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Reduced density matrix sampling: Self-consistent embedding and multiscale electronic structure
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We investigate fully self-consistent multiscale quantum-classical algorithms on current generation supercon-
ducting quantum computers, in a unified approach to tackle the correlated electronic structure of large systems in
both quantum chemistry and condensed matter physics. In both of these contexts, a strongly correlated quantum
region of the extended system is isolated and self-consistently coupled to its environment via the sampling of
reduced density matrices. We analyze the viability of current generation quantum devices to provide the required
fidelity of these objects for a robust and efficient optimization of this subspace. We show that with a simple error
mitigation strategy these self-consistent algorithms are indeed highly robust, even in the presence of significant
noises on quantum hardware. Furthermore, we demonstrate the use of these density matrices for the sampling of
nonenergetic properties, including dipole moments and Fermi liquid parameters in condensed phase systems,
achieving a reliable accuracy with sparse sampling. It appears that uncertainties derived from the iterative
optimization of these subspaces is smaller than variances in the energy for a single subspace optimization
with current quantum hardware. This boosts the prospect for routine self-consistency to improve the choice
of correlated subspaces in hybrid quantum-classical approaches to electronic structure for large systems in this
multiscale fashion.
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I. INTRODUCTION

A solution to the quantum many-body problem is held up
as a one of the most impactful and far-reaching applications
of quantum computers [1–4]. Even in the current era of noisy
intermediate-scale quantum (NISQ) devices [5], where the
number of physical qubits is too small for error correction and
subject to significant decoherence and quantum noise, signif-
icant progress in this area has been made, with developments
also impacting the related field of quantum machine learning
[6]. However, quantum resources are finite, and so treating
entire systems of technological relevance is unlikely to be a
realistic near-term proposition. Instead, efficient and practical
hybrid quantum-classical and multiscale approaches are key
to describing quantum systems with a desired accuracy within
a limited quantum computational budget.

The general aim of these is to find a representation of the
full system in which only a small number of “active” degrees
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of freedom are strongly entangled and require realization on a
quantum device. The remaining degrees of freedom are then
coupled to this quantum subsystem in a low-rank perturbative
or even (potentially dynamical) mean-field representation of
the quantum effects. These “external” weakly-interacting de-
grees of freedom can be efficiently described on a classical
computer with polynomially-scaling resources with system
size, while it is posited that an appropriate choice of strongly
entangled “active” orbitals should not in general need to grow
with system size. Self-consistency can then be used to update
the initial choice of the active region, based on a multilevel
description of the full system. One of the key technical consid-
erations in devising these approaches is in the choice of how
the description of the active space on the quantum processing
unit (QPU) can be efficiently coupled to the external space.
In this paper, we consider the sampling of reduced density
matrices (RDMs) as the natural choice of low-rank quantum
variable for NISQ computers, in order to describe the cou-
pling of the classical and quantum realizations of the system
and therefore straddle the length scales in the simulation of
quantum matter. We present a unified description of this ap-
proach, with applications to both strongly correlated quantum
chemistry and condensed matter problems on current genera-
tion quantum devices.

While multilevel descriptions of quantum systems are in
themselves not a new proposition for quantum computers
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[7–15], the practical realization of fully self-consistent algo-
rithms on quantum resources has proved to be a significant
technical challenge. The ability of self-consistent coupled
quantum-classical approaches to remain robust in the presence
of the noise inherent in the sampling of the active-space quan-
tum effects is a key practical consideration. We demonstrate
that with a light-touch error mitigation strategy, noise result-
ing from gate infidelities does not preclude stable convergence
of the algorithms presented in this paper. Furthermore, an
efficient sampling and grouping scheme for the terms required
in density matrices is presented, detailing a huge reduction in
the number of these terms for a given active-space size, which
tackles a key bottleneck for longer-term practical quantum-
classical multiscale methods.

We demonstrate the feasibility of two of these self-
consistent algorithms in a unified approach applicable to
both quantum chemistry and condensed matter physics. The
first is complete active-space self-consistent field (CASSCF)
[16,17], a powerful approach for the simulation of molec-
ular systems with strong quantum effects, such as those
encountered routinely in inorganic chemistry, systems with
competing spin states, excited states, and systems at bond-
breaking geometries [18–20]. In these problems, the dominant
strong quantum fluctuations can often be qualitatively cap-
tured within a small number of low-energy orbitals, where
these orbitals are obtained from a prior mean-field calcula-
tion. However, since this starting point does not account for
the correlated physics, these active orbitals are subsequently
optimized in a variational fashion across the overall state as
a product of the active-space wave function and mean-field
electrons in the external space.

As systems get larger, and the spectrum of single-particle
states transitions towards a continuous function of energy,
the approach of choosing quantum regions using an ener-
getic criteria becomes less well defined. In this case, it is
more appropriate to consider the active quantum region in
a real-space local picture, under the assumption that local
quantum fluctuations dominate, such as those in the d orbitals
of a transition metal oxide material. This is the approach
taken in various quantum embedding methods such as dy-
namical mean-field theory [21], and in this paper we consider
the related energy-weighted density matrix embedding theory
(EwDMET) [22–24]. We perform the self-consistency at the
level of energy weighted density matrices, denoting the mo-
ments of the local density of states, resulting in a systematic
expansion of the zero-temperature DMFT physics [24]. For
both of these approaches, we demonstrate the fidelity of the
QPU sampling of the active-space RDMs required for a fully
QPU-coupled self-consistent algorithm, and consider the scal-
ing of sampling operations as the active space increases in size
in future applications.

In Sec. II we review reduced density matrices and their
sampling within QPUs as the self-consistent quantum vari-
ables in these multiscale methods. We demonstrate that
judicious grouping of commuting terms allows even large
active-space RDMs to be realistically sampled, with the pro-
posed groupings opening the prospect for higher-rank RDMs
and perturbative couplings to active spaces. In Sec. III we
consider the CASSCF optimization of carbon monoxide on
IBM quantum services (IBMQ) machines, where active-space

wave function are optimized on the QPU within the variational
quantum eigensolver (VQE) [25]. We find that a naive im-
plementation fails to achieve full self-consistency, however a
light-touch error mitigation strategy aimed at compensating
for gate errors is enough to address this issue on a 4-qubit
system and to allow convergence of the active-space orbitals
in the presence of the correlated physics. Our error mitigation
strategy focuses on estimating the bias due to gate errors in the
circuit execution via computing the deviation of the sampled
electron number to the (known) number of electrons in the
system (which can be found from the trace of the sampled
one-body RDM). This approach is detailed in Appendix A.
With this mitigation strategy, the sampling noise of the QPU
does not prevent convergence, and CASSCF is found to be ro-
bust and reliable in its optimization. We stress that knowledge
of the active-space RDMs also allows for the extraction of
beyond-energetic first-order expectation values of the system,
which are essential for a more complete description of the
system properties, focusing on the effect of self-consistency
and RDM fidelity on the dipole moment of a system.

Finally, in Sec. IV we focus on extended bulk systems,
with the strongly correlated Bethe-Hubbard lattice consid-
ered. Specifically, we observe the QPU description of a local
region to allow for the opening of Hubbard bands in the ma-
terial within the QPU-coupled EwDMET approach. Similar
error mitigation strategies on the sampled active-space RDMs
allows for robust self-consistency in the method, resulting in
excellent agreement for the local density of states and Mat-
subara self-energy of the system on current generation IBMQ
machines.

