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ARTICLE

How does interchange affect passengers’ route choices in urban rail transit? – a case 
study of the Shanghai Metro
Yan Cheng a, Xiafei Yeb,c and Taku Fujiyamaa

aCentre for Transport Studies, University College London, London, UK; bMOE Key Laboratory of Road and Traffic Engineering, Tongji University, Shanghai, 
China; cShanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai, China

ABSTRACT
Interchange provides more flexibility in route choice, a key travel behaviour in urban rail transit, but its 
influence is usually simplified. This paper investigates how interchange affects route choice with passenger 
perception considered. At single-interchange level, perceived interchange time was proposed and modelled 
under three resolutions to capture passenger perception and its sensitivity. At route level, the influence of 
interchange was modeled by first comparing eight quantifications of interchange. Mixed logit models with 
the best interchange proxy were further developed to address the correlation among alternative routes and 
reveal the potential taste variations among passengers. Results based on Shanghai Metro data showed 
perceived interchange time, including passenger perception and interchange environment, better repre-
sents the influence of interchange in route choice, meanwhile the weights of interchanges on one route rise 
sequentially and non-linearly. The results can improve route choice prediction in demand modelling and 
route recommendation in advanced traveller information systems.
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Introduction

In urban rail transit, route choice is one of the key behaviors that 
influences passenger flows over the entire network, affecting service 
performance measurement, operation strategies analysis, and infra-
structure development evaluation. Choosing one route out of mul-
tiple alternatives is quite common for passengers traveling in a 
complex urban rail transit network. According to the latest survey 
for the London Underground (Transport for London 2017), 34.42% 
of the investigated 33,289 Origin–Destination (OD) station pairs 
had more than one used route, and 1420 had more than three. The 
survey also showed for each tube journey in London, the average 
number of interchanges is 1.44, while in the Shanghai Metro, it was 
1.73 in 2017 (China Urban Rail Transit Association 2017).

Route choice is a comprehensive decision-making process based 
on each passenger’s subjective perceptions of many factors, includ-
ing journey time, in-vehicle crowdedness, the ease of interchange 
(s), etc. Interchange becomes an indispensable factor of route 
choice in urban rail transit as its topological structure only allows 
travelers to change between lines at a set of specific stations, also 
called interchange stations. This is quite distinctive from road and 
bus transit traffic, where travelers can change from one road/route 
to others more easily through crossings or multi-line bus stops and 
thus interchange does not play a significant role. The limited num-
ber of interchange options in urban rail networks makes inter-
change a key factor when passengers face several alternative 
routes between their origin and destination stations, especially 
when the numbers and attributes of interchange processes involved 
in each route are different.

Thanks to the rapid advancement of information and commu-
nication technology, Advanced Traveler Information System 
(ATIS) can now make use of more real-time data from both the 
operator side (e.g. Automatic Vehicle Location (AVL), Automated 
Fare Collection (AFC), Automatic Passenger Counters (APCs), 

etc.), and passenger side (e.g. smart card data, mobile phone data, 
social media data, GPS data, etc.) (Welch and Widita 2019) to give 
advice to travelers for trip planning, such as route recommendation 
in urban rail transit. However, most ATISs do not provide ‘soft’ 
characteristics such as convenience, comfort and privacy, about 
which travelers often wish to be informed (Chorus, Molin, and 
Van Wee 2006); unfortunately, information about interchange pro-
cesses is one of them. Furthermore, most ATISs have two draw-
backs, which are insufficiently personalized services and 
carelessness of traveler diversity. Although improvements are 
made to overcome them by considering traveler’s preferences and 
variety (Arentze 2013; Ceder and Jiang 2020; Kem, Balbo, and 
Zimmermann 2017; Nuzzolo et al. 2014, 2013), passenger percep-
tion of route attributes has not been given enough emphasis to date. 
Thus, the alternative routes recommended by ATISs may not suit 
all passengers.

Interchange provides more flexibility as passengers potentially 
have more feasible routes to choose from. For some OD station 
pairs having direct routes, routes with interchange are also compe-
titive thanks to less time and/or crowdedness. However, it cannot 
be denied that interchange itself still causes inconvenience, which 
may lessen the appetite of passengers to use such routes (Lam and 
Xie 2002). The influence of interchange is mainly quantified at 
single-interchange and route levels. Weighted walking time 
between services, weighted waiting time for the connection and 
pure penalty, i.e. the inconvenience and risks involved in inter-
change, are commonly distinguished as three components of inter-
change disutility (Wardman and Hine 2000). Two major issues with 
this conception are its simplification of the pure penalty and neglect 
of the influence of passenger perception.

The pure penalty should theoretically consider the factors spe-
cific to each interchange process and its environment, including 
safety and security, ease of way-finding during interchange, avail-
ability of escalators, etc. (Guo and Wilson 2011). However, it is 
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usually held constant, with identical values for the same types of 
interchange situations regardless of interchange environments 
(Cheng et al. 2019; Douglas and Karpouzis 2006; Jung and Casello 
2019; Ministry of Land, Infrastructure, Transport and Tourism, 
2012; Transport for London 2013; Wallis, Lawrence, and Douglas 
2013). There is scant literature on how environment variables 
influence pure penalty. Douglas and Jones (2013) have indicated 
that ‘cross-platform transfers’ at rail stations have a lower pure 
penalty than an ‘up/down interchange’, but the limited dimension-
ality of choice situations in stated preference surveys also restricts 
how interchange disutility can be directly integrated into route 
choice models. The influence of passenger perception has been 
gradually catching more attention. Hua et al. (2020) investigated 
metro transfer perception time (MTPT), but the limited number of 
transfer stations and categorized values of MTPT did not provide a 
clear, overall picture of how passenger perception may be affected.

