking

Ah := ΠHA,ran
h

A, fh := ΠHA,ran
h

f , (3.21)

the discrete variational form of (3.10) can be written as: find uh ∈ HA,dom
h

such that

〈Ahuh,qh〉HA,ran×HA,dual = 〈fh,qh〉HA,ran×HA,dual , for all qh ∈HA,dual
h ,

(3.22)

and the associated discrete matrices and vectors as

Aij =
〈
AφA,dom

j ,φA,dual
i

〉
HA,ran×HA,dual , (3.23)

(MA)ij =
〈
φA,ran
j ,φA,dual

i

〉
HA,ran×HA,dual , (3.24)

bi =
〈
f ,φA,dual

i

〉
HA,ran×HA,dual . (3.25)
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3.1.4 Operator Products
The strong form allows us to correctly discretise operator products which are

essential if we intend to use any form of operator preconditioning. Calderón

(operator) preconditioning is discussed in detail in Chapter 4, but for now we

consider some abstract operator preconditioner P : HP,dom→HP,ran mapping

between Hilbert spaces with HP,dual the realisation of the dual of HP,ran in the

same sense as was discussed in the earlier subsections. Imposing the restriction

HP,dom = HA,ran and applying P to (3.1) gives

PAu = Pf . (3.26)

Following the same variational approach, with

HP,dom
h ⊂HP,dom, HP,ran

h ⊂HP,ran, HP,dual
h ⊂HP,dual (3.27)

and basis functions

{
φP,dom
i

}N
i=1
∈HP,dom

h ,
{
φP,ran
i

}N
i=1
∈HP,ran

h ,
{
φP,dual
i

}N
i=1
∈HP,dual

h ,

(3.28)

one can obtain the weak and strong discrete systems of the preconditioned

formulation

PM−1
A Ax = PM−1

A b, (3.29)

M−1
P PM−1

A Ax = M−1
P PM−1

A b, (3.30)

with

Pij =
〈
PφP,dom

j ,φP,dual
i

〉
HP,ran×HP,dual , (3.31)

(MP)ij =
〈
φP,ran
j ,φP,dual

i

〉
HP,ran×HP,dual . (3.32)
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3.2 Variational forms: the PMCHWT formu-

lation
We are now going to apply the theory from Section 3.1 to the case of the

PMCHWT formulation (2.87) where

A :
M⊕
m=1

H−
1
2
× (divΓm ,Γm)2→

M⊕
m=1

H−
1
2
× (divΓm ,Γm)2.

We recall that H−
1
2
× (divΓm ,Γm) is self-dual with respect to the anti-symmetric

pairing of (2.23), and therefore ⊕M
m=1 H−

1
2
× (divΓm ,Γm)2 is self-dual with re-

spect to [74]

〈
M⊕
m=1

 am
bm

 ,
M⊕
m=1

 cm
dm

〉
τ×τ

=
M∑
m=1
〈am,dm〉τ ,Γm + 〈bm,cm〉τ ,Γm . (3.33)

The above self-duality statements are to be interpreted as realisations of dual

spaces as discussed in Remark 1 in Chapter 2. Following the notation of the

previous section,

HA,dom = HA,ran = HA,dual =
M⊕
m=1

H−
1
2
× (divΓm ,Γm)2,

and if we consider some abstract operator preconditioner

P :
M⊕
m=1

H−
1
2
× (divΓm ,Γm)2→

M⊕
m=1

H−
1
2
× (divΓm ,Γm)2,

then

HP,dom = HP,ran = HP,dual =
M⊕
m=1

H−
1
2
× (divΓm ,Γm)2.
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3.2.1 Discrete Spaces
We now discuss appropriate discrete spaces, which we later use for the dis-

cretisation of the operator products. Let Γhm be a triangulation of Γm with

Nm ∈ N piecewise flat triangular elements of diameter ≤ h, with

Γhm :=
Nm⋃
j=1

Γjm, (3.34)

for the faces (triangles) Γ1
m, . . . ,ΓNm

m , for m= 1, . . . ,M . We refer to Γhm as the

primal mesh.

Let Γh′m be a barycentric refinement of the primal mesh consisting of 6Nm
elements with diameter ≤ h′. To barycentrically refine a grid we take the

barycentre of each triangle in the primal mesh and connect it with the three

original vertices and the three midpoints of its edges, creating 6 new smaller

triangles within each of the original one. We refer to Γh′m as the barycentric

mesh.

Let Γdm be the dual mesh defined on the barycentrically refined grid.

The elements of the dual mesh are polygons, consisting of all triangles in

the barycentrically refined mesh attached to a vertex of the primal mesh. An

example of a primal mesh, its barycentric refinement and the corresponding

dual mesh can be seen in Figure 3.1.

Figure 3.1: Primal mesh (left), barycentric refinement of the primal mesh (centre),
and dual mesh (right).
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3.2.1.1 Raviart-Thomas and Rao-Wilton-Glisson basis functions
Commonly used finite spaces for H−

1
2
× (divΓm ,Γm) are the Raviart-Thomas

(RT) [85] and Rao-Wilton-Glisson (RWG) basis functions [86]. For the jth

edge in the mesh Γhm, between two triangles Γj,+m and Γj,−m , the 0th order RT

basis functions are defined by

RTj
m(r) :=



1

2Aj,+m
(r−pj,+m ), r ∈ Γj,+m ,

1

2Aj,−m
(r−pj,−m ), r ∈ Γj,−m ,

0, otherwise.

(3.35)

Here Aj,+m and Aj,−m are the areas of triangles Γj,+m and Γj,−m respectively, and

pj,+m , pj,−m are vertices on Γj,+m and Γj,−m not on the shared edge. A schematic

representation is shown in Figure 3.2.

𝒑𝑚
𝑗,+

𝒑𝑚
𝑗,−

Γ𝑚
𝑗,+

Γ𝑚
𝑗,− 𝑹𝑻𝑚

𝑗
(𝒓)

𝑗th edge

Figure 3.2: The 0th order Raviart-Thomas RTj
m basis functions defined on a pair

of triangles Γj,+
m and Γj,−

m , on the primal mesh Γh
m.
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On the same mesh Γhm, edge and pair of triangles, the RWG basis func-

tions are defined by

RWGj
m(r) := ljmRTj

m(r), (3.36)

where ljm is the length of the common edge between Γj,+m and Γj,−m .

Let RTm and RWGm be the spaces spanned by RTj
m and RWGj

m,

j = 1, . . . ,N respectively. The space of div-conforming basis functions RTm

(or RWGm) contains a subspace that is completely orthogonal to itself with

respect to the anti-symmetric dual pairing (2.23) [87]. Choosing φA,dom
m,j =

φA,ran
m,j = φA,dual

m,j = RTj
m (or RWGj

m) would violate the inf-sup stability con-

ditions making the mass matrix MA non-invertible (and similarly for MP if

the same argument is applied to basis functions of the preconditioner). For

this reason, a second set of basis functions defined on the dual mesh is used.

A common choice is the Buffa-Christiansen basis functions [88] and these are

discussed in the following subsection.

3.2.1.2 Buffa-Christiansen basis functions
Buffa-Christiansen (BC) functions [88] are defined on the dual mesh Γdm, based

on polygonal pairs, as shown in Figure 3.3. A polygonal pair P j,±m is formed

by considering the jth edge of a triangle pair in the primal mesh and taking all

the smaller triangles of the barycentrically refined mesh that have as a node

either end of the common edge of the triangle pair. The polygon surrounding

the starting point of the jth edge is P j,+m and the polygon surrounding the

endpoint is P j,−m . We denote the total number of triangles within polygon

P j,±m as N
P j,±

m
∈ N. We denote the common edges of the triangles within the

polygon pair by eji,±m , i= 0, . . . ,N
P j,±

m
−1, as shown in Figure 3.3.

The Buffa Christiansen basis functions associated with the jth edge BCj
m

are defined as a combination of RWG functions on the barycentrically refined
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Figure 3.3: A polygonal pair Pj,±
m on the barycentrically refined grid Γh′

m. The
original triangles are marked with bold black edge colour.

mesh [87]

BCj
m(r) =

2N
P

j,+
m
−1∑

i=1

N
P j,+

m
− i

2lji,+m N
P j,+

m

RWGji,+
m −

2N
P

j,−
m
−1∑

i=1

N
P j,−

m
− i

2lji,−m N
P j,−

m

RWGji,−
m

+
1

2lj0,+
m

RWGj0,+
m −

1

2lj0,−
m

RWGj0,−
m , (3.37)

where lji,±m is the length of edge eji,±m and RWGji,±
m is the RWG function on

the triangle pair associated with edge eji,±m in polygon P j,±m .

Let BCm be the space spanned by BCj
m. Choosing φA,ran

m,j = RWGj
m

and φA,dual
m,j = BCj

m (and vice versa) gives a well conditioned mass matrix

MA because inf-sup stability conditions between the two finite spaces are now

satisfied. The inf-sup stability condition is as follows and is proved in [88]:
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There exists C > 0 such that for all h:

inf
u∈RWGm

sup
v∈BCm

〈u,v〉τ ,Γm

‖u‖
H
− 1

2
× (divΓm ,Γm)

‖v‖
H
− 1

2
× (divΓm ,Γm)

≥ 1/C. (3.38)

3.2.2 Stable discretisation of the Calderón product
There are different ways of using RWGm and BCm functions to take advan-

tage of the inf-sup stability between their pairings. One choice, introduced in

[36] and used in our work in [3] is

HA,dom
h = HA,dual

h = HP,ran
h =

M⊕
m=1

 RWGm

RWGm

 , (3.39)

HP,dom
h = HP,dual

h = HA,ran
h =

M⊕
m=1

 BCm

BCm

 , (3.40)

while another choice, introduced in [75] and used in [2] is

HA,dom
h = HA,dual

h = HA,ran
h = HP,dom

h = HP,dual
h = HP,ran

h =
M⊕
m=1

 RWGm

BCm

 .

(3.41)

Both (3.39)–(3.40) and (3.41) possess symmetries that allow the overall

assembly time and memory to be reduced. We have not yet discussed the choice

of preconditioner P (this is discussed in detail in Chapter 4), but Calderón

preconditioning consists of some (or all) of the operators used in A. Using

discretisation (3.41), where the same discrete spaces are used for both P and

A, allows us to obtain P for ‘free’ once A is assembled, as one can extract the

relevant operators from A to create P. This is not possible with the current

implementation using (3.39)–(3.40), since different spaces are used for P and

A 1. However, recalling the definition of the operators Ai
m, Ae

m and Am`

1We note that one could assemble all operators on the barycentrically refined RWG
spaces and obtain the standard RWG and BC through projections. More details on the
assembly on the barycentrically refined grid are given later in Section 3.3.4.
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from (2.78)–(2.79), we see that each block of 4 operators consists of only two

distinct versions of C and S. This allows us to assemble each of them only once,

cutting the assembly cost (time and memory) in half, compared to (3.41) where

this is not possible. The same holds for P , with the explicit forms defined in

the next chapter. Assembling an operator with BCm functions is significantly

more expensive compared to discretising with RWGm, because of the 6-fold

increase in the number of elements on the barycentrically refined mesh. Using

(3.39)–(3.40) places the burden of this cost on the preconditioner. This cost

can then be mitigated by using acceleration techniques, such as

1. reducing the number of operators used in the preconditioner P , which

we discuss in Chapter 4,

2. considering a bi-parametric implementation where the assembly routine

for P is cheaper (but of poorer quality) than that of A, as we discuss

later in Chapter 5,

or a combination of both (discussed in Chapters 5 and 6).

3.3 Matrix Assembly
A dense assembly of the operators would lead to an O(N2) computational cost

for N degrees of freedom. In addition, in order to capture the wave solution

one needs to refine the mesh size with respect to the wavelength λ = 2π/k,

usually at 10 elements per wavelength [5], with the cost therefore scaling as

O(k4). A dense assembly is therefore impractical for large problems and faster

alternatives are needed. Such alternative methods are the H-matrix methods

[13, 14] and their variants (H2 [15]) or the Fast Multipole Methods (FMM)

[17, 18, 19]. The complexity using H-matrices reduces to O(rN logN) [84],

where r is a measure of the local approximation rank required to achieve a

prescribed accuracy and to O(N logN) for an FMM implementation.



3.3. Matrix Assembly 73

3.3.1 H-matrix assembly
We note that H-matrix compression is a widely used technique and here we

focus on its implementation in Bempp [84]. The implementation was not per-

formed by the author of this thesis but we review the basic ideas here so that

we can explain our bi-parametric approach later in Chapter 5. In particu-

lar, the main ideas required for the bi-parametric approach are in equations

(3.45) and (3.46) and Section 3.3.2, but we include more details for complete-

ness. The concepts required for the bi-parametric implementation can be easily

translated to FMM or other H-matrix implementations.

We define the index sets

I := I(0)
1 = {0,1, . . . ,N −1},

J := J (0)
1 = {0,1, . . . ,N −1},

to be the set of degrees of freedom (dofs) in the test and trial spaces respec-

tively. The H-matrix compression is based on a repeated subdivision of those

sets into T (I) and T (J ), referred to as cluster trees. The roots of the trees

T (I) and T (J ), are the index sets I and J respectively. On each level,

the index sets are divided into two disjoint sets, e.g. I(1)
1 = {0,1, . . . , N2 − 1}

and I(1)
2 = {N2 , . . . ,N − 1}, called nodes, and J (1)

1 = {0,1, . . . , N2 − 1} and

J (1)
2 = {N2 , . . . ,N − 1} respectively. Each subgroup is then subdivided into

two subsubgroups and so on. A schematic representation of the cluster tree

T (I) of depth 3 is shown in Figure 3.4. When the number of dofs in a node is

below a specified tolerance nmin, the subdivision stops and that node is called

a leaf.

Once the cluster trees T (I) and T (J ) are generated, we proceed to gen-

erate a block cluster tree T (I ×J ) as follows. We set the root of T (I ×J ) as

the index set I ×J . Consider a node I(q)
p ×J (s)

r of T (I ×J ), where I(q)
p and

J (s)
r are nodes of T (I) and T (J ) respectively, at level p (r respectively) and

index q (s respectively) and geometric bounding boxes X
(
I(q)
p

)
and Y

(
J (s)
r

)
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Figure 3.4: Example of the division of dofs of a cluster tree T (I) with depth 3.

associated with the cluster nodes I(q)
p and J (s)

r . The pair of nodes I(q)
p and

J (s)
r is deemed admissible if 2

dist
(
X
(
I(q)
p

)
,Y
(
J (s)
r

))
> 0. (3.42)

If the admissibility condition fails, the block is further refined by defining

children of the node I(q)
p ×J (s)

r

children
(
I(q)
p ×J (s)

r

)
=
{
I(q+1)
p1 ×J (s+1)

r1 , I(q+1)
p1 ×J (s+1)

r2 ,

I(q+1)
p2 ×J (s+1)

r1 , I(q+1)
p2 ×J (s+1)

r2

}
, (3.43)

where I(q+1)
p1 , I(q+1)

p2 are the children of I(q+1)
p generated by the subdivision

2A frequently used condition for admissibility is [84]

min
{

diam
(
X
(
I(q)

p

))
,diam

(
Y
(
J (s)

r

))}
≤ α dist

(
X
(
I(q)

p

)
,Y
(
J (s)

r

))
,

where diam is the diameter of the bounding box and dist is the distance of the two bounding
boxes. The parameter α controls how strong the separation between the two boxes needs to
be for the admissibility condition to be satisfied. Bempp uses a weaker condition as shown
in (3.42). In practice this works well and usually leads to a fewer number of blocks on the
block cluster tree [84].
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Figure 3.5: An example of a block cluster tree produced by Bempp. The red blocks
represent the inadmissible blocks, while the green represent the admissible blocks.

of the index set and J (s+1)
r1 , J (s+1)

r2 the children of J (s+1)
r . The sub-blocks

generated by the children are then checked for the admissibility condition. The

refinement stops until all sub-blocks are deemed admissible or are smaller than

some specified minimum block size, in which case they are called inadmissible.

An example of a block-cluster tree is given in Figure 3.5.

Once the block cluster tree is generated we can store the Galerkin matrix

in H-matrix representation. This consists of storing the sub-matrices cor-

responding to inadmissible blocks as full matrix (dense) representations and

those corresponding to admissible blocks using a low rank approximation, gen-

erated by adaptive cross approximation (ACA) [89, 90, 91]. For any admissible

block of size n×m with underlying matrix B and given a tolerance parameter

ν > 0, the ACA algorithm delivers an r-rank approximation

Bν =
r∑
i=1

uivHi , (3.44)



76 Chapter 3. Galerkin Method, Discretisation and Matrix Assembly

such that

‖Bν−B‖2 ≤ ν‖B‖F , (3.45)

with r = r(ν,B). Varying ν controls the quality (accuracy) and cost of the

low-rank approximations.

Our H-matrix approximation in Bempp has an additional feature, that

saves computational time and memory by assembling only a subset of admissi-

ble blocks that represent near-field interactions. Given a user-specified cutoff

parameter χ∈ [0,∞), the admissible blocks that satisfy the near-field condition

dist
(
X
(
I(q)
p

)
,Y
(
J (s)
r

))
≤ χ, (3.46)

are assembled using ACA, while all other admissible blocks are set to zero.

Setting χ=∞ corresponds to assembling all admissible blocks, as in a standard

implementation.

3.3.2 Quadrature
Assembly of both the admissible and inadmissible blocks for A and P requires

the evaluation of the Galerkin integrals (3.23) and (3.31) respectively. Each of

these can be written in terms of integrals of the form

∫
T1

∫
T2
F (x,y)ds(y)ds(x), (3.47)

where T1 and T2 are triangles in either the primal mesh or the barycentric

mesh, and the integrand F (x,y) involves the fundamental solution G (defined

in (2.36)) and a pair of discrete basis functions. When the closures of T1 and T2

are disjoint, F (x,y) is smooth and a standard tensor product Gauss rule based

on symmetric Gauss points over triangles is used. The number of quadrature

points used depends on whether the integral is classified by Bempp as either

near-, medium- or far field (based on the distance between the triangles and

their sizes), with corresponding quadrature order parameters qnear, qmedium
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and qfar for each case. When T1 and T2 share a vertex, edge or are the same

triangle, F (x,y) is singular and quadrature routines of the type described

in [83] are applied, with a single quadrature order parameter qsingular for all

singular cases. We use

q = (qnear,qmedium,qfar,qsingular) (3.48)

to refer to all quadrature order parameters defined in Bempp.

The cost of the assembly of boundary element matrices depends on the

number of kernel evaluations for each triangle pair T1 and T2. For non-

singular integral the default values (qnear,qmedium,qfar) = (4,3,2) correspond

to (36,16,9) integrand evaluations respectively. For singular integrals the de-

fault value qsingular = 6 corresponds to 512 integrand evaluations if T1 and T2

share a common vertex, 1280 if T1 and T2 share a single common edge, and

1536 if T1 and T2 coincide.

3.3.3 Assembly of mass matrices
Computations of the inverse mass matrices M−1

A and M−1
P are fast compared

to the other operators. In particular, the mass-matrices MA and MP are block

diagonal with M sparse blocks. To compute the inverse mass matrices, 2M

independent sparse LU decompositions are required in total 3. In the case of

3D scattering, such as the problems considered in this thesis, the mass matrix

is formed over a two dimensional manifold in three dimensional space but it is

still cheap to assemble compared to the other operators. For more details on

the assembly of mass matrices in Bempp we refer to [75].
3The discretisation scheme of (3.39)–(3.40) requires M LU decompositions for M−1

A
and M decompositions for M−1

P . Using the discretisation scheme of (3.41) gives M−1
A =

M−1
P but still requires 2M decompositions in total as each diagonal block now requires 2

LU decompositions. We refer back to Section 3.2.2 for the discussion regarding the two
discretisation schemes used.
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3.3.4 Assembly on the barycentrically refined grid
Any operators that are defined using the BC space (either by using the discreti-

sation of (3.39)–(3.40) or (3.41)), are assembled using RWG basis functions on

the barycentrically refined grid (via H-matrix assembly as described earlier in

Section 3.3.1) and are then projected to the BC space through basis transfor-

mation matrices. Operators that are defined using RWG basis functions are

assembled on the coarse mesh without the need for projections. It is possible

to disable the default method of projections and assemble the BC functions

directly on the coarse mesh but this is significantly slower. Given that each

diagonal block of the PMCHWT formulation (2.88) consists of 8 operators, it

would be very slow to assemble the matrices without projections. Instead, we

look at other ways of minimising the memory cost in Chapters 4 and 5. For

more details on the implementation in Bempp we refer to [75].



Chapter 4

Accelerated Calderón

Preconditioning I:

operator-based approach

This chapter discusses one of the author’s main contributions of this thesis,

with the results presented in this chapter included in [2] and [3]. We recall

from Chapter 1 that we are looking for some operator P applied to the PM-

CHWT formulation such that PA has better properties than A and therefore

its discrete version is easier to solve numerically. The computational cost of

solving the preconditioned system is affected by

(i) the choice of preconditioning operator P , and

(ii) the choice of discretisation for the operator product PA.

In this chapter we focus on (i) by considering a range of different Calderón

preconditioners, although the choice of discretisation (ii) is also discussed and

justified for our choice of preconditioners.

In Section 4.1, we recall the traditional Calderón preconditioner of the

PMCHWT formulation that was presented in [36] for the single-particle set-

up (M = 1) and then extend it to the multi-particle case (M > 1). The spectral

properties of the resulting operators are discussed as they provide a heuristic

indication of the GMRES performance. Numerical experiments comparing

the performance of the traditional Calderón preconditioner are also presented,
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demonstrating that for the specific discretisation we use, traditional Calderón

preconditioning does not perform any better than simple mass matrix precon-

ditioning when one accounts for the overall matrix-vector products performed.

In an effort to reduce computational cost (including assembly time, mem-

ory consumption, number of iterations, matrix-vector products and solve time)

we look at minimising the number of operators used in the preconditioner while

still maintaining a good preconditioning effect. We present the reduced precon-

ditioners in Section 4.2. This includes a discussion of their spectral properties

along with numerical experiments comparing their performance for a range of

model problems.

