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Abstract 10 

  The purpose of this paper is to study the diffraction of second order Stokes waves by four 11 

cylinders in a uniform current and mainly focus on the near-trapping phenomenon. A time domain 12 

second-order theory is employed to establish the mathematical model by splitting the total 13 

potential into the disturbed velocity potential caused by current, the first- or linear and 14 

second-order potentials, which satisfy their own boundary conditions. Each potential is calculated 15 

through the finite element method (FEM). Numerical results for four bottom-mounted cylinders 16 

in a uniform current are provided to show the resonant behaviour of waves and hydrodynamic 17 

forces including linear and second order at near-trapped frequencies, and the current effect on 18 

the wave and force are also analysed and discussed. Some results for a single- and 19 

four-cylinder cases are compared with previous studies.  20 

 21 

Keywords: second order wave diffraction, finite element method, wave resonance, uniform 22 

current, multiple cylinders 23 

 24 

 25 

1. Introduction 26 

 27 

The interaction between waves and multiple structures such as oil platform and maritime 28 

bridge has been extensively investigated in offshore engineering. For example, linear wave 29 

radiation and diffraction by a group of cylinders were studied by Williams and Demirbilek [1], 30 

Williams and Abul-Azm [2], Butler and Thomas [3], Williams and Li [4], Walker and Taylor 31 

[5] and Siddorn and Taylor [6], and second order nonlinear problems were investigated by 32 

Abul-Azm and Williams [7, 8], Williams et al. [9] and Ghalayini and Williams [10]. One of 33 

the most interesting topics in the field of interactions between wave and multiple structures is 34 

the wave resonance at near-trapped frequencies. The finite wave energy mainly distributes 35 

within the region between multiple structures rather than propagating into infinity when the 36 

trapped mode happens, which is first described by Ursell [11]. Investigation on the trapped 37 

mode phenomenon is beneficial to prediction of the maximum wave run-up and 38 

hydrodynamic force, which is of vital importance for the design guidance of ocean structures. 39 

Linear wave diffraction by long array of cylinders up to 101 was studied by Maniar and 40 
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Newman [12] and small one such as four cylinders by Evans and Porter [13] at trapped modes 41 

in the frequency domain. Malenica et al. [14] further investigated second order near-trapped 42 

modes for four-cylinder cases. Wang and Wu [15] simulated the first- and second- order 43 

near-trapping phenomenon of the four-cylinder case and the Neumann trapped mode of a 44 

longer array of ten cylinders by time domain method. All these studies indicated that the wave 45 

elevation at some positions will significantly increase at the near-trapped frequencies. The 46 

near-trapping phenomenon of multiple elliptical cylinders in waves was also investigated by 47 

Chen and Lee [16] and Chatjigeorgiou and Katsardi [17]. In addition to theoretical and 48 

numerical research, some experimental studies were carried out by Kagemoto et al. [18]. 49 

Other investigations on multiple structures include those by Walker and Taylor [5], Walker et 50 

al. [19], Grice et al. [20] and Bai et al. [21]. However, none of these studies considered the 51 

effect of current. 52 

 53 

  To the best of our knowledge, little work on interactions between waves and multiple 54 

structures considered the current effect. However, the current usually coexists with the wave. 55 

A lot of works on wave-current-structure interaction may be found and they are mainly about 56 

a single isolated body such as linear problems by Zhao and Faltinsen [22], Nossen et al. [23], 57 

Grue and Biberg [24] and Teng and Taylor [25] in the frequency domain and Isaacson and 58 

Cheung [26], Cheung et al. [27], Liu et al. [28], Feng and Price [29] and Feng et al. [30] in the 59 

time domain. All these results illustrated that the uniform current will remarkably change the 60 

value of linear wave elevation and force on the structures. For nonlinear problems, we can 61 

solve them through the second order theory or fully nonlinear theory. Büchmann et al. [31] 62 

studied the second order wave diffraction by a single isolated bottom-mounted vertical 63 

cylinder and obtained the run-ups around the cylinder. Skourup et al. [32] then analysed the 64 

wave forces in the same cases as those in Büchmann et al. [31]. Their results further 65 

demonstrated that the second-order wave and force are clearly affected by the current. Other 66 

studies about interaction between Stokes second order wave and single-structure included 67 

those by Shao and Faltinsen [33, 34]. Researches about full nonlinear water waves and 68 

structures interaction in a uniform current included Büchmann et al. [35], Celebi [36], Ferrant 69 

[37] and Koo and Kim [38], and their results also show that hydrodynamic forces and wave 70 

elevation will be deeply affected by the current.  71 

 72 

The works mentioned above are all about an isolated single structure in a current. However 73 

multi-structures are more common in practical ocean engineering and always show a 74 

complicated hydrodynamic characteristic such as Kim and Kim [39] who studied linear 75 

diffraction by four bottom-mounted cylinders. However, they did not consider the nonlinear 76 

effect and the influence of current on near-trapping phenomenon. This paper mainly aims to 77 

analyse the second order nonlinear interactions between water wave and four bottom mounted 78 

cylinders in a uniform current especially consider the situation at the near-trapped frequencies. 79 

In the present paper, we extend the work of Wang and Wu [15] to the wave diffraction by 80 

four-cylinders in a uniform current, and focus is on the near-trapping phenomenon under a 81 

current. 82 

 83 

 84 



2. Theoretical formulation 85 

 86 

2.1.  Boundary value problem  87 

The sketch of the wave diffraction by multi-cylinder is presented in Fig. 1. A right-handed 88 