For route-level modeling, the simplest way to interpret inter-
change is to include a dummy or nominal variable denoting how 
many interchanges are included in a route, along with in-vehicle 
time or overall journey time in the utility of a route (Wardman 
2001; Wardman and Hine 2000). Although this straightforward 
method considers the premium cost of interchanges, it punishes 
all the interchanges indiscriminately without considering different 
interchange environments. Furthermore, interchange time is either 
ignored or given the same weight as other components of the 
overall journey time. Inspired by the study of single interchange 
disutility, some researchers have extracted interchange time from 
overall journey time and assigned it different weights from other 
time components (Guo and Wilson 2011; Jia et al. 2020; Liu 2013). 
Jin et al. (2017) introduced a perceived transfer threshold to further 
differentiate the weight of each interchange’s time. When the num-
ber of interchanges exceeds a threshold, the weight of interchange 
time will increase to reflect how the attitudes of passengers change, 
but within one segment, each interchange’s time shares the same 
weight.

The influence of interchange environment has been explored in 
other studies. Stations layout (ascending, even and descending 
levels) and stations infrastructure (assisted, semi-assisted, and 
non-assisted) attributes were introduced into route utility and 
were shown to have significant effects on route choice (Raveau et 
al. 2014; Raveau, Muñoz, and de Grange 2011). However, due to the 
diversity and complexity of interchange processes, whether these 
characteristics can sufficiently represent the effect of interchange 
environments remains questionable. One counterexample is for a 
descending level interchange, the interchange process may involve 
going-up in part, such as changing from Victoria line to Piccadilly 
line at King’s Cross and St. Pancras station (Godwin 2012). Also, 
the semi-assisted option in station infrastructure characteristic is 
very ambiguous.

Guo and Wilson (2011) considered more interchange environ-
ment variables, studying the 303 interchange processes involved in 
the London Underground. Escalator availability, the number of 
stairs, horizontal distance, ramp length, and whether the two trans-
fer platforms were at the same level were five significant influencing 
factors for route choice. Interchange cost was found to be unevenly 
distributed across stations and platforms at a station, and inter-
change stations are perceived very differently by passengers. 
However, the dummy variables that represented the involvement 
of specific interchange stations are not transferable for cases other 
than London as there was no way to externally determine the 
coefficients of station-based dummy variables.

No matter how interchange is quantified at the route level, its 
influence on route choice is usually investigated using discrete 
choice models based on random utility theory (Ben-Akiva, 

Lerman, and Lerman 1985). The multinomial logit model (MNL) 
is the most popular model because of its closed-form formula and 
ease of interpretation, however, the independence from irrelevant 
alternatives (IIA) property derived from the assumption of inde-
pendent distributions largely limits the model’s applicability and 
fidelity. Nested logit and other variations were then developed to 
overcome these problems, followed by great progress in the new 
Generalized Extreme Value (GEV) family of models and mixed 
logit models (McFadden 2001), which provide more flexibility. 
Particularly, mixed logit models can approximate any random 
utility model (McFadden and Train 2000). A more advanced ver-
sion, the hybrid choice model has now been developed based on the 
discrete choice model to enhance the predictability of choice mod-
els (Ben-Akiva et al. 2002).

Although the above-mentioned literature has contributed to a 
deepened understanding of the influence of interchange on route 
choice, the difference between the facts of interchange and passen-
ger perception, and their potential influence on route choice 
demand more attention. Passenger taste variations about inter-
change also need to be discussed. This research explores the influ-
encing factors on passenger perception of interchange and 
integrates the perception into route choice modeling using ‘per-
ceived interchange time’ to investigate how this affects passengers’ 
route choices. The three main questions to be addressed are listed 
below.

a)Whether interchange environment variables have an impact 
on passengers’ perceived interchange time? If so, how do they 
impact?

b)What is the best quantification of interchange in route choice 
modeling?

c)How do passengers weigh the different interchanges within 
their routes?

The remaining parts of this paper are structured as follows. 
Section 2 models passenger perception of single interchanges by 
introducing perceived interchange time and identifies the resolu-
tion of passenger perception of interchange. Section 3 specifies 
eight different models to investigate the best quantification of 
interchange in route choice models, and adopts mixed logit models 
to understand passenger taste variation. Section 4 introduces how 
the surveys were designed and carried out with a brief description 
of the data collected. Section 5 analyses the results of perceived 
interchange time prediction models and route choice models con-
sidering the influence of interchange. Lastly, Section 6 summarizes 
the main findings of this paper.

Passenger perception of single interchanges

Perceived interchange time

In this paper, an interchange is defined as a movement process from 
a passenger alighting from the train of a starting line to arrival at the 
platform of an ending line. Actual interchange time is defined as the 
difference between these two time points, with waiting time on the 
platform of the ending line excluded as it only depends on the 
operation of the line so there is no difference between interchanging 
passengers and other passengers waiting on the platform. The 
definition indicates that each interchange has a certain direction 
depending on its starting and ending lines, that is, an interchange 
station of n lines involves at least n! interchanges. One special case is 
when a line’s platforms in different directions are asymmetrically 
located; in this case, the interchange process needs a further split. 
Each interchange process is composed of several stages, which can 
be categorized into two types of movements, horizontal or vertical, 
as shown in Figure 1. Horizontal movement refers to the movement 
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where passengers move in an open space (e.g. platform or con-
course) or along a passageway or an upward/downward ramp with 
very little level change, while vertical movement refers to the move-
ment where passengers move up or down mainly to change levels. 
Moving directions (ascending or descending) is a property specific 
to vertical movements. Assistance situations (non-assisted or 
assisted) are applicable for both. Movement with the help of moving 
walkway, escalator or lift is categorized as assisted movement. A 
continuous movement with the same movement type, moving 
direction and assistance situation is defined as a stage.

Perceived interchange time is proposed to quantify passenger 
perception of a single interchange, referring to their mental percep-
tion of the time spent for an interchange, which is the sum of a) the 
mean perceived interchange time, representing passengers’ collec-
tive perceptions, mainly influenced by the mean of actual inter-
change time, interchange environment and mean perception 
difference and b) the random error representing individual percep-
tion deviations caused by other unobserved factors as shown in 
Equation (1). Perception coefficients can then be calculated as the 
ratio of mean perceived and actual interchange time. 