Our numerical experiments show that the reduced preconditioners defined

later in (4.27), provide some regularising effect, requiring less memory and

assembly time compared to the traditional choice. Some of them incur a

longer GMRES time, but due to the reduction in assembly time, the total

computational time was shorter. The choice of preconditioner depends on a

number of parameters, such as the number of scatterers, the wavenumber,

refractive index and how many GMRES solves are to be performed.

The preconditioners Se and Si (defined later in (4.29)–(4.30)) require

only 25% of the memory cost of the traditional preconditioner. For larger

wavenumbers, the GMRES solution time is longer but the total computational

time is in most cases below 50%. If one GMRES solve is to be performed,

then the use of these two preconditioners allows the solution of much higher

frequency problems that would otherwise not be possible due to memory and

time constraints. If the goal is to simulate random orientation (discussed

later in Chapter 7) where multiple GMRES are performed at a time, then

our preconditioner of choice would be a preconditioner that does not incur

a longer solution time. This can be achieved by preconditioners Di and De

(defined in (2.89) and later in (4.28) respectively) that achieve a 50% reduction

in memory consumption and have a GMRES solution time that is either equal

to the traditional preconditioner or up to 50% faster.
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4.1 Traditional Calderón preconditioning
The PMCHWT formulation (2.87) is well-posed with a unique solution for

every frequency [74, 81] at the continuous setting. Upon discretisation, the

resulting linear system of equations is ill-conditioned leading to a large number

of iterations when solved with an iterative solver, such as GMRES [92]. To

understand the origin of this ill-conditioning we first consider single-particle

scattering (M = 1).

The PMCHWT operator for M = 1 reduces to

A = Ae
1 +Ai

1 =

 Ce1 +Ci1 µe
ke
Se1 + µ1

k1
Si1

− ke
µe
Se1− k1

µ1
Si1 Ce1 +Ci1

 . (4.1)

The operators Ce1 and Ci1 are compact on smooth domains [79], which implies

that their corresponding discrete versions have eigenvalues clustering around

zero. The operators Se1 and Si1 consist of both smooth and hypersingular terms

(see (2.57)) that have accumulation points at zero and infinity respectively [36]

when discretised. These suggest that the discrete PMCHWT operator will be

ill-conditioned. An example of the spectrum of the discrete forms of C and

S (using the mixed discretisation of (3.41)) is shown in Figure 4.1, which

confirms the accumulation points at zero and infinity.

Figure 4.1: Spectrum of the strong discrete operators of C (left) and S (right)
using the mixed discretisation of (3.41), on the unit sphere with k = 1.5 and a mesh
width of approximately 0.1 resulting in 3206 elements.
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We recall that our goal (with regards to (i)) is to precondition the PM-

CHWT operator and minimise the computational costs (assembly time, mem-

ory consumption, number of iterations, matrix-vector products and solve time).

This can be achieved by obtaining an invertible second kind operator, i.e. of

the form of a scaled identity plus a compact operator. An invertible second

kind integral operator has a bounded spectrum, i.e. the eigenvalues do not

accumulate at infinity, and it is clustered away from zero (accumulating at the

scalar which the identity is multiplied with) when discretised. This ensures

that the discrete system’s condition number, i.e. the ratio of the largest over

the smallest singular value is bounded as discretisation becomes finer [36]. To

achieve this, one needs to utilise the Calderón identities of (2.68)–(2.69), with

the traditional choice in this case being [36]

P = A. (4.2)

It is well established in literature that the resulting operator A2 is well-posed

[36, 37, 38, 39] (except in the case of very high contrast materials [36]) with

accumulation points not clustering around zero or tending to infinity. Niino

and Nishimura [38] have remedied the high contrast material problem by pre-

multiplying the preconditioner by some scalar operator. For the purposes of

this thesis, we do not consider high contrast materials and as such we proceed

with the traditional Calderón preconditioner of (4.2). Moving to the multi-

particle setup (M > 1) the same strategy can be applied by taking P = A,

where A is now the full operator of (2.88).

4.1.1 Spectral Properties
For a discrete matrix not far from normality, GMRES converges fast if its

eigenvalues are clustered away from the origin [93]. We note that even though

our discrete system is non-normal in general, the spectral properties of A2

are a popular discussion topic when considering Calderón preconditioning as

they can give a good heuristic indication of the GMRES convergence, see for
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example [36, 38, 94, 95, 39, 96, 97]. In general, the eigenvalue distribution of

the discrete system provides an indication of its conditioning and can be used

for guidance on whether the methods can perform well in practice.

The resulting operator, A2, has 2 accumulation points in the case of

M = 1, at

Λ1 = 1
2 + 1

4
µ1
µe

+ 1
4
µe
µ1

, (4.3)

Λ2 = 1
2 + 1

4
µ1
µe

(
ke
k1

)2
+ 1

4
µe
µ1

(
k1
ke

)2
. (4.4)

These have been reported in [38] for the case M = 1 and were proved using

Fourier transforms but one can also use the splitting properties of [94, 95].

We present here derivation of the above accumulation points (4.3)–(4.4) for

the special case of a sphere, M = 1, as this is not currently available in lit-

erature. Derivation of the case M > 1 goes beyond the scope of this thesis

as it requires expansion of spherical harmonics from different domains. Nu-

merical experiments assuming three spheres, M = 3, suggest that the above

could be generalised for the multi-particle setting (by adjusting the appropri-

ate wavenumbers and magnetic permeabilities). An example of the spectrum

of M−1AM−1A together with the theoretical accumulation points is shown

in Figure 4.2. We note that results from [38, 94, 95] regarding (4.3)–(4.4)

have not been restricted to the unit sphere and should hold for non spherical

domains. Numerical experiments, although not present here, have confirmed

that the same accumulation points are achieved when the sphere is substituted

by a unit cube or a single branch of a rosette aggregate (see Figure 1.2(c)).

Theorem 1. Consider a sphere of radius 1. Let Up
n, Xp

n be the vector spherical

harmonics of degree n and order p for the sphere defined as

Up
n(θ,φ) = 1√

n(n+ 1)
∇ΓY

p
n (θ,φ), (4.5)

Xp
n(θ,φ) = n×Up

n(θ,φ), (4.6)
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Figure 4.2: Spectrum of the discrete operator M−1AM−1A for a single and multi-
particle setting. On the left the scatterer is the unit sphere centred at the origin
with refractive index n1 = 1.0833 + 0.204i. On the right the scatterers are three
unit spheres centred at (−1.5,0,0), (0,0,0) and (1.5,0,0), with refractive indices
n1 = 1.311 + 2.289× 10−9i, n2 = 1.7746 + 0.00940i and n3 = 1.0833 + 0.204i. The
exterior wavenumber is ke = 1.5 in both cases. The interior wavenumbers are given
by km = nmke, for m = 1,2,3. The spheres were discretised with a mesh width of
approximately 20 elements per wavelength.

where Y pn are the scalar spherical harmonics, (θ,φ) are the spherical polar

coordinates and ∇Γ is the surface gradient. Then, for large n and for M = 1

A2

Up
n

Xp
n

=
(

Λ1 +O
( 1
n

))Up
n

Xp
n

 , (4.7)

A2

Xp
n

Up
n

=
(

Λ2 +O
( 1
n

))Xp
n

Up
n

 . (4.8)

Proof. To prove the theorem we use the definitions and properties of the vector

spherical harmonics and the properties of boundary integral operators applied

to them as presented in [98, 99]. Let Pn(x) denote the standard Legendre

polynomial of degree n. The spherical harmonic of degree n and order p is

defined by

Y pn (θ,φ) =
√

2n+ 1
4π

√√√√(n−|p|)!
(n+ |p|)!P

|p|
n (cosθ)exp(ipφ). (4.9)
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The spherical Bessel and Hankel functions of the first kind are defined as

jn(x) =
√
π

2xJn+ 1
2
(x), h(1)

n (x) =
√
π

2xH
(1)
n+ 1

2
(x), (4.10)

where Jn and H
(1)
n are the Bessel and Hankel functions of the first kind. The

Riccati-Bessel and Riccati-Hankel functions are defined as

Jn(x) = xjn(x), Hn(x) = xh(1)
n (x). (4.11)

Applying the magnetic and electric boundary integral operators to the vector

spherical harmonics we obtain

C(Up
n) = 1

2
(
iJn(k)H′n(k) + iJ′n(k)Hn(k)

)
Up
n, S(Up

n) =−J′n(k)H′n(k)Xp
n,

C(Xp
n) =−1

2
(
iJn(k)H′n(k) + iJ′n(k)Hn(k)

)
Xp
n, S(Xp

n) = Jn(k)Hn(k)Up
n.

(4.12)

where J′n(k) and H′n(k) are the derivatives of the functions with respect to

their arguments. In the asymptotic limit of n→∞ the following hold [98]

Jn(x)Hn(x)∼− ix
2n +O

( 1
n2

)
, (4.13)

J′n(x)H′n(x)∼ ni
2x +O(1), (4.14)

iJn(k)H′n(k) + iJ′n(k)Hn(k)∼O
( 1
n

)
. (4.15)

We can now apply A2 to the vector spherical harmonics and obtain their
asymptotic forms. One can show that for the diagonal blocks

A2
11(Up

n) = 1
4
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)2 Up
n

+
(
µ1
k1

Jn(k1)Hn(k1) + µe

ke
Jn(ke)Hn(ke)

)(
k1
µ1

J′n(k1)H′n(k1) + ke

µe
J′n(ke)H′n(ke)

)
Up

n,

(4.16)

A2
11(Xp

n) = 1
4
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)2 Xp
n
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+
(
µ1
k1

J′n(k1)H′n(k1) + µe

ke
J′n(k1)H′n(k1)

)(
k1
µ1

Jn(k1)Hn(k1) + ke

µe
Jn(ke)Hn(ke)

)
Xp

n,

(4.17)

A2
22(Up

n) = 1
4
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)2 Up
n

+
(
k1
µ1

Jn(k1)Hn(k1) + ke

µe
Jn(ke)Hn(ke)

)(
µ1
k1

J′n(k1)H′n(k1) + µe

ke
J′n(ke)H′n(ke)

)
Up

n,

(4.18)

A2
22(Xp

n) = 1
4
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)2 Xp
n

+
(
k1
µ1

J′n(k1)H′n(k1) + ke

µe
J′n(ke)H′n(ke)

)(
µ1
k1

Jn(k)Hn(k) + ke

µe
Jn(ke)Hn(ke)

)
Xp

n,

(4.19)

and for the off-diagonal blocks

A2
12(Up

n) = 1
2
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)
(
µ1
k1

J′n(k1)H′n(k1) + µe

ke
J′n(ke)H′n(ke)

)
Xp

n

−1
2
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)
(
µ1
k1

J′n(k1)H′n(k1) + µe

ke
J′n(ke)H′n(ke)

)
Xp

n,

(4.20)

A2
12(Xp

n) = 1
2
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)
(
µ1
k1

Jn(k1)Hn(k1) + µe

ke
Jn(ke)Hn(ke)

)
Up

n

−1
2
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)
(
µ1
k1

Jn(k1)Hn(k1) + µe

ke
Jn(ke)Hn(ke)

)
Up

n,

(4.21)

A2
21(Up

n) = 1
2
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)
(
k1
µ1

J′n(k1)H′n(k1) + ke

µe
J′n(ke)H′n(ke)

)
Xp

n

−1
2
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)
(
k1
µ1

J′n(k1)H′n(k1) + ke

µe
J′n(ke)H′n(ke)

)
Xp

n,

(4.22)

A2
21(Xp

n) = 1
2
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)
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k1
µ1

Jn(k1)Hn(k1) + ke

µe
Jn(ke)Hn(ke)

)
(Up

n)

−1
2
(
iJn(k1)H′n(k1) + iJ′n(k1)Hn(k1) + iJn(ke)H′n(ke) + iJ′n(ke)Hn(ke)

)
(
k1
µ1

Jn(k1)Hn(k1) + ke

µe
Jn(ke)Hn(ke)

)
(Up

n).

(4.23)

The off-diagonal parts are identically zero, while the remaining diagonal terms

in asymptotic form give

A2
11(Up

n)∼ Λ1Up
n, A2

11(Xp
n)∼ Λ2Xp

n, (4.24)

A2
22(Up

n)∼ Λ2Up
n, A2

22(Xp
n)∼ Λ1Xp

n. (4.25)

Combining the asymptotic forms proves the theorem.

We now examine whether the accumulation points (4.3)–(4.4) can be zero

or tend to infinity. We can observe

• Λ1 = 0 ⇐⇒ µ1 =−µe,

• Λ2 = 0 ⇐⇒ µ1
k2

1
= −µe

k2
e

. We note that for the applications considered

here, k1 is usually complex given by k1 = n1ke, where n1 is the complex

refractive index of the scatterer. So the condition could be rewritten as

Λ2 = 0 ⇐⇒ µ1
µe

=−n2
1.

In addition, since all parameter values are finite we do not expect any accumu-

lation points at infinity. We should note though that high contrast materials

(for example if one of the permeabilities or one of the wavenumbers is much

larger than the other) would result in higher values for Λ1 and/or Λ2. For the

purposes of this thesis, of electromagnetic scattering by ice crystals, µe =µ1 = 1

ensuring the accumulation point Λ1 = 1, i.e. not clustering around zero and

not tending to infinity. For the case of high contrast materials, we refer to

[38], where a scaled version of the Calderón preconditioner is used, in which

the two accumulation points coincide.
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4.1.2 Numerical Experiments
We now investigate the performance of the Calderón preconditioner in the

context of iterative solvers. For the numerical experiments that follow, we find

it helpful to use the mixed discretisation of (3.41), since the preconditioner and

operator are identical and one just needs to build the discrete version of A and

reuse it for P (we refer back to Section 3.2.2 for a more detailed discussion).

In this case, P = A and MP = MA = M. For the discretisation and assembly

of A we use ν = 0.001, χ=∞ and q = (4,3,2,6), which are the default Bempp

parameter values. We recall the definitions of those parameters were given in

(3.45), (3.46) and Section 3.3.2 respectively.

To assess the cost of Calderón preconditioning, we count the total number

of matrix-vector products (termed matvecs) performed. By a single matvec

we mean a single application of one discretised boundary integral operator Cim,

Cem, Cem` etc. Applications of the inverse mass matrix M−1 are ignored as the

cost is negligible compared to that of the other operators (recall Section 3.3.3).

Each diagonal block of A incurs a cost of 8 matvecs, while each off-diagonal

block incurs only 4. The overall cost in terms of matvecs of A and A2 can

be seen in the first two lines of Table 4.1 (the remaining preconditioners are

discussed later in Section 4.2). The cost shown takes into account the initial

pre-multiplication of the right-hand-side (where relevant). We note that such

a comparison is valid if the cost of the boundary integral operators is the

same for each scatterer Γm (or pair of scatterers (Γ`,Γm) in the case of off-

diagonal operators), which will be true provided each scatterer is discretised

with roughly the same number of degrees of freedom. We also note that the

matvec count per GMRES iteration is the same for weak and strong forms

(we refer back to Chapter 3 for the weak and strong forms, and in particular

to (3.16)–(3.17) and (3.29)–(3.30)), but the value of R (number of GMRES

iterations) is expected to be different. Indeed, as we will see in the numerical

experiments, strong forms (i.e. mass matrix preconditioning) require a reduced

number of GMRES iterations to converge, and hence incur a reduced matvec
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Operator Total matvecs
A (4M2 + 4M)(R+ bR/ρc)
A2 (8M2 + 8M)(R+ bR/ρc) + 4M2 + 4M
DA (4M2 + 12M)(R+ bR/ρc) + 8M
DiA, DeA, SA (4M2 + 8M)(R+ bR/ρc) + 4M
SiA, SeA (4M2 + 6M)(R+ bR/ρc) + 2M

Table 4.1: Total matvecs for different choices of preconditioning operator P . The
preconditioners D, De, S, Se and Si are defined later in (4.26)–(4.30), while the
preconditioner Di has been defined in (2.89). Here R is the number of GMRES
iterations required to achieve convergence at a specified tolerance (note that R is
expected to depend strongly on the choice of P), ρ is the number of iterations per
cycle passed as the restart argument in GMRES, b·c is the “floor” function, and M
is the number of scatterers.

cost.

We remark that the total number of matvecs is not the only metric to

assess the computational cost, since one also needs to take into account the

size of the discrete system (governed by the mesh resolution) and the assembly

method together with the discretisation scheme, as detailed in Chapter 3.

While all our experiments are usingH-matrix algorithms, reducing the number

of matvecs is also advantageous when FMM is used [84], making our findings

relevant for other applications or implementations.

We compare the performance of the traditional Calderón preconditioner

P = A, in the context of single and multi-particle scattering on benchmark

problems, as described in Figure 4.3. In all our experiments the incident wave

is a plane wave Einc = peiked·x with p = (0,0,1)T and d = (1,0,0)T . In order to

capture the wave solution we take the maximum BEM mesh element size to be

2π/(10ke), as it was shown in [5] that a discretisation of at least 10 elements

per wavelength (λe = 2π/ke), leads to a typical discretisation relative error

of approximately 1%, provided that a sufficient resolution of the boundary

is achieved. As all our scatterers are polyhedral (except when considering

spheres) the scatterer geometry is captured exactly by the BEM mesh. We use
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λe ke Refractive index X

M = 1 M = 3 M = 4 M = 8 M = 16
0.55 11.42 1.311 + 2.289×10−9i 3.96 14.08 16.03 17.77 25.08

10.87 0.58 1.0833 + 0.204i 0.20 0.71 0.81 0.90 1.26

Table 4.2: Wavelengths λe (µm), wavenumbers ke and corresponding refractive
indices of ice from [11] and parameter sizes X for the model problems of Figure 4.3

GMRES [92] to solve the discrete linear system, using the Scipy library [100],

with parameters as follows: tol=1E-5, restart=200 and maxiter=2000.

We present results for two different refractive indices of different absorp-

tion: one with weak absorption n = 1.311 + 2.289× 10−9i and one with high

absorption n = 1.0833 + 0.204i. These correspond to the measured refrac-

tive index of ice at wavelengths λe = 0.55µm (ke = 11.42) and λe = 10.87µm

(ke = 0.58) respectively [11]. Using these two refractive indices we present

results from numerical experiments for their corresponding wavenumbers first

and then apply those for a range of wavenumbers, simulating scattering by

fixed geometrical configurations at a range of different size parameters X (de-

fined in (1.4)). The size parameters for the model problems of Figure 4.3 at

those two wavelengths are shown in Table 4.2.

We begin with single-particle scattering with the Model Problem M = 1

of Figure 4.3. In Table 4.3 we present GMRES iterations, total matvec count

and GMRES time (tsolve) for the weak and strong forms of the operators A

and A2 for the two refractive indices and corresponding exterior wavenum-

bers mentioned above. The ill-conditioning of the weak form A is clearly

visible in the large number of GMRES iterations (and hence matvecs) in the

first row. Indeed, for the second case considered, n = 1.0833 + 0.204i, the

resulting linear system does not converge to the prescribed tolerance within

the maximum number of iterations given. The remaining three formulations,

M−1A, AM−1A, and M−1AM−1A all provide some form of preconditioning

indicated by the reduced GMRES count (and hence matvec and solve time).

While Calderón preconditioned strong form M−1AM−1A achieves the low-
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(a) (b)

(c) (d) (e)

Figure 4.3: Scattering configurations. For the definition of the size parameter X
we recall (1.4). We note that the original cube in each configuration is fixed as in (a)
and the additional cubes are copies of the original one, with the problem growing
as O(M), where M is the number of scatterers in each case.
(a) Model Problem M = 1: Cube of side length 0.4µm, aligned with coordinate
axes and has the front bottom left vertex at (0,0,0). Size parameter is X = 2.18/λe.
(b) Model Problem M = 3: Three identical cubes of side length 0.4µm, aligned
with coordinate axes that have their bottom left vertices at (−1,0,0), (0,0,0) and
(1,0,0) respectively. Size parameter is X = 7.75/λe.
(c) Model Problem M = 4: Four identical cubes of side length 0.4µm, aligned with
coordinate axes that have their bottom left vertices at (±1,0,0) and (±1,−1,0). Size
parameter is X = 8.82/λe.
(d) Model Problem M = 8: Same as above but with M = 8 and additional bottom
left vertices at (±1,0,1) and (±1,−1,1). Size parameter is X = 9.77/λe.
(e) Model Problem M = 16: Same as above but with M = 16 and additional
bottom left vertices at (±1,0,−2), (±1,−1,−2), (±1,0,−1) and (±1,−1,−1). Size
parameter is X = 13.79/λe.
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n= 1.311 + 2.289×10−9i n= 1.0833 + 0.204i

Iters Matvecs tsolve Iters Matvecs tsolve

Discrete Operator
A 142 1136 1 2000 16088 1
M−1A 11 88 0.080 8 64 0.004
AM−1A 35 568 0.507 27 440 0.027
M−1AM−1A 6 104 0.094 5 88 0.006

Table 4.3: Number of GMRES iterations, total matvec count and total GMRES
time (tsolve) for different discrete formulations for the Model Problem M = 1 of Fig-
ure 4.3, for two refractive indices n= 1.311+2.289×10−9i (left set of columns) and
n= 1.0833+0.204i (right set of columns) and their corresponding exterior wavenum-
bers (shown in Table 4.2, together with size parameters), with the other scattering
parameters set to µe = µ1 = 1 and k1 = nke. GMRES times have been normalised
relative to that of A. We note that a discretisation of 100 elements per wavelength
was prescribed for the results of the second set of columns in order to achieve a suf-
ficient discretisation of the boundary. Minimal values in each column are indicated
in bold type.

n= 1.311 + 2.289×10−9i n= 1.0833 + 0.204i

Iters Matvecs tsolve Iters Matvecs tsolve

Discrete Operator
A 358 17232 1 2000 96528 1
M−1A 15 720 0.04 8 384 0.004
AM−1A 43 4176 0.25 27 2640 0.028
M−1AM−1A 8 816 0.05 5 528 0.006

Table 4.4: Same as for Table 4.3 but for M = 3 of Figure 4.3.
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est number of GMRES iterations, the increased matvec count per iteration

means that overall it is more expensive than M−1A in terms of matvecs, and

somewhat slower. While the Calderón weak form AM−1A (which is what is

traditionally studied, for example in [36]) provides a preconditioning effect, its

performance cannot compete with M−1A and M−1AM−1A.