Cartesian system 𝑜𝑥𝑦𝑧 is defined with its origin o located at the centre of the configuration. 89 

The 𝑧-axis is positive upwards and the plane oxy is on the calm water surface. In this figure, 90 

𝑆𝑓 and 𝑆𝑏 denote the free surface and the cylinder surface, respectively. The radius of the 91 

section of each cylinder is assumed to be identical and is expressed as 𝑎, and 𝐿𝑐𝑦 denotes 92 

the distance between two adjacent cylinders. The horizontal seabed is along 𝑧 = − ℎ. 93 

 94 

Fig. 1. Sketch of four-cylinder configuration in incident wave and current. 95 

 96 

  The fluid is assumed to be potential flow, a velocity potential 𝜙(𝑥, 𝑦, 𝑧) can be defined 97 

and used to describe the flow in the whole fluid domain Ω𝑓   98 

∇2𝜙 = 0.               (1) 99 

The free surface boundary conditions including the kinematic and the dynamic be written as  100 

𝜕𝜙

𝜕𝑧
−

𝜕𝜂

𝜕𝑡
−

𝜕𝜙

𝜕𝑥

𝜕𝜂

𝜕𝑥
−

𝜕𝜙

𝜕𝑦

𝜕𝜂

𝜕𝑦
= 0    on 𝑆𝑓,          (2) 101 

𝜕𝜙

𝜕𝑡
+ 𝑔𝜂 +

1

2
|∇𝜙|2 = 0    on 𝑆𝑓,           (3) 102 

respectively, where 𝑡  represents the time, 𝜂  the wave elevation and 𝑔  gravitational 103 

acceleration. The boundary conditions on cylinder surface and seabed is expressed as 104 

𝜕𝜙

𝜕𝑛
= 0    on  𝑆𝑏,             (4) 105 

𝜕𝜙

𝜕𝑧
= 0    on  𝑧 = −ℎ,            (5) 106 

where �⃑� = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) denotes the unit normal vector on 𝑆𝑏 with its direction outward the 107 

fluid domain.  108 

  The perturbation method is applied to solve this question. The velocity potential and wave 109 

elevation can be expanded to second order, respectively  110 

𝜙 = 𝜙𝑐 + 𝜀𝜙(1) + 𝜀2𝜙(1) = 𝜙𝑐 + 𝜀 (𝜙𝐼
(1)

+ 𝜙𝐷
(1)

) + 𝜀2(𝜙𝐼
(1)

+ 𝜙𝐷
(1)

),    (6) 111 

𝜂 = 𝜀𝜂(1) + 𝜀2𝜂(2) = 𝜀(𝜂𝐼
(1)

+ 𝜂𝐷
(1)

) + 𝜀2(𝜂𝐼
(2)

+ 𝜂𝐷
(2)

),      (7) 112 

where, 𝜀 is a small parameter and chosen to be the linear wave slope. 𝜙(𝑖) (𝑖 = 1, 2) 113 

represents the i-th order velocity potential and 𝜂(𝑖) (𝑖 = 1,2) the i-th order wave elevation. 114 

The subscripts I and D mean the incident and diffraction wave components respectively. The 115 



velocity potential 𝜙𝑐 can be further split into 𝜙𝑐 = 𝑈𝑥 + 𝜙(0), where 𝑈 is the uniform 116 

current speed and 𝜙(0)
 is the disturbed potential due to the interaction between the current 117 

and cylinders. 118 

  The Taylor expansion is employed to deal with the free surface conditions given in Eqs. (2) 119 

and (3) 120 

(
𝜕𝜙

𝜕𝑧
−

𝜕𝜂

𝜕𝑡
−

𝜕𝜙

𝜕𝑥

𝜕𝜂

𝜕𝑥
−

𝜕𝜙

𝜕𝑦

𝜕𝜂

𝜕𝑦
) + 𝜂

𝜕

𝜕𝑧
(
𝜕𝜙

𝜕𝑧
−

𝜕𝜂

𝜕𝑡
−

𝜕𝜙

𝜕𝑥

𝜕𝜂

𝜕𝑥
−

𝜕𝜙

𝜕𝑦

𝜕𝜂

𝜕𝑦
) + ⋯ |𝑧=0 = 0,   (8) 121 

(
𝜕𝜙

𝜕𝑡
+ 𝑔𝜂 +

1

2
|𝛻𝜙|2) + 𝜂

𝜕

𝜕𝑧
(
𝜕𝜙

𝜕𝑡
+ 𝑔𝜂 +

1

2
|𝛻𝜙|2) + ⋯ |𝑧=0 = 0.     (9) 122 

With the application of perturbation theory, this problem can be decomposed into two 123 

subproblems: one is to solve the disturbed potential 𝜙(0) with omitting the wave effect and 124 

the other is to calculate the i-th (i=1, 2) order diffraction potentials.  125 

The governing equation and boundary condition of 𝜙(0) can be described by: 126 

∇2𝜙(0) = 0      in  Ω𝑓
(0)

,             (10) 127 

𝜕𝜙(0)

𝜕𝑛
= −𝑈𝑛𝑥      on  𝑆𝑏

(0)
,            (11) 128 

where Ω𝑓
(0)

 is a fixed fluid domain below the calm water level  𝑧 = 0, 𝑆𝑏
(0) denotes the 129 

cylinder surface below 𝑧 = 0. The diffraction potential also satisfies the Laplace equation  130 

∇2𝜙𝐷
(𝑘)

= 0 (𝑘 = 1, 2)     in  Ω𝑓
(0)