PITi ¼ PITi þ εi ¼ αþ β
0

txt þ β
0

exe þ εi i 2 Ið Þ (1) 

where I is the number of interchanges; PITi is the perceived 
interchange time for interchange process I; PITiis the mean per-
ceived interchange time; α is the mean difference between perceived 
and actual interchange time, which is identical for all interchanges; 
xt and xe are the vectors of interchange time variables and inter-
change environment variables, respectively; βt and βe are the vec-
tors of coefficients; and εi is the random error of interchange i, 
which is assumed to be normally distributed with zero as its 
mean,εi,N 0; σ2

i
� �

. The perceived interchange time can be pre-
dicted using regression techniques, with the parameters α and βs 
estimated by the ordinary least square method.

Independent variables under hypotheses of perception 
resolution on interchange time

The influencing factors of perceived interchange time consist of two 
parts, actual interchange time and interchange environment. As the 
basis of passengers’ perceived interchange time, actual interchange 
time is influenced by movement type and the assistance situation, 
which can be measured by surveyed time. Meanwhile, interchange 
environment factors mainly include:

a)interchange form, which is categorized into three types: cross- 
platform, in-station and out-of-station interchanges. Note that the 
interchange between two lines sharing the same track and platform 
only generates extra waiting time without additional walking time, 
so such cases are excluded from this study;

b)the number of shifts, representing the complexity of an inter-
change process, which may cause passenger mental fatigue;

c)the grade of interchange movement distance, to capture addi-
tional influences caused by long-distance movements aside from 
just movement time;

d)the level of assistance, reflecting the convenience of an inter-
change process, which is measured by the percentage of assisted 
distance for a specific part (process/movement/stage).

It is worth noting that the sensitivity of passenger perception of 
interchange time may lead to different selections of quantitative 
proxies for the abovementioned influencing factors. Three hypoth-
eses of passenger perception resolution were thus put forward to 
explore how sensitive passengers are to perceptions of single inter-
changes as listed below according to resolution ascendingly. 

Hypothesis I (Process-level resolution): Passengers perceive their 
interchange time without thinking about different types of move-
ments or stages separately.

Hypothesis II (Movement-level resolution): Passengers perceive 
their interchange time with horizontal and vertical movements 
being separately considered. But for each type of movement, stages 
are not separately considered.

Hypothesis III (Stage-level resolution): Passengers perceive their 
interchange time with stages that have different moving directions 
and/or assistance situations being separately considered.

Depending on the hypotheses of perception resolution, alterna-
tive independent variables for the regression model were aggregated 
at different levels to represent the influencing factors (see Table 1), 
and then input into the regression models. After comparison, the 
best-performing regression model was adopted to predict the per-
ceived interchange time for all interchanges, which is to be input in 
the route-level analysis. The corresponding hypothesized passen-
ger’s perception resolution, indicating the sensitivity level at which 
passengers perceive single interchanges, will be accepted.

The influence of interchange on route choice

The framework of route choice modeling

Based on the understanding of passenger perception of single 
interchanges, the influence of interchange at route level could 
then be investigated by modeling passengers’ route choices using 
discrete choice methods based on random utility theory (Ben- 
Akiva, Lerman, and Lerman 1985). Random utility theory assumes 
that each passenger tries to choose a route from all alternative 
routes to obtain the maximum utility according to his/her percep-
tion. The utility of a route consists of two components: the repre-
sentative utility influenced by explanatory factors that can be 
observed, such as interchange, in-vehicle time, waiting time, etc., 
and the random error, which captures the impact of factors that 
could not be observed, as shown in Equation (2). 

Unj ¼ Vnj þ εnj ¼ θ0nxnj þ εnj n 2 N; j 2 Jnð Þ (2) 

where N is the number of passengers; Jn is the number of alter-
natives for passenger n depending on the specific OD pair he/she 
travels; Unj is the utility of alternative route j for passenger n; Vnj is 

PassagewayPlatform A …Stair Escalator

Alight from 
starting line

Arrive at ending 
line platform

Stage 1 Stage 2 Stage 3 Stage 4

Horizontal 
movements

Ascending vertical 
movements

Descending vertical 
movements

Non-assisted Assisted

Figure 1. An example of the interchange process.
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the representative utility of alternative route j for passenger n; xnj is 
the vector of explanatory variables of alternative route j for passen-
ger n; θn is the vector of coefficients representing the weights 
attached to explanatory factors by passenger n; and εnj is the ran-
dom error of alternative route j for passenger n.

Depending on the assumptions of the distribution of random 
error, various discrete choice models can be used. The most widely 
used is the Multinomial Logit (MNL) model, assuming each εnj is an 
independently, identically Gumbel-distributed extreme value. The 
choice probability of passenger n to choose route j in MNL models 
is given by Equation (3). 

Pjn ¼
eVjn

P

k2Jn

eVkn
j; k 2 Jn; n 2 Nð Þ (3) 

The specification of the utility function, especially the representa-
tive utility, reflects how different factors influence passengers’ 
choices and their importance. To better understand how inter-
change influences route choice, specifications with different quan-
tifications of interchanges were developed (Section 3.2) and 
analyzed by comparing the predictive performances of MNL mod-
els using corresponding specifications of utility functions. Mixed 
logit models with the optimal specification were further developed 

(Section 3.3) and estimated to reveal the potential passenger taste 
variations on interchange.

Note that for each OD pair, passengers may consider a set of 
alternative routes with the values of their key attributes within a 
reasonable range compared to the shortest route. A good alternative 
route set will also improve the predictive power of a route choice 
model, as it includes used routes and excludes un-used routes as far 
as possible. To generate alternative route sets of high quality, a two- 
step procedure was applied here. The first step is adopting a depth- 
first searching algorithm with qualitative and slightly relaxed quan-
titative constraints to create initial alternative routes to cover used 
routes as much as possible, without worrying about including some 
unreasonable routes due to identical thresholds for all OD pairs 
because they will be filtered out later on. Then, in the second step, 
the initial alternative routes for each OD pair are given two ranks 
within the whole set by sorting them in ascending order of travel 
time and the number of interchanges, respectively. When one is 
prioritized as the major ranking criteria, the other serves as aux-
iliary criteria in case of ties caused by using the main criteria only. 
Then, routes with both ranks less than a predetermined threshold 
were accepted as final alternative routes to be input into route 
choice models. This procedure avoids arbitrary adjustments of 
weight combinations of link costs in labeling approach (Ben- 
Akiva et al. 1984) and does not only pay attention to the shortest 
route.