The same behaviour is observed when we move to multi-particle scattering

with the Model Problem M = 3 of Figure 4.3. In Table 4.4, we repeat the same

numerical experiment but for M = 3 and report the same output. As with

the single-particle case, we can observe the ill-conditioning of A, while the

remaining three formulations provide some form of preconditioning. Strong

forms M−1A and M−1AM−1A have the least computational cost either in

terms of iterations or matvecs and solver time.

We note that the same behaviour observed in Tables 4.3 and 4.4 is also seen

as h→ 0. In Figure 4.4, we repeat the simulations of Tables 4.3 and 4.4 but for

a decreasing mesh size h. For both M = 1 and M = 3, for n= 1.0833+0.204i,

A converges when h = 0.4 and h = 0.2 but not for any smaller values. In all

problems, A shows a strong mesh size dependence. The other three opera-

tors have a weaker mesh size dependence, with the strong forms M−1A and

M−1AM−1A showing an almost mesh-size-independent behaviour. Consis-

tent with the results from Tables 4.3 and 4.4 mass matrix preconditioning,

M−1A, performs as well as strong Calderón preconditioning, M−1AM−1A.

Given that M−1A and M−1AM−1A have performed quite similar in

overall matvec count and GMRES time, we wish to compare their behaviour for

a larger range of wavenumbers. In Figure 4.5, we compare their performance

in terms of GMRES iterations, matvecs and GMRES time as a function of

the exterior wavenumber ke for the Model Problems M = 1 and M = 3 of

Figure 4.3. For both refractive indices the number of GMRES iterations for

M−1AM−1A is approximately half of that for M−1A, with faster convergence

for high absorption and slower growth with increasing exterior wavenumber

ke, but the overall matvec count for M−1A is consistently lower than that of
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(a) M = 1

(b) M = 3

Figure 4.4: Performance of the discrete operators A, M−1A, AM−1A and
M−1AM−1A for the Model Problems M = 1 and M = 3 of Figure 4.3 as a function
of decreasing mesh size h. Other parameters are as in Tables 4.3 and 4.4.
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M−1AM−1A. GMRES time grows with increasing exterior wavenumber ke
because the number of degrees of freedom grows approximately quadratically

with ke in order to maintain a sufficient discretisation of the boundary. Both

M−1A and M−1AM−1A require roughly the same GMRES solver time, with

M−1A being only somewhat faster when M = 1.

All numerical experiments presented in Tables 4.3–4.4 and Figures 4.4–4.5

suggest that even though traditional Calderón preconditioning provides a faster

solution with a reduced computational cost compared to the weak PMCHWT

operator A, it does not perform any better compared to simple mass matrix

preconditioning M−1A, rendering traditional Calderón preconditioners with

the specific implementation used unnecessary. For this reason, we explore

reduced versions of Calderón preconditioning in an effort to reduce the overall

computational cost.

We note that in the multi-particle case, each aggregate consists of mul-

tiple individual scatterers of same size and shape that are placed in different

positions (see Figure 4.3). One might consider using block Jacobi to iteratively

obtain the inverse for one monomer and attempt to reuse it for the remaining

ones. However, one cannot guarantee a priori that Jacobi will provide a robust

preconditioning effect in terms of taming the hypersingular component, espe-

cially for domains more complex than the cubes considered here. In addition,

the performance of M−1A and M−1AM−1A has shown a very weak mesh

dependence, which again cannot be guaranteed for block Jacobi. This was

indeed studied in [40] for the EFIE formulation, where Jacobi preconditioning

was considered along with other Calderón preconditioners. While it provided

a preconditioning effect for the sphere, the experiments showed that this be-

haviour did not carry forward to more complex domains such as scattering by

a destroyer, nor did it exhibit mesh-independent behaviour in contrast to other

Calderón preconditioners.
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Figure 4.5: Performance of the discrete operators M−1A and M−1AM−1A in the
case of scattering by a single cube (left) and three cubes (right) (Model Problems
M = 1 and M = 3 of Figure 4.3) as a function of exterior wavenumber ke. Results
are shown for low absorption (refractive index n = 1.311 + 2.289× 10−9i) and high
absorption (refractive index n= 1.0833+0.204i). The number of degrees of freedom
range from 126 at ke = 2 to 5544 at ke = 24 with corresponding size parameters
X = 0.69 and X = 8.33 for the case M = 1, and 378 at ke = 2 to 16626 at ke = 24
with corresponding size parameters X = 2.46 and X = 29.59 when M = 3. Other
parameters are as in Tables 4.3 and 4.4.
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4.2 Reduced Calderón preconditioning
The first step in reducing the cost of Calderón preconditioners is noticing that

for M > 1, the off-diagonal blocks Am` (defined in (2.79)) are actually compact

since they map between different boundary components and therefore require

no preconditioning. This allows us to introduce the first reduced preconditioner

D, which consists of the block-diagonal components of A

D =



Ae
1 +Ai

1 0 · · · 0

0 . . . . . . ...
... . . . . . . 0

0 · · · 0 Ae
M +Ai

M


. (4.26)

Since the off-diagonal blocks do not require any preconditioning, we expect

(and confirm later numerically) D to have the same preconditioning effect as

P =A, i.e. the number of GMRES iterations should be the same between DA

and A2. But since D consists of only diagonal terms, the total matvec cost

(see Table 4.1) should reduce by a factor of 2 in the limit M→∞. The sparsity

of D also implies that applications of D are faster than those of A, reducing

GMRES time as well. We note though, that the off-diagonal blocks have a

much cheaper assembly as they map between different domains. Unless the

two domains touch, all blocks in the H-matrix are considered admissible and

none of the kernels are singular, making their assembly faster and consuming

less memory. So even though we have removed the majority of the operators

from A (4M2− 4M of the 4M2 + 4M operators), we do not expect to see a

proportional decrease in memory consumption and assembly time unless M is

large or scatterers are touching each other.

The preconditioner D reduces to traditional Calderón preconditioning at

M = 1, but one can reduce the cost even further. The goal is to provide

some regularising effect for the electric field boundary operators Sim and Sem in

order to accelerate convergence, while keeping the number of operators used
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to a minimum in order to minimise assembly time and memory consumption.

For this reason we consider the following options as preconditioners:

D, Di, De, S, Si,Se, (4.27)

where D is defined in (4.26), Di in (2.89), S = Si +Se and the remaining

preconditioners are defined as

De =



Ae
1 0 · · · 0

0 . . . . . . ...
... . . . . . . 0

0 · · · 0 Ae
M


, (4.28)

Se =



 0 µe
ke
Se1

−ke
µe
Se1 0

 0 · · · 0

0 . . . . . . ...
... . . . . . . 0

0 · · · 0

 0 µe
ke
SeM

−ke
µe
Se1 0





, (4.29)

Si =



 0 µ1
k1
Si1

−k1
µ1
Si1 0

 0 · · · 0

0 . . . . . . ...
... . . . . . . 0

0 · · · 0

 0 µM
kM
SiM

−kM
µM
Si1 0





. (4.30)

The accumulation points of DA and SA are still the same as those of

A2 since the electric field operators that contribute to accumulation points

are still present. The magnetic field operators and off-diagonal operators Am`
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Figure 4.6: Spectrum and accumulation points of the operator products A2, DeA,
DiA, SA, SeA and SiA, for a single particle setting. The scattering configurations
is the same as that of Figure 4.2. The discretisation of (3.39)–(3.40) was used.

are compact and therefore removing them does not alter the accumulations

points. The remaining operator products DeA, DiA, SeA and SiA have 4

accumulation points at

1
4 + 1

4
µ1
µe

, 1
4 + 1

4
µ1
µe

(
ke
k1

)2
, (4.31)

1
4 + 1

4
µe
µ1

, 1
4 + 1

4
µe
µ1

(
k1
ke

)2
, (4.32)

for M = 1. An example of the spectrum of the operator products, A2, DeA,

DiA, SA, SeA and SiA, for a single sphere is shown in Figure 4.6 (same

problem considered earlier for Figure 4.2). We note that 3 accumulation points

are shown for DeA, DiA, SeA and SiA because for the µe, µ1 values consid-

ered the accumulation points 1
4 + 1

4
µ1
µe

and 1
4 + 1

4
µe
µ1

coincide. The arguments

used to prove Theorem 1 can also be used to prove the accumulation points of

the reduced operator products for the case of a sphere.

The cost of these reduced preconditioners (4.27) in terms of matvecs is

given by the bottom three rows of Table 4.1. The preconditioners Si and Se

theoretically result in the lowest matvec count (except when no precondition-
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ing is considered), but this does not guarantee a priori the lowest GMRES

time since R will vary depending on the preconditioning effect of the operator

considered. But we expect the memory costs of Si and Se to be half of Di,

De and S, which in turn should be half of D. Preconditioner D is much

sparser than A, but as mentioned earlier, the off-diagonal blocks that we have

removed are fast and cheap to assemble and as such we do not expect a huge

improvement in terms of memory consumption and assembly time.

4.2.1 Numerical Experiments
As with traditional Calderón preconditioners, we can use the mixed discreti-

sation of (3.41) to build A and extract the relevant operators that are needed

for the reduced preconditioner, but assembling an operator with BC functions

as the trial/test space is significantly more expensive than using RWG. For

these reduced Calderón preconditioners it makes sense to keep BC functions

for the preconditioners only, where a smaller number of operators are used.

For this reason, we use the discretisation of (3.39)–(3.40) for the remaining

numerical examples of this section, unless specified otherwise.

We compare the performance of the reduced Calderón preconditioners

of (4.27) compared to the traditional one P = A, for the Model Problems

of Figure 4.3. We only consider their strong forms as we saw earlier that

convergence is much faster compared to the corresponding weak forms. As

we are only considering strong forms, we refer to the preconditioners by their

notation in the continuous set up. We use I and I-mixed to refer to no

Calderón preconditioning which in their discrete strong forms correspond to

mass matrix preconditioning; the first one with discretisation (3.39)–(3.40) and

the latter with (3.41). All assembly parameters ν, χ and q are the same as

before for both A and P and so are the GMRES parameters tol, restart and

maxiter.

We begin by repeating the experiments of Tables 4.3 and 4.4, for the

reduced preconditioners of (4.27). In addition to GMRES iterations, matvecs

and tsolve, we also report assembly time, tassembly, total time, ttotal = tassembly+



4.2. Reduced Calderón preconditioning 101

tsolve and memory consumption for P and A. For consistency, we also compare

with mass matrix preconditioning using the mixed discretisation (3.41). We

note that where A shows in any legends, this refers to the discrete version of

the operator A (for example ‘assembly A’ and ‘A’), and not the preconditioner

P = A. The different preconditioners used are shown in the x-axis.

The results for single-particle scattering (M = 1) are reported in Figures

4.7 and 4.8 for low and high absorbing refractive indices respectively. In this

case D reduces to A, and has therefore been omitted from the figures. As

expected, the assembly times and memory costs of Se and Si, are approxi-

mately half those for De, Di and S which are approximately half those for A.

The solve times for S, Se and Si are double those of A, De and Di for the

low absorption case (Figure 4.7), due to the increased GMRES iteration and

matvec count indicating a weakened preconditioning effect. This is not the

case for high absorption (Figure 4.8), where only the solve time of S is slightly

increased with the other preconditioners A, De, Di, Se and Si requiring

roughly equivalent solve time. Even though the GMRES iteration and matvec

count have slightly increased for Se and Si, their sparsity implies a reduced

time per iteration compensating for that increase of GMRES iterations.

The assembly time for mass matrix preconditioning of the mixed discreti-

sation, I-mixed, is approximately equivalent to the assembly of the operator

A and the preconditioner P = A, but the memory cost is actually double the

magnitude (not shown fully in the figures). To understand this, we recall (4.1)

and the discussion of Section 3.2.2. The block operator of (4.1) consists of

8 operators, of which only 4 are different at the continuous level: Ce1, Ci1, Se1
and Si1. We recall that using the discretisation of (3.39)–(3.40), enables us to

assemble those 4 operators once and reuse them since they are also identical at

the discrete level. In this case, this happens twice: 4 operators are assembled

with RWG functions for the operator and 4 operators are assembled with BC

functions for the preconditioner P =A. In the case of the mixed discretisation

(3.41), the 8 operators are different at the discrete level with all of them requir-
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Figure 4.7: Timings and memory costs normalised to the costs for P = A and
GMRES iteration/matvec count for the strong forms of the reduced preconditioners
of (4.27) with discretisation (3.39)–(3.40). I denotes mass matrix precondition-
ing using (3.39)–(3.40) and I-mixed denotes mass matrix preconditioning with the
mixed discretisation of (3.41). The scattering problem and parameter values are as
in Table 4.3, with the refractive index indicated at the top of the figure.
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Figure 4.8: Same as in Figure 4.7, but for the refractive index indicated at the
top of the figure.
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ing a pairing of RWG and BC functions and needing twice the memory even

though no Calderón preconditioning is performed. However, the strong form

of I-mixed, is enough to regularise the discrete system and provides the same

effect as the traditional Calderón preconditioner P =A with the discretisation

(3.39)–(3.40). This can be observed in the figures, where the total time for

P = A is roughly equivalent to that of I-mixed. Mass matrix preconditioning

with discretisation (3.39)–(3.40), I, does not provide the same preconditioning

effect, with the resulting system not converging within the maximum number

of GMRES iterations.

A similar behaviour is observed when we move to M = 3, in Figures 4.9–

4.10. In addition to the preconditioners we have considered for M = 1, we now

also consider P =D. As expected, only a small amount of memory savings and

assembly time is observed for D. Nevertheless, similar savings are observed

for the case of M = 3 compared to M = 1, with solver time again reducing

for high absorption but increasing for low, for the preconditioners S, Se and

Si. And again, mass matrix preconditioning of the mixed discretisation (3.41),

I-mixed, requires a roughly equivalent total time with full Calderón precondi-

tioning of (3.39)–(3.40), but requires double the memory to be assembled. As

such, we do not consider the mixed discretisation any further, even though it

provides a very nice preconditioning effect in its discrete strong form.

We now wish to compare the behaviour of these reduced preconditioners

for a larger range of wavenumbers, similar to what was presented in Figure 4.5.

These are shown in Figures 4.11–4.12 for M = 1 and low and high absorption

respectively, and in Figures 4.13–4.14 for M = 3 and low and high absorption

respectively. We find it helpful to report memory costs and timings normalised

to the values for P = A to allow easier comparison between the different

preconditioners.

As expected, the memory costs for S, De and Di are approximately half

of that for P = A, and Si and Se approximately a quarter for M = 1. As

a reference, we have included the memory of the operator A, which is about
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Figure 4.9: Same as in Figure 4.7, but for the scattering problem of Table 4.4
with the refractive index indicated at the top of the figure.
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Figure 4.10: Same as in Figure 4.9, but for the refractive index indicated at the
top of the figure.



4.2. Reduced Calderón preconditioning 107

Figure 4.11: Performance of the strong forms of the preconditioners A, De, Di, S,
Se and Si as a function of the exterior wavenumber ke, for the scattering problem
M = 1 and the refractive index indicated above. Memory costs and timings are
normalised to that of preconditioner A. We also include the memory cost of the
operator A as a reference. All other parameters are as in Figure 4.5.
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Figure 4.12: As in Figure 4.11 but for the refractive index indicated above.
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half of that for Si and Se. Similar trends are observed for the assembly time,

although we report assembly time for both the operator and preconditioner,

not just for the preconditioner as in Figures 4.7–4.10. The number of GMRES

iterations of De and Di are roughly double of those for P = A, with increased

matvecs, but tsolve is roughly equivalent (for low absorption and larger ke) and

sometimes even less (for high absorption for most of ke and for low absorption

for smaller ke). Their total time ttotal is about half that of A, their sparsity

again compensating for that GMRES iterations’ increase.

The preconditioner S requires even more GMRES iterations (and

matvecs) with tsolve being up to 3 times higher and somewhat erratic but

again the resulting ttotal is between 60% - 70% of that for P = A. These

trends are consistent between the two refractive indices, however this is not

the case for preconditioners Si and Se. In the case of low absorption (Figure

4.12) both preconditioners show an erratic behaviour as ke increases, resulting

in increased matvecs and tsolve. The total time ttotal is 30% of that for P = A

for small ke, it grows however to about 55% for the larger values of ke. In

the case of high absorption (Figure 4.11) only Se exhibits a similar erratic

behaviour. The preconditioner Si, requires a similar number of iterations as

S, but fewer matvecs since it contains fewer operators and only up to 1.5 times

higher solver time. The total time is only 30 - 40% of that of P = A. We also

note that even though Se still exhibits an erratic behaviour, it is not as severe

as for the weak absorption, resulting in almost the same improvement of ttotal
as Si, at least for relatively small ke.

We note that with the use of electric field preconditioners S, Se and Si

we risk introducing spurious resonances when the wavenumber matches one

of the interior electric eigenvalues of the electric field operators (as defined by

Buffa and Hiptmair [74]) which could explain the erratic behaviour observed.

It seems however that a high absorbing refractive index has a regularising

effect, indicated by the smoother behaviour of Si in Figure 4.8 compared to

that of 4.7. We note that the erratic behaviour might also be related to real
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resonances due to the frequencies and observed refractive indices for ice crystals

that were used for these simulations. Further investigation would be beneficial

in understanding the nature of this behaviour but goes beyond the scope of

the thesis.

In the case of M = 3 (Figure 4.13–4.14), the memory costs for S, De and

Di are approximately half of that for D, and Si and Se a quarter of that but

as expected the memory of D is only showing a small improvement compared

to A. Again, similar trends are observed for the assembly time, with D now

requiring about 70-80% of the assembly time for P = A. As we predicted

earlier, the preconditioners A and D provide the same preconditioning effect

and therefore require the same number of GMRES iterations. However, D

results in fewer matvecs and a faster tsolve, which in turn together with a

faster tassembly imply a faster ttotal. The preconditioner D though, provides

only a relatively small improvement compared to the other preconditioners.

The savings are similar to the single particle case, with Se and Si exhibiting

erratic behaviour again for low absorption, but only Se exhibits such behaviour

in the case of high absorption.

We have so far considered example cases with 1 or 3 scatterers, and of

some significant distance between them. In reality, an ice crystal aggregate

consists of multiple monomers with a very small or zero separation between

them. For this reason, we consider some final examples where we increase M

in which case we expect D to show greater memory improvement compared

to P = A.

In Table 4.5, we compare the reduced preconditioners while increasing

M from 4 to 8 and 16 (see Figure 4.3 for the scattering configurations). We

omit the number of GMRES iterations and matvecs, as their behaviour is also

captured by the GMRES solve time tsolve. Confirming our expectations, we

see the memory and assembly time savings of D becoming more significant

as M grows. Again to our expectations, the largest memory and assembly

time savings are achieved by Se and Si, with the savings again increasing as
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Figure 4.13: As in Figure 4.11, but for the scattering problem M = 3, and with
the addition of the preconditioner D.
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Figure 4.14: As in Figure 4.11, but for the scattering problem M = 3 and the
refractive index indicated above, and with the addition of the preconditioner D.
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n= 1.311 + 2.289×10−9i

Mem(P) tassembly tsolve ttotal

P \ M 4 8 16 4 8 16 4 8 16 4 8 16
A 1 1 1 1 1 1 1 1 1 1 1 1
D 0.95 0.89 0.80 0.70 0.51 0.31 0.55 0.32 0.21 0.72 0.54 0.37
De 0.47 0.44 0.40 0.36 0.25 0.16 0.60 0.34 0.26 0.44 0.34 0.25
Di 0.48 0.45 0.41 0.37 0.26 0.16 0.60 0.34 0.26 0.45 0.34 0.25
S 0.52 0.49 0.44 0.41 0.29 0.18 1.75 1.15 0.76 0.56 0.45 0.32
Se 0.26 0.25 0.22 0.19 0.14 0.09 1.72 1.21 0.98 0.39 0.33 0.27
Si 0.26 0.25 0.22 0.22 0.14 0.09 1.27 0.82 0.61 0.37 0.30 0.24

n= 1.0833 + 0.204i

Mem(P) tassembly tsolve ttotal

P \ M 4 8 16 4 8 16 4 8 16 4 8 16
A 1 1 1 1 1 1 1 1 1 1 1 1
D 0.94 0.87 0.77 0.72 0.52 0.34 0.55 0.35 0.22 0.73 0.55 0.39
De 0.47 0.43 0.38 0.36 0.26 0.17 0.46 0.31 0.20 0.43 0.34 0.25
Di 0.47 0.43 0.38 0.36 0.26 0.17 0.40 0.31 0.20 0.43 0.34 0.25
S 0.47 0.43 0.38 0.37 0.27 0.18 0.72 0.49 0.32 0.46 0.36 0.27
Se 0.23 0.22 0.19 0.19 0.13 0.09 0.46 0.34 0.24 0.28 0.23 0.19
Si 0.23 0.22 0.19 0.19 0.14 0.09 0.46 0.35 0.24 0.28 0.23 0.19

Table 4.5: Performance of the strong forms of the preconditioners A, De, Di, S,
Se and Si for an increasing number of scatterers M = 4, 8 and 16 from the Model
Problems of Figure 4.3. All costs have been normalised to those of the preconditioner
A. All other parameters are as in Table 4.2. Minimum values in each column are
indicated in bold font.

M grows. The greatest decrease of tsolve is achieved by D in the case of low

absorption and De and Di in the case of high absorption. But again, the

fastest ttotal is that of Se and Si, requiring only 24% and 19% at M = 16 for

low and high absorption respectively.

4.3 Concluding remarks
We conclude this chapter by recalling our goal and emphasising how our main

experimental observations have addressed them. We have been looking for

some operator P to precondition the PMCHWT operator so that the discrete

matrix system was easier to solve numerically. The preconditioner P should re-
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duce the number of iterations and at the same time have the minimum number

of operators required so that it does not incur many additional matrix-vector

products, it does not slow down assembly significantly and consumes as little

memory as possible. The main observations from our numerical experiments

in achieving our goals are:

• Mass matrix preconditioning requires the same computational cost (in

terms of matvecs) and GMRES time as traditional Calderón precon-

ditioning when the mixed discretisation of (3.41) is used, making the

traditional full Calderón preconditioner unnecessary.

• Strong forms of Calderón preconditioners perform much better (in terms

of GMRES iterations, matvecs and solve time) compared to their weak

counterparts, so use of weak forms is not recommended.

