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Experimental measurement of the isolated magnetic susceptibility
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The isolated susceptibility χI may be defined as a (nonthermodynamic) average over the canonical ensemble,
but while it has often been discussed in the literature, it has not been clearly measured. Here, we demonstrate
an unambiguous measurement of χI at avoided nuclear-electronic level crossings in a dilute spin ice system,
containing well-separated holmium ions. We show that χI quantifies the superposition of quasiclassical spin
states at these points and is a direct measure of state concurrence and populations.
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I. INTRODUCTION

Alternating current susceptometry [1,2] is a traditional
probe of magnetic response at applied frequencies ω/(2π )
of up to 106 Hz [3]. As ω → 0, the isothermal susceptibility
χT is measured, while, historically, there was much debate
as to whether the high-frequency response could be approx-
imated as a quasistatic adiabatic susceptibility χS [1] or a
quasistatic isolated (or quantum adiabatic) susceptibility χI

[4–6]. The latter is a particularly interesting response function
as it reveals aspects of a system that are not exposed by ther-
modynamic measurements, yet there do not seem to be any
examples where χI has been clearly observed [7]. Here, we
demonstrate an experimental measurement of χI at avoided
level crossings in a simple spin system and show how it is
a direct measure of the concurrence, or superposition of two
quasiclassical spin states, and can be used to measure state
populations.

The three susceptibilities, χT , χS , and χI, may be precisely
defined (see the Appendix) with respect to canonical ensemble
averages:

χT = ∂M

∂H
= 1

V

∂

∂H

( ∑
i

mi pi

)
, (1)

χS = χT − μ0V T (∂M/∂T )2

CH
, (2)

χI = 1

V

∑
i

(
∂mi

∂H

)
pi, (3)

where the sum is over eigenstates i of the Hamiltonian (which
are not generally simple spin states), H is the applied field,
M is the equilibrium magnetization, V is the volume, T is the
temperature, mi = −∂Ei/∂B (with B = μ0H) is the magnetic
moment of eigenstate i, CH is the magnetic heat capacity
at constant applied field, pi = e−Ei/kBT /Q is a Boltzmann

population, and Q = ∑
i e−Ei/kBT is the partition function,

with kB being Boltzmann’s constant. Note that the quantum
adiabatic susceptibility χI is not necessarily equal to the ther-
modynamic adiabatic susceptibility χS . Also, χI cannot be
expressed as a second derivative of the free energy, so it is not
a thermodynamic property. It has been proved that χT � χS �
χI � 0 [5].

In experiment, the frequency-dependent susceptibility
χ (ω) generally measures ∂M/∂H = χT as ω → 0. A purely
real response, χ (ω) = χ ′(ω), at high frequency could equate
to χS if the only effect of finite frequency is to decouple the
system from the heat bath [1], or it could equate to χI if the
state populations of the system remain equal to those that
existed before the field perturbation was applied. In the latter
case, if the fixed values pi are not equilibrium populations
for all H (t ), then the response of the system is nonergodic.
The experiment measures a time t average, ∂M(t )/∂H (t ),
that is equal to χI but is not equal to the ensemble-averaged
∂M/∂H = χT . However, χI can still be calculated by a differ-
ent average over the canonical ensemble, as given in Eq. (3).

To see how this may come about in practice, in Fig. 1(a)
we describe an idealized spin system where the driving pe-
riod τ = 2π/ω is compared to well-separated spin-lattice
(τ1) and spin-spin (τ2 � τ1) relaxation times [8]. At very
low frequency, the magnetic system will remain in thermal
equilibrium throughout the field cycle, giving χT as the real
response. As ω is increased until τ � τ1, equilibrium with
the lattice and heat bath is lost, but spin-spin interactions
retain thermal equilibrium between spins, giving an adiabatic
response, χ (ω) = χS [1]. If the drive frequency is further
increased until τ � τ2, then equilibrium between spins is lost,
and the perturbing field acts on the state populations that
existed before the perturbation was applied, so χ (ω) = χI.
Hence, with τ1 and τ2 well defined and well separated, the
susceptibility χ (ω) takes the form of a series of decreasing