,          (12) 131 

and the corresponding boundary conditions on the free surface are given as 132 

𝜕𝜙𝐷
(𝑘)

𝜕𝑧
−

𝜕𝜂𝐷
(𝑘)

𝜕𝑡
= 𝑓𝑘

′      on  𝑧 = 0,            (13) 133 

𝜕𝜙𝐷
(𝑘)

𝜕𝑡
+ 𝑔𝜂𝐷

(𝑘)
= 𝑓𝑘

′′      on  𝑧 = 0.           (14) 134 

In Eqs. (13) and (14), the right-hand sides terms are, respectively,  135 

𝑓1
′ = (𝑈 +

𝜕𝜙(0)

𝜕𝑥
)

𝜕𝜂(1)

𝜕𝑥
+

𝜕𝜙(0)

𝜕𝑦

𝜕𝜂(1)

𝜕𝑦
+ 𝜂(1) 𝜕2𝜙(0)

𝜕𝑧2 − (
𝜕𝜙𝐼

(1)

𝜕𝑧
−

𝜕𝜂𝐼
(1)

𝜕𝑡
),      136 

   𝑓2
′ = 

𝜕𝜙(1)

𝜕𝑥

𝜕𝜂(1)

𝜕𝑥
+

𝜕𝜙(1)

𝜕𝑦

𝜕𝜂(1)

𝜕𝑦
− 𝜂(1) 𝜕2𝜙(1)

𝜕𝑧2 − 𝜂(2) 𝜕2𝜙(0)

𝜕𝑧2 + (𝑈 +
𝜕𝜙(0)

𝜕𝑥
)

𝜕𝜂(2)

𝜕𝑥
+137 

𝜕𝜙(0)

𝜕𝑦

𝜕𝜂(2)

𝜕𝑦
− (

𝜕𝜙𝐼
(2)

𝜕𝑧
−

𝜕𝜂𝐼
(2)

𝜕𝑡
), 138 

 𝑓1
′′ = −(𝑈 +

𝜕𝜙(0)

𝜕𝑥
)

𝜕𝜙(1)

𝜕𝑥
−

𝜕𝜙(0)

𝜕𝑦

𝜕𝜙(1)

𝜕𝑦
− (

𝜕𝜙𝐼
(1)

𝜕𝑡
+ 𝑔𝜂𝐼

(1)
),       139 

𝑓2
′′ = −

1

2
|∇𝜙(1)|

2
− 𝜂(1) [

𝜕𝜙(1)

𝜕𝑧

𝜕2𝜙(0)

𝜕𝑧2 +
𝜕2𝜙(1)

𝜕𝑧𝜕𝑡
+ (𝑈 +

𝜕𝜙(0)

𝜕𝑥
)

𝜕2𝜙(1)

𝜕𝑥𝜕𝑧
+

𝜕𝜙(0)

𝜕𝑦

𝜕2𝜙(1)

𝜕𝑦𝜕𝑧
] −140 

(𝑈 +
𝜕𝜙(0)

𝜕𝑥
)

𝜕𝜙(2)

𝜕𝑥
− 

𝜕𝜙(0)

𝜕𝑦

𝜕𝜙(2)

𝜕𝑦
− (

𝜕𝜙𝐼
(2)

𝜕𝑡
+ 𝑔𝜂𝐼

(2)
).  141 

Correspondingly, other boundary conditions are  142 

𝜕𝜙𝐷
(𝑘)

𝜕𝑛
= −

𝜕𝜙𝐼
(𝑘)

𝜕𝑛
= −�⃑� ⋅ ∇𝜙𝐼

(𝑘)
      on  𝑆𝑏

(0)
,         (15) 143 



𝜕𝜙𝐷
(𝑘)

𝜕𝑧
= 0      on  𝑧 = −ℎ.             (16) 144 

The analytical solution of the incident wave elevations and velocity potentials to 145 

second-order can be expressed as, respectively  146 

 𝜂𝐼
(1)

=
𝐻

2
cos 𝜃,               (17) 147 

𝜙𝐼
(1)

=
𝐻𝑔

2𝜔

cosh𝑘(𝑧+ℎ)

cosh(𝑘ℎ)
sin 𝜃,            (18) 148 

𝜂𝐼
(2)

= −
𝐻2𝑘

8 sinh(2𝑘ℎ)
+

𝐻2𝑘 cosh(𝑘ℎ)[2 cosh2(𝑘ℎ)+1]

16 𝑠𝑖𝑛ℎ3(𝑘ℎ)
cos 2 𝜃,      (19) 149 

𝜙𝐼
(2)

=
3𝐻2𝜔cosh2𝑘(𝑧+ℎ)

32sinh4(𝑘ℎ)
sin 2𝜃,           (20) 150 

where 𝑘 and 𝐻 represents the linear wave number and linear wave height respectively, 𝜔 151 

the linear frequency without the effect of current and it can be calculated by equation𝜔 =152 

√𝑘𝑔tanh(𝑘ℎ) . In above equations, 𝜃 = 𝑘𝑥 − 𝜔𝑐𝑡 , where 𝜔𝑐  denotes the encounter 153 

frequency of linear wave and can be determined by 𝜔𝑐 = 𝜔 + 𝑈𝑘. 154 

 155 

2.2.  Evaluation of hydrodynamic forces  156 

The Bernoulli equation is employed to obtain the pressure in any position in the fluid 157 

domain, 158 

𝑝 = −𝜌(
𝜕𝜙

𝜕𝑡
+

1

2
∇𝜙 ⋅ ∇𝜙 + 𝑔𝑧),           (21) 159 

where ρ is the density of water. The hydrodynamic force and moment on any cylinder can be 160 

determined through the integral of pressure over the cylinder surface 161 

�⃗� = ∬ 𝑝�⃑⃗�
 

𝑆𝑏
𝑑𝑠,              (22) 162 

�⃑⃗⃑� = ∬ 𝑝(𝑟 × �⃑⃗�)
 