• Even though the mixed discretisation of (3.41) provides an effective pre-

conditioning effect with its mass matrix, it requires double the memory

to assemble the operator compared to the discretisation of (3.39)–(3.40).

• The reduced preconditioners D, Di, De, S, Si,Se provide some regu-

larising effect, and require less memory and assembly time compared to

P = A. Depending on the choice of preconditioner, the solver time was

sometimes longer compared to that for P = A, but the final total time

was always shorter. Choosing a preconditioner will depend on different

parameters such as the number of scatterers, the wavenumber, refractive

index and how many GMRES solves are to be performed. For example

– Se and Si result in the biggest savings in memory and assembly

time, requiring only 25% compared to those for P = A. Their GM-

RES behaviour though became erratic (large number of iterations

and matvecs and longer GMRES time) with increasing ke. In the

case of a high absorbing refractive index, Si’s behaviour is smoother

and therefore should be the preconditioner of choice even for higher
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frequency problems, requiring 30-40% of the total time compared

to P = A. This potentially allows us to solve higher frequency

problems that were not feasible before due to memory constraints.

– When multiple GMRES solves are required (which is the case when

simulating random orientation, discussed later in Chapter 7), the

priority is to choose a preconditioner that requires the same or even

less time tsolve compared to that for P = A. This is the case when

preconditioners De or Di are used.

– We do not recommend the use of preconditioner S. Its memory

and assembly time savings are equivalent to those for De and Di,

but its GMRES behaviour is unstable, and therefore with the same

memory and assembly time savings one can achieve a reduced total

time with De and Di.

In the next chapter, we attempt to reduce computational cost and timings even

further by looking at the implementation of the operator and preconditioner.
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Chapter 5

Accelerated Calderón

Preconditioning II:

bi-parametric implementation

We recall again (from Chapter 1) that we are looking for some operator P

applied to the PMCHWT formulation such that PA has better properties

than A and therefore its discrete version is easier to solve numerically. The

computational cost of solving the preconditioned system is affected by

(i) the choice of preconditioning operator P , and

(ii) the choice of discretisation for the operator product PA.

In this chapter we focus on (ii) by adjusting its implementation. We recall

that PA should be as cheap (memory and time-wise) as possible, while still

producing a sufficiently accurate numerical solution. We follow a so-called “bi-

parametric” implementation to achieve a reduced memory cost, assembly time

and overall time (assembly and GMRES solve time).

We discuss the basics of our bi-parametric implementation in Section 5.1,

presenting potential savings and the resulting spectrum of the discrete oper-

ator product for different bi-parametric implementations. In Section 5.2, we

investigate the performance of the bi-parametric implementation in the con-

text of iterative solvers. We first present results for the traditional Calderón
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preconditioner, P = A, and then for the reduced preconditioners introduced

in (4.26)–(4.30) of Chapter 4. Concluding remarks are given in Section 5.3.

To summarise our findings, we demonstrate that a bi-parametric imple-

mentation with the discretisation of (3.39)–(3.40), and parameter choice of

(5.3)–(5.4) (with the notation defined later in (5.1)–(5.2)), can alleviate the

prohibitive memory cost imposed by the BC functions. A reduction in mem-

ory cost of up to 80% was observed for P = A, with the memory cost of

P being roughly equivalent with that of the operator A at higher frequencies.

Further, a bi-parametric implementation in combination with the reduced pre-

conditioners of (4.27), resulted in a memory cost of just a few percent of the

non bi-parametric traditional Calderón preconditioner, costing even lower than

the cost of the operator A. To be precise, a bi-parametric implementation

of P = Si, with the discretisation of (3.39)–(3.40), and parameter choice of

(5.3)–(5.4), required only 2-3% of the memory of the non bi-parametric imple-

mentation of P = A, with a total time (for the assembly of both the operator

and preconditioner and GMRES time) around 20% of that. In addition, the

erratic behaviour (increased iterations, matvecs and GMRES time) that was

observed for P = Si in Chapter 4, is no longer present, making this our pre-

conditioner and implementation of choice for high frequency problems. The

results presented in this chapter have been reported in [3].

5.1 Bi-parametric implementation
The idea behind the bi-parametric implementation is that one can use differ-

ent values for the parameters used in the assembly of P and A (for assembly

details we refer back to Section 3.3, Chapter 3). For this thesis, these are the

accuracy of the ACA algorithm, ν, the near-field cutoff parameter, χ, and the

quadrature orders, q (defined in (3.44)–(3.45), (3.46) and (3.48) respectively).

Our expectation is that accuracy of the matrix assembly should be more im-

portant for A than for P, since A governs overall solution accuracy whereas

P is included merely to accelerate the convergence of the iterative solver. We
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adopt the following notation to distinguish the set of parameters:

(νP,χP,qP), (5.1)

for P, and

(νA,χA,qA), (5.2)

for A. We expect to be able to use a larger value of νP, and smaller values

of χP and qP, compared to νA, χA and qA, saving computation time and

memory. In combination with the reduced preconditioners introduced in the

previous chapter, we will show how this bi-parametric approach can reduce

memory cost to a few percent of the traditional Calderón preconditioner with

a non bi-parametric implementation.

We now recall the discussion from Section 3.2.2 of Chapter 3 regarding

the choice of discretisation for the operator product. Using the mixed discreti-

sation of (3.41), where the same discrete spaces are used for both P and A,

allows us to obtain P for ‘free’ once A is assembled, as one can extract the

relevant operators from A to create P. For (3.39)–(3.40), different spaces are

used for P and A. However, identical occurrences of the same operator at the

continuous level, give rise to the same discrete operator at the discrete level,

allowing us to reduce assembly cost. This is not possible for (3.41).

For a bi-parametric implementation it makes sense to use the discreti-

sation scheme of (3.39)–(3.40), where we use RWG basis functions for the

operator and BC functions for the preconditioner. The cheaper parameter

values for P can then mitigate the cost of the expensive BC functions. Using

the mixed discretisation of (3.41) does not make sense in the case of the bi-

parametric implementation since both the operator and preconditioner would

require the use of BC functions, but since they would be assembled with two

different sets of parameters, one would no longer be able to take advantage

of the ‘free’ preconditioner offered by this discretisation scheme. Therefore,
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ν = 0.001 ν = 0.01 ν = 0.1

compression rate

Figure 5.1: Block cluster trees produced by Bempp in the assembly of an electric
field operator S on the unit cube with k = 5 and a mesh with approximately 10
elements per wavelength. The red indicates inadmissible blocks, and blue indicates
admissible blocks that have been approximated by ACA. The compression rate is
indicated by the blue scale for an increasing ACA parameter ν = 0.001,0.01 and 0.1
(left to right) with a cut-off parameter χ =∞, with the values of the compression
rates being: 0.83, 0.59 and 0.36 respectively.

all numerical experiments presented in this chapter follow the discretisation

(3.39)–(3.40), unless specified otherwise.

To illustrate the potential savings of this bi-parametric approach we

present Figures 5.1–5.2. Figure 5.1 illustrates the influence of ν on the compres-

sion rate, defined as the storage divided by the storage that would be required

in a dense assembly. In Figure 5.1, we observe a reduced compression rate

as ν gets larger, indicating a reduced memory cost and faster assembly time.

We present a relatively low-frequency example, to limit the dofs and make the

block structure easier to see; for higher-frequency problems the compression

rates improve significantly. Figure 5.2 illustrates the effect of the near-field cut-

off parameter χ on the resulting assembled matrix. As expected, the overall

compression rate reduces as we remove more and more of the far-field.

Regarding quadrature, for non-singular integrals, reducing the quadra-

ture orders to the minimum possible (qnear,qmedium,qfar) = (1,1,1) results in

(1,1,1) integrand evaluations respectively. For singular integrals, qsingular = 1

results in 2 integrand evaluations if the two triangles share a single vertex, 5
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χ=∞ χ= 0.5 χ= 0

Figure 5.2: Same as in Figure 5.1 but with ACA parameter ν = 0.001 and de-
creasing cut-off parameter χ from ∞ to 0.5 and 0. White blocks indicate admissible
blocks that do not require assembly. Compression rates from left to right: 0.83,
0.60, and 0.14.

if they share a common edge and 6 if they coincide reducing computational

time during kernel evaluations. We recall from Section 3.3.2, Chapter 3, that

for non-singular integral the default values (qnear,qmedium,qfar) = (4,3,2) cor-

respond to (36,16,9) integrand evaluations respectively. For singular integrals

the default value qsingular = 6 corresponds to 512 integrand evaluations if the

two triangles share a common vertex, 1280 if they share a single common edge,

and 1536 if they coincide. Big savings in assembly time are therefore expected

if we reduce the quadrature rules of the preconditioner to the minimum possi-

ble.

We note however that the preconditioning effect of P is expected to weaken

as we decrease its accuracy, potentially increasing the number of iterations

required for convergence. To see the potential effects of a bi-parametric im-

plementation we present spectrum plots of A2, for M = 1, for different values

of the parameters νP in Figure 5.3, χP in Figure 5.4, qP in Figure 5.5 and a

combination of those in Figure 5.6.

In Figure 5.3, we see no obvious change in the spectrum when νP is

increased from 0.001 to 0.01. However, for νP = 0.1 and 0.5 the eigenvalues

spread further and further away from the accumulation points indicated with

red, but we note that the spectrum remains clustered away from zero and does

not seem to accumulate at infinity.
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Figure 5.3: Spectrum of A2 for different νP values indicated at the top of each
plot, with (χP,qP) = (χA,qA) = (∞, (4,3,2,6)) and νA = 0.001. The scatterer is a
unit sphere centered at the origin with refractive index n1 = 1.0833 + 0.204i. The
exterior wavenumber is ke = 1.5 and the interior is given by k1 = n1k1. The sphere
was discretised with a mesh width of approximately 20 elements per wavelength.
The red crosses indicate the theoretical accumulation points of (4.3)–(4.4).

In Figure 5.4, all three finite values of χP result in the spectrum spreading

away from the accumulation points, but for χP = 1 this spread is only mild.

Again, the spectrum is clustered away from zero and infinity.

In Figure 5.5, only the change in quadrature order for singular kernels

alters the spectrum (middle top and right bottom figures). The remaining

cases do not show any obvious changes. Again, the spectrum seems clustered

away from zero and infinity.

Finally, we combine all cheap parameters together, with our proposed

choice being (νP,χP,qP) = (0.1,0, (1,1,1,1)). This is because we aim to min-

imise assembly costs and therefore choose the cheapest values possible that

have not shown a large spread of the eigenvalues in Figures 5.3–5.5. We plot
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Figure 5.4: As in Figure 5.3 but for different χP values indicated at the top of
each plot, with (νP,qP) = (νA,qA) = (0.001,(4,3,2,6)) and χA =∞.

the spectrum in Figure 5.6. We notice that the spectrum now shifts further

away from the accumulation points but seems to be clustered away from the

origin and infinity. The figure suggests a weakened preconditioning effect,

since the discretised operator product is now only a cheap approximation of

the original operator product at the continuous setting. The weakened precon-

ditioning effect could potentially increase the number of iterations and slow

down solution time, which we aim to investigate in the following section.
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Figure 5.5: As in Figure 5.3 but for different qP values indicated at the top of
each plot, with (νP,χP) = (νA,χA) = (0.001,∞) and qA = (4,3,2,6).

Figure 5.6: As in Figure 5.3 but for different (νP,χP,qP) values indicated at the
top of each plot with (νA,χA,qA) = (0.001,∞, (4,3,2,6)). The discretised product
in the right figure is only a cheap approximation of the operator product in the con-
tinuous setting explaining the spectrum being further away from the accumulation
points indicated in red.
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5.2 Numerical Experiments
In the following sections we investigate the performance of the bi-parametric

preconditioners in terms of assembly time, memory consumption, solution

time, iterations, matvecs and total time (for the assembly of both the operator

and preconditioner, and GMRES time). The spectral plots of the previous

section suggest a weakened preconditioning effect as we decrease the accu-

racy of the preconditioner potentially increasing the number of iterations and

slowing solution time. We note however, that the examples shown in Figures

5.1–5.2 along with examples mentioned within the text regarding quadrature

orders suggest a faster assembly, with a reduced memory cost along with an in-

creased sparseness of the discrete preconditioner. A matrix vector product with

a sparser preconditioner is faster, so even if the number of iterations increase,

this does not necessarily mean an increased GMRES time. We investigate the

performance of the preconditioned operator for a range of cheap parameters

(νP,χP,qP) in the following sections, first with the traditional preconditioner

P =A, and then with the reduced preconditioners of (4.26)–(4.30), introduced

in Chapter 4.

5.2.1 Traditional Calderón preconditioning
We first explore the potential memory and time savings by considering the

model problems M = 1 and M = 3 from Chapter 4, for the two refractive

indices and their corresponding wavenumbers (can be found in Table 4.2). We

only consider the traditional Calderón preconditioner P = A for now.

In Table 5.1, we report results for the case M = 1 for the two different

refractive indices and their corresponding wavenumbers. The table is separated

into five different ‘areas’. The top row corresponds to a non bi-parametric

implementation with

(νP,χP,qP) = (νA,χA,qA) = (0.001,∞, (4,3,2,6)).

The memory costs and timings of any implementations that follow have been
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normalised relative to those of the non bi-parametric implementation.

In the next six rows, we keep νP = 0.001 and χP =∞ fixed and reduce

the quadrature orders to the minimum, first one by one and then all four of

them. We observe that the performance depends on the frequency (and re-

fractive index) considered. In the left sub-columns (which correspond to a low

absorption but higher wavenumber) we can see that the number of iterations

(and hence matvecs and solve time) are not really affected by the change in

quadrature orders. On the other hand, in the right sub-columns (which cor-

respond to a high absorption but a very small wavenumber) we can see that

the quadrature order for singular integrals affects the quality of the resulting

linear system with a large increase in iterations (and matvecs and solver time).

For both wavenumbers, the memory is unaffected while assembly time reduces,

with the largest impact observed when one reduces the quadrature orders for

singular integrals or integrals in the ‘near-field’ area. Minimising all quadra-

ture orders results in a total time (which includes assembly time for both A

and P and GMRES time) that is 50% of the non bi-parametric version for the

high wavenumber (left sub-columns), while no savings are observed for the low

one (right sub-columns).

In the next three rows we keep χP =∞ and qP = (4,3,2,6) fixed and in-

crease νP from 0.001 through 0.01, 0.1 and 0.5. We observe a significant reduc-

tion in memory and assembly time, with little or no effect on iteration/matvec

count and solver time for the higher frequency considered. This is not the case

for the lower frequency, where for νP = 0.1 and νP = 0.5 the resulting linear

system did not converge to the desired tolerance within the maximum number

of iterations prescribed.

For the results in the next three rows we keep νP = 0.001 and qP =

(4,3,2,6) fixed and reduce χP, which corresponds to neglecting more and more

of the far-field behaviour in the preconditioner. As χP reduces to 0.1 and then

0, we see a noticeable reduction in memory cost and assembly time. Unfor-

tunately, this comes at the cost of a significant increase in iteration/matvec
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count and hence solve time. This increase appears to be more serious for the

low frequency case suggesting that the far-field behaviour is more important

for low frequency problems and that neglecting it may be possible only for

higher frequencies.

In the final row, we take νP = 0.1, χP = 0 and qP = (1,1,1,1) and again see

that the behaviour is dependent on the frequency considered, with the lower

frequency not converging. For the higher frequency we see a significant increase

in iterations (along with matvecs and solve time) due to completely neglecting

the far-field interactions. We achieve a remarkable saving in memory and

assembly time bringing them to 17% and 16% of the top row costs respectively.

The total time is also reduced to 44% despite the increased solve time, owing

to the large decrease in assembly time.

In Table 5.2, we repeat the above but for the case M = 3. Similar ob-

servations are made compared to the single-particle examples, confirming the

frequency dependence of the performance when the far-field is removed or when

the parameter νP is increased.

To investigate the possible frequency dependence, we present performance

statistics in Figures 5.7–5.8 and 5.9–5.10 for M = 1 and M = 3 respectively

for a range of wavenumbers, and a range of bi-parametric implementations

with different far-field cutoff values χP. Results are compared to a non bi-

parametric implementation with

(νP,χP,qP) = (νA,χA,qA) = (0.001,∞, (4,3,2,6)),

(presented as purple triangles) and timings and memory costs of the bi-

parametric implementations have been normalised relative to that.

The results from Figures 5.7–5.8 confirm that for both refractive indices

the significant increase in iteration/matvec count for small values of χP is more

important in low frequency cases. This behaviour is also reflected in the total

time, where for the lowest ke considered the total time with a reduced χP is

longer than the reference case. For all other wavenumbers, the total time of
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χP νP qP Iters (Matvecs) Mem(P) tassembly tsolve ttotal

∞ 0.001 (4,3,2,6) 6 (104) 5 (88) 1 1 1 1 1 1 1 1
∞ 0.001 (4,3,2,1) 7 (120) 97 (1560) 1 1 0.85 0.78 1.14 18.37 0.88 1.69
∞ 0.001 (4,3,1,6) 6 (104) 5 (88) 1 1 0.97 0.97 1.07 1.13 0.98 0.98
∞ 0.001 (4,1,2,6) 6 (104) 7 (120) 1 1 0.97 0.95 0.98 1.79 0.98 1
∞ 0.001 (1,3,2,6) 6 (104) 8 (136) 1 1 0.76 0.69 0.99 2.06 0.80 0.78
∞ 0.001 (1,1,1,1) 7 (120) 62 (1000) 1 1 0.38 0.31 1.17 13.32 0.48 1.03
∞ 0.01 (4,3,2,6) 6 (104) 6 (104) 0.70 0.75 0.90 0.88 0.95 1.32 0.91 0.91
∞ 0.1 (4,3,2,6) 6 (104) - 0.44 0.54 0.77 0.76 0.85 - 0.80 -
∞ 0.5 (4,3,2,6) 8 (136) - 0.31 0.44 0.67 0.71 1.14 - 0.73 -
1 0.001 (4,3,2,6) 6 (104) 5 (88) 1 1 1 1 1 1 1 1

0.1 0.001 (4,3,2,6) 11 (184) 539 (8664) 0.53 0.50 0.84 0.73 1.62 92 0.89 5.36
0 0.001 (4,3,2,6) 26 (424) 1686 (27104) 0.17 0.32 0.50 0.53 3.32 272.60 0.69 14.30
0 0.1 (1,1,1,1) 32 (520) - 0.17 0.32 0.16 0.15 4.00 - 0.44 -

Table 5.1: Performance of various bi-parametric implementations of the strong
form of the preconditioner P = A for the Model Problem M = 1 of Figure 4.3. The
left sub-columns correspond to n= 1.311+2.289×10−9i while the right sub-columns
to n = 1.0833 + 0.204i (for their corresponding wavenumbers/wavelengths and size
parameters we refer to Table 4.2). All other parameters are the same as in Table
4.3. The memory cost and assembly time are for P alone. The total time includes
assembly time for both P and A and solver time for the resulting system. The
memory costs and timings have been normalised to those for the first row for each
refractive index, which correspond to a non bi-parametric implementation. Minimal
values in each column are indicated in bold font. The symbol - indicates that
convergence was not achieved to the desired tolerance within the maximum number
of iterations prescribed.

χP νP qP Iters (Matvecs) Mem(P) tassembly tsolve ttotal

∞ 0.001 (4,3,2,6) 8 (816) 5 (528) 1 1 1 1 1 1 1 1
∞ 0.001 (4,3,2,1) 9 (912) 112 (10800) 1 1 0.94 0.85 1.26 22.60 0.98 2.09
∞ 0.001 (4,3,1,6) 8 (816) 5 (528) 1 1 0.91 0.87 0.93 1 0.92 0.90
∞ 0.001 (4,1,2,6) 8 (816) 7 (720) 1 1 0.96 0.90 0.98 1.42 0.96 0.94
∞ 0.001 (1,3,2,6) 8 (816) 7 (720) 1 1 0.80 0.73 0.98 1.41 0.84 0.80
∞ 0.001 (1,1,1,1) 9 (912) 69 (6672) 1 1 0.44 0.41 1.32 14.81 0.57 1.28
∞ 0.01 (4,3,2,6) 8 (816) 6 (624) 0.71 0.74 0.91 0.84 0.91 1.32 0.92 0.89
∞ 0.1 (4,3,2,6) 8 (816) - 0.44 0.52 0.71 0.71 0.89 - 0.76 -
∞ 0.5 (4,3,2,6) 11 (1104) - 0.31 0.43 0.67 0.64 1.35 - 0.76 -
1 0.001 (4,3,2,6) 9 (912) 5 (528) 0.99 0.99 0.99 0.94 1.05 1.23 0.99 0.96

0.1 0.001 (4,3,2,6) 16 (1584) 791 (76272) 0.54 0.50 0.75 0.63 1.68 140.51 0.85 8.58
0 0.001 (4,3,2,6) 32 (3120) - 0.18 0.31 0.47 0.48 3.18 - 0.74 -
0 0.1 (1,1,1,1) 36 (3504) - 0.18 0.31 0.22 0.21 3.54 - 0.57 -

Table 5.2: Same as in Table 5.1 but for the Model Problem M = 3.
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reduced χP values is between 40-50% of the original method; the increase in

solver time is balanced out by the decrease in assembly time which is between

20-40% of the original one. The memory consumption of the preconditioner

is also improving with increasing ke, reaching the same levels of memory re-

quired by the operator A, at around 10% of the original reference case. We

also note that removing a small portion of the far-field (at χP = 0.1) shows a

smoother behaviour than the other two (χP = 0.01 and 0) in terms of itera-

tions/matvecs and solver time (except for the lowest ke considered). This is a

better choice than the other two cases if memory consumption is not the main

concern. The total time is still reduced to 40% of the reference case while the

memory consumption is between 20-40%. We also note that a bi-parametric

implementation with all far-field interactions (i.e. χP =∞, presented as blue

circles) exhibits the smoothest behaviour of all reduced χP values considered

in terms of iterations and matvecs. The assembly time is reduced to 40%, the

solver time is almost unaffected and as a result the total time is at 40-45%.