Utility function specifications

In route choice modeling, the explanatory variables of utility func-
tion mainly include passengers’ socio-economic characteristics and 
route features. Although researchers have tried adding variables like 
train and station usage, topological factors, etc., travel time is still 
the most traditional and important variable for explaining route- 
choice behavior, which can be further divided into in-vehicle time, 
waiting time and interchange time. Besides these, the number of 
interchanges is commonly used to reflect the influence of inter-
change. As this paper investigates the influence of interchange on 
route choice, variables were categorized into interchange-related 
and non-interchange-related, with interchange time and the num-
ber of interchanges in the former category whilst in-vehicle time 
and waiting time at the origin station and interchange stations in 
the latter. Ticket fare was not considered, as it is the same between a 
specific OD pair in the case of the Shanghai Metro, no matter which 
route was chosen, but this may be of concern for other networks. 
The key difference of this paper from existing studies is how it 
broadens the concept of interchange time by allowing it to be 
chosen from actual interchange time and perceived interchange 
time, as mentioned in Section 2, with the influence of interchange 
environment considered.

To understand how interchange affects passengers’ route 
choices, eight specifications were developed and compared to 
examine a) whether actual or perceived interchange time better 
quantifies the influences of interchanges, b) whether the number 
of interchanges should be separately considered, and c) whether 
passengers consider interchange processes individually or holisti-
cally. As seen in the framework of specifications shown in Figure 2, 
Specification 1 and 5 shared a similar structure, and so forth. 
Specification 1 was taken as a benchmark as it is widely used in 
previous studies.

Mixed logit model

Although the MNL model is widely used, its assumptions usually 
contradict with reality, which leads to two major problems, i.e. 

Table 1. Alternative regressors under different hypotheses of perception resolution.

Hypothesis Categorya Alternative variables
Type and 

value

All Envr. Cross-platform interchange Nominal 
(0,1)

Envr. Out-of-station interchange Nominal 
(0,1)

I: Process-level 
resolution

Time Total actual interchange time (min) Continuous
Envr. The grade of total interchange 

movement distance*
Nominal 

(1,2,3,4)
Envr. The percentage of assisted 

movement distance
Continuous

II: Movement- 
level 
resolution

Time Horizontal movement time (min) Continuous
Time Vertical movement time (min) Continuous
Envr. The number of shifts between 

movements
Integer

Envr. The grade of horizontal movement 
distance*

Nominal 
(1,2,3,4)

Envr. The grade of vertical movement 
distance*

Nominal 
(1,2,3,4)

Envr. The percentage of assisted horizontal 
movement distance

Continuous

Envr. The percentage of assisted vertical 
movement distance

Continuous

III: Stage-level 
resolution

Time Horizontal movement time (min) Continuous
Time Ascending vertical movement time 

(min)
Continuous

Time Descending vertical movement time 
(min)

Continuous

Envr. The number of shifts between stages Integer
Envr. The grade of the longest horizontal 

movement distanceb
Nominal 

(1,2,3,4)
Envr. The grade of ascending vertical 

movement distanceb
Nominal 

(1,2,3,4)
Envr. The grade of descending vertical 

movement distanceb
Nominal 

(1,2,3,4)
Envr. The percentage of assisted horizontal 

movement distance
Continuous

Envr. The percentage of assisted ascending 
vertical movement distance

Continuous

Envr. The percentage of assisted 
descending vertical movement 
distance

Continuous

aTime – interchange time variables, Envr.- interchange environment variables. 
bThe grades of movement distance were determined according to quartiles based 

on the investigation of all interchange processes in our case study.
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there is no correlation among error terms and no taste variation 
among individual decision-makers. The first problem becomes 
severe in the context of route choice modeling in urban rail transit 
because the limited number of interchanges in urban railways 
further reduces the diversity of alternative routes for each OD 
pair and hence causes an extensive existence of overlap among 
alternative routes. Besides the inevitable and not negligible correla-
tion among error terms, the assumption of no taste variation among 
passengers may also hurt the MNL model’s interpretability and 
predictability.

To address these issues, Mixed Logit (MXL) models 
(McFadden and Train 2000) were adopted as they introduce 
random coefficients and create correlation among the utilities 
for different alternative routes. In an MXL model, coefficients 
are divided into two groups, fixed and random, as given by 
Equation (4). A fixed coefficient means passengers have very 
similar tastes such that deviations are small enough to be 
omitted, while a random coefficient means passengers have 
obvious taste variations among themselves and is composed 
of the average taste of all passengers and his/her deviation 
from this mean value, as shown in Equation (5). 

Unj ¼ θ0nxnj þ εnj ¼ θ0f xfnj þ θ0rn xvnj

� �
þ εnj (4) 

θrnq ¼ θrq þ μrnq
,f θrq

�
�φrq

� �
(5) 

where xfnj is a 1 × P vector of variables with fixed coefficients; 
xvnj is a 1 × Q vector of variables with random coefficients; θf and 
θrn are the vectors of fixed coefficients and random coefficients for 
passenger n, respectively; and εnj remains the same meaning as the 
random error with independently, identically distributed extreme 
value. For random coefficients, θrq is the mean value of the qth 
random coefficient representing the average taste of all passengers 
and μrnq

is the deviation of passenger n from the mean value of the 
qth random coefficient. The random coefficient follows a distribu-
tion with density f θrq

�
�φrq

� �
, where φrq 

is a vector of distribution 
parameters and the number and meanings of parameters depend on 

the distribution chosen (such as normal, lognormal, uniform dis-
tribution, etc.). It can be inferred that in an MXL model, the 
unobserved stochastic portion of utility is ηnj ¼ μrnq

xrnjq þ εnj, 
instead of random error εnj alone. Thus, correlations among alter-
natives are created, the patterns of which depend on the selection of 
attributes with random coefficients and assumptions of the distri-
butions of taste variation. Once the utility function is specified, a 
mixed logit model is constructed, the choice probabilities of which 
are the integrals of standard logit probabilities over possible vari-
ables of coefficients. Given the choice and variable data, MXL 
models could be estimated using the maximum simulated likeli-
hood method. In this paper, all MXL models were estimated by 
using modified Matlab codes based on the ones developed by Train 
(2009), with 100 modified Latin hypercube sampling (MLHS) draws 
(Hess et al. 2006).