𝑆𝑏
𝑑𝑠,             (23) 163 

where 𝑟 = (𝑥 − 𝑥𝑐 , 𝑦 − 𝑦𝑐 , −ℎ) and (𝑥𝑐 , 𝑦𝑐) is the centre of each cylinder section. The  164 

force can be further split into the sum of the first-order oscillatory force�⃗�(1), the second-order 165 

oscillatory force �⃗�(2)and the second order mean drift force �⃗̄�(2) 166 

𝐹 = 𝐹 (1) + 𝐹 (2) + �̄� (2),            (24) 167 

Where 168 

𝐹 (1) = −𝜌 ∬ (
𝜕𝜙(1)

𝜕𝑡
+ ∇𝜙𝑐 ⋅ ∇𝜙(1))�⃑� 𝑑𝑠

𝑆𝑏
(0) ,         (25) 169 

𝐹 (2) = −𝜌 ∬ (
𝜕𝜙(2)

𝜕𝑡
+

1

2
∇𝜙(1) ⋅ ∇𝜙(1)

𝑆𝑏
(0) + ∇𝜙𝑐 ⋅ ∇𝜙(2))�⃑� 𝑑𝑠 +

1

2
𝜌𝑔 ∮[𝜂(1)]2�⃑� 𝑑𝑙

𝑙
− �̄� (2),  170 

(26) 171 

�̄� (2) = −
1

2
𝜌∬ (∇𝜙(1) ⋅ ∇𝜙(1) + 2∇𝜙𝑐 ⋅ ∇𝜙(2)

𝑆𝑏
(0) )�⃑� 𝑑𝑠 +

1

2
𝜌𝑔 ∮[𝜂(1)]2�⃑� 𝑑𝑙

𝑙
,   (27) 172 

where l denotes the mean waterline of the cylinder. The calculation of moments�⃑⃗⃑�(1), �⃑⃗⃑�(2) 173 



and �⃑⃗⃑̄�(2) is similar with Eqs. (25)~(27), respectively. 174 

3. Numerical method and Procedures 175 

 176 

The finite element method is adopted in this paper. The three-dimensional (3-D) prismatic 177 

element with 6-node will be applied in the simulation, which is produced by vertically 178 

extending a horizontal plane with 2-D unstructured mesh. The mesh generation codes named 179 

BAMG Hecht [40] is employed to generate the 2-D unstructured triangular mesh. Normally, 180 

the disturbance caused by water waves has rapid attenuation along the water depth, and hence 181 

the elements need be smaller near the water surface and then gradually become larger along 182 

the water depth, which is achieved by employing the method in Chung [41] and it has been 183 

used by Wang and Wu [15]. 184 

With the application of FEM, the velocity potential can be obtained through the linear 185 

superposition of the node value 186 

𝜙(𝑘) = 𝐍𝑇Φ
(𝑘),     (𝑘 = 0, 1, 2),           (28) 187 

where N is the shape function vector, Φ is the potential vector. The velocity potential can be 188 

obtained through solving the linear systems 189 

       𝐊Φ(𝑘) = 𝐅(𝑘),     (𝑘 = 0, 1, 2),   (29) 190 

where the coefficient matrix is represented by 𝐊, the right-hand side vector is represented by 191 

𝐅. The elements of 𝐊 and 𝐅 can be calculated by the following equations,  192 

𝐾𝑖𝑗 = ∭ 𝛻𝑁𝑖𝛺𝑓
(0) ⋅ 𝛻𝑁𝑗𝑑𝛺      (𝑖 ∉ 𝑆𝑝, 𝑗 ∉ 𝑆𝑝),        (30) 193 

𝐹𝑖
(𝑘)

= ∬ 𝑁𝑖𝑓𝑛
(𝑘)

𝑑𝑆 − ∭ 𝛻𝑁𝑖 ∑ (𝑓𝑝
(𝑘)

)𝑗𝑗(𝑗∈𝑆𝑝)𝛺𝑓
(0)

𝑆𝑛
𝛻𝑁𝑗𝑑𝛺     𝑖 ∉ 𝑆𝑝,   (31) 194 

where 𝑆𝑝 denotes the Dirichlet boundary of potentials and 𝑓𝑝
(𝑘)

(𝑘 = 0, 1, 2) the value of 195 

𝜙(𝑘) on 𝑆𝑝. 𝑆𝑛 is the Neumann boundary where the value of 𝜕𝜙(𝑘)/𝜕𝑛 is specified and is 196 

represented by 𝑓𝑛
(𝑘)

(𝑘 = 0, 1, 2). The linear systems of Eq. (29) can be efficiently solved by 197 

an iteration method based on the preconditioned conjugate gradient algorithm to obtain the 198 

potentials. 199 

  The wave and velocity potential on the free surface are updated through calculating the 200 

integration with respect to time by the fourth-order Adams-Bashforth scheme, which can be 201 

written as 𝑓(𝑡 + Δ𝑡) = 𝑓(𝑡) + Δ𝑡[55𝑓′(𝑡) − 59𝑓′(𝑡 − Δ𝑡) + 37𝑓′(𝑡 − 2Δ𝑡) − 9𝑓′(𝑡 −202 