II. SAMPLING REDUCED DENSITY MATRICES
ON A QUANTUM COMPUTER

The reduced density matrices (RDM) used in this work
are not defined by tracing out a subsystem, but rather tracing
out the entire phase space of many electrons from the full N-
particle density matrix of a pure state. For a m-body reduced
density matrix, �m, this integration over N − m electronic
variables can be written as

�m(x1, . . . , xm; x′
1, . . . , x′

m)

= m!

(
N

m

) ∫
�N ({x}N ; {x′}N )�N

m+1dxm+1 . . .

dxN dx′
m+1dx′

N , (1)

where xi represents the combined spatial and spin coordinate
for electron i, and �N

m+1 = ∏N
i=m+1 δ(xi − x′

i ). Fortunately,
these reduced-body density matrices can be directly com-
puted, rather than requiring tracing from higher-rank density
matrices. By projecting the electronic coordinates into a basis
set, we define the two-body RDM as

�i jkl ≡ 〈ψ | â†
i â†

j âl âk |ψ〉 , (2)

with other rank RDMs defined equivalently, and where the
indices i, j, . . . label spin-orbital degrees of freedom, â(†)

i
are the fermionic annihilation (creation) operators, and we
have omitted the explicit subscript denoting the rank of the
RDM where it is obvious from the number of indices. In this
example, the partial trace down to the one-body RDM can
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then be written as

γik = 1

N − 1

∑
j

�i j,k j . (3)

Despite tracing out large numbers of degrees of freedom,
these two-body RDMs still contain all the information about
a quantum system required for physical observables of inter-
est, which depend on (up to) pairwise operators, including
the total energy. The rank of an operator defining a given
observable determines the rank of the RDM required to com-
pute its corresponding expectation value. For example, the
electric dipole moment is a one-body quantity, requiring the
one-body RDM, while the Hamiltonian defining the energy is
a two-body expectation value, requiring the two-body RDM to
evaluate. Nonobservable quantities of interest, such as entan-
glement entropies or mutual information, can also in general
be computed from reduced-body density matrices [26].

Furthermore, using RDMs we can compute the probability
of a given m-electron distribution, as the diagonal of the m-
RDM. The sum over this distribution then gives the number
of m tuples of particles in the system, which can be used
as a normalization condition, e.g., the trace of the 2-electron
distribution giving the number of pairs of electrons, as

∑
i j

�i j,i j = N (N − 1)

2
. (4)

Overall, these m-RDMs have all the information about the
distribution and entanglement of m particles in a given state of
an N particle system, which rationalizes their use as method-
agnostic, low-rank quantities in order to couple quantum
systems described at different levels of theory.

In this paper, we consider second-quantized Hamiltonians
where spin symmetry is preserved, allowing further tracing
out of spin degrees of freedom, defining the central spin-free
two-body RDM of interest as

�pqrs ≡
∑
στ

�pσ qτ rσ sτ
, (5)

where p, q, . . . denote spatial degrees of freedom and σ, τ

denote spin labels. Further permutational symmetries can be
used which reduce the number of independent quantities to
evaluate, as

�pσ qτ rσ sτ
= −�pσ qτ sτ rσ

= �qτ pσ sτ rσ
= �rσ sτ pσ qτ

, (6)

with time-reversal symmetry ensuring

�pσ qτ rσ sτ
= �pτ̄ qσ̄ rτ̄ sσ̄

. (7)

The resulting set of fermionic operators must be mapped to
spin operators for sampling of the state on a QPU. For this, we
use the Jordan-Wigner mapping [27], though other mappings
(e.g., Bravyi-Kitaev mapping [28,29]) could be used, as long
as the mapping is consistent. While each fermionic operator
will in general be mapped to several spin operators, one can
find several efficiencies to reduce this overall number of terms.
We discuss scaling of number of terms for RDM sampling
using efficient grouping methods in Appendix B, which will
be essential for scaling to larger numbers of qubits or for the
extraction of beyond two-body properties.

FIG. 1. Distribution of relative errors in the Frobenius norm for
both QPU and quantum emulated sampling of the RDMs, compared
to exact classical calculation. To obtain the distributions, we repeated
the computation of the Frobenius norms differences over 20 realiza-
tions of the RDMs for each number of measurements considered. On
the left, results are presented for a QPU simulator (assuming perfect
qubits) and therefore displays the impact of finite sampling noise. On
the right, the results computed on IBMQ Athens (4-qubits, depth 3
HEA), with and without error mitigation.

In order to test RDM sampling on a quantum computer,
we computed the one- and two-body RDMs of magnesium
porphyrin after optimization of a hardware efficient ansatz
(HEA) wave function using the gradient free RotoSolve opti-
mizer [30]. We use an active space restricted to 2 orbitals and
2 electrons (a 4-qubit Hamiltonian) for this test. It is worth
noting that while the HEA is convenient for studying small
systems due to its relatively small prefactor, it is expected to
have difficulties scaling to larger active spaces [31], where
other VQE ansatz are expected to be preferred such as the
unitary coupled cluster [32]. The resulting RDMs are then
compared to the RDMs obtained via exact methods for the
same active space, and the distribution of relative errors in
the elements are shown in Fig. 1. We conducted this test on
a simulated QPU with different number of shots, as well as
current quantum hardware (IBMQ Athens QPU, details about
each QPU used in this paper can be found in Appendix C).

In our investigation of RDM observable sampling errors,
we also considered approaches to reliably mitigate for these
errors via physically justified extrapolation techniques. It is
clear from the results of Fig. 1 that these can substantially
ameliorate quantum noise and sampling errors. We present
the simple extrapolation technique used in this paper in Ap-
pendix A; the technique relies on a binomial distribution of
independent errors in the quantum circuit, and has the benefit
of requiring no additional measurements (for a more involved
approach to extrapolation, we recommend Ref. [33]).

This simple error mitigation technique significantly im-
proves the overall accuracy of the QPU estimates, bringing
it almost on par with the results of the simulator at an equiv-
alent number of measurements. A key question that remains
is whether the norm error presented above has a significant
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impact on the ability to use these RDMs reliably within sub-
sequent quantum chemical calculations, where manipulation
of these noisy RDMs may prevent convergence or lead to
unacceptable bias in desired quantities. In order to test this we
apply this sampling to a QPU-solved complete active-space
self-consistent field method (computing both energetics and
molecular dipole moments following the optimization), as
well as a QPU version of the energy-weighted density matrix
embedding theory, as examples of multiscale approaches to
allow quantum resources to be applied to realistic systems in
electronic structure calculations.

III. QUANTUM CASSCF

The complete active-space self-consistent field (CASSCF)
approach is generally the starting point in quantum chem-
istry for molecular systems exhibiting stronger correlation
effects, and therefore a key step in the development of elec-
tronic structure methods suitable for quantum computation
[16,20,34–48]. The central tenet of CASSCF is that the
dominant strong quantum fluctuations required to qualita-
tively describe an electronic system are spanned by a small
number of low-energy degrees of freedom about the chem-
ical potential. The changes caused by explicitly considering
interaction-driven virtual excitations in this space can change
the occupation and induce entanglement of these orbitals,
giving rise to correlated physics far from a mean-field descrip-
tion. The first step of CASSCF is therefore to partition the
orbitals into three subspaces, denoted core, active, and virtual.
Core orbitals are deep-lying orbitals, which are considered to
be chemically-inert and fully occupied, while conversely, the
virtual orbitals are considered high-energy states which re-
main unoccupied. Together, these denote the “external” space.
The active space denotes the degrees of freedom, which are
considered to span the dominant electron correlations corre-
sponding to low-energy virtual excitations of the Nact electrons
within it, with the full set of quantum fluctuations amongst
this set to be considered. No entanglement or particle/spin
fluctuations are considered between the external and active
spaces. The overall CASSCF wave function at any point can
therefore be written as

|	CASSCF〉 = |ψactive〉 ⊗ det[φc], (8)

where |ψactive〉 denotes an Nact-electron wave function span-
ning the active degrees of freedom, while det[φc] is a single
product state over the core orbitals, accounting for the N −
Nact remaining electrons.