Survey design and data

For analyzing passenger perception of single interchanges, detailed 
infrastructure characteristics and the interchange time of each 
interchange is indispensable. A field survey was carried out on 
30th March and April 13 2017 by four groups of investigators to 
manually collect and double-check the data for each stage in every 
interchange. All of the 154 interchange processes of the 51 inter-
change stations in Shanghai Metro present at that point in time 
were surveyed, 140 of which were in-station interchanges, 2 cross- 
platform interchanges and 12 out-of-station interchanges. The sur-
vey excluded pseudo-interchanges between two lines or trunk and 
subsidiary lines at the stations where they share platforms; further-
more, interchanges from a shared platform to/from other lines were 
not separately considered for the platform-sharing lines.

Passengers’ perceived interchange time and their route choices 
for route-level analysis were investigated using a specifically 
designed three-part survey shown in Table 2. Each respondent 
was instructed to answer all the questions. Only questions related 
to interchanges in the actual route could be skipped if the route 
chosen was a direct one without interchange. Besides passenger 
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Figure 2. Utility function specifications.
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socio-economic characteristics and metro usage information, pas-
sengers’ actual routes used in the first metro trip on the latest 
weekday and passengers’ perceived interchange time for inter-
changes were also queried. Note that passengers’ perceived inter-
change time was asked twice. The question in part II was defined as 
short-term memory-based while the ones in part III was defined as 
long-term memory-based. Levene’s test was used to identify the 
difference between the two types of perceived interchange time.

The survey plan and designs were approved by Tongji University 
(Reference No.: 35,744) and the questionnaire was released from 
June to August 2017 through an online survey platform. This plat-
form owns a database of registered users who would like to answer 
questionnaires. A total of 2086 people were randomly sampled from 
the users whose records showed they live in Shanghai and were 
emailed the survey link. To ensure respondents were familiar with 
Shanghai Metro and highly likely to have perceived interchange time 
based on two types of memories, each individual was filtered by 
being asked a) whether (s)he lives in Shanghai and b) whether (s)he 
uses Shanghai Metro every week. Only when both answers were 
‘yes’, was a respondent be allowed to access the questionnaire. All 
the responses were checked carefully to avoid any missing, 

inconsistent or incorrect answers, for example, the name of metro 
station or the interchange station on the route in Part II or III did 
not exist in the Shanghai Metro system. After removing all ques-
tionable responses, the sample was input for analysis. A total of 748 
records of short-term memory-based perceived interchange time 
covering 144 interchanges were provided by 658 respondents who 
used routes with at least one interchange on the latest weekday, while 
3921 records of long-term memory-based perceived interchange 
time covering 150 interchanges were contributed by 1461 respon-
dents. Table 3 summarizes the socio-economic and travel character-
istics of respondents for the two types of perceived interchange time. 
Both samples were evenly distributed in gender. Most respondents 
were adults, with age mainly ranging from 18 to 60 years old. For the 
trips on the latest weekday, commuting (either going to work or 
school) was the main travel purpose, accounting for 70%. Shopping 
and business followed with 9.88% and 8.81%. The distribution of trip 
purposes matched with the results reported by Shanghai travel 
survey (Shanghai Municipal Urban and Rural Construction and 
Transportation Commission et al., 2010) that the main trip purpose 
of rail users in Shanghai Metro is commuting. As it is also the main 
trip purpose for people from 18 to 60 as reported, the overall 

Table 2. Survey questions for passenger perception of interchanges and route choices.

Part Questions

I: Socio-economic characteristics and metro usage information Gender 
AgeeThe frequency of traveling by metro in one week 
The days of traveling by metro in one week 
The purpose of the first metro trip on the latest weekday

II: Actual route choice used in the first metro trip on the latest 
weekday

The origin and destination stations and metro lines 
The number of interchange process in the routeeThe interchange station name of each interchange 
(if applicable) 
The starting and ending lines of each interchange (if applicable) 
The perceived interchange time of each interchange (if applicable)

III: Perceived interchange time of familiar interchange process The interchange station names of the three most familiar interchanges 
The starting and ending lines of the three most familiar interchanges 
The perceived interchange time of the three most familiar interchanges

Table 3. Respondents’ socio-economic and metro usage profile.

Short-term memory-based perceived interchange time Long-term memory-based perceived interchange time

Items N % N %

Gender
Male 299 45.44 691 47.30
Female 359 54.56 770 52.70

Age
<18 18 2.74 37 2.53
18–40 543 82.52 1223 83.71
41–60 88 13.37 188 12.87
>60 9 1.37 13 0.89

Frequency of traveling by metro per week
1–2 times 159 24.16 431 29.50
> 3 times 499 75.84 1030 70.50

Period of traveling the metro during week
Only weekdays 543 82.52 1145 78.37
Weekdays and weekends 115 17.48 270 18.48
Only weekends - - 46 3.15

Purpose of the first metro trip on the latest weekday
Work: to go to main place of work 459 69.76 - -
School: to go to school/college etc 12 1.82 - -
Shopping: to go shopping 65 9.88 - -
Business: travel in the course of work 58 8.81 - -
Home: to go home 31 4.71 - -
Others 22 3.34 - -
Unknown 11 1.67 - -

Total 658 100 1461 100
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ridership and sampled respondent group tend to be young, which 
indicates the sample representative. More than 70% of the respon-
dents traveled by metro more than 3 times in one week, and most of 
them used the metro on weekdays. This indicates the respondents 
surveyed were familiar with Shanghai Metro network, so their 
answers should be reliable.