2469-9950/2021/104(1)/014418(9) 014418-1 ©2021 American Physical Society

https://orcid.org/0000-0002-6648-1076
https://orcid.org/0000-0001-7639-9378
https://orcid.org/0000-0003-1876-8619
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.014418&domain=pdf&date_stamp=2021-07-15
https://doi.org/10.1103/PhysRevB.104.014418


D. BILLINGTON et al. PHYSICAL REVIEW B 104, 014418 (2021)

χ (ω)

ω0

χT

χS

0

χ (ω)

χS

χT

χI
χI

FIG. 1. (a) Schematic showing the frequency-dependent decou-
pling of the real (black) and imaginary (red) parts of the magnetic
susceptibility in a system with well-separated spin-lattice and spin-
spin relaxation times. One can expect three plateaus of purely real
response corresponding to χT , χS , and χI, respectively. (b) Avoided
level crossing (upper blue curves). In this paper we are solely in-
terested in adiabatic evolution (blue). It is illustrated for an initial
state on the lower branch, as indicated by a black circle. Also il-
lustrated is diabatic evolution (pink) that could occur if there were
a Landau-Zener crossover at frequencies greater than those studied
here. The lower curves (same color code) indicate the corresponding
isolated susceptibilities for the ensemble of two state systems treated
in Sec. II, where the adiabatic case yields a peak in χI, while the
diabatic case gives zero, as shown in (a).

plateaus [Fig. 1(a)], reminiscent of a dielectric response. As
ω is increased, the susceptibility on each plateau—χT , χS ,
and χI, respectively—can be calculated in a quasistatic limit
[Eqs. (1)–(3)].

In this paper, we will be particularly interested in avoided
level crossings [Fig. 1(b)] where the curvature of the state
energies with field allows a finite χI according to Eq. (3). In
this context, it is important to stress that the isolated response
is, by definition, adiabatic in the quantum mechanical sense
[9]. The Landau-Zener effect [10] (a dynamical effect) is
therefore not relevant to this paper except insofar as it could
imply a further crossover, with increasing frequency, from the
case where the crossing is traversed adiabatically to the case
where it is traversed diabatically [see Fig. 1(b)]. In view of the
subsequent discussion, this would drive the susceptibility to

zero, a feature that we have illustrated in Fig. 1(a). An exper-
imental example of a Landau-Zener crossover in a rare-earth
complex is given in Ref. [11].

The response of real magnetic systems can be far
more complicated than implied by the simplified picture of
Fig. 1(a), but there will always be a gradual crossover, with
increasing frequency, from a scenario in which state pop-
ulations change on the timescale of the field cycle to one
in which they do not. The low-frequency regime can be
treated by a master equation approach (see, for example,
Refs. [6,12]), which accounts for state population changes,
while the high-frequency regime can be treated by a Kubo-
type linear response approach [13], which assumes fixed
populations. Indeed, neutron scattering, which probes the re-
sponse at relatively high frequencies, is very successfully
treated by the latter approach [14].

In contrast to χT , which irretrievably mixes field-induced
changes in quantum states with field-induced changes in state
populations, χI may be viewed as a more direct measure
of quantum spectra. It is, further, a general measure of the
superposition of quasiclassical spin states. Thus, if an energy
eigenstate is, say, a pure “spin-up” state, it will have zero
isolated susceptibility because the magnetic moment is field
independent [see Eq. (3)]. A finite χI can, however, be ob-
served if spin up and spin down are superposed, which allows
the magnetic moment to evolve with field. For example, in the
case that zero-field states may be pure spin up/spin down or
admixtures thereof, application of the Zeeman operator as a
perturbation gives χI in the form [6]

χI = μ0(V Q)−1
∑

i, j (Ej �=Ei )

e−βEi − e−βEj

E j − Ei
|〈i|μ̂| j〉|2, (4)

where μ̂ is the magnetic moment operator and β = 1/kBT .
This contains finite matrix elements only if different energy
eigenstates i, j contain both spin-up and spin-down compo-
nents, which occurs at avoided level crossings, for example
[15].