The memory consumption is somewhat higher than the other cases at 50-60%

depending on the wavenumber considered. Analogous results can be observed

in Figures 5.9–5.10 for M = 3.
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Figure 5.7: Performance of various bi-parametric implementations of the strong
form of the preconditioner P = A as a function of the exterior wavenumber ke,
for the Model Problem M = 1 of Figure 4.3, with a low absorbing refractive index
(n = 1.0833 + 0.204i). Memory costs and timings have been normalised to those
for a non bi-parametric preconditioner P = A with (νP,χP,qP) = (νA,χA,qA) =
(0.001,∞, (4,3,2,6)). The memory of the operator A is also included for reference.
For the size parameters and number of degrees of freedom we refer to Figure 4.5.
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Figure 5.8: Same as in Figure 5.7 but for n= 1.311 + 2.289×10−9i.
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Figure 5.9: Same as in Figure 5.7 but for M = 3.
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Figure 5.10: Same as in Figure 5.7 but for n= 1.311 + 2.289×10−9i and M = 3.
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5.2.2 Reduced Calderón preconditioning
We now present performance statistics for the reduced preconditioners of

(4.26)–(4.30) assembled with

(νP,χP,qP) = (0.1,0, (1,1,1,1)),

for the Model Problems M = 1 and M = 3. We make the above choice for

preconditioner parameters as they have the potential to significantly reduce

assembly time and memory cost, as suggested by the results of the previous

section. The results are presented in Figures 5.11–5.12 and 5.13–5.14 for M = 1

and M = 3 respectively. As before, memory costs and timings are normalised

to those for the traditional Calderón preconditioner P = A assembled with

(νP,χP,qP) = (νA,χA,qA) = (0.001,∞, (4,3,2,6)).

We first consider M = 1, in Figures 5.11–5.12. The assembly times for

bi-parametric Se and Si drop to about 15% of the reference case compared to

about 30% for a non bi-parametric implementation (Figures 4.11–4.12), and

those of De, Di and S to 20-25% compared to 50-60%. Likewise, a remarkable

drop in memory cost is observed for all bi-parametric reduced preconditioners

at just a few percent of the reference case. As ke grows the memory cost

of the preconditioner becomes smaller than the memory cost of the operator,

essentially eliminating the prohibitive cost imposed by the barycentric grid

used for the preconditioner. For reference, the memory costs of the non bi-

parametric reduced preconditioners (Figures 4.11–4.12) was at 25% for Se and

Si and at about 50% for De, Di and S.

The cheap assembly comes at a price of a weakened preconditioning effect

for all reduced preconditioners, although their behaviour somewhat differs from

their non bi-parametric versions. While non bi-parametric Se and Si showed

an erratic behaviour for larger ke (with Si showing a smoother behaviour

for high absorption) this is not the case for their bi-parametric versions. Bi-
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parametric Si only shows a large increase in iterations (and hence matvecs and

GMRES time) for the smallest ke considered but in fact exhibits the smoothest

behaviour compared to all other bi-parametric reduced preconditioners. Even

though there’s an increase in iterations and matvecs for all ke, tsolve is 1-2

times longer compared to the reference case but the total time is consistently

between 20-30% of the reference case making it our preferred preconditioner

for the problems considered here, ensuring a minimum memory cost at just a

few percent with the addition of a reduced total time. Bi-parametric De and

Se exhibit a rather erratic behaviour and so their use is not recommended.

Analogous observations can be made for M = 3, in Figures 5.13–5.14, with

the addition of the bi-parametric block-diagonal preconditioner D. While its

non bi-parametric implementation achieved a reduction to about 80% of the

assembly time (Figures 4.13–4.14), the bi-parametric implementation drops

down to about 25%, with the total time dropping from about 80% to 40%,

and the memory cost from 95% to just 10% for the largest ke. It is however

outperformed by the other reduced preconditioners in terms of assembly time

and memory. It is also outperformed by the reduced preconditioner Si in

iterations, matvecs, solution time and total time. In fact, Si requires about

20% of the total time and just a few percent of the memory of the reference

case.
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Figure 5.11: Performance of bi-parametric implementations of the strong forms of
the reduced preconditioners P = De, Di, S, Se and Si as a function of the exterior
wavenumber ke, for the Model Problem M = 1 of Figure 4.3, with a low absorbing
refractive index (n= 1.0833 + 0.204i). Other parameters are as in Figure 5.7.
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Figure 5.12: Same as in Figure 5.11 but for n= 1.311 + 2.289×10−9i.
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Figure 5.13: Same as in Figure 5.11 but for M = 3 and with the addition of P =D.
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Figure 5.14: Same as in Figure 5.11 but for n= 1.311 + 2.289×10−9i and M = 3
and with the addition of P = D.
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5.3 Concluding Remarks
We conclude this chapter by recalling our goals and emphasising the main

outcomes of our work in addressing them. We recall (from Chapter 1) that

both the choice of preconditioner P , and the choice of discretisation of the

operator product PA affect the computational cost of the preconditioned sys-

tem. In this chapter we focused on the latter by adjusting its implementation.

We followed a so-called “bi-parametric” implementation to achieve a reduced

memory cost, assembly time and overall time (assembly and GMRES solve

time). By a bi-parametric implementation we mean using two different sets

of parameters for the assembly of the operator product; one expensive set of

parameters for the accurate assembly of the operator A, and a second cheaper

set of parameters for a cheaper approximation of the preconditioner P . The

parameters included the accuracy of the ACA algorithm, ν, the near-field cut-

off parameter, χ, and the quadrature orders q (defined in (3.44)–(3.45), (3.46)

and (3.48) respectively).

Our numerical experiments have demonstrated that

• A bi-parametric implementation, with

(νA,χA,qA) = (0.001,∞, (4,3,2,6)) (5.3)

(νP,χP,qP) = (0.1,0, (1,1,1,1)), (5.4)

and with the choice of discretisation (3.39)–(3.40), can alleviate the pro-

hibitive costs imposed by the BC basis functions. A reduction in memory

cost of up to 80% was observed for P = A, with the memory cost of P

being roughly the same with that of the operator at higher frequencies.

• A bi-parametric implementation, with (5.3)–(5.4) and with the choice of

discretisation (3.39)–(3.40), in combination with the reduced precondi-

tioners of (4.26)–(4.30) results in a memory cost of just a few percent of

the original method, below the memory cost of the operator A.
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• Completely removing far-field interactions in the preconditioner (by set-

ting χP = 0), eliminated the erratic behaviour presented (in Chapter 4)

by the non bi-parametric Si, but results in a worse behaviour for Se and

De.

• For higher frequencies, it is therefore suggested to use P = Si with as-

sembly parameters (5.3)–(5.4) and discretisation of (3.39)–(3.40) which

had a memory cost of 2-3% and the total time around 20% compared to

the traditional non bi-parametric implementation.

• For lower frequencies, where memory consumption is usually not a con-

cern, the numerical experiments have demonstrated that a bi-parametric

implementation with P = A, assembly parameters

(νA,χA,qA) = (0.001,∞, (4,3,2,6)) (5.5)

(νP,qP) = (0.1, (1,1,1,1)), but χP =∞, (5.6)

and the discretisation of (3.39)–(3.40) is best to be used. This choice did

not increase GMRES time (compared to other finite values of χP) while

still achieving a 40% reduction in memory cost and total time. Out of

the reduced preconditioners, P = Si, with assembly parameters (5.3)–

(5.4) and the discretisation of (3.39)–(3.40) had the smallest increase

in GMRES time but resulted in a reduction in total time, for lower

frequencies.
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Chapter 6

Accelerated BEM for

atmospheric ice crystals

In this chapter we demonstrate how accelerated Calderón preconditioning can

be applied to electromagnetic scattering by atmospheric ice crystals. The ice

crystals found in cirrus clouds vary in size and shape, taking forms such as

hexagonal columns, hexagonal plates and bullet rosettes [42], and aggregates

of those (see Figure 1.2).

Applications of BEM for the calculation of the single scattering properties

of such scatterers has been studied by Groth et al. [5] but due to BEM being

memory intensive without the application of any accelerating techniques, size

parameters, X (defined in (1.4)), in terms of the maximum dimension Dmax

have been restricted up to approximately 15. We demonstrate here that with

our accelerating techniques, and the computational resources available, we can

successfully simulate electromagnetic scattering by monomers and aggregates

of much larger size parameters, reducing memory consumption to just 1-2%

for the largest problems considered. We demonstrate that the performance

observations made in Chapters 4 and 5 carry over to real world applications

on domains of complex geometrical structure and not just to the benchmark

examples of cube arrays considered earlier.

For single-particle scattering we consider hexagonal columns of increasing

geometrical complexity: without cavities, with ‘conventional’ cavities and with
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Figure 6.1: Hexagonal columns of [5]: without cavity, with conventional cavity,
with stepped cavity. The height of the three columns is the same at L= 2.86mm with
the diameter of the hexagonal face being D = 2mm. The depth of the conventional
cavity is L/4 = 0.72mm. Each step of the stepped cavity has depth 0.72/3 = 0.24mm
and the diameters of the hexagonal faces as we progress down the steps are D1 =
0.5D = 1mm, D2 = 0.35D = 0.7mm and D3 = 0.2D = 0.4mm.

Figure 6.2: Ice crystal aggregates. Left: 6-branched bullet rosette from [5]. Each
bullet rosette has a height of L= 1mm with the diameter of the hexagonal face being
D = 0.30mm. Middle: two branches of a bullet rosette connected via a very small
cube (top), or touching at the tip (bottom). Right: 8-branched aggregate from [6].
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Frequency f (GHz) refractive index n Wavelength λe (cm)
50 1.7754 + 0.00066i 0.60
183 1.7754 + 0.00243i 0.16
325 1.7754 + 0.00440i 0.092
664 1.7754 + 0.00972i 0.045

Table 6.1: Refractive indices of ice at −40◦ C (from [12]) and wavelengths at the
four studied frequencies.

stepped cavities. Images of these hexagonal columns can be seen in Figure 6.1.

Electromagnetic scattering by such scatterers using BEM has been considered

in [5], where their scattering properties have been compared (and validated

against results obtained from a T-matrix method in the case of the standard

hexagonal column).

For multi-particle scattering we consider the 6-branched bullet rosette

from [5] and the 8-branched aggregate from [6], images of which can be seen in

Figure 6.2. In [5], the 6 branches of the bullet rosette (and for bullet rosettes

of different numbers of branches) were connected through a small cube at the

centre where the branches meet to ensure Lipschitz continuity of the boundary

(an example can be seen in the middle part of Figure 6.2). We demonstrate that

one can treat each branch as a different scatterer resulting in a multi-particle

scattering configuration. This allows us to use the reduced preconditioners

for M > 1 neglecting all off-diagonal blocks and resulting in greater memory

and time savings. Theoretical results from [81, 101] confirm the validity of the

PMCHWT formulation as the separation between scatterers approaches 0.

In Table 6.1 we give information regarding the frequencies considered,

the corresponding refractive index of ice at −40◦ C from [12] and exterior

wavelengths λe. Tables 6.2 and 6.3 contain information on the size parameters

and number of degrees of freedom for the hexagonal columns of Figure 6.1 and

the aggregates of Figure 6.2 respectively. The meshes were generated with the

meshing software Gmsh [102]. The incident wave in all cases is a plane wave

Einc = peiked·x with p = (0,1,0)T and d = (
√

2/2,0,
√

2/2).
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f (GHz) X # dofs N
hexagonal column hexagonal column hexagonal column

conventional stepped
cavity cavity

50 1.5 1170 1314 1674
664 20 45228 48156 53043

Table 6.2: Size parameters and number of dofs, at the frequencies studied for
scattering by the hexagonal columns of Figure 6.1. For the refractive indices we
refer to Table 6.1.

f (GHz) X # dofs N X # dofs N
6-branched 6-branched 8-branched
rosette, rosette, aggregate
M = 1 M = 6 M = 8

50 1 804 756 5 2556
183 - - - 20 26418
325 - - - 34 81318
664 14 10002 9972 70 332523

Table 6.3: Size parameters and number of dofs, at the frequencies studied for
scattering by the 6-branched bullet rosettes and the 8-branch ice crystal aggregate
from Figure 6.2. For the refractive indices we refer to Table 6.1. The symbol - means
we have not considered this case in this thesis.

We first consider the hexagonal columns of Figure 6.1. In Figures 6.3

and 6.4 we report computation times and memory costs for frequencies of 50

and 664 GHz respectively, for six choices of preconditioners: A, the reduced

preconditioners Di and Si, and their bi-parametric versions, labelled Abp,

Di
bp and Si

bp. In all cases we assemble the operator A using the parameters

(νA,χA,qA) = (0.001,∞, (4,3,2,6)). For the non-bi-parametric versions we

take (νP,χP,qP) = (νA,χA,qA) while for the bi-parametric versions we take

(νP,χP,qP) = (0.1,0, (1,1,1,1)). We do not present results for the exterior

versions De and Se, since their behaviour in Chapters 4 and 5 was found to

be erratic, leading to longer solver times compared to those of Di and Si,

respectively. We note that where A shows in any legends, this refers to the
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discrete version of the operator A (for example ‘assembly A’ and ‘mem(A)’),

and not the preconditioner P = A. The different preconditioners used are

shown in the x-axis.

The results of Figures 6.3 and 6.4 are in line with observations made in

Chapters 4 and 5. That is, the use of reduced preconditioners Di and Si

significantly reduces the assembly time and memory cost compared to the full

preconditioner P = A. A bi-parametric approach, with the parameters as

detailed above, reduces those costs even further, bringing assembly time and

memory cost of the preconditioner below that of the operator to just a few

percent of the original method.

The solution times are different for each frequency, again consistent with

observations from Chapters 4 and 5. At the lowest frequency, 50 GHz, which

is also associated with a lower absorbing refractive index (see Table 6.1) we see

that the solution time is not affected for the reduced non bi-parametric pre-

conditioners Di and Si (except for Si in the hexagonal column with stepped

cavity where a slight increase is observed), consistent with observations from

Figure 4.12. The number of GMRES iterations for A and Di remains stable

at 8 iterations for all three hexagonal columns, with Si requiring 13 iterations.

The sparseness of Si compensates for that increase by reducing the cost per

iteration compared to A and Di and keeping the solution time the same be-

tween all three methods. This brings the total time for Di and Si to roughly

55% and 40% respectively. The bi-parametric preconditioners Abp, Di
bp and

Si
bp, do not converge within the maximum number of iterations. This is again

consistent with observations from Figure 5.12, where all bi-parametric reduced

preconditioners had an increase in solution time for low frequencies and low

absorbing refractive indices.

At the highest frequency, 664 GHz, associated with a higher absorbing

refractive index (see Table 6.1), we see the solution time decreasing as we

move from A to Di and Si and then their bi-parametric versions Abp, Di
bp

and Si
bp, bringing the total time to just 20% for Si

bp compared to the original
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full preconditioner A. The overall behaviour for each frequency is consistent

between the three scatterers demonstrating the effectiveness of the methods

for increasing geometrical complexities.

We now consider the multi-particle configurations of Figure 6.2. In Figure

6.5 we report computation times and memory costs for the 6-branch bullet

rosette at 50 and 664 GHz. The left sub-columns represent results obtained

by treating the 6-branch rosette as a single scatterer, i.e. taking M = 1. The

right sub-columns with the crossed lines correspond to results obtained by

treating the rosette as the union of six separate scatterers, i.e taking M = 6.

The preconditioners considered are the same as before with the addition of

the block-diagonal preconditioner D and its bi-parametric version Dbp. We

note that for M = 1 these just reduce to P = A and Abp. The assembly

parameters are as for the hexagonal columns. We note that there is a small

discrepancy between the number of degrees of freedom between M = 1 and

M = 6 (see Table 6.3); this is to account for the small cube connecting the

branches in the case M = 1 (see Figure 6.2). The small cube was introduced

in [5], in the case M = 1, to ensure that the boundary of the scatterer is

Lipschitz continuous. Theoretical results from [81, 101] confirm the validity

of the PMCHWT formulation when treating the problem as a multi-particle

configuration, M = 6, with the separation between the scatterers approaching

0. This differences in the number of dofs between M = 1 and M = 6 is very

small and should not affect the comparison of the two cases.

We can see that the assembly and solve times (and consequently total

time) between the traditional preconditioners P = A at M = 1 and M = 6 are

roughly equivalent for both frequencies. However, the memory consumption of

the same preconditioner at M = 6 is only 61% and 65% of that for M = 1, at 50

and 664 GHz respectively. This is due to the off-diagonal block elements being

cheaper (as discussed in Chapters 4 and 5). In line with earlier observations,

reduced bi-parametric preconditioners do not perform well for lower frequencies

(Dbp and Si
bp do converge within the maximum number of iterations but require
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(a) hexagonal column

(b) hexagonal column with conventional cavity

(c) hexagonal column with stepped cavity

Figure 6.3: Performance of hexagonal columns of Figure 6.1 at 50 GHz. Timings
are normalised relative to the total time for P =A, and memory costs are normalised
relative to the memory cost of P =A. For the refractive indices and size parameters
we refer to Tables 6.1 and 6.2. The bi-parametric preconditioners have not converged
within the maximum number of iterations.
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(a) hexagonal column

(b) hexagonal column with conventional cavity

(c) hexagonal column with stepped cavity

Figure 6.4: Same as in Figure 6.3 but at 664GHz.
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(a) 50 GHz

(c) 664 GHz

Figure 6.5: Performance of the 6-branched bullet rosette of Figure 6.2. The left
sub-plots correspond to M = 1, while the right sub-plots with crossed lines cor-
respond to M = 6. We note that at M = 1, the preconditioner D reduces to A.
Timings are normalised relative to the total time for P = A at M = 1, and mem-
ory costs are normalised relative to the memory cost of P = A at M = 1. For the
refractive indices and size parameters we refer to Tables 6.1 and 6.3.

significantly longer time, while Di
bp does not), but perform much better for 664

GHz. In addition, we observe a performance advantage in assuming M = 6

in assembly and solve time as well as memory compared to M = 1, however

this advantage seems to decrease for the bi-parametric implementations as

the frequency increases with equivalent memory consumed either way. This

is because assuming a cutoff parameter χP = 0 with M = 1 will eventually

be equivalent to neglecting interactions (Am` terms) between the different

branches for M = 6.

Finally, we consider the 8-branch aggregate of Figure 6.2 at four frequen-

cies: 50, 183, 325 and 664 GHz. For the simulations we treat the problem as
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a multi-particle configuration, taking M = 8, as the numerical experiments on

the 6-branch bullet rosette have demonstrated that memory and solution time

savings can be achieved by treating each individual monomer as a scatterer

and taking advantage of the block-diagonal preconditioners that are available

for M > 1. Results for the first three frequencies of Table 6.3 are presented in

Figure 6.6. The observations are again in line with those from the previous

chapters; the use of the reduced preconditioners significantly reduces assembly

time and memory cost compared to the traditional full Calderón precondi-

tioner. In addition, their bi-parametric implementations with only near-field

interactions included brings the assembly time and memory cost below that

of the operator. At the lowest frequency, 50 GHz, the bi-parametric precondi-

tioner Dbp results in a longer time compared to the original method, but, this

is not the case for the higher frequencies. We note that the non bi-parametric

reduced preconditioner Si did not converge within the maximum number of it-

erations at 183 and 325 GHz. All other reduced preconditioners (bi-parametric

or not) achieve a reduction in solver time, despite an increase in the number of

iterations for some choices (number of iterations not reported in the figures);

again their sparseness compensates by reducing the cost per iteration.

At 664 GHz, memory constraints meant that we were not able to assem-

ble the matrices for any of the methods except for the reduced bi-parametric

Si
bp. The assembly time was 10 minutes for the preconditioner, and 32 minutes

for the operator, with GMRES converging in 62 minutes with 166 iterations.

The memory cost for the preconditioner was approximately 9 GB, just 8% of

the memory cost of the operator at 109 GB. Extrapolating from the memory

consumption at the lower frequencies, this is estimated to be around 1% of the

memory that would be required for the non bi-parametric traditional precondi-

tioner P = A, which is estimated to be approximately 765 GB. Extrapolating

from the timings from the lower frequencies, we also expect the total time to be

below 20% of the original method. These savings in computational time and

memory are significant as they allow us to finally consider large applications
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(a) 50 GHz

(b) 183 GHz

(c) 325 GHz

Figure 6.6: Performance of the 8-branched aggregate of Figure 6.2. Timings are
normalised relative to the total time for P = A, and memory costs are normalised
relative to the memory cost of P = A. At 183 GHz and 325 GHz the non-bi-
parametric version of Si (fourth from left in the graphs) did not converge within
the maximum number of iterations. For the refractive indices and size parameters
we refer to Tables 6.1 and 6.3.
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in electromagnetic scattering without the memory constraints that existed be-

fore. In particular, applications of these methods in the context of large scale

simulations for atmospheric particle scattering are considered next, in Chapter

7.

For completeness, we end this chapter by presenting plots of the near fields

produced by some of the ice crystal configurations considered. In Figures 6.7

and 6.8, we present plots of the squared magnitude |E|2 of the electric field

inside and outside the hexagonal columns and the 8-branch aggregate of Figure

6.1 and 6.2, respectively. The plots for the hexagonal columns are restricted

to the plane y = 0, while those for the 8-branch aggregate to the plane y = 1.

While the resulting electric fields for the hexagonal columns are very simple

at 50 GHz, with their squared magnitudes quite small, we can see far more

complex interior and exterior fields as the frequency increases at 664 GHz.

The interior pattern between the three hexagonal columns shows a somewhat

different behaviour owing to the different structure of the assumed cavities. For

the 8-branch aggregate, we can clearly observe the resulting fields changing in

complexity as we move to higher frequencies.
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(a) 50 GHz

(b) 664 GHz

Figure 6.7: Square magnitude |E|2 of the electric field for scattering by the hexag-
onal columns of Figure 6.1 in the plane y = 0, at frequencies 50 GHz (top) and
664 GHz (bottom). Computations at 50 GHz were done using the reduced non bi-
parametric preconditioner P = Si and at 664GHz with the reduced bi-parametric
preconditioner P = Si

bp.
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Figure 6.8: Square magnitude |E|2 of the electric field for scattering by the 8-
branch aggregate of Figure 6.2 (right panel) in the plane y = 1, at frequencies 50
GHz (top left), 183 GHz (top right), 325 GHz (bottom left) and 664 GHz (bottom
right). Computations were done using the reduced bi-parametric preconditioner
P = Si

bp. Images taken from [3].