For constructing a topological network and modeling route choice, 
network information, journey time between stations and waiting time 
of train services in the year of 2017 was either obtained from open 
data sources or provided by the operator of Shanghai Metro, Shanghai 
Shentong Metro Co., Ltd., while the surveyed interchange time was 
used as actual interchange time. Note that the perceived interchange 
time needed in the route choice models was predicted by the best 
regression model for the single-interchange–level analysis.

Results and discussions

Single-interchange–level regression analysis

Levene’s test shows for 87.27% of interchanges, the distributions of 
perceived interchange time based on short-term or long-term 

memories had equal variances and means. For those with unequal 
means, the averages of long-term memory-based perceived inter-
change time were a little greater. It indicates passengers basically 
have consistent perceptions for most of the interchanges that did 
not change substantially over time, so the two samples of perceived 
interchange time could be merged for further analysis. All of the 
132 interchanges with more than five respondents were chosen for 
regression analysis.

Figure 3 shows that perceived interchange time had a strong 
positive correlation with actual interchange time, while the percep-
tion coefficient was negatively correlated with actual interchange 
time in a non-linear way. With an increase of actual interchange 
time, perception coefficients gradually decreased but stayed greater 
than one, indicating psychological amplification played a large role, 
especially when actual interchange time was shorter than 2 mins. 
An increasing trend of perceived interchange time existed when 
interchange form changed from cross-platform to out-of-station as 
the difficulty of an interchange process increased, while the percep-
tion coefficient decreased. Because in-station interchange covered 
most of the interchange processes in our case, more environment 
variables were needed to differentiate them. Regarding the 
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Figure 3. Correlation among five variables.
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interchange-level change, it was obviously not correlated with 
either perceived interchange time or perception coefficient, which 
pointed out it could not represent the influence of environment on 
interchange processes. Using ascending or descending as an attri-
bute of an interchange process, based on absolute level change, will 
not reflect reality and may cause distortion.

Three regression models of perceived interchange time under 
different hypotheses of perception resolution were constructed 
using the stepwise technique. The descriptive statistics of all inde-
pendent variables at the process-level, movement-level and stage- 
level resolution are shown in Table 4. The variances in variables 
indicated there were wide differences among interchange processes, 
so that they should not be treated in the same way.

From Table 5, we can see all regression models were significant 
and showed relatively high predictability. The constant in each 
model represented the fixed part of the pure penalty, which was 
not influenced by environment variables. It indicated that each 
interchange can cause extra psychological time because interchange 
needs passengers to get off and on trains and may increase uncer-
tainty. It is not surprising that actual interchange time variables in 
all models were significant and had positive coefficients as they are 
the essential components of perceived interchange time. On the 

other hand, interchange environment variables also had significant 
contributions to the models at different levels. As one of the most 
important environment variables, the interchange form played a 
large role at each resolution level. Cross-platform interchange can 
reduce perceived interchange time more than 1.5 min because of its 
least difficulty. The out-of-station interchange also had a negative 
coefficient, which means it can reduce perceived interchange time 
as well. This may seem counter-intuitive, but because passenger 
perception coefficients decrease as the actual interchange time rises, 
it could be explained as counteract the over-estimation caused by 
long actual interchange time for this type of interchange processes.

The best-performing model was based on process-level resolu-
tion, with an adjusted R2 of 0.845. This suggested that passengers 
basically perceived interchange as a whole process rather than sepa-
rate movements or stages, and perceived interchange time was 
formed based on general feelings. According to this result, every 
1 min actual interchange time was enlarged as 1.122 min perceived 
interchange time, while the percentage of assisted movement dis-
tance could help passengers feel like they spent less time in inter-
change overall. Every 1% increase could reduce 0.034 min perceived 
interchange time, which implies more assistance infrastructure could 
be introduced to shorten perceived interchange time.

Table 4. The descriptive statistics of independent variables at different levels.

Hypo-thesis Independent variables Mean Std. Dev Min Max LQa Median UQa

All Cross-platform interchange 0.02 0.12 0.00 1.00 0.00 0.00 0.00
Out-of-station interchange 0.05 0.22 0.00 1.00 0.00 0.00 0.00

Process-level Total actual interchange time (min) 3.03 2.06 0.10 8.35 1.32 2.28 4.43
The grade of total interchange movement distance 2.47 1.15 1.00 4.00 1.00 2.00 4.00
The percentage of assisted movement distance 0.09 0.07 0.00 0.34 0.05 0.08 0.13

Movement-level Horizontal movement time (min) 1.88 1.59 0.08 6.38 0.57 1.26 2.81
Vertical movement time (min) 1.07 0.60 0.00 3.04 0.70 1.00 1.33
The number of shifts between movements 4.27 3.12 0.00 15.00 3.00 3.00 5.00
The grade of horizontal movement distance 2.48 1.14 1.00 4.00 1.00 2.00 4.00
The grade of vertical movement distance 2.44 1.15 1.00 4.00 1.00 3.00 3.00
The percentage of assisted horizontal movement distance 0.00 0.00 0.00 0.00 0.00 0.00 0.00
The percentage of assisted vertical movement distance 0.73 0.36 0.00 1.00 0.67 0.91 1.00

Stage-level Horizontal movement time (min) 1.88 1.59 0.08 6.38 0.57 1.26 2.81
Ascending vertical movement time (min) 0.52 0.51 0.00 2.59 0.16 0.40 0.71
Descending vertical movement time (min) 0.55 0.50 0.00 2.59 0.19 0.43 0.72
The number of shifts between stages 4.40 3.13 0.00 15.00 3.00 3.00 5.00
The grade of the longest horizontal movement distance 2.46 1.14 1.00 4.00 1.00 3.00 3.00
The grade of ascending vertical movement distance 2.42 1.12 1.00 4.00 1.00 2.00 3.00
The grade of descending vertical movement distance 2.49 1.13 1.00 4.00 1.00 2.00 4.00
The percentage of assisted horizontal movement distance 0.00 0.00 0.00 0.00 0.00 0.00 0.00
The percentage of assisted ascending vertical movement distanceb 0.60 0.46 0.00 1.00 0.00 0.91 1.00
The percentage of assisted descending vertical movement distanceb 0.60 0.45 0.00 1.00 0.00 0.86 1.00

aLQ – the lower quartile; UQ – the upper quartile. 
bThe undetermined values caused by dividing by zero are substituted by zero.