In this paper, we demonstrate a particularly simple mag-
netic system in which the isolated susceptibility can be
measured and analyzed. The paper first considers relevant
theory and then describes our experimental results. In Sec. II
we solve the statistical mechanics of a simple two-state para-
magnetic system with an idealized spin Hamiltonian, designed
to emphasize differences between the three susceptibilities
[Eqs. (1)–(3)] and to highlight the connection between iso-
lated susceptibility and state concurrence. Section III shows
how a variant of this Hamiltonian may be realized by ap-
proximating the hyperfine Hamiltonian of dilute spin ice. In
particular, a strong isolated response and perfect state concur-
rence at avoided level crossings in finite field are predicted.
Section IV then describes our experiments that confirm these
predictions at T � 2 K, where the system is prepared in a
state of thermal equilibrium. Section V describes analogous
low-temperature experiments, down to T = 76 mK, that re-
veal how, when the system cannot be brought to equilibrium,
isolated susceptibility can be used as a sensitive probe of
the nonequilibrium state populations. Conclusions are subse-
quently drawn in Sec. VI.
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II. A TWO-STATE SYSTEM

We start by considering a simple two-state system in which
the difference between the three susceptibilities of Eqs. (1)–
(3) may be made explicit. The system consists of an ensemble
of noninteracting spins, each with S = 1/2 and Hamiltonian

Ĥ = 2μBŜz + 2�Ŝx. (5)

Here, μ is the size of the magnetic moment of the pure spin-up
or -down states, � is a perturbation, and the spin Ŝ operators
are defined to be dimensionless. The first term in Eq. (5) is
the Zeeman interaction, and the second term mixes magnetic
(spin-up and spin-down) states. This Hamiltonian is easily
diagonalized, with eigenvalues characteristic of an avoided
level crossing at B = 0 [see Fig. 1(b), blue lines],

E± = ±E, E =
√

(μB)2 + �2, (6)

and eigenstates

|ψ±〉 = �|↑〉 ± (E ∓ μB)|↓〉√
(±E − μB)2 + �2

, (7)

characteristic of a gradual superposition of spin up and spin
down as the crossing is approached. The two quasiclassical
states are completely superposed at the avoided level crossing
in zero field but are not superposed far from that point.

To characterize this behavior quantitatively, following
Ref. [16], we may introduce the “concurrence” C of a state
|ψ〉 as its overlap with its spin-reversed equivalent |ψ̃〉:

C(ψ ) = |〈ψ |ψ̃〉|. (8)

This takes the value C = 0 for the nonsuperposed states |↑〉
and |↓〉, which are the eigenstates corresponding to E± in suf-
ficiently strong fields |B|, and C = 1 for the fully superposed
states ψ± = (|↑〉 ± |↓〉)/

√
2, which are the eigenstates at the

zero-field avoided level crossing. It is then easy to show that
the isolated susceptibility is a direct measure of concurrence
as a function of field C(B), given by

χI = μ0

V

μ2

�

∑
±

∓p±C3, (9)

where C(B) = �/
√

�2 + B2μ2 and p± represent the normal-
ized state populations. Using Boltzmann probabilities, this
becomes

χI = μ0

V

μ2C3

�
tanh

(
β�

C

)
≈ μ0V

−1βμ2C(B)2, (10)

where the right-hand approximation is valid in the high-
temperature limit. The isolated susceptibility is then a
Lorentzian function of field:

χI = μ0μ
2

V kBT

1

1 + (μ2/�2)B2
. (11)

With knowledge of the exact eigenstate energies as a func-
tion of field, all three susceptibilities in Eqs. (1)–(3) can
therefore be calculated. The isolated response is a maxi-
mum at B = 0 when C = 1 and χI(0) = χS (0) = χT (0) =
μ0V −1βμ2. The closely spaced eigenstates of the system with
energy E± = ±� have precisely zero magnetic moment at the
avoided crossing in zero field, gaining a moment only through

their mixing by the second-order Zeeman effect as the field
is applied. However, with increasing field, the three suscep-
tibilities diminish at different rates, such that μ0V −1βμ2 >

χT (B) > χS (B) > χI(B).
The more complex Hamiltonian considered subsequently

will retain many of the characteristics of this simple example,
though some important differences of detail arise from the fact
that, in the more complex case, the avoided level crossings
occur at finite applied field.