3Δ𝑡)]/24 (𝑓′(𝑡) is the derivative of 𝑓(𝑡)).  203 

The damping zone method is applied to absorb the waves near the open boundary Sc, which 204 

can be achieved by adding a damping term named Newtonian cooling term to the kinematic 205 

boundary condition Eq. (13),  206 

𝜕𝜂𝐷
(𝑘)

𝜕𝑡
=

𝜕𝜙𝐷
(𝑘)

𝜕𝑧
− 𝑓𝑘

′ − 2𝜈𝜂𝐷
(𝑘)

+
𝜈2

𝑔
𝜙𝐷

(𝑘)
    (𝑘 = 1,2)     on  𝑧 = 0,    (32) 207 

 208 

where ν denotes the damping coefficient and is calculated through 209 

𝜈(𝑑) = 3
𝐶𝑠

𝐶𝑤
3 (𝑑 − 𝑑0)

2    0 ≤ 𝑑 − 𝑑0 ≤ 𝐶𝑤       210 



 (33) 211 

 212 

Fig. 2. Sketch of damping zone.  213 

 214 

where 𝑑 is the distance between the any point p on the mean free surface and the centre of 215 

the nearest cylinder. The damping zone is presented in Fig.2 and is bounded by two 216 

rectangular domains: the inner 𝑑 = 𝑑0(𝑥, 𝑦) and the outer 𝑑 = 𝑑0(𝑥, 𝑦) + 𝐶𝑤(𝑥, 𝑦). The 217 

constant 𝐶𝑠 in Eq. (33) is used for controlling the strength of 𝜈(𝑑) and chosen as 1.0 in the 218 

simulation. The width of the damping zone is denoted by 𝐿𝑑𝑚, which can be chosen to be 219 

one linear wavelength for long waves and twice linear wavelength for short waves.   220 

  Although the velocity at nodes can be directly calculated through the derivative of the 221 

shape function, but it is not sufficiently accurate for linear elements due to the fact that the 222 

value of velocity will be constant on the facet. The method developed by Ma et al. [42, 43] 223 

will be applied to obtain the velocity component in the z-direction at nodes on the free surface. 224 

The corresponding horizontal velocity components can then be obtained through differencing 225 

the velocity potential. The term ∇𝜙 over the body surface used for calculating forces can be 226 

determined through the shape function directly which was applied by Wang and Wu [15]. 227 

 228 

4. Numerical results 229 

To allow a gradual development of the diffraction potential and avoid an abrupt start, a 230 

modulation or ramp function is employed to the cylinder surface condition given in Eq. (15) 231 

𝜕𝜙𝐷
(𝑘)

𝜕𝑛
= −𝑀(𝑡)

𝜕𝜙𝐼
(𝑘)

𝜕𝑛
      (𝑘 = 1,2),           (34) 232 

where M(t) can be obtained by: 233 

𝑀(𝑡) = {
1

2
[1 − cos(

𝜋𝑡

𝑇
)]       𝑡 < 𝑇

          1                       𝑡 ≥ 𝑇
            234 

where 𝑇 = 2𝜋/𝜔 is the period of the first-order incident wave.  235 

 236 

  The linear wave slope 𝐻/𝐿 is chosen to be 0.025 in the present study, therefore 𝑘𝐴 =237 

𝜋/40, where L is the wavelength of the linear incident wave, 𝐴 = 𝐻/2 is the linear wave 238 

amplitude. The nondimensional wavenumber is denoted by ka and the current speed is 239 

nondimensionalized by Froude number 𝐹𝑟 = 𝑈/√𝑔𝑎.  240 

4.1. Single column case 241 

Before simulating four-cylinder cases, a single isolated cylinder whose centre is at the 242 

origin and the initial water depth ℎ = 𝑎 is considered for validation. The results about the 243 

amplitudes of second order force & moment versus the nondimensional wavenumber 𝑘𝑎 are 244 



given in Figs. 3a and 3b respectively. In the figure, 𝐹 & 𝑀 are the force & moment and the 245 

subscripts 𝑥 & 𝑦 express their components along the 𝑥- and 𝑦- directions, respectively, 246 

and hereinafter in the subsequent figures. We made a comparison between our numerical 247 

results and those obtained by Skourup et al. [32]. It is seen from the Fig. 3 that they are in a 248 

great agreement.  249 

 250 

Fig. 3. Second order force and moment versus ka; (a) amplitude of second order oscillatory 251 

force; (b) amplitude of second order oscillatory moment. 252 

 253 

4.2. Four-column case  254 

The simulation is then made for wave diffraction by four vertical seabed-mounted cylinders 255 

with neighbouring spacing 𝐿𝑐𝑦 = 6𝑎 and calm water depth ℎ = 𝑎 (see Fig 6a), which has 256 

also been investigated by Kim and Kim [39] using the linear theory. A comparison between 257 

the total hydrodynamic forces on all cylinders obtained by Kim and Kim [39] through a 258 

higher order panel element method and the present FEM results is shown in Figs. 4 and Fig. 5, 259 

respectively. Fig. 4 shows the amplitudes of linear force and moment while Fig. 5 is the 260 

second-order mean drift force. Three Froude numbers 𝐹𝑟 = −0.04, 0 & 0.04 are used in 261 

the simulations. They agree well with each other and there is slight difference only at some 262 

𝑘𝑎, which further confirms the present numerical method is effective.  263 
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 264 

Fig. 4. The amplitude of total first-order force and moment on four cylinders versus ka. 265 