Table 5. Estimation results of regression models based on different perception resolutions.

Process-level Movement-level Stage-level

Variables θ t-value θ t-value θ t-value

Constant 2.848*** 13.932 2.391*** 8.325 3.007*** 17.428
Cross-platform interchange −1.785** −2.547 −1.769** −2.351 −2.003** −2.611
Out-of-station interchange −1.624*** −3.691 −1.160* −1.916 −1.975*** −3.900
Total actual interchange time (min) 1.122*** 23.049 - - - -
The percentage of assisted movement distance −3.440*** −2.899 - - - -
Horizontal movement time (min) - - 0.967*** 5.326 1.316*** 14.339
Vertical movement time (min) - - 0.592** 2.576 - -
The grade of horizontal movement distance - - 0.428* 1.847 - -
The number of shifts between stages - - - - 0.106** 2.548
F-value 179.845*** 144.935*** 138.753***
Adjusted R2 0.845 0.818 0.808

p ≤ 0.01. 
p ≤ 0.05. 

p ≤ 0.1.

8 Y. CHENG ET AL.



This finding clearly pointed out that the pure penalty should be 
determined based on environment variables of each interchange 
process, especially its interchange form and level of assistance, 
instead of an identical value for all interchange processes in most 
applications. Higher expediency would greatly change passengers’ 
impression and reduce their perceived interchange time of one 
interchange process. This gave some implications for both trans-
port designers and operators. When an interchange process is being 
designed, the cross-platform form is worth more priorities than in- 
station and out-of-station forms if available. For existing inter-
changes, more effort could be put in upgrading their ease of use 
by installing more infrastructure to assist passengers’ movements, 
both horizontally and vertically.

Route-level discrete choice model considering the influence of 
interchange

All route choice models were estimated with the actual route 
choices of respondents in Shanghai Metro network. The records 
of eight passengers who took unnecessarily tortuous routes were 
screened out to avoid generating superfluous alternative routes and 
estimation bias, hence, 650 passengers’ route choices were used for 
estimating route choice models. A total of 520 passengers’ route 
choices (80%) were used for estimation, while the remaining 130 
passengers’ route choices (20%) for validation in MNL models. 
Stratified sampling according to each OD pair’s shortest travel 
time was adopted to avoid bias. Alternative route sets were gener-
ated with quantitative constraints being 25 min for absolute differ-
ence, 100% for relative difference and 3 for the maximal number of 
interchanges in the first step and the predetermined rank threshold 

being 5 in the second step. A total of 3906 alternative routes were 
generated, on average six routes for each OD pair.

Table 6 presents the estimation results of multinomial logit 
models with different utility function specifications. Most variables 
passed significance tests except the actual interchange time of the 
third interchange in Model 3 and the number of interchanges in 
Model 7. Log-likelihood is an indicator of the relative explanatory 
power of a model. Less negative values in the log-likelihood are 
associated with a greater ability of a model to explain the pattern of 
choices in the data, while adjusted Rho-squared is used to measure 
the goodness-of-fit describing how well a model fits a set of obser-
vations. For models with similarly structured specifications shown 
in Figure 2, the results indicated that the model using perceived 
interchange time always outperformed the model using actual 
interchange time, no matter whether interchange processes were 
considered individually or holistically or the number of inter-
changes was added. The higher predictive ability provided strong 
evidence that perceived interchange time better quantified the 
influence of interchanging, not only because it included the percep-
tion influence but also because it integrated environment variables.

After knocking out models with insignificant variables, the 
models with Specifications 1 and 8 were the best models for those 
using actual interchange time and perceived interchange time, 
respectively. For the model applying actual interchange time, it 
was better to represent the influence of interchange by total actual 
interchange time and separately considering the number of inter-
changes. However, the same was not true for the models using 
perceived interchange time. In that case, passengers consider inter-
change processes individually without the influence of the number 
of interchanges. This difference could be understood as the 

Table 6. Estimation results of multinomial logit models with different specifications.

Actual interchange time applied Perceived interchange time applied

Specification 1 2 3 4 5 6 7 8

In-vehicle time −0.325*** −0.310*** −0.330*** −0.322*** −0.331*** −0.329*** −0.337*** −0.338***
(−12.354) (−12.737) (−12.306) (−12.574) (−12.351) (−12.598) (−12.296) (−12.347)

Waiting time −0.573*** −1.360*** −0.548*** −1.004*** −0.608*** −1.045*** −0.576*** −0.656***
(−3.811) (−13.563) (−3.621) (−8.327) (−3.999) (−9.998) (−3.743) (−4.830)

Interchange time
Total −0.324*** −0.429*** - - −0.307*** −0.395***

(−6.526) (−9.389) (−6.767) (−10.013)
1st interchange - - −0.287*** −0.295*** - - −0.260*** −0.263***

(−5.264) (−5.492) (−5.242) (−5.331)
2nd interchange - - −0.472*** −0.760*** - - −0.501*** −0.584***

(−4.341) (−7.515) (−5.045) (−8.729)
3rd interchange - - −0.958 −1.747*** - - −0.570** −0.701***

(−1.813) (−2.993) (−2.485) (−3.560)
The number of interchanges −2.444*** - −2.060*** - −1.600*** - −0.653 -

(−6.172) (−4.589) (−3.683) (−1.097)
Log-likelihood −218.59 −240.26 −216.89 −228.08 −216.86 −224.07 −214.29 −214.90
Adjusted ρ2 0.757 0.732 0.762 0.748 0.759 0.750 0.765 0.763

p ≤ 0.01. 
p ≤ 0.05. 

p ≤ 0.1.