III. HYPERFINE HAMILTONIAN

A model Hamiltonian similar to that considered in Sec. II
may be realized experimentally in the dilute limit of an Ising-
like spin system, such as very dilute samples of spin ice,
Y1.9975Ho0.0025Ti2O7, studied here. Figure 2(a) illustrates the
spin ice geometry where every fourth (apical) spin is parallel
or antiparallel to the field, while the other three (basal) spins
have only a small parallel or antiparallel component. We will
be interested mainly in the response of the apical spin, but the
three basal spins also need to be considered as they provide an
important correction.

The non-Kramers holmium (Ho3+) ion with nuclear spin
I = 7/2 would be expected to afford a weakly “split” elec-
tronic spin doublet with effective spin S = 1/2 [17] and z =
〈111〉 quantization axis ensured by the large trigonal crystal
field [18]. For an ideal non-Kramers doublet of this sort,
neglecting the quadrupole term, the hyperfine Hamiltonian
may be written as

Hhyper = 2AŜzÎ z, 2A = g‖

(
AJ

gJ

)
, (12)

where AJ/gJ should be essentially the same for all Ho salts
(note that Ho has a single isotope). For Ho3+ in the spin ice
environment, the parallel g factor is g‖ ≈ 19 (see below), and
the hyperfine parameter is A/kB ≈ 0.3 K. If higher states are
relevant, they can induce a further transverse term 2A′(Ŝx Î x +
ŜyÎ y), with 2A′ = g⊥( AJ

gJ
), but here, any perpendicular g factor

g⊥ is certainly extremely small [18] and is henceforth as-
sumed to be zero. More importantly, Abragam and Bleaney
[17] recommend the addition of a term 2�(Ŝx + Ŝy) with a
distribution of parameters � arising from local strains [19].
We can suppress the y term without loss of generality, and
including the Zeeman term for the field B applied parallel to
[111], the effective Hamiltonian for the apical spins becomes

Ĥapical = 2AŜzÎ z + 2μBŜz + 2�Ŝx, (13)

where μ = (1/2)g‖μB ≈ 10 μB. A similar Hamiltonian may
be constructed for the basal spins:

Ĥbasal = 2AŜzÎ z + 2(μ/3)BŜz + 2�Ŝx. (14)

The factor (1/3) in this equation arises from the angle
arccos(1/3) that the basal spins subtend with the applied field.
Note also that there is no direct coupling of the field with Ŝx

because g⊥ = 0.
Taking Ĥapical as an example, these Hamiltonians may be

represented in the basis of states |mS〉|mI〉, where the only off-
diagonal terms are those with mI − m′

I = 0 and mS − m′
S =

±1. Here, mS = ±1/2, and mI = ±7/2,±5/2,±3/2,±1/2.
The Hamiltonian can therefore be separated into a series of
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FIG. 2. (a) The four Ising-like 〈111〉 spin orientations of Ho3+ with respect to the [111] direction of the applied field (blue) and the basal
plane (shaded; apical spin is in red, basal spins are in magenta). In the dilute sample only one or zero magnetic sites are likely to be occupied by
magnetic Ho3+ in any given tetrahedron of the crystal structure. (b) Energy diagram of the hyperfine levels of an apical Ho3+ ion as a function
of magnetic field with an effective splitting of �/kB = 0.013 K, showing direct and avoided level crossings. (c) The effective electronic
spin-1/2 Ho3+ ion has eight Zeeman split levels which are degenerate in zero field (gray arrows). As the field is increased from zero to positive
values, there are four level crossings where only the electron spin reverses. When brought into resonance by applied field, superposed ±mS

states have finite isolated susceptibility.