A key initial step for CASSCF is therefore to choose
the orbitals in each set. These are selected from an initial
mean-field calculation, where to a first approximation, the
highest-energy occupied and lowest-energy virtual orbitals
about the chemical potential are chosen as the active space.
However, this choice is often augmented with other criteria
for selection of the active space, including symmetry, locality
and/or “chemical intuition”, with approaches for automatic
selection of this space, e.g., from quantum information argu-
ments, a source of recent developments [1,49,50]. However, it
is clear that selecting these orbitals from an initial mean-field
calculation has an inherent flaw. The active space, designed
to capture the strong correlations and dominant entanglement

between single-particle states, is chosen from a theory with
no correlations or entanglement via simple mean-field orbital
energetics, which can change substantially in the presence of
electron correlation. To account for this, a self-consistency in
the choice of the active-space orbitals is required for mean-
ingful and qualitatively accurate results in the presence of
strong correlation. This involves a variational optimization of
the state given in Eq. (8), to account for an arbitrary mixing
between all three classes of orbitals, defined by the exponen-
tial of an anti-Hermitian one-particle operator. This allows the
character of the orbitals to change, by rotating core and virtual
components into the active space in a variationally optimal
way.

The CASSCF method from another perspective can be
considered as an embedding of the correlated effects of the
active space into a mean-field description of its “environment”
(as given by the electrons in core orbitals), as presented in
Ref. [14] for quantum emulation. However, this active “em-
bedding region” is chosen largely on energetic criteria, with
a strictly separable form and no entanglement with the core
electrons. We contrast this with an alternative criteria based
on locality in Sec. IV. The limitations of the approach come
from the size of the active space, which for an exact treatment
is often accepted to be 16 electrons in 16 orbitals [20], with
some instances of computation up to 20 electrons in 20 or-
bitals [51]. This is due to the exponential scaling of classical
resources with respect to this size in order to represent and
optimize |ψactive〉. Beyond this, approximate descriptions of
the active-space wave function are increasingly being investi-
gated, although all have their limitations [52–57]. This active
size constraint stymies the application of CASSCF to systems
with larger valence spaces, where a small active space is not
sufficient and convergence of desired properties with respect
to active size is not reached.

This limitation is a potential opportunity for NISQ comput-
ers to exhibit a quantum advantage in this keystone method
in quantum chemistry, with the active-space paradigm often
being touted as a near-term prospect for quantum computers
[1,12] (see, e.g., Ref. [58] for a recent review of the lim-
its of classical computers in this field and the requirements
for quantum advantage). However, beyond simple analysis
of gate depth and qubit number required is the question of
the practical feasibility of a robust and convergent algorithm
for the self-consistency of the full CASSCF method, which
has to date been recently demonstrated for a single-orbital
optimization step without full self-consistency in the paper of
Takeshita et al. [12]. In the algorithm which we use, the cou-
pling of the active-space correlations to the orbital rotations
required for self-consistency is provided by the two-body
RDM within the active space. Therefore, the faithful sampling
of this two-body RDM with sufficient fidelity is critical for a
well-behaved algorithm. This is especially important as the
orbital rotation updates involve nonlinear functionals of the
sampled two-body RDM elements, meaning that we expect
noise from the QPU sampling to manifest as systematic error
in the final results, even in the case that the sampling of the
underlying RDM elements is unbiased. We investigate the
two-body RDM active-space sampling for this purpose on
QPUs as well as the importance of error mitigation, by using
a parameterized gate circuit as the active-space wave function
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optimized via the variational quantum eigensolver (VQE).
However, the use of VQE in this paper could be replaced
by quantum Krylov or imaginary-time solvers suitable for
NISQ devices [59,60], as well as quantum phase estimation
algorithms when suitable devices are available.

A. Fully self-consistent algorithm

We briefly summarize the key steps of the (two-step)
CASSCF approach (sometimes also described as the related
multiconfigurational self-consistent field method), with more
details available in Ref. [17]. We start with the second quan-
tized electronic Hamiltonian in a basis, as

Ĥ =
∑

i j

hi j â
†
i â j + 1

2

∑
i jkl

gi jkl â
†
i â†

j âl âk + Enuc, (9)

where hi j and gi jkl = 〈i j|kl〉 are the one and two-body inte-
grals respectively, with Enuc the scalar nuclear repulsion. We
parametrize the orbitally-optimized CASSCF wave function
of Eq. (8) as

|	CASSCF〉 = |R, c〉 = e− ∑
i j Ri j â

†
j âi

∑
n

cn |n〉 , (10)

where the one-body matrix operator R parameterizes the
single-particle unitary rotation operator of the molecular
orbital basis (Ri j = −Rji), |n〉 the complete set of Slater
determinants spanning the active space, and c defines the
coefficients of the configurations indexed by n, spanning the
selected active space. The full optimization problem can then
be written as

E = min
R,c

〈R, c| H |R, c〉
〈R, c|R, c〉 . (11)

Within the two-step algorithm, the optimization of R and c
are treated separately and alternated, as the optimization of R
can be efficiently performed for one-body unitary rotations on
classical computers, given the knowledge of the active-space
two-body RDM,

�2 = 〈ψactive|â†
i â†

j âl âk|ψactive〉. (12)

The optimization of R then proceeds via construction of the
gradient and Hessian of the energy with respect to these pa-
rameters, which can then be updated at modest computational
expense via a quasi-second-order step, accelerated with itera-
tive subspace methods as implemented in the PySCF package
[17,61,62].

For a given rotation matrix parameterized by R, the Hamil-
tonian can then be transformed into the new basis, and the
Coulomb and exchange contribution from the static core elec-
trons integrated out, resulting in an active-space Hamiltonian
Hact (R), which only spans the active-space degrees of free-
dom. The optimization of this active-space wave function is
then amenable to implementation within a VQE minimization,
as

E |R = min
θ

〈ψactive(θ )| Hact (R) |ψactive(θ )〉 , (13)

where θ denote the angles to optimize within the chosen
quantum circuit parameters [25]. Once optimized, the 2RDM
elements of the active space of Eq. (12) can be sampled, in

order to update R in the full space, until convergence. In
practice, convergence can be triggered in a black-box fashion
over a number of variables, such as the energy, orbital gradi-
ents, or density matrices themselves. However in this paper
we run for a fixed number (ten) of orbital updates, which is
sufficient to gauge convergence and to subsequently observe
the fluctuations in the quantities of interest at this point.

B. Results

While the computational procedures for this coupled or-
bital optimization are well developed for exact or near-exact
solvers in the domain of quantum chemistry, their utility in a
fully self-consistent algorithm with a noisy quantum computer
is far from clear (although there is some relevant recent work
on noisy Monte Carlo solvers for active spaces [54,55,63,64]).
We therefore consider the CASSCF algorithm with an active-
space NISQ device solver, to determine the stability of the
algorithm in the presence of sampling, gate noise, decoher-
ence, and a parameterized quantum circuit for the state. This
allows us to understand the feasibility of this multiscale ap-
proach, and develop practical strategies to ameliorate potential
shortcomings from the noisy active-space sampling.