Chapter 7

Accelerated BEM for a

microwave and sub-millimetre

database

In this chapter we demonstrate how our accelerating methods of Chapters 4,

5 and 6 are being used in challenging real world applications. In particular,

the methods of accelerating Calderón preconditioning have made it possible

to use BEM for the computation of the single-scattering properties (SSPs) of

randomly oriented realistic complex ice aggregates found in cirrus clouds, at

different frequencies. A new database of the SSPs is being generated at the

Met Office for future numerical weather prediction (NWP).

Cirrus clouds are wispy thin clouds that appear high in the Earth’s at-

mosphere, cover a significant percentage of the Earth’s surface, and are not

confined to a particular latitude or season [4]. The microphysical properties

of the constituting ice particles determine the macrophysical properties of the

cloud and how much incident solar radiation is transmitted and reflected back

to space [4]. This can determine whether there is a positive (warming), neutral

or negative (cooling) feedback from cirrus. Understanding the SSPs of cirrus

is therefore important in numerical weather prediction and climate modelling

[4, 42, 43]. A number of satellites [103, 104, 105] are orbiting the Earth sam-

pling cirrus clouds and measuring their radiative properties.
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At the same time, ice crystal models are studied and numerical methods

are used to estimate their SSPs so that accurate conclusions can be made from

the satellites’ data. Several databases have been generated to understand the

SSPs of different ice particle shapes in different frequency regimes (some ex-

ample references include [57, 106, 107, 108, 73, 109, 10] and references within).

A new database of SSPs of ensembles of rosette aggregates is currently

being generated using BEM at the frequencies of 50, 183, 243 and 664 GHz,

at temperatures of 190, 210, 230, 250 and 270 K. This database is being con-

structed to take advantage of forthcoming new observations from EUMET-

SAT’s (The European Organisation for the Exploitation of Meteorological

Satellites) next generation of polar orbiting satellites that ought to improve

numerical weather prediction in the early 2020s, and the simulation of airborne

radiance observations using the Met Office’s International Sub-millimetre Air-

borne Radiometer (ISMAR, see [43]).

We begin this chapter by discussing the microphysical model used to gen-

erate our database. We note that the microphysical model has not been created

by the author of this thesis but we briefly include details for completeness. We

then focus on scattering in the far-field zone, giving all the relevant definitions

required to compute the scattering properties from [8] along with implemen-

tation details. Our implementation of simulating random orientations is also

presented and tested against a T-matrix method [22] for simple hexagonal

columns. We discuss the accuracy of our implementation for the specific ag-

gregate model based on mesh discretisation, number of incident waves and

polarisation rotations and compare with other databases. We finish by pre-

senting some early results from our database and show how these compare

with other databases.
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7.1 The microphysical model
The ensemble of rosette aggregates is based on an analysis of Cloud Parti-

cle Imager (CPI) data from twenty-two campaigns distributed throughout the

mid-latitudes, tropics, and southern latitudes analysed by Lawson et al. [7].

This included more than ten million CPI images from which representative

shape distributions were obtained for four ice cloud regimes. For the purposes

of the database we are interested in shape distributions from in-situ generated

cirrus, with maximum dimensions greater than 100 µm as these larger sizes

are more relevant to the microwave and sub-millimetre region of the electro-

magnetic spectrum.

In Figures 7.1–7.2 we show typical shape distribution of ice crystals for

different temperature regimes and contribution of those ice paricles to the mass

and area of in-situ generated cirrus. The most representative ice crystal shapes

of relevance to modelling millimetre wave and sub-millimetre wave scattering

within in-situ generated cirrus are budding rosettes and aggregates of rosettes,

which we use to generate our ensemble model. Examples of the CPI images of

budding rosettes and rosette aggregates can be seen in Figures 7.2–7.3.

The aggregates used for the database were generated using the ice ag-

gregation model of Westbrook et al., [71]. We briefly describe the process

but refer to [71] for more details. The aggregates are formed by Monte Carlo

simulations that sample collisions between particles falling at different speeds.

The simulation begins with a population of monomer crystals, the shape of

which can be chosen to match the observed monomer crystals in the cloud of

interest. These particles collide and stick together to produce an ensemble of

complex aggregates. These aggregates are formed by a collection kernel that

considers the geometric cross sections for the collisions and the difference in

fall speed between the realised ice crystals. Here, to form these ice crystals

and aggregates, we consider budding rosettes and aggregates of rosettes. The

monomer rosettes are constructed of three-branched rosettes, which are aggre-

gated together to follow the Cotton et al., [72] mass – dimension relationship.
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Figure 7.1: Ice crystal shape distribution with respect to the particle’s maximum
dimension for different temperature regimes obtained during the SPARTICUS cam-
paign for in-situ generated cirrus. Image from [7].



7.1. The microphysical model 161

Figure 7.2: Main ice crystal shape contributions of mass and area within in-situ
generated cirrus of particles of Dmax > 50 µm for different temperature regimes (left)
and representative examples of CPI images within each temperature range (right).
Image from [7].

(a) (b)

Figure 7.3: Examples of CPI images sampled in cirrus from [7]. (a) Typical
budding rosettes (b) Typical rosettes and rosette aggregates.
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Temp 50 GHz 183 GHz 243 GHz 664 GHz
190 1.7643 + 0.00042i 1.7643 + 0.00154i 1.7643 + 0.00207i 1.7643 + 0.00649i

210 1.7695 + 0.00051i 1.7695 + 0.00188i 1.7695 + 0.00252i 1.7695 + 0.00771i

230 1.7746 + 0.00064i 1.7746 + 0.00235i 1.7746 + 0.00314i 1.7746 + 0.00940i

250 1.7797 + 0.00084i 1.7797 + 0.00309i 1.7795 + 0.00412i 1.7798 + 0.01209i

270 1.7848 + 0.00120i 1.7849 + 0.00442i 1.7849 + 0.00589i 1.7849 + 0.01690i

Table 7.1: Complex refractive index for the five temperatures (K), at the four
different frequencies from [12].

This is to be consistent with the Met Office’s Unified Model (UM) [110] which

assumes the above mass – dimension relation. Each of the monomers that

makes up the ensemble of rosette aggregates is assumed to have the density of

solid ice, i.e. 917kg/m3.

Five different runs of the Monte Carlo simulations were considered, to

cover different ranges of maximum dimension, Dmax. Of those different runs,

52 different aggregates were selected to form our aggregate model to represent

65 different Dmax values. Images of those aggregates are shown in Figures

7.4–7.6. Aggregates of Dmax = 547µm−10235µm are all distinct. Aggregates

of Dmax = 10µm− 492µm are rescaled versions of aggregate Dmax = 492µm.

The aggregates consist of 6 to 168 monomers of different complexity. The

meshes used to construct the aggregates have been created using Gmsh [102].

We note that for each configuration the individual monomers are of the same

shape and size, assembled together in different orientations. Assuming that

the scattering problem for the individual monomer is O(1), then the scattering

problem for the resulting aggregate grows as O(M), with M being the number

of monomers used to construct the aggregate. The single-scattering properties

and phase matrix elements for all aggregates are computed at frequencies 50,

183, 243 and 664 GHz, and at temperatures 190, 210, 230, 250 and 270K,

with their respective refractive indices taken from [12] and shown in Table 7.1.
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Dmax = 10−492µm Dmax = 547µm Dmax = 584µm Dmax = 621µm

Dmax = 647µm Dmax = 697µm Dmax = 748µm Dmax = 805µm

Dmax = 875µm Dmax = 958µm Dmax = 1008µm Dmax = 1045µm

Dmax = 1111µm Dmax = 1160µm Dmax = 1190µm Dmax = 1221µm

Dmax = 1261µm Dmax = 1340µm Dmax = 1422µm Dmax = 1461µm

Figure 7.4: Images of the budding rosettes and ice aggregate models used to
generate the scattering database. The models are shown as a function of increasing
maximum dimension, Dmax, from 10 to 1461 µm.
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Dmax = 1510µm Dmax = 1630µm Dmax = 1700µm Dmax = 1759µm

Dmax = 1860µm Dmax = 1988µm Dmax = 2121µm Dmax = 2258µm

Dmax = 2387µm Dmax = 2527µm Dmax = 2678µm Dmax = 2891µm

Dmax = 3004µm Dmax = 3170µm Dmax = 3443µm Dmax = 4115µm

Dmax = 4346µm Dmax = 4539µm Dmax = 5009µm Dmax = 5203µm

Figure 7.5: Same as in Figure 7.4 but for Dmax from 1510 to 5203 µm.
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Dmax = 5508µm Dmax = 5791µm Dmax = 6188µm

Dmax = 6456µm Dmax = 6688µm Dmax = 6881µm

Dmax = 7884µm Dmax = 8582µm Dmax = 9200µm

Dmax = 9594µm Dmax = 10235µm

Figure 7.6: Same as in Figure 7.4 but for Dmax from 5508 to 10235 µm.
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7.2 Scattering in the far-field zone
In the applications considered in this chapter, the scattered far-field1 is needed

to compute the scattering properties of ice crystals. The far-field zone is the

area where ker� 1, where r is much bigger than any linear dimension of the

scattering object [8]. Before we proceed to define the scattered far-field and

its properties we fix some notation. Definitions in this section are taken from

[8] unless specified otherwise.

We consider an arbitrary point O close to the geometrical centre of the

scattering object as the common origin of all position vectors as in Figure 7.7.

We denote the direction of propagation of an incident plane electromagnetic

wave by n̂inc, which depends on (θinc,φinc), where θinc ∈ [0,π] is the polar

(zenith) angle and φinc ∈ [0,2π) is the azimuth angle. The corresponding unit

vectors are θ̂inc and φ̂inc such that n̂inc = θ̂inc× φ̂inc and defined as

n̂inc =


sinθinc cosφinc

sinθinc sinφinc

cosθinc

 , θ̂inc =


cosθinc cosφinc

cosθinc sinφinc

−sinθinc

 , φ̂inc =


−sinφinc

cosφinc

0

 .

(7.1)

If the medium of propagation is non absorbing (which it is in our case), the

component of the electric field vector along the direction of propagation n̂inc

is zero and the incident field can then be decomposed into components lying

in the θ̂inc and φ̂inc directions as follows

Einc = (Eincθ θ̂inc+Eincφ φ̂inc)exp(iken̂inc · r), (7.2)

where Eincθ θ̂inc and Eincφ φ̂inc define the polarisation vectors. In the same

manner, one can create a coordinate system n̂sca, θ̂sca, φ̂sca to describe the

scattered wave. The linearity of the Maxwell’s equations (2.1)–(2.4) means
1We note that the far-field mentioned in this chapter refers to the scattered far-field zone

and not the far-field interactions included in the H-matrix assembly that depend on the
cutoff parameter χ introduced in (5.2). Where the cutoff parameter is used in this chapter,
it is mentioned explicitly.
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(a) (b)

Figure 7.7: (a) Coordinate system used to describe the direction of propagation
and the polarisation of a plane electromagnetic wave. (b) Scattering set up. Taken
from [8].

that the above decomposition can be used to evaluate the scattered fields of

the two incident waves separately and add them to find the total scattered

field arising by the sum of the two incident waves.

The scattered far-field, Es,f , decays inversely with distance r from the

scattering object

Es,f (n̂sca)∼ eiker

r
F(n̂sca), r→∞. (7.3)

The vector F is independent of r and describes the angular distribution of

the scattered field radiation in the far-field zone. It can be computed via the

asymptotic form of Stratton Chu representation formulae

F(x) =−
M∑
m
He,fm

(
γ+
D,mEs

m

)
−

M∑
m
Ee,fm

(
γ+
N ,mEs

m

)
, (7.4)

where He,f and Ee,f are the far-field versions of the magnetic and electric
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potential operators given as [5]

He,fv(x) := ike4π

∫
Γ

exp
(
−ikex ·y
|x|

)(
x
|x|
×v(y)

)
dΓ(y), (7.5)

Ee,fv(x) := ike4π

∫
Γ

exp
(
−ikex ·y
|x|

)
v(y)dΓ(y)

− ike4π

∫
Γ

exp
(
−ikex ·y
|x|

)
v(y) · x

|x|
dΓ(y). (7.6)

7.2.1 Amplitude Scattering Matrix
The amplitude scattering matrix S describes the transformation of the θ and

φ components of the incident plane wave into the θ and φ components of

the scattered spherical wave in the far-field. It depends on the directions of

incident and scattering waves as well as the size, morphology, composition,

and orientation of the scattering object with respect to the coordinate system.

It also depends on the choice of origin of the coordinate system inside the

scattering object. The elements of the amplitude matrix can be evaluated as

follows

S11 = θ̂sca ·Fs,f (n̂sca, n̂inc, θ̂inc), S12 = θ̂sca ·Fs,f (n̂sca, n̂inc, φ̂inc), (7.7)

S21 = φ̂sca ·Fs,f (n̂sca, n̂inc, θ̂inc), S22 = φ̂sca ·Fs,f (n̂sca, n̂inc, φ̂inc). (7.8)

By Fs,f (n̂sca, n̂inc, θ̂inc) we mean the scattered far-field created by the θ̂inc

component of the incident plane wave, i.e. Eincθ θ̂inc exp(iken̂inc · r) and eval-

uated in the scattering direction n̂sca. Analogous definitions can be made for

Fs,f (n̂sca, n̂inc, φ̂inc).

7.2.2 Phase matrix
The elements of the phase matrix, Z, in terms of the amplitude matrix are

Z11 = 1
2
(
|S11|2 + |S12|2 + |S21|2 + |S22|2

)
, (7.9)

Z12 = 1
2
(
|S11|2−|S12|2 + |S21|2−|S22|2

)
, (7.10)

Z13 =−<(S11S
∗
12 +S22S

∗
21) , (7.11)
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Z14 =−=(S11S
∗
12−S22S

∗
21) , (7.12)

Z21 = 1
2
(
|S11|2 + |S12|2−|S21|2−|S22|2

)
, (7.13)

Z22 = 1
2
(
|S11|2−|S12|2−|S21|2 + |S22|2

)
, (7.14)

Z23 =−<(S11S
∗
12−S22S

∗
21) , (7.15)

Z24 =−=(S11S
∗
12 +S22S

∗
21) , (7.16)

Z31 =−<(S11S
∗
21 +S22S

∗
12) , (7.17)

Z32 =−<(S11S
∗
21−S22S

∗
12) , (7.18)

Z33 = <(S11S
∗
22 +S12S

∗
21) , (7.19)

Z34 = =(S11S
∗
22 +S21S

∗
12) , (7.20)

Z41 =−=(S21S
∗
11 +S22S

∗
12) , (7.21)

Z42 =−=(S21S
∗
11−S22S

∗
12) , (7.22)

Z43 = =(S22S
∗
11−S12S

∗
21) , (7.23)

Z44 = <(S22S
∗
11−S12S

∗
21) , (7.24)

where < and = denote the real and imaginary parts respectively.

7.2.3 Single Scattering Properties (SSPs)
Knowledge of the scattered far field allows us to compute the optical properties

of the scatterer. For the purposes of the database these are:

• the extinction cross section, Cext: it refers to the area that when

multiplied by the incident monochromatic energy flux, gives the total

monochromatic power removed from the incident wave by the effect of

scattering and absorption,

• the scattering cross section, Csca: as above, but the product gives the

total monochromatic power removed from the incident wave as a result

of scattering of the incident radiation in all directions,

• the back-scattering cross section, Cbsca: similar to the scattering cross

section but only for the scattering of the incident wave back in the di-
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rection of the incident wave,

• the asymmetry parameter, g ∈ [−1,1]: it is defined as the average cosine

of the scattering angle (i.e. the angle between the incidence and the

scattering directions). It is positive if the particle scatters more light

toward the forward direction, negative if more light is scattered toward

the back-scattering direction, and vanishes if the scattering is symmetric

with respect to the plane perpendicular to the incident direction,

• the scattering albedo, $0 ∈ [0,1]: it is interpreted as the probability that

a photon interacting with the particle will be scattered rather than ab-

sorbed. In the case of non-absorbing particles it has a value of 1.

The extinction, scattering and back-scattering cross sections can be com-

puted as follows

Cext = 1
2
(
Cext,θ +Cext,φ

)
, (7.25)

Csca = 1
2
(
Csca,θ +Csca,φ

)
, (7.26)

Cbsca = 4πZ11(θsca = π), (7.27)

where the subscripts θ and φ correspond to the two components of the incident

wave (as described in (7.2)). The individual components can be computed as

follows

Cext,x = 4π
ke|Eincx x̂inc|2

=
(
Fs,f (n̂sca, n̂inc, x̂inc) ·

(
Eincx x̂inc

)∗)
, (7.28)

Csca,x = 1
|Eincx x̂inc|2

∫
4π
|Fs,f (r̂, n̂inc, x̂inc)|2dr̂, (7.29)

where x̂inc corresponds to one of θ̂inc or φ̂inc. The scattering albedo is defined

as the ratio of the scattering and extinction cross sections

$0 = Csca
Cext

. (7.30)
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The asymmetry parameter g = 〈cosΘ〉 is defined as the average cosine of the

scattering angle Θ = arccos(r̂ · n̂inc), i.e. the angle between the incidence and

the scattering directions

g = 〈cosΘ〉= 1
2
(
gθ +gφ

)
, (7.31)

where the individual components can be computed by

gx = 1
Csca,x

∫
4π
|Fs,f (r̂, n̂inc, x̂inc)|2r̂ · n̂incdr̂. (7.32)

We note that there are alternative ways of computing Csca and g through

the phase matrix element Z11 and the relative difference between the two

definitions is often used to check the accuracy of the implementation

Csca =
∫ 2π

0

∫ π

0
Z11(θ)sinθdθdφ, (7.33)

g =
∫ 2π

0

∫ π

0
Z11(θ)sinθ cosθdθdφ. (7.34)

7.2.3.1 Integrals over the sphere: Lebedev quadrature
For the evaluation of integrals over the sphere (e.g. for Csca and g) we use

Lebedev quadrature [111, 112, 113, 114, 115, 116]. This is to take advantage

of the discrete grid points (θi,φi) being available as a pair and hence reducing

the number of loops to one.

We briefly introduce the method but refer to the original sources [111,

112, 113, 114, 115, 116] for a more detailed discussion. A surface integral of a

function over the unit sphere is evaluated by

I[f ] =
∫

4π
f(r̂)dr̂ =

∫ π

0
sin(θ)dθ

∫ 2π

0
f(θ,φ)dφ. (7.35)

Let S be a unit sphere in R3 and let Ω be the octahedron inscribed in it, with
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vertices on the coordinate axes as follows

a1
i = (0,0,±1), (0,±1,0), (±1,0,0). (7.36)

The Lebedev grid points are constructed to lie on the surface of S and to

be invariant under the octahedral rotation group with inversion [111]. For

any point on the sphere, there are either five, seven, eleven, twenty-three, or

forty-seven equivalent points with respect to the octahedral group given by a1
i

(defined above) and a3
i , a2

i , bki , cki , dki respectively. These are defined as [112]

• a2
i =

√
2

2 (±1,±1,0),
√

2
2 (±1,0,±1) and

√
2

2 (0,±1,±1), representing the

mid-points of the edges of the octahedron Ω,

• a3
i =

√
3

3 (±1,±1,±1), representing the centres of the faces of Ω,

• bki : (±`k,±`k,±mk), (±`k±mk,±`k, ), and (±mk,±`k,±`k), with the

constraint 2`2k +m2
k = 1,

• cki = (±pk,±qk,0), (±pk,0,±qk), (0,±pk,±qk), (±qk,±pk,0), (±qk,0,±pk),

(0,±qk,±pk), with the constraint p2
k + q2

k = 1, and

• dki = (±rk,±uk,±wk), (±rk,±wk,±uk), (±uk,±rk,±wk), (±uk,±wk,±rk),

(±wk,±uk,±rk), (±wk,±rk,±uk) with the constraint r2
k +w2

k +u2
k = 1.

For the Lebedev scheme all points equivalent under the rotational and inversion

group share the same weights; A1, A2, A3, Bk, Ck, Dk for a1
i , a2

i a3
i , bki cki , dki

respectively, and the general form of the Lebedev quadrature is given by

ĨN [f ] =A1
6∑
i=1

f(a1
i ) +A2

12∑
i=1

f(a2
i ) +A3

8∑
i=1

f(a3
i )

+
N1∑
k=1

Bk

24∑
i=1

f(bki ) +
N2∑
k=1

Ck

24∑
i=1

f(cki ) +
N3∑
k=1

Dk

48∑
i=1

f(dki ), (7.37)

with the total number of grid points given by

N = 26 + 24(N1 +N2) + 48N3. (7.38)
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To determine the weights one has to integrate the invariant spherical harmonics

up to a given order and solve the resulting non-linear equations.

Construction of the Lebedev grid points and weights can be expensive as

one has to solve large systems of non-linear equations but we take advantage

of pre-computed numerical values for the nodes and weights 2 [117]. For the

evaluation of Csca and g we use Lebedev quadrature of order 59 resulting in

1202 grid points.

Compared to other methods, such as using products of one-dimensional

Gaussian quadratures approximating the integral by

Ĩ[f ] =
N∑
i=1

M∑
j=1

ωivjf(θi,φj), (7.39)

for appropriate weight functions ωi and vj , Lebedev quadrature is faster to

evaluate as fewer grid points are used and the two loops reduce down to one.

7.2.4 Random orientation
The aggregates of Figures 7.4–7.6 are assumed to be randomly oriented and

therefore in this section we discuss how the SSPs and phase matrix of randomly

oriented scatterers can be evaluated. Averaging some quantity f over random

particle orientations is represented by [118]

〈f〉= 1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f(α,β,γ)sinβ dα dβ dγ. (7.40)

where α,β,γ are the three Euler angles used to describe the orientation of

a particle (see Figure 7.8). The traditional approach to evaluate the SSPs

and phase matrix of randomly oriented particles is to fix the direction of the

incident wave, and then rotate the scatterer using three Euler angles (as de-

scribed for example in [119]). The Euler angles and coordinate systems before

and after the transformations can be seen in Figure 7.8. The rotation matrix
2available on bitbucket.org/CasperBeentjes/quadratures-on-unit-sphere

bitbucket.org/CasperBeentjes/quadratures-on-unit-sphere
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Figure 7.8: Euler angles of rotation α, β and γ. The blue coordinate system, xyz,
represents the original coordinate system, while the red one, x′y′z′, represents the
coordinate system obtained after the three rotations have been applied. Taken from
[9].

representing the three rotations is given by

Rαβγ =Rz(γ)Ry(β)Rz(α)

=


cosγ sinγ 0

−sinγ cosγ 0

0 0 1




cosβ 0 −sinβ

0 1 0

sinβ 0 cosβ




cosα sinα 0

−sinα cosα 0

0 0 1

 . (7.41)

The SSPs and phase matrix are then evaluated for some scattering angles

(θsca,φsca). Once many orientations have been considered one can use (7.40)

to compute the orientationally averaged quantity.