2 × 2 blocks of the type

Ĥ ′ =
[

AmI + μB �

� −AmI − μB

]
, (15)

one for each value of mI . The Hamiltonian is thus easily
diagonalized, as above, with eigenvalues

EmI ,± = ±
√

(AmI + μB)2 + �2. (16)

Hence, energies and magnetic moments of the Hamiltonian
(15) map to those of Eqs. (5)–(7), with μB replaced by
AmI + μB: the nuclear spin acts as an effective field that adds
to the applied field. It is then straightforward to evaluate the
partition function corresponding to Eq. (16) and then derive
the susceptibilities using Eqs. (1)–(3) with the magnetic mo-
ment defined as mi = −∂Ei/∂B.

The consequent energy diagram for the apical spins as a
function of magnetic field is shown in Fig. 2(b), illustrating the
field-dependent direct and avoided level crossings. There are
two degenerate ladders of energy levels, each corresponding
to mS = ±1/2, with mI defining the rungs of the ladder, as
depicted in Fig. 2(c). Starting from the zero field as depicted
in Fig. 2(c), as a magnetic field is applied, neglecting its
weak coupling with the nuclear moment, the two sets of states
shift by the electronic first-order Zeeman energy difference.
Equivalent level crossings occur in both positive and negative
fields: in the following we enumerate the crossings with re-
spect to only positive fields. For such positive fields, there are,
in principle, eight values of the applied field where energy
level crossings occur. However, the isolated susceptibility
χI(H ) strongly peaks only at the subset of four avoided level
crossings where the nuclear spin state does not change [see
Fig. 2(c)]. At these points, the up and down electronic spin
states, |↑〉 and |↓〉, respectively, are fully superposed and
show complete concurrence, C = 1, while off resonance, the
spin states tend towards simple spin up or down with C = 0
[see Eqs. (7) and (8)]. However, in contrast to the simpler
case considered above, even at the special points of resonance,
χI is suppressed by a significant factor with respect to χT

(see Fig. 3). Physically, the reason is that, at a given avoided

crossing, the isolated susceptibility is finite only for electronic
states associated with a single nuclear spin state, a small frac-
tion [∼1/(2I + 1) at high temperature] of the total available.
One might say that the field-driven system is ergodic for one
nuclear spin state but nonergodic for the rest, in contrast to the
simpler case of Eq. (9), where the system is fully ergodic at
the B = 0 resonance and χT = χI as envisaged by Kubo [13].

Considering just the isolated susceptibility, we refer to
Fig. 3 and label the four isolated susceptibility peaks (from
left to right) as 1–4. A similar calculation (not shown) may be
carried out for the basal spin Hamiltonian, Eq. (14). The basal
spins are found to contribute a small peak coincident with 2
and another small peak at three times that field (to the right
of 4 in Fig. 3). The reason these features are relatively small
is that the susceptibility scales as the moment squared and the
projected moment of the basal spins is 1/3 that of the apical
ones, but they have three times the population, so the peaks
are only one third [= 3 × (1/3)2] the height of the apical spin
peaks. The basal spins therefore represent a small correction

0 0.05 0.1 0.15 0.2
Magnetic Field (T)

0
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1.5
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'  (
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0
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T
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I

FIG. 3. Calculated values of the three susceptibilities [Eqs. (1)–
(3)] at T = 2.1 K for the apical spin Hamiltonian (13), with spin
concentration equal to that of the sample studied.
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FIG. 4. Temperature dependence of the dc field-cooled sus-
ceptibility of Y1.9975Ho0.0025Ti2O7 measured along the [111] axis
(blue points) compared to a Curie law fit summed with a small
temperature-independent component (red line). Inset: graph replotted
as 1/χT .

to peak 2 and a small rising background correction to the right
of peak 4.