 266 

 267 

Fig. 5. Total second-order mean drift forces on four cylinders versus ka. 268 
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 270 

Fig. 6. Sketch of two four-cylinder configurations. 271 

 272 

4.2.1. Numerical simulation of Four-column case (a) 273 

We turn to the four-cylinder configuration shown in Fig. 6a but with 𝐿𝑐𝑦 = 4𝑎 and ℎ =274 

3𝑎. The propagation direction of incident wave is along the positive x-axis while the steady 275 

current is in the same or reverse direction. The three Froude numbers mentioned above are 276 

also used. Fig. 7 shows the linear wave amplitude versus ka. It can be found that the wave 277 

amplitude is affected by the current clearly. However, the amplitude fluctuates as ka at each 278 

Froude number due to the wave interference produced by the cylinders and hence they are 279 

different from those in a single cylinder case (see Fig. 8), in which the wave amplitude 280 

regularly increases as Fr increases at each ka. For the second-order wave given in Fig. 9, from 281 

which we can find the wave amplitudes at all Froude numbers fluctuate even more seriously.  282 

 283 

Fig. 7. The amplitude of linear wave elevation versus ka under three different Fr;  284 

(a) front side of cylinder 1; (b) front side of cylinder 2;  285 

(c) back side of cylinder 1; (d) back side of cylinder 2.  286 
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 287 

Fig. 8. Linear wave amplitude of a single isolated cylinder;  288 

(a) front side; (b) back side 289 

 290 

Fig. 9. The amplitude of second order wave elevation versus ka under three different Fr;  291 

(a) front side of cylinder 1; (b) front side of cylinder 2; 292 

(c) back side of cylinder 1; (d) back side of cylinder 2. 293 
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Fig. 10 presents the amplitudes of the linear forces on cylinders 1 & 2. When compared 294 

with the linear wave, it seems that the influence of the current on the force is relatively 295 

smaller. However, it is significant for the second order force (see Fig. 11). The maximum 296 

value of the linear forces appears at ka=0.6 & Fr=0 (see Fig. 10a) and it is 7.9. The second 297 

order force amplitude has a dramatic increase at 𝑘𝑎 = 2 when Fr changes from 0 to 0.04 and 298 

it reaches a peak about 12.6. 299 

 300 

Fig. 10. The amplitude of first-order forces versus ka under three different Fr; 301 

(a) & (b) cylinder 1; (c) & (d) cylinder 2. 302 

 303 

 304 

Fig. 11. The amplitude of second-order forces versus ka under three different Fr; 305 

(a) & (b) cylinder 1; (c) & (d) cylinder 2. 306 

 307 

4.2.1. Numerical simulation of Four-column case (b) 308 

The wave elevations and hydrodynamic forces on cylinders will be quite different between 309 
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the four-cylinder configurations Figs. 6a and 6b. As described by Evans and Porter [13] and 310 

Malenica et al. [14], one of the most interesting things in Fig. 6b is the near-trapping 311 

phenomenon, when the wave frequency approaches the trapped frequency, the wave elevation 312 

at some locations and hydrodynamic force on the cylinders become very large. Through 313 

frequency domain analysis, they found that the first- and second-order near-trapping 314 

phenomenon happen at about ka equals to 1.66 and 0.468, respectively. In the present paper, 315 

we consider the near-trapped modes under uniform currents. In the simulation of 316 

configuration in Fig. 6b, the calm water depth is also ℎ = 3𝑎 and the spacing between 317 

neighbouring cylinders is 𝐿𝑐𝑦 = 4𝑎 too. 318 

The linear wave elevations at four positions A1, C1, B2 and A3 (see Fig. 6b) are firstly 319 

calculated and the results about the amplitude versus ka is given in Fig. 12. The time interval 320 

in the simulation is chosen to be T/200 for Fr=0 and T/400 for Fr=-0.04 & 0.04. The numbers 321 

of nodes and elements are listed in Table 1, in which NC is the intervals along the intersection 322 

line between each cylinder and the still water surface, NH is the layer number along the 323 

vertical direction, and NE & NN are the numbers of the total elements & nodes in the fluid 324 

domain, respectively. It can be found from the Fig. 12 that the uniform current has relatively 325 

little influence on the wave at these four points within ka<1.2. When ka>1.2, the curves at 326 

three Froude numbers are significantly different and there exist some maximum wave 327 

amplitudes especially in Figs. 12b and 12d, which may correspond to the near-trapping 328 

phenomenon. As Evans and Porter [13] pointed out, the wave energy is concentrated within 329 

the region of four cylinders especially near points C1 and A3. It can be seen that the peaks of 330 

the wave amplitudes at Fr=-0.04, 0.0 & 0.04 occur at ka=1.88, 1.66 & 1.52, respectively, 331 

which correspond to encounter frequencies 4.059, 4.035 & 4.052, respectively, through 332 

equation 𝜔𝑐 = 𝜔 + 𝑈𝑘. Theoretically, these encounter frequencies should be identical to 333 

each other. However, there is slight difference between them in actual numerical simulations.  334 

 335 

ka NH NC NN NE 

0.6 14 32 187140 343028 

0.8 14 36 195930 359212 

1.0 14 40 196080 359436 

1.2 14 40 177135 324184 

1.4 14 40 172305 315056 

1.6 14 40 158085 288624 

1.8 14 44 157800 287868 

2.0 14 44 149550 272580 

Table 1 Numbers of element and nodes at different ka. 336 



 337 

Fig. 12. The amplitude of linear wave elevation versus ka under three different Fr;  338 