A naive approach to this would be to re-assemble the operator and precon-

ditioner for each orientation considered, however this would be very expensive

using BEM. Instead, two reference frames are often used when considering

multiple orientations; a ‘laboratory’ reference frame and a particle one [8].

The laboratory frame is often chosen so that it corresponds to the geometry

of the scattering situation, i.e., the Cartesian coordinate system. The particle

reference frame is used to describe the orientation of the scatterer with respect
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to the laboratory frame. In order to solve the scattering problem with respect

to the laboratory reference frame, one must first solve in the particle reference

frame and then through suitable rotation matrices transition to the labora-

tory frame. Full details of this process and explicit formulas for the necessary

rotation matrices are given in Chapter 2.4 of [8]. Fixing the direction of the

incident wave and rotating the scatterer by Rαβγ is equivalent to fixing the

orientation of the scatterer and instead rotating the direction of the incident

wave by R−1
αβγ ; and this methodology has also been considered in [9]. To avoid

transitioning through particle and laboratory frames we instead follow this ap-

proach. In this case, we assemble the operator matrix and preconditioner and

re-use for all incident wave solutions. We note that for each incident wave,

two GMRES solves need to be performed; one for each polarisation vector as

described in (7.1)–(7.2). However, different GMRES solves can be distributed

over different CPUs to reduce the total computation time.

Assuming a fixed incident wave direction with fixed θinc = φinc = 0 in (7.1)

(which is what is usually assumed in the traditional way of simulating random

orientation), gives

n̂inc =


0

0

1

 , θ̂inc =


1

0

0

 , φ̂inc =


0

1

0

 . (7.42)

These can then be rotated by R−1
α,β,γ given by

R−1
α,β,γ =R−1

z (α)R−1
y (β)R−1

z (γ), (7.43)

giving the rotated incident directions and polarisation vectors

n̂inc =


cosα sinβ

sinα sinβ

cosβ

 , θ̂inc =


cosαcosβ cosγ− sinα sinγ

sinαcosβ cosγ+ cosα sinγ

−sinβ cosγ

 , (7.44)
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φ̂inc =


−cosαcosβ sinγ− sinαcosγ

−sinαcosβ sinγ+ cosαcosγ

sinβ sinγ

 , (7.45)

that can be varied for different α,β,γ. Comparing with the definitions of

(7.1), we can see that both n̂inc are equivalent with α= φinc and β = θinc, i.e.

the direction of the incident wave does not depend on the angle γ and can

be defined using a pair of grid points (θinc,φinc). It is only the polarisation

vectors θ̂inc and φ̂inc that need to be altered by an additional angle.

This allows us to make use of Lebedev quadrature to obtain the grid

points (θinci ,φinci ) that define the direction of the incident wave, reducing the

two integrals over θinc and φinc (or α and β as defined in (7.40)) to just

one. The third integral over γ can then be evaluated by a simple Gaussian

integration. For the rest of this thesis we use the terms ‘number of incident

waves’ to refer to the number of pairs (θinci ,φinci ) obtained by the Lebedev

scheme, and ‘number of polarisation rotations/vectors’ to refer to the

number of points γi obtained by the Gaussian quadrature scheme.

7.2.4.1 Testing our interpretation of random orientation
To test the accuracy of our implementation of random orientation as well as to

find the number of incident waves and polarisation rotations that are needed to

approximate random orientation, we compare with results obtained from a T-

matrix method [22]. We consider scattering by hexagonal columns of different

size parameters as detailed in Table 7.2.

In Figure 7.9 we present the relative errors of SSPs computed for the

problems of Table 7.2, for a number of incidents waves and for different mesh

resolutions. We find that the prescribed mesh size of 10 elements per wave-

length suggested in [5] is not a useful scheme for all the hexagonal columns

considered, as some are very small and require a refined mesh size to achieve

a sufficient discretisation of the surfaces. In particular, this is the case for

X = 0.05 and X = 0.1, as the maximum mesh size occurring from a rule of 10
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X Dimensions Frequency Refractive Index
0.05 L=D = 96µm

50 GHz 1.7746 + 0.00064i
0.1 L=D = 191µm
1 L=D = 1.91mm
5 L=D = 9.55mm
10 L=D = 1.04mm 664 GHz 1.7746 + 0.00940i

Table 7.2: Information on the geometry, frequency and refractive index for the test
cases. The top four cases have the same frequency and refractive index. The height
of the hexagonal column is denoted by L, with the diameter of the hexagonal face
by D. We refer back to Figure 6.1 for a schematic representation of the hexagonal
columns.

elements per wavelength is larger than the length L of the columns, resulting

in the minimum amount of elements per surface produced by Gmsh. A mesh

size of 100 elements per wavelength was sufficient to reduce the relative errors

to a few percent. We also observe that 14 incident waves in combination with

the refined mesh are sufficient to provide accurate SSPs at a relative error

of 1% or below, for size parameters X = 0.05 and 0.1. For size parameter

X = 1, 14 waves are again sufficient, however one can get away with the usual

10 elements per wavelength. A discretisation of 20 elements per wavelength

increases accuracy but this is at the expense of additional computation time

and memory consumption.

For the hexagonal column of size parameter X = 5 we see that a mesh

size of 10 elements per wavelength produces relative errors between 1-2%. A

mesh size of 20 elements per wavelength reduces those relative errors below 1%.

There is no obvious change in assuming 110 or 194 incident waves, except for a

small increase in the relative error of 〈Cbsca〉 when 20 elements per wavelength

are used. For the hexagonal column of size parameter X = 10, a mesh size of

10 elements per wavelength results in relative errors between 1-4%. These fall

below 1% when a mesh of 20 elements per wavelength is used, except for 〈g〉

at 2% and 〈Cbsca〉 at 3%. Our numerical experiments show that the accuracy

of the SSPs is not affected by varying γ; these can be computed accurately

just by varying (θinc,φinc).
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Figure 7.9: Relative errors of the SSPs as a function of increasing number of
incident waves for hexagonal columns of size parameter X = 0.05 (top left), X = 0.1
(top right), X = 1 (centre left), X = 5 (centre right) and X = 10 (bottom). A mesh
size of 10 elements per wavelength was prescribed for the dashed lines resulting in
54, 54, 270, 4452 and 9612 dofs respectively. The solid lines represent refined meshes
with 100 elements per wavelength for X = 0.05 and X = 0.1, and 20 elements per
wavelength for X = 1, 5 and 10 resulting in 90, 270, 918, 17478 and 21378 dofs
respectively.
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In Figures 7.10–7.11 we compare the phase matrix elements computed

using our boundary element method against the T-matrix method of [22]. We

note that the only elements of the phase matrix that remain non-zero when

considering random orientation are 〈Z11〉, 〈Z22〉, 〈Z33〉, 〈Z44〉, 〈Z12〉 (= 〈Z21〉)

and 〈Z34〉 (= −〈Z43〉) and hence we only present comparisons for those. For

the small size parameters X = 0.05 and X = 1 considered in Figure 7.10 we

see a complete agreement between the methods with just 14 incident waves, in

agreement with earlier findings on the accuracy of SSPs. We note though that

a different number of polarisation rotations had to be considered to achieve this

accuracy; 5 for X = 0.05 and 10 for X = 1. For the larger size parameters X = 5

and X = 10 of Figure 7.11, 194 incident waves were considered for both cases,

but 10 polarisation rotations for X = 5 and 15 for X = 10. A good agreement

is observed between the BEM and T-matrix methods although not a complete

match for some parts of 〈Z11〉 and 〈Z12〉. This could be remedied by using

a finer mesh or by assuming a larger number of incident waves/polarisation

rotations but this level of accuracy was deemed acceptable at the testing stage,

as our implementation is tested again in the following section for the aggregate

model of Figures 7.4–7.6.
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(a)

(b)

Figure 7.10: Phase matrix elements for hexagonal columns of size parameter (a)
X = 0.05 and (b) X = 1. For (a) 14 incident waves and 5 polarisation rotations have
been considered, while for (b) 14 incident waves and 10 polarisation rotations. We
note that the remaining phase matrix elements are 0 when random orientation is
assumed.
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(a)

(b)

Figure 7.11: As in Figure 7.10 but for (a) X = 5 and (b) X = 10. In (a) 194
incident waves and 10 polarisations are considered and in (b) 194 incident waves
and 15 polarisation rotations.
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7.3 Accuracy
The question now arises as to how many incident waves and polarisation di-

rections are needed and what level of mesh refinement is required to obtain

the SSPs and phase matrix elements of the aggregate model in random ori-

entation. In particular, we need to test if our findings from the comparisons

between T-matrix methods for hexagonal columns carry over to more complex

shapes such as the budding rosettes and rosette aggregates of our model. For

the purposes of the database, accuracy of a few percent is desired and ide-

ally around 1%. This is to minimise costs from memory consumption, and

total computation time, since the final simulations were carried out on AWS

machines. Since no other (numerical or analytical) solutions exist for the ag-

gregate model to compare with, we compare results between different mesh

discretisations, number of incident waves and polarisation rotations.

7.3.1 Mesh size
With regards to mesh refinement, we find that the usual rule of 10 elements

per wavelength [5] is not always a useful scheme as each aggregate consists of

multiple smaller monomers, for which a sufficient discretisation needs to be

achieved for each surface. Taking a look at the aggregate model in Figures

7.4–7.6, we see our aggregates fall into 4 main categories, on which we also

base our discretisation rules:

• Dmax = 10− 492µm: These are all re-scaled versions of Dmax = 492µm

implying that the surfaces of each monomer shrink as Dmax decreases.

A minimum number of elements is imposed on such aggregates. After

testing, these are: roughly 800 for 50 GHz, 4000 for 183 GHz, 8000 for

243 GHz and 13 000 for 664 GHz.

• Dmax = 547− 875µm, 1111− 1190µm, 1510− 1630µm: These are bud-

ding rosettes with very short branches. Each aggregate consists of iden-

tical monomers that are aligned in a different way to form the aggregate

(see for example aggregates of Dmax = 547µm and 621µm in Figure 7.4;
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both consist of 6 identical monomers aggregated together in a different

manner as to produce the different maximum dimensions). A constant

number of elements per wavelength is be used. After testing, these are:

100 elements per wavelength for 50 GHz, 80 for 183, 70 for 243 and 40

for 664 GHz.

• Dmax = 958 − 1045µm, 1221 − 1461µm, 1700 − 1759µm, 2258µm,

4115µm, 4539µm and 5791µm: These are budding rosettes with longer

branches compared to the above category. Again, the individual

monomers are identical but aggregated together in a different manner

as for the above category (see for example aggregates of Dmax = 958µm

and 1008µm in Figure 7.4). A constant number per wavelength is again

prescribed but slightly relaxed compared to the above category, owing to

the larger surfaces of the individual monomers. These are: 100 elements

for 50 GHz, 50 for 183, 40 for 243 and 20 for 664 GHz.

• Remaining Dmax: These are rosette aggregates, with each individual

monomer being longer than the previous two categories. A relaxed mesh

rule can be applied to those. We use 50 elements per wavelength at 50

GHz, 20 at 183, 20 at 243 and 10 or 20 at 664 GHz (we explain below).

Comparison between different mesh resolutions is performed for some test cases

at all frequencies. In Tables 7.3–7.6 we present some of those test cases at 664

GHz and 190 K, each table representing one of the above four categories.

We note that at Table 7.6, a relative difference of 1-2% is observed for some

of the scattering cross-sections. For aggregates Dmax > 4000µm, at 664 GHz,

the choice was made to run the simulations with a mesh size of 10 elements

per wavelength despite the relative difference being more than 1%. This is

because as Dmax increases, so does the size parameter X and as seen in the

following subsections, the number of incident waves and polarisation rotations

need to increase with increasing X. Since the relative difference between the

two mesh resolutions was below 5% it was deemed acceptable to proceed with
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Dmax 60µm 200µm 350µm 450µm 492µm
〈Cext〉 0.02% 0.38% 0.05% 0.31% 0.37%
〈Csca〉 0.06% 0.08% 0.10% 0.11% 0.12%
〈Cbsca〉 0.05% 0.06% 0.03% 0.13% 0.27%
〈g〉 0.17% 0.05% 0.04% 0.01% 0.03%
〈$0〉 0.10% 0.32% 0.07% 0.18% 0.46%

# of dofs N 12828 12843 12825 12852 12624
20496 20382 20454 20400 20172

Table 7.3: Relative difference between two different discretisation schemes for the
smaller aggregates sizes Dmax ≤ 492µm at 664 GHz, 190 K, with 14 incident waves.
Bold font indicates the discretisation chosen for the database.

Dmax 547µm 697µm 1111µm 1190µm 1510µm
〈Cext〉 0.60% 0.42% 0.22% 0.18% 0.25%
〈Csca〉 0.16% 0.10% 0.14% 0.18% 0.10%
〈Cbsca〉 0.52% 0.66% 0.12% 0.09% 0.19%
〈g〉 0.06% 0.06% 0.03% 0.09% 0.09%
〈$0〉 0.43% 0.33% 0.34% 0.36% 0.35%

# of dofs N 9603 14409 28749 38391 43359
18438 23790 47556 63057 71736

Table 7.4: Relative difference between two different discretisation schemes (30 and
40 elements per wavelength) for some of the short budding rosettes at 664 GHz, 190
K, with 194 incident waves. We note that relative differences between 20 and 30
elements per wavelength were all above 1% (and as high as 6% in some cases). Bold
font indicates the discretisation chosen for the database.

Dmax 958µm 1221µm 1700µm 2258µm
〈Cext〉 0.05% 0.09% 0.11% 0.11%
〈Csca〉 0.25% 0.36% 0.37% 0.39%
〈Cbsca〉 0.18% 0.40% 0.58% 0.16%
〈g〉 0.04% 0.04% 0.05% 0.05%
〈$0〉 0.20% 0.26% 0.26% 0.29%

# of dofs N 3096 4380 8721 13989
8196 12279 24372 39498

Table 7.5: Relative difference between two different discretisation schemes (10 and
20 elements per wavelength) for some of the longer budding rosettes at 664 GHz,
190 K, with 194 incident waves. Bold font indicates the discretisation chosen for the
database.
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Dmax 2121µm 3004µm 5508µm 6456µm 8582µm
〈Cext〉 0.59% 0.75% 0.77% 0.78% 0.81%
〈Csca〉 1.22% 1.29% 1.46% 1.50% 1.55%
〈Cbsca〉 0.70% 0.46% 0.65% 1.14% 1.68%
〈g〉 0.11% 0.28% 0.17% 0.19% 0.19%
〈$0〉 0.63% 0.54% 0.69% 0.72% 0.74%

# of dofs N 6606 10560 44127 59358 65631
24774 39189 165951 220599 244347

# of waves 194 230 230 230 230

Table 7.6: Relative difference between two different discretisation schemes (10 and
20 elements per wavelength) for some of the aggregate rosettes at 664 GHz, 190 K.
Red underlined values indicate that the relative difference is above 1% which is the
desired accuracy. Bold font indicates the discretisation chosen for the database.

the mesh size of 10 elements per wavelength to reduce computational cost.

The probability of occurrence of ice crystals with such large dimensions is also

low, so a greater inaccuracy in the computation of SSPs is not going to have

as big an impact as the intermediate ones.

In addition, the SSPs and phase matrix elements of aggregates of size pa-

rameter X = 0.2 or smaller were computed using the Rayleigh approximation

[120] for equivalent mass ice spheres. The asymmetry parameters 〈g〉 were

computed from the T-matrix method of [121] otherwise the asymmetry pa-

rameters under Rayleigh approximation would be zero. Contributions of such

small size parameter ice crystals are very small so the choice was made to

reduce computation time and cost and focus on the remaining size parameters

that have a larger contribution in numerical weather and climate models. The

aggregate sizes for which the Rayleigh approximation was used are

• 50 GHz: Dmax = 10−450µm,

• 183 GHz: Dmax = 10−80µm,

• 243 GHz: Dmax = 10−60µm, and

• 664 GHz: Dmax = 10−20µm.
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7.3.2 Number of incident waves
With regards to the number of incident waves required to achieve accuracy

of a few percent of the SSPs, we find that these are dependent on the size

parameter. For our aggregate model we use

• X < 1: 14 incident waves (Lebedev scheme of order 5),

• 1≤X < 3: 50 incident waves (Lebedev scheme of order 11),

• 3≤X < 5: 110 incident waves (Lebedev scheme of order 17),

• 5≤X < 8: 194 incident waves (Lebedev scheme of order 23),

• 8≤X < 10: 230 incident waves (Lebedev scheme of order 25),

• X ≥ 10: 302 incident waves (Lebedev scheme of order 29).

Numerical tests for some of the aggregates at 664 GHz can be seen in Tables

7.7–7.8. We note that it is likely that as X increases further than 10, the

number of incident waves will also have to increase. However, for the purposes

of the database we limit the number to 302 to limit computation costs. We note

that all SSPs except for 〈Cbsca〉 are approximated well at about 50 incident

waves and it is the back-scattering cross-section that requires the additional

incident waves. For future simulations where the back-scattering cross-section

is not of interest, computational costs can be reduced by reducing the number

of incident waves. We also note, that consistent with the comparisons of T-

matrix results for hexagonal columns, no polarisation rotations are required

for the accurate computation of SSPs.
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Dmax 60µm 200µm 350µm 492µm
〈Cext〉 0.001% 0.009% 0.012% 0.000% 0.000% 0.000%
〈Csca〉 0.035% 0.009% 0.016% 0.000% 0.000% 0.000%
〈Cbsca〉 0.039% 0.323% 9.448% 0.063% 2.442% 0.008%
〈g〉 0.048% 0.006% 0.274% 0.000% 0.004% 0.000%
〈$0〉 0.068% 0.001% 0.007% 0.000% 0.000% 0.000%

# of waves 14 14 14 50 50 110
50 50 50 110 110 194

X 0.41 1.31 2.43 3.42
# of dofs N 20496 20382 20454 20172

Table 7.7: Relative difference between different number of incident waves for the
smaller aggregates sizes Dmax ≤ 492µm at 664 GHz, 190 K. Red underlined values
indicate that the relative difference is above 1% which is the desired accuracy. A
relative difference of 0.000% indicates that the relative difference was below 0.001%.
Bold font indicates the number of waves chosen for the database.

Dmax 547µm 697µm 805µm 1111µm 1190µm 1461µm
〈Cext〉 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
〈Csca〉 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
〈Cbsca〉 0.001% 0.249% 1.263% 0.198% 1.217% 2.618%
〈g〉 0.000% 0.000% 0.001% 0.000% 0.09% 0.001%
〈$0〉 0.000% 0.000% 0.000% 0.000% 0.36% 0.000%

# of waves 110 110 110 194 194 230
194 194 194 230 230 302

X 3.80 4.84 5.59 7.73 8.28 10.2
# of dofs N 18438 23790 24033 47556 63057 16920

Table 7.8: Relative difference between different number of incident waves for some
of the short budding rosettes at 664 GHz, 190 K. Red underlined values indicate
that the relative difference is above 1% which is the desired accuracy. A relative
difference of 0.000% indicates that the relative difference was below 0.001%. Bold
font indicates the number of waves chosen for the database.
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7.3.3 Number of polarisation rotations
To evaluate the phase matrix elements of randomly oriented aggregates, in

addition to the number of incident waves, we also need to consider the number

of the polarisation rotations. After testing we find that those again depend on

the size parameter as follows

• aggregates X < 1: 10 rotations,

• aggregates 1≤X < 24: 15 rotations,

• aggregates X ≥ 24: 20 rotations.

A selection of numerical experiments validating the above choice is shown in

Table 7.9. We present the relative difference between the scattering cross-

section, 〈Csca〉, and the asymmetry parameter, 〈g〉, calculated through the far

field (from equations (7.29) and (7.32)) and calculated through 〈Z11〉 (from

equations (7.33) and (7.34)) for some of the model aggregates at 664 GHz and

190 K. We note that a higher relative difference is shown for Dmax = 150µm

but looking closer at the actual values 〈g〉= 0.1149 and 〈g〉= 0.1111 they are

still in agreement in up to 2 decimal places.

Again, it is likely that more polarisation rotations will be needed as X

grows but in combination with the number of incident waves the computa-

tional cost becomes increasingly high. For the largest aggregate sizes, 302×20

incident waves will have to be considered. These correspond to 2× 302× 20

GMRES solves (recall the decomposition of the incident wave in (7.2)) that

need to be performed for each aggregate of X ≥ 24 , where the number of

degrees of freedom also increases with Dmax. For the purposes of the database

we therefore limit the number of polarisation rotations to 20, but the reader

should bear in mind that this might imply a reduced accuracy.
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Dmax 150µm 697µm 1422µm 2121µm 3443µm 4346µm
〈Csca〉 0.06% 0.06% 0.11% 0.24% 0.29% 0.23%
〈g〉 3.29% 0.93% 0.29% 0.09% 0.17% 0.22%
# of polarisations 10 15 15 15 15 20
# of waves 50 110 194 230 230 302
X 1.04 4.85 9.89 14.75 23.94 30.22

Table 7.9: Relative difference between Csca and g calculated through the far field
(from equations (7.29) and (7.32)) and calculated through 〈Z11〉 (from equations
(7.33) and (7.34)) for some of the model aggregates at 664 GHz, 190 K. Red un-
derlined values indicate that the relative difference is above 1% which is the desired
accuracy.