More generally, a strongly structured nuclear-electronic
response is, indeed, a long-established behavior [20] of di-
lute Ho3+ ions in crystals, which have been impressively
analyzed with master-equation-based approaches in several
works [21–25]. In general, various transitions are possible
depending upon coupling with the local environment of the
effective spins, which generates a combination of intrinsic
and interaction-induced direct and avoided level crossings,
respectively. Our Hamiltonian, Eq. (15), describes a highly
simplified limiting case where the response is mapped on to
the quasistatic isolated susceptibility, Eq. (3).

IV. EXPERIMENT

A single crystal of Y1.9975Ho0.0025Ti2O7 was grown by
the optical floating-zone technique [26]. It was aligned with
the applied field along the cubic [111] axis. Our ac and dc
susceptibility measurements were made at T � 2 K using
a Quantum Design physical property measurement system
and at T < 2 K using a low-temperature superconducting
quantum interference device magnetometer developed at the
Institut Néel, Grenoble [27].

To confirm the stoichiometry x and the paramagnetic
approximation, the bulk susceptibility was measured after
cooling in a field of 0.1 T. The data were fitted to the sum
of a Curie law χT = C/T and a very small temperature-
independent component. The Curie constant C was specified
for holmium concentration x = 0.0025, while the g factor g‖
entering into the theoretical expression for C [28] was treated
as a fitting parameter. This gave g‖ = 19.0, which we use in
subsequent analysis. The excellent fit shown in Fig. 4 confirms
that the nominal x = 0.0025 is accurate. A splitting between
field-cooled and zero-field-cooled susceptibilities (not shown)
was observed below T = 3.6 K. This shows that the spins
are already falling out of equilibrium on the timescale of this

FIG. 5. Frequency and magnetic field dependence of the real part
of the susceptibility measured at 2.1 K with an ac field amplitude
of 0.2 mT, demonstrating a gradual reduction to four peaks as the
frequency is increased.

“static” measurement. It is consistent with our observations of
the frequency-dependent susceptibility, as described below.

The ac susceptibility χ ′(ω) measured at 2.1 K (with a probe
field of 0.2 mT) is shown in Fig. 5. At low frequency and
zero field χ ′(ω) approaches χT of Fig. 4, and while it still
falls short by some 25% at the lowest applied frequency, the
χT plateau in Fig. 1(a) can safely be presumed to exist at
frequencies lower than those applied here. In finite field, mul-
tiple peaks evolve with increasing frequency to become four
distinct peaks by 10 kHz. The spectrum and amplitude of these
four peaks correspond closely to the isolated susceptibility of
Fig. 3, and we may therefore identify the distinctive plateau
in their frequency evolution with the χI plateau in Fig. 1(a).
As anticipated, the high-frequency susceptibility on the peaks
is essentially a real response, with any imaginary component
being only a few percent of the real part [see Fig. 6(a)]. At
intermediate frequencies, the χS plateau in Fig. 1(a) is not
clearly resolved at any value of applied field, presumably be-
cause spin-spin and spin-lattice times are not sharply defined
or separated in this system. The multipeak structure in the
intermediate frequency range is similar to that described for
other Ho systems [22].

It is clear from Fig. 5 that transitions at high frequency are
of the type |1/2〉|mI〉 → | − 1/2〉|mI〉, consistent with our ef-
fective Hamiltonian for spins parallel to the field. Also, as well
as showing the four peaks associated with the apical spins, the
experimental spectra evidence the expected additional small
component on peak 2 from the basal spins: that is, peak 2
is approximately 1/3 higher than the other peaks. There is
also what seems, at first sight, like an unexpected “nonzero
background” that fills in the gaps between the peaks. However,
the fact that it is mainly real [see Fig. 6(a)] identifies it as part
of the isolated response itself.