Table 7. Estimation result of mixed logit route choice model.

Variables

μ σ Relative weights

Value t-value Value t-value

In-vehicle time Random −0.424*** −8.070 0.139*** 3.227 1.000
Waiting time Fixed −0.770*** −4.489 - - 1.816
Interchange time

1st interchange Random −0.335*** −4.711 0.320*** 2.766 0.790
2nd interchange Fixed −0.686*** −7.286 - - 1.618
3rd interchange Fixed −0.823*** −3.316 - - 1.941

Log-likelihood 210.825
Adjusted ρ2 0.770

p ≤ 0.01.
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perceived interchange time has already considered the fixed part of 
the pure penalty, so there was no need to count it twice, and 
individual perceived interchange time can represent diverse inter-
change processes more properly. The model with Specification 8 
had the best performance, with an adjusted Rho-squared of 0.763. 
For the training set with 520 passengers’ records, the model’s hit 
rate of alternatives was 94.7%, while the one for the choice condi-
tion was 84.2%. For a test set with 130 passenger records, the hit rate 
of alternatives was 94.1% while the one with the choice condition 
was 81.5%.

Based on this specification, the MXL models were developed 
with all coefficients initially assumed to be random with normal 
distributions. According to the estimation results, coefficients with 
insignificant standard deviations were removed from random coef-
ficients. The final estimation result in Table 7 shows all coefficients 
were significant and the adjusted Rho-squared increased to 0.770, 
indicating the MXL model’s predictive value exceeded all MNL 
models. It demonstrated that passengers only had taste variations 
in terms of in-vehicle time and the perceived interchange time for 
the first interchange on a route, with a 0.139 and 0.320 as standard 
deviation, respectively. The coefficients of the other three attributes 
had very little deviation, so they were regarded as fixed. In other 
words, passengers perceived the unit disutility of the first inter-
change differently but agreed on the ones of the other two 
interchanges.

The relative weights, calculated by dividing the mean values of 
coefficients by the one of in-vehicle time showed that 1 min waiting 
time equaled 1.816 min in-vehicle time, which is close to 2.0 times 
applied by many transport authorities. The weights of perceived 
interchange time increased sequentially. The weight of the first 
interchange time was the smallest, equivalent to 0.790 min in- 
vehicle time; meanwhile, the weights of the second and third inter-
changes were much higher, 1.618 and 1.941 min in-vehicle time, 
respectively. The interchange time of the first interchange may have 
been weighted less than in-vehicle time because perceived inter-
change time had already magnified actual interchange time by 
adding a fixed value (2.848 min).

The relationship among the weights for different interchanges 
interestingly shows that the influence of interchange did not line-
arly increase. The ratio of coefficients between the first and second 
interchange was 2.048, while the ratio between the second and third 
interchange was only 1.200, so the rate of increase declined as the 
number of interchanges went up. This also implies that for the same 
interchange process, if its order on a route is different, passengers 
may give it different weights. If one route includes more than one 
interchange, then the later an interchange happens, the bigger 
negative impact each unit of perceived interchange time will have. 
This finding was different from Wardman and Hine (2000), who 
found that the second interchange had a smaller effect than the first.

The models suggested that in future information provision 
systems information about interchange processes should be 
provided and route recommendations for passengers should 
not only focus on in-vehicle time, total journey time, and the 
number of interchanges, but also pay attention to the perceived 
interchange time and the order of each interchange. Every 
single interchange on a route has a different influence on 
passengers’ route choices and the influence of passenger percep-
tion should not be ignored. Information about interchanges 
could help passengers to pick their most preferred routes. 
When passengers are facing different alternative routes with 
the same in-vehicle and waiting time but different interchanges, 
they do not always choose routes with fewer interchanges, 
because more interchanges does not definitively mean more 

inconvenience and disutility. For example, two cross-platform 
interchanges might outperform an out-of-station interchange in 
some circumstances. For one interchange, when it occurs in a 
particular route will also affect how much influence it will have. 
The diverse combinations of interchanges in alternative routes 
play a large part in passengers’ final route choice decisions.

Conclusions

Interchange is an important part of an urban railway network that 
helps passengers travel more efficiently but may cause some incon-
venience. This paper investigates how interchange affects passen-
gers’ route choices in urban rail transit, at both single-interchange 
and route levels. The main findings of this study are summarized as 
follows:

● Passenger perception did magnify the interchange time and 
should be considered. Perceived interchange time was a good 
representative of the influence of interchange at the single- 
interchange level. It is larger than actual interchange time due 
to the influence of passenger perception at interchange process- 
level, with the ratio between them decreasing with the increase 
of actual interchange time, but always greater than one.

● Interchange environment variables did have an impact on 
passenger perception, so it could be inferred that pure penalty 
in traditional applications should not be an identical value but 
vary accordingly. Cross-platform and out-of-station inter-
change may have a lower pure penalty while a higher level of 
assistance could help reduce perceived interchange time.

● The best way to quantify the influence of interchange on route 
choice was by using perceived interchange time on one route 
individually, without the number of interchanges. Perceived 
interchange not only took different interchange processes into 
account but also captured the impact of the number of inter-
changes and their orders.

● The weights varied among interchanges with different orders 
on one route. The later an interchange happened on a route, 
the bigger negative impact each unit of perceived interchange 
time had. Regarding variance, passengers only showed taste 
variations in terms of the perceived interchange time of the 
first interchange on a route.

These findings will help better predict the route choices of 
passengers in demand modeling and provide more helpful 
information to passengers for route choice in ATIS. By further 
introducing crowding impacts in the future, the route choice 
model can be developed as a part of dynamic transit assignment 
models to predict passenger patterns when a brand-new or 
modified urban rail network is proposed.
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