We apply the method to a carbon monoxide (CO) molecule
in a cc-pVDZ basis set, and at a stretched bond length of
1.54 Å. This stretching of the multiple bond enhances the
strong correlation in the electronic structure, as the atomic-
like character of the constituent atoms is increased. An active
space of two orbitals and two electrons, corresponding to the
highest occupied and lowest unoccupied molecular orbitals,
is selected to capture the dominant many-body entanglement
in these lowest-energy quantum fluctuations. To ensure a sig-
nificant level of orbital relaxation from the self-consistent
procedure, and to test the stability of this noisy optimization
in the case of a poor initial choice of orbitals, we select initial
orbitals (and active space) from only a partially converged
Hartree-Fock calculation. This was achieved by an early stop-
ping of the mean-field self-consistent field procedure after
only two updates of the Fock matrix prior to the CASSCF.

We first implemented the method on a quantum simula-
tor with 500, 2000, 5000, and 10 000 shots to sample each
mapped two-body RDM operator required, but in the absence
of any additional noise model for the gates. For the quan-
tum hardware experiments, we use IBMQ Bogota and IBMQ
Santiago, which are both 5-qubit QPUs available through the
the IBMQ platform, with equivalent levels of gate fidelity
(details about each QPU used in this paper can be found in
Appendix C). The initial calculations on IBMQ Bogota were
performed without accounting for any error mitigation, before
applying the light-touch error mitigation strategy presented in
Appendix A on the IBMQ Santiago hardware to assess any
improvements from this. For the QPU runs, we use a measure-
ment ramp-up schedule whereby the number of measurements
is increased if the output energy at a given iteration is higher
than for the previous one (which should not be the case during
the optimization). It is capped at 8000 shots, which is also the
number of measurements used for RDM sampling after the
state is optimized.

We used the same ansatz for all experiments, built on a
four-qubit, three-layer version of the HEA [65,66], and the
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FIG. 2. Convergence of the energy of the CASSCF state for a 2-electron, 2-orbital active space of carbon monoxide for each orbital update
step. Results are shown for a quantum simulator, on IBMQ Bogota (without error mitigation) and on IBMQ Santiago (with error mitigation).
The plot on the right focuses on the final five orbital update cycles, showing the variation and bias in converged results, with additional
simulated results for 500 and 2000 shots to illustrate the impact of finite sampling noise (results for 5000 shots are indistinguishable from
those obtained with 10 000 shots and as such were not included). Error bars for QPU results on the right hand side plot represent 1.96 times
the standard error spread of the measurement data, or the 95% confidence interval for the values estimated.

same optimizer: the gradient free RotoSolve methods [30].
This resulted in a total of 24 variational parameters in the
model. We found it unnecessary to fully converge the ansatz
each iteration, and therefore investigated varying the level of
ansatz optimization each CASSCF step to improve efficiency.
Five iterations of the VQE were in general sufficient on the
first cycle, and we then used the parameters obtained to initial-
ize the ansatz for the next cycle. A single iteration of the VQE
for subsequent CASSCF steps after performing this warm
start was sufficient to fully converge in a reasonable time, and
to reach good accuracy.

The results of these CASSCF optimizations are presented
in Fig. 2. Without error mitigation, the QPU results show
significant systematic error at convergence of ∼60 mEh, but
nevertheless allow for a stable optimization. Including the
error mitigation allows for significantly better results, with
fluctuations of less that 10 mEhfrom the exact CASSCF value
from exact 2-step optimization of the same initial active space.
As expected, the variance from the QPU experiment is sig-
nificantly more than the corresponding quantum simulated
results, even with error mitigation. This reflects the fact that
the error mitigation effectively removes the bias in the sam-
pled measurements, but does not materially improve on the
variance resulting from quantum noises. In our quantum sim-
ulated results, we find strong convergence for any simulation
without gate noise or decoherence above 5000 shots. Below
that number, finite sampling noise prevents the algorithm
reaching the sought after solution. At 500 shots, it fails to
reach under 10 mEhdifference to the target state energy on
average.

We can distinguish and isolate the effects of certain er-
rors arising from the quantum solver on these results. Firstly,
we have the systematic error in the VQE at each iteration,
including the optimization, gate errors, and ansatz choice,

which lead to a nonexact energy and state for a given set
of active orbitals. Secondly, we can consider the effect of
stochastic noise in the RDM due to a finite number of samples.
This second error will lead to incorrect orbital updates in
the CASSCF macroiterations, and a loss of precision in the
final CASSCF energy due to an inability to propagate to the
optimal orbitals defining the active space and its Hamiltonian.
Furthermore, since the orbital choices in CASSCF are not
linear functionals of the sampled density matrix elements,
even if the RDM elements are entirely unbiased and correct
on average, this does not preclude a systematic error entering
the orbital updates at any finite sampling.

To separate these sources of error, we can consider the
exact energy of each CASSCF iteration, but using the active-
space orbitals obtained at each iteration from the noisy VQE
update from the quantum solver. This eliminates errors due
to the VQE optimization of a given active space, isolating
the error due to convergence of the nonoptimal orbital rota-
tions being found at each step, primarily due to the inherent
sampling noise of the RDMs. These results are shown in
Fig. 3, and show that the overwhelming majority of the error is
arising from the bias in the VQE, while the convergence of the
orbitals is highly robust to the errors in the active-space VQE
description and sampling errors of the RDMs. Even without
error mitigation of the RDMs, orbital optimization is accurate
to within 10 mEh, while the results of the simple error mitiga-
tion in the RDMs rendered an almost exact CASSCF energy.
This demonstrates that the orbital optimization procedure is
less susceptible to the errors in the VQE and RDM sampling
than the inherent errors in the energy and wave function
optimization for a given active space. This relative insen-
sitivity to the fidelty of the RDMs bodes well for larger
active-space calculations on QPUs and the practicality of
orbital optimization through RDM sampling, as well as the
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FIG. 3. Convergence of the final six orbital update cycles of the
CASSCF energy, obtained with the IBMQ Bogota (with no error
mitigation) and IBMQ Santiago (with error mitigation). Two series
are presented for each QPU calculation: “VQE energy” results are
equivalent to Fig. 2, while “exact solution” represent the exact energy
from the current active space, that would have been obtained if the
VQE was solved perfectly given the molecular orbitals found from
the previous quantum VQE update step.

improvements which would transfer to this approach from
improved active-space quantum algorithms [59,60].

A key question remains as to whether this robustness is
a property just of orbital optimization, or whether this also
extends to a broader set of expectation values which can be
derived from the RDM sampling (other than the energy), as
these also relax due to a more faithful description of the cor-
related wave function. We consider here the effect of orbital
optimization and a correlated VQE wave function on the mag-
nitude of the dipole moment of the carbon monoxide molecule
in the same active space, which can be extracted from
the sampled one-body reduced density matrix as a one-particle
expectation value. This quantity characterizes the net charge
distribution in the molecule, and from symmetry constraints
can be described by a vectorial quantity which must be coin-
cident with the carbon-oxygen bond. The magnitude of this
vector is shown in Fig. 4, as the active-space orbitals are
optimized in the presence of the correlated VQE state.