7.3.4 Comparing with other databases
In the database by Guosheng Liu [73], the discrete dipole approximation

(DDA) method of [47] was used to calculate the SSPs and phase matrix ele-

ments of ice columns and plates, rosettes and snowflakes of different maximum

dimension and for different frequencies of incoming radiation. Two different

causes were considered for the accuracy of the computed results: the inter-

dipole spacing (similar to the mesh size of our method) and the number of ori-

entations considered in simulating random orientation. An interdipole spacing

scheme based on the wavelength (similar to a fixed number of elements per

wavelength in our case) was considered. Comparison between the scheme used

for the database and a scheme with half the spacing showed less than 2% rela-

tive errors for 〈Csca〉 and 〈g〉 for all frequencies and particle sizes. The relative

difference for 〈Cbsca〉 was higher but less than 5%. A total of 16× 17× 16

(= 4352) orientations were considered for the simulations of the database. To

test whether this number of orientations was ‘random’ enough tests were also

performed with 32×33×32 (= 33792) orientations. The relative difference for

〈Csca〉 and 〈g〉 was less than 1%, however the relative difference for 〈Cbsca〉

increased with frequency and particle size. While for lower frequencies the

relative difference was less than 5% this increased to more than 20% for higher

frequencies and larger particles.
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These observations are consistent with ours, i.e. the number of incident

waves required to accurately compute 〈Cbsca〉 increases with X, while the re-

maining scattering properties are accurately computed with a smaller number

of them, about 50 incident waves in our case. We note that we managed

to significantly reduce the number of orientations considered for smaller size

parameters by taking advantage of the Lebedev scheme and the fact that no po-

larisation rotations (hence no second integral) are required for the computation

of SSPs. Even with the inclusion of the polarisation rotations (needed for the

accurate computation of the phase matrix) we required only 14×10 (= 140),

50× 15 (= 750), 110× 15 (= 1650), 194× 15 (= 2910) or 230× 15 (= 3450)

orientations for size parameters up to 10, compared with 4352 orientations

considered in [73]. The number of orientations is greater for X larger than 10

with 302×15 (= 4530) and 302×20 (= 6040) orientations, compared to [73],

but that was only the case for 60 out of the 260 size parameters considered.

7.4 Comments on the implementation
For the completion of the database, the accelerating methods of Chapters 4

and 5 were used. Given the extremely large number of GMRES solves that

had to be performed, our focus was on minimising solution time. Memory

consumption and assembly time were not a concern except for the larger Dmax

at 664 GHz.

For the simulations at 50 GHz, a bi-parametric implementation has shown

an increased solution time (we refer back to Figure 6.8), and hence we only

used a reduced preconditioner with P =Di and a non bi-parametric implemen-

tation. For the simulations at 183 GHz, testing beyond the results of Figure

6.8 showed an increased solution time when χP = 0, so we used the reduced bi-

parametric preconditioner P = Di and (νP,χP,qP) = (0.1,∞, (1,1,1,1)). For

the simulations at 243 GHz, a bi-parametric implementation with P = Di and

(νP,χP,qP) = (0.1,∞, (1,1,1,1)) was used as the cutoff parameter χP was not

implemented at that time, so the default χP =∞ was assumed. For aggregates
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of Dmax < 4000µm at 664 GHz, the same implementation was used as for 243

GHz (again the cutoff parameter was not implemented at that stage). For

the larger aggregates at 664 GHz, we expect memory consumption to become

increasingly high, in which case we aim to use a bi-parametric implementation

of P = Si with (νP,χP,qP) = (0.1,0, (1,1,1,1)).

Amazon Web Services (AWS) EC2 instances were used to perform our

simulations with up to 96 CPUs available at a time and 384 GB of RAM.

Smaller size parameter problems (such as the aggregates at 50 and 183 GHz)

were ran on a desktop machine with 40 CPUs and 188 GB RAM. Given the

large availability of CPUs, the Multiprocessing library in Python was used to

distribute the different incident waves to different CPUs and therefore run the

multiple GMRES solves in parallel aiming to reduce the total computation

time for each aggregate.

7.5 Some results from our simulations
We finish this chapter by comparing the SSPs between our rosette aggregate

model and other ice crystal models, such as those considered in the Ding et

al. database [10]. In particular, we consider the 10 and 5 plate aggregates, the

8-column aggregate and the hollow bullet rosette, images of which are shown

in Figure 7.12. We show comparisons for frequencies 50 and 243 GHz and

temperature 230 K. These are shown in Figure 7.13 and 7.14 respectively.

The comparisons show that for aggregates Dmax ≤ 492 (where all aggre-

gate shapes are the same but re-scaled to different dimensions), the extinction

and scattering cross-sections behave very similar to the 8-column aggregate,

but for Dmax > 492 these come closer to the behaviour of the hollow bullet

rosette for both frequencies. The scattering albedo, 〈$0〉, is smaller than that

of the 8-column aggregate at 50 GHz and Dmax ≤ 492, but larger for 243 GHz,

although we note that the Ding et al. database [10] is insufficiently discretised

for Dmax between 100µm and 500µm. For Dmax > 492 the albedo is between

the 8-column aggregate and hollow bullet rosette but as Dmax increases further
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Figure 7.12: Ice crystal models from the Ding et al. database [10]. Image from
[10].

the behaviour becomes closer to that of the hollow bullet rosette.

We note that our aggregate model consists of different ice crystal config-

urations, explaining why the some of the SSPs vary from aggregate to aggre-

gate, compared with the SSPs from [10]. This change in shape was necessary

to constrain the Monte Carlo simulations to follow the Cotton et al. [72] mass

- dimension relationship to be consistent with the Unified Model [110] followed

at the Met Office. This variation in shape, mass and area is more obvious in

the scattering albedo 〈$0〉 and the asymmetry parameter 〈g〉.
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Figure 7.13: Comparison of the SSPs for the aggregate rosette model compared
to SSPs of some of the ice crystals considered in the Ding et al. database [10], for
50 GHz and 230 K.
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Figure 7.14: Same as in Figure 7.13 but for 243 GHz.



Chapter 8

Concluding Remarks and

Future Research Avenues

In this thesis, we have presented two complementary approaches in accelerating

Calderón preconditioning for electromagnetic scattering by multiple absorbing

dielectric objects. We recall from Chapter 1, that we have been looking for

some operator P applied to the PMCHWT formulation so that PA has better

properties than A and its discrete version is easier to solve numerically. The

overall computational cost of solving the preconditioned discrete system is

affected by both

(i) the choice of preconditioning operator P , and

(ii) the choice of discretisation for the operator product PA.

With regards to (i), the choice of P should lead to a smaller number of iter-

ations compared to A. At the same time, the operator product PA incurs

additional matrix-vector operations, so the ideal preconditioner should con-

sist of as few operators as possible. Regarding (ii), the discretisation of PA

should be as cheap (memory and time-wise) as possible, while still producing

a sufficiently accurate numerical solution. To achieve a stable discretisation

of the operator product PA, one has to use both a primal and a dual mesh,

the latter defined on a barycentric refinement of the primal mesh leading to

a 6-fold increase in the number of elements required. To capture the oscilla-
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tory solution of the electromagnetic waves, the mesh needs to be refined with

respect to frequency. A dense assembly and storage of the matrix would there-

fore scale as O(N2), where N are the degrees of freedom, or O(k4), making

the simulation of high-frequency problems very expensive.

Two complementary approaches have been considered in this thesis in or-

der to minimise memory cost and computation time: a modification of the

preconditioning operator, and a bi-parametric implementation. The former

aimed to minimise the number of operators used in the preconditioner. This

was in order to reduce the additional matrix-vector products performed, to-

gether with memory costs, while still maintaining a sufficient preconditioning

effect. The latter involved using two distinct sets of parameters for the assem-

bly of the operator product; one for the operator and one for the precondi-

tioner. The operator was assembled with a more expensive set of parameters

to obtain an accurate solution. The preconditioner, which was discretised us-

ing the expensive dual basis functions, was assembled with a cheaper set of

parameters to minimise assembly and solution time as well as memory cost.

The two approaches have been used in a series of model problems and later

combined together for realistic complex ice crystal configurations.

The different reduced Calderón preconditioners have been defined and nu-

merically tested for model problems in Chapter 4. We have demonstrated that

depending on the problem of interest one can achieve a reduction of memory

cost by 50-75% and a 60-80% reduction in total computational time. Some of

the reduced preconditioners presented have shown some erratic behaviour, by

showing a sudden increase of GMRES iterations (and hence increased matvecs

and GMRES time) for specific exterior wavenumbers. Further work to un-

derstand the theoretical basis of this behaviour would be desirable as it could

provide ideas on different preconditioning techniques that avoid this sudden

increase. A theoretical analysis of the reduced preconditioners presented in

Chapter 4 could also provide an insight into whether the observed performance

is consistent with other libraries and not just for our specific implementation.
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This would also indicate that our methods perform better in general, and not

just for our particular implementation and software library.

Different bi-parametric implementations have been discussed and tested

in Chapter 5. This consisted of using two different sets of parameters; an ex-

pensive one for the accurate assembly of the operators and a cheaper one for

the preconditioner. This included a larger value for the ACA parameters, and

smaller values for the quadrature orders and far-field cutoff parameter. Our

numerical experiments demonstrated that a 60-90% reduction in memory con-

sumption and a 50-60% reduction in total computational time can be achieved

with such a bi-parametric implementation. A bi-parametric implementation

of the reduced preconditioners of Chapter 4 reduced costs even further by 95%

and 80% respectively. Again, some of the reduced preconditioners in combi-

nation with a bi-parametric implementation have shown an erratic behaviour

(increased GMRES iterations, matvecs and GMRES time for specific exterior

wavenumbers). We note that a careful analytical investigation in this case is

difficult due to the methods combining properties of the operators at the con-

tinuous level together with properties of the numerical implementation at the

discrete level. Although we have presented our ideas using results from the

H-matrix implementation within Bempp, we note that the fundamental ideas

of ignoring far-field interactions can be extended to FMM type precondition-

ing. In fact, any compression method that separates interactions into ‘near’

and ‘far’ field can use the ideas presented in this thesis.

In Chapter 6, we have combined the accelerating techniques of Chapters

4 and 5, and compared their performance for realistic complex ice crystal con-

figurations. Our numerical experiments have demonstrated a 99% reduction

in memory cost and at least an 80% reduction in total computational time, for

the highest frequency (664 GHz) considered. These findings are significant as

the otherwise prohibitive cost imposed by the use of the dual basis functions

is now alleviated, allowing us to consider large scale simulations that were

otherwise too expensive to do.
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In Chapter 7, we have discussed the scattering database that is being

generated using our accelerating methods at the Met Office to improve numer-

ical weather prediction. The microphysical model had been discussed along

with the relevant definitions required to compute the scattering properties of

the assumed model. Our implementation of random orientation has also been

tested and compared with other methods and scattering databases. We found

that one can decrease the number of incident waves and polarisation vectors

needed to simulate random orientation by using a combination of Gaussian

and Lebedev quadrature to reduce the three integrals to two (and reduce the

number of corresponding loops from three to two). We also found that de-

pending on the size parameter, one can reduce the number of incident waves

and polarisation vectors needed to simulate random orientation. Early results

from the scattering database have also been presented.

The ideas presented in this thesis lay the foundations for a number of

future applications. A natural extension of the work presented here is the

extension of the PMCHWT formulation (which we presented in Chapter 2 for

the multi-particle case M > 1), to a more generalised set up used to describe

scattering by multiple objects with inclusions. This could be used to simulate

scattering by ice crystals with air bubbles (such as in [122, 123, 124]) or other

trapped particles such as soot impurities [122] or mineral aerosol [123], or scat-

tering by ice crystals falling through the atmosphere which are covered by a

liquid surface. Some initial work on the generalised PMCHWT formulation in

this case has been included in Appendix A and can be used for future work.

From a scientific computing point of view, it would be interesting to investi-

gate the performance of the bi-parametric reduced preconditioners showcased

in this thesis, to determine whether the observations carry over to more com-

plex examples. From an application’s perspective, it would be interesting to

investigate how many incident waves and polarisation vectors are needed to

simulate random orientation of ice crystals with inclusions, and whether the

shape and position of the inclusions affect the scattering properties and phase
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matrix.

Finally, our implementation of random orientation presented in Chapter

7, could be adjusted to simulate azimuthally random orientation. This is the

case where particles have a fixed orientation in the polar direction (fixed θinc)

but are randomly oriented in the azimuth direction. While the Lebedev scheme

can no longer be used, as only one of the two angles needs to be varied, the

implementation still requires only two integrals, this time implemented by two

Gaussian quadrature products. Early experiments have demonstrated that

our implementation could be easily adjusted to simulate this but further tests

will need to be performed to identify the number of waves and polarisation

vectors needed for large size parameters. A natural extension would then be

the combination of the two ideas; for example simulating hexagonal plates

falling through the atmosphere which are covered by a liquid surface and are

usually azimuthally randomly oriented.
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Appendix A

Multi-particle scattering with

inclusions

This Appendix describes a generalisation of the scattering problem and PM-

CHWT formulation that was presented in Chapter 2, for scattering by multiple

particles that might have inclusions, such as air bubbles or other trapped par-

ticles, or aggregates that are surrounded by liquid.

Figure A.1: Electromagnetic scattering by multiple scatterers of arbitrary shape
each with an arbitrary number of inclusions.
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A.1 The scattering problem
We consider M disjoint arbitrary 3D isotropic homogeneous dielectric scatter-

ers occupying bounded domains Ωi
m⊂R3, m= 1, . . . ,M , with boundaries Γm =

∂Ωi
m, in a homogeneous exterior medium Ωe = R3\∪Mm=1Ωi

m, as in Figure 1.1.

Each scatterer Ωi
m might contain Nm, m= 1, . . . ,M , smaller 3D isotropic ho-

mogeneous dielectric scatterers, occupying domains Ωi
mn
⊂ Ωi

m,n= 1, . . . ,Nm,

with boundaries Γmn = ∂Ωi
mn

.

The electric and magnetic fields in the exterior domain Ωe and interior

domains Ωi
m\∪Nm

n=1Ωi
mn

, m = 1, . . . ,M , and Ωi
mn

, n = 1, . . . ,Nm, m = 1, . . . ,M ,

will be denoted (Ee,He), (Ei
m,Hi

m) and (Ei
mn

,Hi
mn

) respectively. They are

assumed to satisfy the time-harmonic Maxwell equations

∇×Ee = iωµeHe, in Ωe, (A.1)

∇×He =−iωεeEe, in Ωe, (A.2)

∇×Ei
m = iωµmHi

m, in Ωi
m\∪Nm

n=1Ωi
mn

,m= 1, . . . ,M , (A.3)

∇×Hi
m =−iωεmEi

m, in Ωi
m\∪Nm

n=1Ωi
mn

,m= 1, . . . ,M , (A.4)

and

∇×Ei
mn

= iωµmnHi
mn

, in Ωi
mn

, n= 1, . . . ,Nm,m= 1, . . . ,M , (A.5)

∇×Hi
mn

=−iωεmnEi
mn

, in Ωi
mn

, n= 1, . . . ,Nm,m= 1, . . . ,M , (A.6)

together with the transmission boundary conditions

Ei
m(x)×nm = Ee(x)×nm, x ∈ Γm, m= 1, . . . ,M , (A.7)

Hi
m(x)×nm = He(x)×nm, x ∈ Γm, m= 1, . . . ,M , (A.8)
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and

Ei
mn

(x)×nmn = Ei
m(x)×nmn , x ∈ Γmn , n= 1, . . . ,Nm,m= 1, . . . ,M ,

(A.9)

Hi
mn

(x)×nmn = Hi
m(x)×nmn , x ∈ Γmn , n= 1, . . . ,Nm,m= 1, . . . ,M .

(A.10)

Here we assume a time-dependence of the form e−iωt, with angular frequency

ω > 0. The parameters εe, εm, εmn and µe, µm, µmn represent respectively the

electric permittivity and the magnetic permeability of the domains, and nm
and nmn are the unit normal vectors on Γm and Γmn pointing into Ωe and Ωi

m

respectively.

In the scattering problem, an incident field (Einc,Hinc) (for instance, a

plane wave) gives rise to internal fields (Ei
m,Hi

m) in Ωi
m and (Ei

mn
,Hi

mn
) in

Ωi
mn

, and a scattered field (Es,Hs) in the exterior domain Ωe. The latter is

assumed to satisfy the Silver-Müller radiation condition

√
µeHs× x

|x|
−
√
εeEs =O

(
1
|x|

)
, as |x| →∞, (A.11)

and the total exterior field is then the sum of incident and scattered fields

Ee=Einc +Es, in Ωe, (A.12)

He=Hinc+Hs, in Ωe. (A.13)

It is sufficient to solve for either the electric or magnetic fields and then

recover the remaining fields by (A.1)-(A.2), (A.3)-(A.4) and (A.5)-(A.6). In

what follows, we will solve for the electric fields Ee, Ei
m, Ei

mn
which satisfy

∇× (∇×Ee) −k2
eEe = 0, in Ωe, (A.14)

∇× (∇×Ei
m) −k2

mEi
m = 0, in Ωi

m, m= 1, . . . ,M , (A.15)
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∇× (∇×Ei
mn

)−k2
mn

Ei
mn

= 0, in Ωi
mn

, n= 1, . . . ,Nm,m= 1, . . . ,M ,

(A.16)

where ke = ω
√
µeεe, km = ω

√
µmεm and kmn = ω

√
µmnεmn are the wavenum-

bers in the respective domains.

A.2 Boundary Integral Formulations
Using the definitions of the Dirichlet and Neumann traces, and equations (A.1),

(A.3), (A.5), we can express the transmission boundary conditions (A.7)-

(A.10) in terms of traces of the respective electric fields

uim = usm+uincm , x ∈ Γm, m= 1, . . . ,M , (A.17)

uimn
= uemn

, x ∈ Γmn , n= 1, . . . ,Nm,m= 1, . . . ,M , (A.18)

where 1

uim =


γ−D,mEi

m

km
µm

γ−N ,mEi
m

 , usm =


γ+
D,mEs

ke
µe
γ+
N ,mEs

 , uincm =


γ+
D,mEinc

ke
µe
γ+
N ,mEinc

 ,

(A.19)

and

uimn
=


γ−D,mn

Ei
mn

kmn

µmn

γ−N ,mn
Ei
mn

 , uemn
=


γ+
D,mn

Ei
m

km
µm

γ+
N ,mn

Ei
m

 . (A.20)

The Stratton-Chu representation formulae can be written as follows: The

exterior and interior fields Es, Ei
m, m = 1, . . . ,M and Ei

mn
, n = 1, . . . ,Nm,

1the subscript defines the scatterer on which we take the relevant trace, and the super-
script whether it’s from the interior i, or exterior e. The trace ue

mn
denotes the trace on

Ωi
mn

from its exterior Ωi
m and not the global exterior Ωe.
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m= 1, . . . ,M can be represented as 2

−
M∑
m
Hem

(
γ+
D,mEs

)
−

M∑
m
Eem

(
γ+
N ,mEs

)
=


Es(x), x ∈ Ωe,

0, x /∈ Ωe.
(A.21)

Him
(
γ−D,mEi

m

)
+E im

(
γ−N ,mEi

m

)
−

Nm∑
n
Hemn

(
γ+
D,mn

Ei
m

)
−
Nm∑
n
Eemn

(
γ+
N ,mn

Ei
m

)
=


Ei
m(x), x ∈ Ωi

m,

0, x /∈ Ωi
m,

(A.22)

and

Himn

(
γ−D,mn

Ei
mn

)
+E imn

(
γ−N ,mn

Ei
mn

)
=


Ei
mn

(x), x ∈ Ωi
mn

,

0, x /∈ Ωi
mn

.
(A.23)

Taking appropriate traces of (A.21) and (A.22) on the boundary Γm gives

(1
2Im−Ae

m

)
usm−

M∑
6̀=m

Am`us` = usm, m= 1, . . . ,M , (A.24)

(1
2Im+Ai

m

)
uim−

Nm∑
n
Ammnui,mmn

= uim, m= 1, . . . ,M , (A.25)

and appropriate traces of (A.22) and (A.23) on the boundary Γmn

(1
2Imn−Ae

mn

)
uemn
−
Nm∑
s6=n

Amnmsuems
−Amnmuim = uemn

, (A.26)
(1

2Imn +Ai
mn

)
uimn

= uimn
, (A.27)

for n= 1, . . . ,Nm, m= 1, . . . ,M .

Subtracting (A.24) from (A.25), (A.26) from (A.27) and using the bound-

ary conditions (A.17) and (A.18) gives the PMCHWT formulation in the con-
2Equation (A.22), is a combination of the interior and exterior Stratton-Chu formulae,

as Ωi is the interior of the large scatterer but acts as the exterior of the smaller scatterers
Ωi

mn
, n= 1, · · · ,Nm.
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text of multi-particle scattering where scatterers might have an arbitrary num-

ber of inclusions

(
Ai
m+Ae

m

)
usm+

M∑
6̀=m

Am`us`−
Nm∑
n
Ammnuimn

=
(1

2Im−Ai
m

)
uincm ,

(A.28)
(
Ai
mn

+Ae
mn

)
uimn

+
Nm∑
s6=n

Amnmsuims
−Amnmusm = Amnmuincm , (A.29)

for each n = 1, . . . ,Nm, m = 1, . . . ,M . These M +∑
mNm systems can be

combined to form a block structured system

Ãu = b, (A.30)

with the block-diagonal entries given by

Ãm,m =



Ae
m+Ai

m −Am,m1 · · · · · · −Am,mNm

−Am1,m Ae
m1 +Ai

m1 Am1,m2 · · · Am1,mNm

... Am2,m1
. . . ...

... ... . . . AmNm−1,mNm

−AmNm ,1 AmNm ,m1 · · · AmNm ,mNm−1 Ae
mm1

+Ai
mNm


(A.31)

and the off-diagonals by

Ãm,` =



Am,` 0 · · · 0

0 0 · · · ...
... ... . . . 0

0 · · · · · · 0


. (A.32)
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We recall the definitions of

Ai
m =


Cim

µm
km
Sim

−km
µm
Sim Cim

 , Ae
m =


Cem

µe
ke
Sem

−ke
µe
Sem Cem

 ,

Am` =


Cem`

µe
ke
Sem`

−ke
µe
Sem` Cem`

 . (A.33)

These can be adapted to Ai
mn

, Ae
mn

and Amn,ms , remembering that the ex-

terior of Ωi
mn

is Ωi
m and therefore any exterior parameters in the above should

be replaced by those for Ωi
m. The vector of unknowns u is a combination of

scattered fields usm created by Ωi
m and interior fields uimn

for Ωi
mn

u =


u1
...

uM

 , (A.34)

where

um =



usm

uim1

...

uimNm


. (A.35)
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