(a) A1; (b) C1; (c) B2; (d) A3 339 

 340 

The linear wave amplitude clearly increases as Fr increases at four positions especially at 341 

C1 and A3 at the near-trapping frequency, which indicates that the linear wave resonance 342 

phenomenon will be intensified when Fr increases. This is completely different from that 343 

found by Huang and Wang [44], in which the resonant wave produced by two cylinders in 344 

forced motions generally becomes weaker as Fr increases. However, the increase of wave 345 

amplitudes at A1 and B2 is not as large as those at C1 & A3. At Fr=-0.04, 0 & 0.04, the wave 346 

amplitudes are 2.51, 2.75 & 3.06 at C1 and are 4.08, 4.21 & 4.90 at A3, respectively, which is 347 

obviously larger than those in the single cylinder cases given in Fig. 9. Fig. 13 further states 348 

that the increase of the current speed causes the linear wave amplitude to increase with adding 349 

another two Froude numbers Fr=-0.02 & 0.02 to the simulation.  350 
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 352 

Fig. 13. The amplitude of linear wave elevation when ka is at near-trapping frequency;  353 

(a) A3; (b) C1. 354 

 355 

The second-order wave amplitudes at the four positions mentioned above are presented in 356 

Fig. 14. The corresponding second-order wave amplitudes under second-order near-trapping 357 

phenomenon is quite obvious, and at C1 & A3 quickly increase when the wave frequency 358 

approaches the trapped frequency. It can be seen from the Figs. 14b and 14d that when 359 

Fr=-0.04. 0.0 & 0.04 the near-trapping phenomenon occurs at ka=0.488, 0.468 and 0.448 360 

respectively. However, one thing different from the first-order near-trapping phenomenon is 361 

that the second-order wave amplitude at A3 is much larger than that at C1. The second-order 362 

wave amplitude at A3 under three Froude number are 14.80, 16.61 & 17.14 respectively, 363 

almost twice those at C1, which means that the second-order trapped is also intensified when 364 

the Froude number increases. Fig. 15 shows the peaks and troughs of resultant waves of the 365 

linear and the second-order. It is shown that the peak and trough at first-order trapped 366 

frequencies increase as Fr increases. At the second-order trapped frequencies, the trough at C1 367 

and peak at A3 also clearly increase as Fr increases.  368 
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 369 
Fig. 14. The amplitude of second-order wave elevation versus ka under three different Fr:  370 

(a) A1; (b) C1; (c) B2; (d) A3 371 

 372 

Fig. 15. Wave peaks and troughs versus ka under different Fr; (a) C1; (b) A3 373 
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The histories of linear and second-order waves at the first- and second-order near-trapped 375 

modes are presented in Figs. 16 and 17, respectively. It is shown from Fig. 16 that each wave 376 

finally reaches a steady state. The waves at different Froude numbers have clear difference 377 

and they are affected by the current in both amplitude and phase. Similarity can be found for 378 

the second wave given in Fig. 17. 379 

 380 
Fig. 16. Histories of linear wave at first-order near-trapped mode; (a) C1; (b) A3.  381 
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 382 

Fig. 17. Histories of second-order wave at second-order near-trapped mode; (a) C1; (b) A3. 383 

 384 

Figs. 18 and 19 give the histories of linear wave and its superimposition with the 385 

second-order at the left and right sides of cylinders 1 & 3 at the first- and second-order 386 

near-trapped modes at Fr=0.04, respectively. It is noticed that the wave development with 387 

time becomes steady and the near-trapping phenomenon are clear due to larger linear waves at 388 

C1 & A3 in Fig. 18 and larger second order waves at C1 & A3 in Fig. 19. The wave profiles 389 

around the four cylinders at the second order near-trapped mode is plotted in Fig. 20. It can be 390 

observed that the difference between the linear wave and the resultant wave at each Fr is 391 

obvious due to second order effect. The superposed waves of linear and second order at 392 

different Fr are also very clear.  393 

0 4 8 19.0 19.5 20.0
-20

-10

0

10

20

0 4 8 19.0 19.5 20.0
-20

-10

0

10

20 (b)


(2
) /

kA
2

t/T

 ka=0.488, Fr=-0.04

 ka=0.478, Fr=-0.02 

 ka=0.468, Fr=0.0

 ka=0.458, Fr=0.02 

 ka=0.448, Fr=0.04

(a)


(2
) /

kA
2

t/T

 ka=0.488, Fr=-0.04

 ka=0.478, Fr=-0.02 

 ka=0.468, Fr=0.0

 ka=0.458, Fr=0.02 

 ka=0.448, Fr=0.04



 394 

Fig. 18. Wave histories at ka=1.52, Fr=0.04: (a) A1; (b) C1; (c): A3; (d) C3. 395 

 396 

Fig. 19. Wave histories at ka=0.448, Fr=0.04: (a) A1; (b) C1; (c): A3; (d) C3. 397 
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 398 

Fig. 20. Wave profiles around the four cylinders; (a) & (b): Fr=-0.04, ka=0.488, t/T=19.8; 399 

(a) & (d): Fr=0.0, ka=0.468, t/T=20.2; (e) & (f): Fr=0.04, ka=0.448, t/T=19.6; 400 

(a), (c) & (e): linear; (b), (d) & (f): linear plus second-order. 401 

 402 

Fig. 21. The amplitude of first-order forces versus ka under three different Fr; 403 