Since the dipole moments are linear functionals of the
one-body RDM, we would expect an unbiased sampling of the
RDM to give an unbiased estimate of the dipole moment from
the optimized VQE-CASSCF state. We find that without error
mitigation, there is still an error of ∼0.6D, however the error
mitigated results can effectively reduce the systematic error in
the final dipole moment completely, with fluctuations in each
cycle of a similar magnitude to the emulated values without
quantum noise or decoherence with 5000 shots. It is also
worth noting that the dipole moment of carbon monoxide is
notoriously difficult to converge theoretically [67], hence the
error with respect to experiment of 2 Debye is to be expected
for CASSCF with a minimal active space. At this point, the
fluctuations in the dipole moment agree with the magnitude
of the fluctuations expected from the original density matrix
sampling experiments of Fig. 1, and an unbiased estimate

FIG. 4. Convergence of the dipole moment in Debye from QPU-
CASSCF as the orbitals are optimized, both with (IBMQ Santiago)
and without (IBMQ Bogota) error mitigation, as well as quantum
simulated results from an RDM sampling of 500, 2000, and 10 000
shots. Positive dipole moments mean that the dipole moment points
towards the oxygen (i.e., the oxygen atom has net negative charge),
while the converged results flip the orientation of the dipole moment.

of the exact CASSCF dipole moment is obtained. We also
note that the correlation and orbital optimization reverses the
direction of the charge imbalance in this system from the
starting description.

The overall runtime of the full QPU-CASSCF calculations
on IBMQ Bogota was ∼14 QPU-hours, including 10 orbital
updates, VQE optimization, and RDM sampling.

However, one must consider the potential for paralleliza-
tion. In this case, all 8000 measurements conducted on the
49 operators could have been conducted in parallel, possi-
bly reducing the overall runtime up to well under a second.
While this is not a good indication for scaling and long term
viability of the method (we encourage the reader to refer to
Ref. [58] for an interesting assessment of the scalability of
VQE), it does illustrate the potential for strong parallelization,
and corresponding error mitigation techniques, for the viabil-
ity of NISQ algorithms.

Finally, it is worth discussing the viability of extensions
to CASSCF on quantum devices. In quantum chemistry,
CASSCF is rarely the end of the story, as it neglects the
contributions to expectation values arising from interactions
between the active-space electrons and the external degrees of
freedom. These can generally be treated at a perturbative level
of theory [68], cumulant or energy-moment expansions [69]
or via subspace expansions [12], and are required for quanti-
tative accuracy for predictive calculations. These perturbative
couplings between the spaces can be computed by considering
the higher-rank RDMs in the active space. This approaches
will significantly increase the number of terms which must
be sampled. However, large reductions can be found with
the appropriate groupings, and this is demonstrated in Ap-
pendix B, where 440 154 Pauli strings for the sampling of
the four-body RDM within 6 qubits can be reduced to only
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3182 commuting groups. We will explore the viability of this
perturbative extension to CASSCF in future work.

IV. QPU-ENHANCED ENERGY-WEIGHTED DENSITY
MATRIX EMBEDDING

The CASSCF method exploits the locality of correlation
in the energy domain, choosing and optimizing a low-energy
subspace for the correlated treatment. In this section, we
demonstrate the utility of a faithful QPU sampling of RDMs
in order to correlate and optimize a different subspace, which
instead relies on spatial locality. This perspective is often more
useful for strongly-correlated extended systems, where the
atomic-level correlated degrees of freedom can be isolated,
and where widely used methods such as density functional
theory fail to provide accurate results [70]. These approaches
fall under the umbrella of quantum embedding or quantum
cluster methods, and are amongst the most promising for
QPU-enhanced materials modeling [21,71,72]. We investigate
the recently-developed “energy-weighted density matrix em-
bedding theory” (EwDMET) as a promising candidate in this
direction [22–24].

The EwDMET method connects the density matrix em-
bedding theory (DMET) and dynamical mean-field theory
(DMFT), two established approaches in quantum embedding
[73–75]. Both of these “parent” approaches have recently
been adapted for use with a quantum hardware solver, as
well as related embedding techniques [7–11,13,76–78]. How-
ever, the EwDMET avoids a number of difficulties. Similar to
DMET, it avoids any necessity to compute the single-particle
Green’s function of the resulting quantum cluster problem
on the QPU, which is challenging for quantum hardware,
although important progress is being made [79]. Instead, the
method requires a desired number of one-particle spectral
moments from the subspace problem, which can be obtained
directly from the reduced density matrices of the ground state.
The number of self-consistent spectral moments can then be
systematically enlarged, to approach the complete dynamical
character of DMFT as an orthogonal polynomial expansion.
The method also removes all explicit numerical fitting steps,
and constructs a rigorous self-consistency on these spectral
moments, systematically extending the DMET formulation
and connecting it to its fully dynamical limit. This rigorous
and algebraic self-consistency enables nontrivial results to be
obtained even at the lowest truncation of the spectral moment
expansion. This requirement of only computing ground-state
RDMs, while at the same time benefiting from a rigorous
and algebraic self-consistency for nontrivial emergent physics
makes it an ideal candidate for combination with QPU-derived
RDMs in the NISQ era. We briefly review the salient features
of EwDMET for this QPU formulation, with more details in
Ref. [24].

As with all quantum cluster approaches, the algorithm be-
gins with the choice of a local correlated space. This could
be the d shell of a transition metal atom, or a cluster of
sites for a discrete lattice model. The EwDMET method then
allows for an improvable and self-consistent description of the
one-particle quantum fluctuations between this fragment and
its environment [22–24]. This information is contained within

the self-consistently optimized (hole and particle) spectral
moments of the fragment, defined as

T (n)
h,αβ

= 〈	| â†
α (Ĥ − E0)nâβ |	〉 , (14)

T (n)
p,αβ = 〈	| âα (Ĥ − E0)nâ†

β |	〉 , (15)

where α, β index the degrees of freedom of this local frag-
ment, n � 0 denotes the order of these moments, optimized up
to a maximum desired value nmom, and |	〉 is the ground state
of the constructed correlated subspace. As nmom → ∞, the
method exactly reproduces the effective dynamics of DMFT,
recast as a ground-state wave function theory, while system-
atic truncation to low nmomwill still faithfully describe the
dominant low-energy fluctuations from the fragment into its
environment. The EwDMET method rigorously maps the full
system to a subspace consisting of the chosen fragment cou-
pled to a “bath” space. The size of the bath is determined
solely by the size of the fragment and the desired number
of spectral moments to capture (and the correlated subspace
is hence independent of the size of the full system). It is
this correlated subspace problem which must then be solved
on the QPU at each iteration, and the spectral moments of
Eqs. (14) and (15) computed. With these computed spectral
moments from the correlated fragment space, the one-particle
description of the full system can be algebraically updated via
the addition of noninteracting auxiliary states, to ensure that
the fragment moments at the mean-field level over the full
system exactly reproduce the correlated subspace ones. The
procedure is iterated, updating the auxiliary space and bath
space of the quantum cluster problem, until convergence.

A. Infinitely coordinated Bethe-Hubbard lattice

We apply this method to the paradigmatic Hubbard model
of condensed matter physics, which describes a range of quan-
tum phases and correlation-driven transitions. Specifically,
the limit of an infinitely-coordinated extended Bethe-Hubbard
lattice with local interactions defines our model of inter-
est, which has the particular feature that correlation-driven
changes to all one-particle properties are site local. This prop-
erty was used to great effect to motivate the development of
DMFT, by providing a nontrivial model for which it describes
an exact limit [80,81]. The EwDMET has the same exact limit
for this model as nmom → ∞.

The model can be equivalently defined in this infinite-
dimensional limit via its metallic noninteracting density of
states [82], which is defined to have the form

A(ω) = 1

2π

√
4 − ω2, (16)

for a bandwidth of |ω| < 2. This noninteracting spectrum was
fit to a single central fragment site with 200 additional degrees
of freedom, to approximate this full spectrum to a high-
energy resolution [83,84]. The interacting Hamiltonian is then
defined as resulting from the additional on-site Hubbard in-
teraction term, Un̂i↑n̂i↓, which is included on the fragment
in the correlated subspace Hamiltonian at each iteration. The
spectral moments of this central fragment site are then self
consistently optimized, where we define the projection of the
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noninteracting system Hamiltonian into this cluster subspace
as hclust.

In this paper, we truncate the spectral moment expansion
at order nmom = 1, defining the set of self-consistent fragment
quantities. This simplifies their computation from the VQE
solution for the ground state of the cluster Hamiltonian at
each iteration, since these n = 0 and n = 1 moments over the
fragment can be constructed from (parts of) the one- and two-
body RDMs, for which we have efficient sampling as detailed
previously. For instance, the n = 1 hole moment reduces to

T (1)
h,00 =

∑
j∈clust

hclust
0 j γ0 j + U�0000, (17)

where 0 denotes the fragment site index. Physically, the re-
striction of nmom = 1 means that the center of mass of the
particle and hole spectral distributions can be self-consistently
optimized on the lattice in the presence of the local corre-
lation effects. This contrasts with DMET, where single site
self-consistency cannot change the physics of the full system
from the noninteracting picture in translationally symmetric
systems, and so QPU emulations of this method with a single
fragment site are restricted to single-shot computation without
any self-consistency [9,10,78]. By using VQE as the solver
on quantum hardware, we can identify the ground state of
the cluster Hamiltonian, and subsequently sample the relevant
RDMs to construct the required fragment spectral moments.
We iterate this procedure until self-consistency, which we
define to be when the sum of the squared update to the (four)
parameters defining the auxiliary states varies by an energy of
less than 10−4. These self-consistent auxiliary states consist of
individual poles in a self-energy, which modifies the spectral
function of the system to match the correlated local moments
from the VQE.

At this choice of spectral moment truncation, the cluster
Hamiltonian consists of the single-fragment site and a single
bath orbital, resulting in a four-qubit system to solve at each
iteration of the EwDMET method. This cluster is solved via
VQE on the QPU with the same three-layer HEA as applied
in the CASSCF section, with a Jordan-Wigner mapping to the
qubit representation. Additionally, the same error mitigation
is used to control the noise inherent in the sampling of the
RDMs required to construct the fragment spectral moments.
Emulated QPU simulations without noise models were also
performed for comparison to the QPU experiments of this
algorithm.

B. Results

Figure 5 presents results for the single-particle spectrum
for the model at self-consistency for VQE-EwDMET with
nmom = 1, at a strongly correlated limit with an on-site inter-
action of U = 8, which is twice the noninteracting bandwidth
of the material. Self-consistency achieves the matching of the
first two local spectral moments [Eqs. (14) and (15) for n = 0
and 1 over the fragment site] for both the mean-field state of
the whole system, and the VQE results over the correlated
cluster. At this point a spectrum can be obtained which is
consistent through these local moments, via diagonalization
of the resulting (dynamical) mean-field, with specifics found
in Ref. [24]. The final converged spectra are presented for an

FIG. 5. The density of states for the Hubbard model on the Bethe
lattice with infinite coordination for the EwDMET method with
nmom = 1. Upper results are performed on a classical QPU simulator
with finite sampling noise and varying numbers of shots in the VQE
solution to the cluster Hamiltonian at each iteration. Lower panel
shows results from two QPU experiments, on IBMQ Santiago and
IBMQ Bogota, with and without error mitigation, respectively, with
5000 shots for the sampling of the required RDMs. Grey dotted lines
show the original noninteracting spectrum of the model, while the
red dotted line shows the EwDMET(nmom = 1) results with an exact
solution of the cluster Hamiltonian each iteration.

exact solver, an emulated quantum simulation without noise
but with different numbers of shots for the sampling of the
RDMs (500, 2000, and 10 000), and quantum hardware results
on IBMQ machines with and without error mitigation, with
5000 shots for the sampling. All calculations converge within
8 iterations as the auxiliary and bath spaces adapt to the cor-
relations described over the fragment site in each VQE cluster
solution, demonstrating the robustness of the self-consistency
in the presence of noise. At this level of theory, the spectrum
shows significant qualitative changes from the noninteracting
spectrum. Upper and lower Hubbard bands develop, split-
ting the original density of states, with a qualitatively correct
charge gap between these bands shown. However, a small
quasiparticle peak remains at the Fermi level, showing that
the metallic character of the system is not entirely removed
by the correlations, as is to be expected from numerically
exact calculations on this system such as NRG+DMFT [85].
Consistency in higher orders of the spectral moments are re-
quired to get to a true Mott insulating state [24], which can be
achieved at the expense of an increasing size of bath space and
sampling higher spectral moments (which requires higher-
body RDMs, described in Appendix B). Nevertheless, even at
this low truncation, much of the true correlated spectral den-
sity is reproduced with significant physical correlation-driven
redistribution of spectral weight observed.
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FIG. 6. Converged effective on-site Matsubara self-energy for
the Bethe lattice Hubbard model with EwDMET at nmom = 1. Upper
plot shows results from the quantum simulator with finite sampling
of the RDM elements, compared to exact results (infinite sampling).
Lower plot shows results from quantum hardware on IBMQ Santiago
and IBMQ Bogota and 5000 shots in the RDM sampling, with and
without error mitigation in the RDM sampling, respectively.

At 10 000 shots, the emulated results without further simu-
lated quantum noises are are almost indistinguishable from
the exact benchmark at all energies. At lower numbers of
shots, the gap between the Hubbard bands is too small, as
the variance in the sampled RDMs increases. As with the
CASSCF method, the updated auxiliary space at each iteration
is a nonlinear transformation of the spectral moments [which
are themselves linear functionals of the RDM elements, as can
be seen in Eqs. (17)]. The consequence of this is a systematic
error in the resulting spectral functions at convergence due
to the increasing RDM variance, rather than simply a mani-
festation in a noisy but unbiased spectrum. This behavior of
an underestimated gap between the Hubbard bands is also
present in the QPU results, where unmitigated results feature
unrepresentative Hubbard bands. However, the performance is
once again considerably improved with the error mitigation,
with the Hubbard bands and low-energy peak resolved to
higher accuracy, suggesting the method fits well with a QPU
cluster solver, and removing the necessity for the full solution
of the fragment Green’s function at each point within a DMFT
framework.

Properties of the system can also be observed from the
effective self-energy of the system, which is obtained directly
from the self-consistent auxiliary states, and allows access
to quantities such as Fermi liquid parameters [24]. For the
same system, Fig. 6 shows the imaginary part of the self
energy on the Matsubara frequency axis. The finite sampling
results are seen to approach the exact results with increasing
shots, with 10,000 shots reaching a comparable performance

to the exact results, with the discrepancy far more visible
in the self-energy than the original single-particle spectrum
of Fig. 5. The quantum hardware unmitigated results cor-
respondingly demonstrate significant overestimation of the
resulting self-energy. Despite the fact that the Hubbard bands
are closer, these unmitigated results show a larger effective
mass and quasi-particle renormalization at the Fermi surface
from the self-energy (a larger derivative at iω → 0), which
manifests in the smaller peak in Fig. 5 at that point. Error
mitigated QPU self-energies are however more in line with
exact results for the method, albeit now slightly underesti-
mated at low-frequencies. Further improvement of the results
can be obtained by increasing the moment order (nmom) to
which the dynamical quantities are all resolved. Similar to
the perturbative corrections to CASSCF however, these will
require sampling of higher-body RDMs, and is an avenue of
continuing research.