(a) cylinder 1; (b) cylinder 2. 404 
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  Fig. 21 gives the amplitude of linear forces on cylinders 1 & 3 at the first order 405 

near-trapped mode. We calculate the force in the x-direction only due to symmetry. It can be 406 

seen from Eq. (25) that the first-order force is affected by the first-order potential and the 407 

potential due to the current only. It can be seen that some features of the forces in Fig. 21 are 408 

similar to the waves in Figs. 11b & 11d. The variation of the force amplitude at each Fr with 409 

ka is different with that in a single isolated cylinder case given in Fig. 22. It can be noticed 410 

that the force peak at the near-trapping frequency increases as Fr and they are 4.62, 4.90 & 411 

5.37 at Fr=-0.04, 0.0 & 0.04 for cylinder 1 and 3.60, 3.98 & 4.73 for cylinder 3, respectively.  412 

 413 
Fig. 22. The amplitude of first-order force of a single isolated cylinder versus ka. 414 

 415 

  Fig. 23 makes a comparison between linear forces in the present numerical simulations and 416 

with those by Evans and Porter [13] at 𝐹𝑟 = 0. In the figure, F𝑥
 (1)

/𝐅s means the ratio of the 417 

linear force in the x-direction to a single isolated cylinder case and 𝐅s = 4𝜌𝑔𝜌 tanh(𝑘ℎ) /418 

𝑘2𝐻1
′(𝑘𝑎), where 𝐻1 is the first-kind Hankel function. The comparison shows that they are 419 

in good agreement for both cylinders.  420 

 421 

Fig. 23. A comparison of linear forces at Fr=0.  422 
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 423 

Fig. 24. The amplitude of second-order wave forces versus ka under five different Fr; 424 

(a) cylinder 1; (b) cylinder 3. 425 
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 426 

Fig. 25. Peaks and troughs of resultant forces on (a) cylinder 1 and (b) cylinder 3. 427 

 428 

The amplitudes of the second-order forces on cylinders 1 and 3 are shown in Fig. 24. The 429 

variations trend of second-order force amplitudes with ka are quite different from that of 430 

second-order wave elevation given in Figs. 13b & 13d and it seems that they do not regularly 431 

increase as Fr increases. The peaks and troughs of resultant forces at the first-order trapped 432 

frequencies increase as Fr increases, at the second-order trapped frequencies the peak at 433 

cylinder 1 and peak & trough at cylinder 3 also increase as Fr increases, which are shown in 434 

Fig. 25, in which an enlarged view is also given near the second-order trapped frequencies in 435 

each subfigure for the convenience of viewing.    436 

  437 

  The histories of linear and second-order wave forces on cylinders 1 & 3 in the x-direction 438 

at first- and second-order near-trapped modes are plotted in Fig. 26. We can see that both 439 

linear and second-order forces reach a steady state, and their difference with the development 440 

of time at different Fr can be clearly observed. The histories of linear and resultant forces on 441 

cylinders 1, 2 & 3 in the x-direction are shown in Fig. 27, in which the nonlinear feature of 442 

forces on cylinders 1 & 3 is relatively evident than that of cylinder 2. In addition, the 443 

nonlinear feature of forces at ka=1.88 & Fr=-0.04 is a little different from that at ka=1.52 & 444 

Fr=0.04, which indicates that the nonlinear feature of force can be changed by the current 445 
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speed.  446 

 447 

Fig. 26. Histories of forces; (a) first-order force on cylinder 1; (b) first-order force on cylinder 448 

3; (c) second-order force on cylinder 1; (d) second-order force on cylinder 3. 449 

 450 

Fig. 27. Histories of forces; (a) & (b) cylinder 1; (c) & (d) cylinder 2; (e) & (f) cylinder 3. (a), 451 

(c) & (e): ka=1.88, Fr=-0.04; (b), (d) & (f): ka=1.52, Fr=0.04. 452 

 453 

5. Conclusion 454 

Second-order wave diffraction by four cylinders especially for the near-trapping 455 
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phenomenon is numerically studied in the present paper. A time-domain FEM with 3-D 456 

prismatic elements is used in the simulation. The i-th i=(0, 1, 2) order potentials are obtained 457 

by solving the finite element linear system through a combination of CG method and SSOR 458 

preconditioner, while the wave elevations and potential on the free surface are updated by the 459 

fourth-order Adams-Bashforth scheme.  460 

 461 

  Validations are made for second-order forces on a single isolated cylinder and linear forces 462 

and second-order mean forces on a four-cylinder case to verify the numerical method and 463 

good agreement is achieved between the present numerical results and previous studies. The 464 

numerical simulations have been made for two four-cylinder configurations, and it is found 465 

that the hydrodynamic results of these two cases at different current speed are quite different 466 

from those in a single isolated cylinder due to the mutual interference by multiple cylinders.  467 

 468 

  The numerical result indicate that the near-trapped wave and force are significantly 469 

changed by the uniform current. The amplitudes of linear and second-order waves increase as 470 

Froude number increases at the near-trapped frequencies, which indicates that the water wave 471 

resonance phenomenon is intensified when the current direction is identical to that of the 472 

wave propagation (Fr>0). On the contrary, it is weakened when the current propagates 473 

oppositely to the direction of wave propagation (Fr<0). Similarity can be found for the linear 474 

forces on cylinders. However, the second-order force do not regularly become larger or 475 

smaller as Fr increases. The peaks and troughs of the resultant waves and forces at the 476 

first-order near trapped mode are generally increasing as the increase of Fr, but the variation 477 

is not regular at the second-order near trapped mode.  478 

 479 
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