V. CONCLUSIONS

We have presented a unified approach to self-consistent
coupling of quantum and classical computational resources in
quantum chemistry and condensed matter electronic structure
problems. This coupling relies on the faithful and efficient
sampling of reduced density matrices on quantum resources,
where these objects span the correlated physics of an iter-
atively optimized subspace of the full system. We consider
the required fidelity and sampling quality of these density
matrices for robust optimization on current generation quan-
tum hardware, developing a simple but effective approach to
mitigate for gate errors and allow this full convergence. As
well as converged energetics, we also analyze the viability
of the sampled density matrices for nonenergetic quantities,
including the dipole moment for ab initio simulation of chem-
ical systems, and the self-energy and mass renormalization of
strongly correlated extended models.

Overall, the picture is encouraging, with the self-consistent
optimization found to be particularly robust to the presence
of sampling noise on current generation quantum hardware.
This self-consistency is found to be more reliable than the
uncertainties resulting from the state optimization and energy
obtained from the VQE at any single iteration. This points
to a significant transfer from continuing improvements in
both hardware and quantum algorithms for state preparation
on quantum devices for self-consistent approaches. These
conclusions, however, are restricted to relatively small corre-
lated subspaces, and further work is required to understand
the generality of these conclusions as we access QPU with
larger qubit capacity. Furthermore, quantitative rather than
qualitative accuracy in these application areas will require
an efficient and compact description of higher-body density
matrices, which will be the focus of future directions.
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APPENDIX A: LIGHT TOUCH ERROR MITIGATION

In order to improve the results and reduce the effects of
the quantum noises of the IBMQ devices used, we employ
a simple, but costless, extrapolation approach based on the
assumption that the impact of the circuit errors is evenly
distributed on the output state (for a more rigorous approach
to extrapolation, see Ref. [33]). The aim is to recover an
approximation of the true expectation value of a quantum
circuit with respect to an operator, assuming a specific bias on
the output results. It is worth noting that this method primarily
focus on correcting gate and readout errors, and as such does
not attempt to maintain or restore the purity of the quantum
state produced. It is not expected to be an effective approach
(when used in isolation) for mitigating errors on deep quantum
circuits where the primary source of noise is decoherence.

We define the true (desired) expectation value of the circuit
with respect to an operator, Ô, as 〈Ô〉, while the measured
expectation value is denoted as 〈Ômes〉. The outcome of a cir-
cuit can be associated with measurement eigenvalues ±1, with
the probability of measuring 1 equal to P1 = Pr(Om = 1), and
with Om referring to a single measurement of operator Ô at
the end of the quantum circuit. Similarly, we have P1 = 1 −
P−1 = Pr(Om = −1). We can associate the true expectation
value with

〈Ô〉 = P1 − P−1 = 2P1 − 1. (A1)

We now assume that there is a certain probability Perr that
at least one gate error occurs during propagation and mea-
surement of the quantum circuit. Any gate error changes the
balance of probabilities between Pr(Om = 1) and Pr(Om =
−1). One can assume that there exists a value between ±1,
representing the expectation value of Ô given the error rate,
which we denote 〈Ôerr〉. This value, as well as the probability

distribution of the operator measurements Om are unknown
and cannot be recovered easily.

We can approximate the expectation value of the measured
operator as 〈Ômes〉 = (1 − Perr )〈Ô〉 + Perr〈Ôerr〉, assuming a
linear relationship between the gate errors and effect on the
expectation value. We can rewrite this as

〈Ô〉 = 〈Ômeas〉 − Perr〈Ôerr〉
(1 − Perr )

. (A2)

We make the further assumption on the value of 〈Ôerr〉 that,
given a sufficiently large number of a random circuit errors,
the probability of getting either eigenvalue when an error
occurs is equal (or 〈Ôerr〉 = 0). This assumption is based on
two observations: (1) there is no way to tell exactly what the
impact of a gate error will be on measurement probability
except that it will bias measurement averages towards 0 (since
the dominant probability will on average be affected by more
errors) and (2) given that the gate errors are random, these will
not result in always measuring 1 or −1, ensuring that these are
the least likely values for 〈Ôerr〉.

This method is largely sufficient for the purpose of our
experiments, and can act as a lower bound for the benefits
error mitigation can achieve with no additional computing
cost. With this approximation, and for eigenvalues ±1, we can
ignore this final term, and the expression simplifies to

〈Ô〉 = 〈Ômeas〉
(1 − Perr )

, (A3)

while for binary eigenvalues of 1 and 0, we get

〈Ô〉 = 〈Ômeas〉 − 0.5Perr

(1 − Perr )
. (A4)

In order to estimate the final bias on the true value of the
operator, we have considered the electron number operator
(trace of the one-body RDM). The deviation from the set
number of electrons in the system gives us an estimate for the
bias induced by quantum noise Perr. Given our assumptions,
the bias factor can be recovered as follows:

1

1 − Perr
= Nelec

Nmeas
, (A5)

with Nelec the target number of electrons, and Nmeas the number
of electron measured:

Nmeas =
∑

i

γii =
∑

i

〈ψ | â†
i âi |ψ〉 . (A6)

This comes at no extra computational cost as the one-body
RDM terms used are necessarily computed as part of the VQE
process.

An alternative method would be to estimate Perr directly by
computing it through the reported gate calibration data from
the QPU provider (compounding the gate fidelities), but we
found that in general this approach is less reliable. This is
most likely due to the fact that using this latter method treats
the bias resulting from circuit errors completely classically: It
ignores any part of the bias that could be due to the reduced
purity of the quantum state produced, which can otherwise be
captured by the former method.
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FIG. 7. Number of unique fermionic operators, corresponding
set of unique Pauli strings (under Jordan-Wigner mapping), and com-
mutative groups to be measured in order to compute all elements of
the one-body (dotted line) and two-body RDM (solid line), for up to
16 orbitals (32 qubits). The groups were found via the largest-degree
first coloring (LDFC) algorithm.

APPENDIX B: OPERATOR GROUPINGS FOR RDM
ELEMENT SAMPLING

At most, sixteen Pauli strings result from each two-body
fermionic operator. While this implies polynomial scaling
(O(n4)) in the number of terms that need to be measured on
the quantum computer, the total number of measurements can
be further improved upon by using commutative features of
the Pauli strings. In particular, Pauli strings that commute can
be measured jointly. There are two main ways to approach
commutativity: qubit-wise commutation (QWC) and general
commutation (GC) of the operators. For QWC, we group two
Pauli strings together if each operator in the first Pauli string
commutes with the operator of corresponding index in the sec-
ond Pauli string. GC is more general, and allows grouping of
Pauli strings as long as they generally commute (for a review
of Pauli strings commutation rules, we recommend [86–88]).
In this Appendix, we study the scaling of measuring RDM
using GC grouping for use in future research. These grouping
strategies tend to be computationally expensive. However the
final set of noncommuting Pauli strings required to measure a
given rank of RDM will be identical and agnostic to the details
of the Hamiltonian for a given number of orbitals.

TABLE II. Number of unique Pauli strings to be measured once
grouped in order to sample all elements of the three- and four-body
RDMs, as the number of (spatial) orbitals in the active space is
enlarged. These numbers represent the terms in a direct Jordan-
Wigner mapping (JW) and grouping of commuting terms from a
largest-degree first coloring algorithm (JW-Groups).

Active orbitals 4 6

Fermionic operators 610 8400
Three-body RDM JW 4928 71 742

JW-Groups 189 2049
Fermionic operators 939 40 065

Four-body RDM JW 11 425 440 154
JW-Groups 163 3182

As a result, once an optimal set of terms is established, it
can be used for all systems, in a similar fashion to the energy
measurement for a VQE problem of a given size (which is
equivalent to the two-body RDM).

We present in Fig. 7 the number of commutative groups
constructed for the one- and two-body RDMs as a function of
the number of molecular orbitals in the active space (where
each molecular orbital is mapped to two qubits). Our results
are similar to those found previously in the literature (see,
for instance Ref. [69]), showing a significant reduction in
dimensionality and scaling of independant observable mea-
surements as the active space increases in size. This results in
a reduction of over two orders of magnitude for the number
of terms to be sampled in a 16 orbital active space, with
this factor increasing for larger active spaces. We present
these numbers in Table I. In addition, we also present the
groups for three- and four-body RDMs, up to 6 orbitals
(Table II), as an investigation into the future feasibility of
extended coupling schemes between the quantum region and
environment such as multireference perturbative or subspace
expansion approaches [12,55,68]. Finding these groups for the
higher-body RDMs for larger numbers of orbitals became too
computationally demanding for the current algorithm given
our resources at time of writing. One point of note is that the
symmetries used in Eqs. (5)–(7), combined with the Jordan-
Wigner mapping, ensure that the one-body RDM only relies
on half of the wave function (the same half of all Pauli strings
required are identities, rendering half of the qubits used ob-
solete in the sampling). This feature can be used to easily

TABLE I. Number of unique Pauli strings to be measured once grouped in order to sample all elements of the one- and two-body RDMs,
as the number of (spatial) orbitals in the active space is enlarged. These numbers represent the terms in a direct Jordan-Wigner mapping (JW)
and grouping of commuting terms from a largest-degree first coloring algorithm (JW-Groups).

Active orbitals 2 4 6 8 10 12 14 16

Fermionic operators 3 10 21 36 55 78 105 136
One-body RDM JW 6 28 66 120 190 276 378 496

JW-Groups 3 9 13 17 21 27 31 36
Fermionic operators 11 157 786 2 486 6 085 12 651 23 492 40 156

Two-body RDM JW 49 910 4983 16 460 41 325 87 354 164 115 282 968
JW-Groups 5 70 227 497 853 1342 1928 2601
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FIG. 8. IBMQ Bogota lattice structure and qubits used for ex-
periments. This QPU was used to compute CASSCF and EwDMET
with error mitigation.

sample the energy of any tensor product state or one-body
RDM functional [89].

It is worth noting that grouping of terms may entail addi-
tional costs. Firstly, the joint measurements of Pauli operators
results in a covariance between terms, potentially increasing
the overall variance of the observable expectation values. In
exceptional cases, this can even increase the total number of
samples required for a given fidelity [86]. In general, however,
we should expect a reduction in number of measurements
necessary for a given precision [87]. Secondly, joint measure-
ments of Pauli strings groups require additional circuit depth
to rotate the measurement basis appropriately. This additional
circuit scales O(N2), with N the number of qubits [87], and
therefore should be considered small on larger gate depth cir-
cuits (by comparison, the “generalized unitary coupled cluster
ansatz” scales O(N3) in depth; see for instance Ref. [32]). In
the case of current generation QPUs however, this additional
circuit length (largely composed of entangling gates) results
in quantum noise that would arguably out-weigh the benefits
obtained from reduction of finite sampling noise from opera-
tor joint measurements. For this reason, while this reduction
in terms to sample is a promising feature for longer-term
viability of density matrix sampling, we are unlikely to benefit
from this for small qubit arrays on current generation QPUs,
and therefore leave the use of operator grouping in actual
experiments for future work.

We present below further details on the approach we have
used to group operators, as presented in Fig. 7. In order to
find these groupings, we require a graph of commutative re-
lationships between all the Pauli strings required to measure
the elements of the RDMs. To find a low number of groups of
fully connected sub-graphs, we employed the “largest-degree
first coloring” (LDFC) algorithm (similar to what is proposed
in Ref. [88]), a graph coloring heuristic. As an example for an
alternative to the LDFC algorithm, one can start by grouping
Pauli strings according to the frequency of identity operators
in the string (as done, for instance in Ref. [69]).

The steps required to complete grouping of Pauli terms
(using LDFC), joint measurements and measurement results
aggregation are outlined at a high level below. For a more
detailed description, we recommend Ref. [87].

FIG. 9. IBMQ Santiago lattice structure and qubits used for ex-
periments. This QPU was used to compute CASSCF and EwDMET
without error mitigation.

FIG. 10. IBMQ Athens lattice structure and qubits used for ex-
periments. This QPU was used to compute the RDM sampling
studies presented in Fig. 1, with and without error mitigation

(i) Initialization: From the list of Pauli terms that re-
quire grouping, define a graph G(V, e), with V the vertices,
corresponding to each Pauli operator, and e the edges repre-
senting anti-commuting relationship between Pauli operators.

(ii) LDFC step 1: Rank the elements of V according to
their degree, i.e. number of edges they are connected to.
Colors are represented by integers, the color of each vertex
is initialized to 0 (unallocated).

(iii) LDFC step 2: First allocate the color 1 to the element
of V with the highest degree. Continue by allocating to the
next element of V the lowest color that is not already attributed
to one of its neighbours. Iterate likewise until all vertices have
a color.

(iv) Joint-measurement basis identification: The groups
have now been defined. From each group, identify a basis
(multiplicative), from which all the other elements of the
groups can be computed. The basis size should be N , with
N the number of qubits.

(v) Joint-measurement circuit construction: Once a basis
is identified, construct the circuit required for joint measure-
ments of the operators (following for instance the instructions
set in Ref. [87], aiming to map each of the operators in the
basis to a single qubit Z-operator measurement.

(vi) Reconciliation: From the results of the measurement,
reconstruct the expectation value of each element in each
group that can then be used to compute the one- and two-body
RDMs.

APPENDIX C: IBM QPU LATTICE STRUCTURES AND
ADDITIONAL INFORMATION

In this Appendix, we present additional information about
the IBM QPU used during the experiment. The information
provided below is sourced from IBMQ Experience reported
calibration of the machines at time of running the experiment
and may change slightly over time.

TABLE III. Selected calibration metrics from IBMQ experience.
These values are averaged for all qubits/connections and taken at a
point in time near the experiment was run. They may change over
time.

QPU Bogota Santiago Athens

Single-qubit Pauli-X error 2.95e–4 4.55e–4 4.16e–4
Qubit frequency (GHz) 4.89 4.78 5.094
Two-qubit gate error 1.40e–2 1.22e–2 1.043e–2
Two-qubit Gate time (ns) 536.89 408.89 346.67
Read-out length (ns) 5048.89 4017.78 3022.22
Read-out error 3.77e–2 1.82e–2 1.82e–2

033230-13



JULES TILLY et al. PHYSICAL REVIEW RESEARCH 3, 033230 (2021)

1. Lattice structures

IBMQ Bogota, Santiago, and Athens are all 5-qubit QPUs,
following IBM’s Canary r3 processor type, with reported
quantum volume of 32 [90]. The lattice structure, as well as
the qubits used are presented in Figs. 8–10, respectively.

2. Calibration information

The information presented in Table III summarizes the
calibration data of the QPU used. It is directly taken from the
IBMQ Experience Portal and may change over time as IBM
recalibrates the processors.
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