We now consider how these data can be fitted quanti-
tatively. The theoretical isolated susceptibility is found by
summing the susceptibilities χI of the apical and basal spins
calculated as described above, using Eq. (3), with Boltzmann
probabilities for the nuclear-electronic spin states and the
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FIG. 6. (a) The real (blue points) and imaginary (gray points) part of the measured susceptibility at 2.1 K, 10 kHz, and a probe field of
0.2 mT compared to the theory, with a single value of �/kB = 0.015 K (black line). (b) Experiment versus theory with an empirical distribution
of � [Eq. (18)]. The fitted parameters are f1 = 0.511(6), f2 = 0.352(3) for 2.1 K, 0.2 mT; f1 = 0.455(6), f2 = 0.312(3) for 2.1 K, 1.0 mT;
and f1 = 0.52(1), f2 = 0.335(4) for 4 K, 0.2 mT. These parameters affect the peak shape, not peak heights, and are expected to evolve with
probe field but not significantly with temperature. It is also possible to fit the data with smooth distributions (see text).

hyperfine parameter refined to A/kB = 0.2945 K by fitting the
experimental peak positions.

With this, the fits have no adjustable parameters except
those connected with the distribution of �, which can be
estimated only empirically [17]. Figure 6(a) compares the
experimental data with a single value of �/kB = 0.015 K.
The peaks are quite well described, but the regions between
them are underestimated. The broadened bases of the peaks
suggest a contribution to the distribution from �/kB ≈ 0.1 K.
There is also the possibility of some ions experiencing a very
small �, which raises a complication. For sufficiently small
values of �, the apparent response in an ac susceptibility
experiment with finite probe field will approach zero because
of the nonlinearity (and eventual saturation) of the magnetic
moment with field. Our experiment used a probe field of
0.2 mT from which we can estimate �/kB < 0.002 K as the
point beyond which the response will be suppressed.

To capture these properties in an empirical, parameterized,
distribution, we consider one consisting of three δ functions
(one at zero and one each at the lower and upper values of �

discussed above):

P(�) = f0δ(�) + f1δ(� − 0.015 K) + f2δ(� − 0.1 K),
(17)

where we have suppressed factors of Boltzmann’s constant for
clarity. The δ function at zero does not contribute any response
but is relevant through the normalization condition on the
frequencies:

∑
i fi = 1. With this, we have two independent

parameters to fit the data: f1 and f2.
Figure 6(b) compares fits to the data taken either at the

same temperature (2.1 K) with a larger probe field (1 mT) or at
a larger temperature (4 K) with the same probe field (0.2 mT).
For the larger probe field, as would be anticipated, the “in-

visible” part of the response (represented by f0) is increased
as more of the nonlinear response is sampled over the field
cycle. As expected, the susceptibility derived at 1 mT falls
below that of the 0.2 mT measurement, and f0 = 1 − f1 − f2

derived from the fit was found to increase accordingly from
0.13 at 0.2 mT to 0.23 at 1 mT. Changing temperature, on the
other hand, yields parameters in close agreement with those
found at T = 2 K, again as expected.

Referring to Fig. 6(b), the apical response is clearly very
well fitted by the model Hamiltonian. The basal response
is slightly less well described, as a small imaginary com-
ponent is detectable on peak 2. However, this part of the
response is far too small to warrant introducing extra pa-
rameters into the model. The fact that quite an accurate
fit is already obtained using a simple empirical distribution
of � points to the conclusion that the model is essentially
correct.

It is worth noting, however, that the empirical probabil-
ity density for � is not uniquely specified by the data. To
find alternatives to Eq. (17), tests were made with continu-
ous distributions (represented mathematically as arrays of δ

functions), and it was clear that some of these would return
line shapes very similar to that generated by Eq. (17). The
successful functions were typically peaked at �/kB ∼ 0.01 K
or less, with a “heavy” tail reaching to 0.1 K or beyond.
For example, the simple function P ∼ 1/�, with cutoffs at
�/kB = 0.0025, 0.25 K, gives a result very close to that of
Eq. (17). In a non-Kramers ion like Ho3+, the distribution
of � can arise, for example, from random strains or electric
fields, combining with the Jahn-Teller effect [17]. Early exper-
imental and theoretical work [29] has understood many of the
mechanisms involved and the resulting distributions, but pos-
itively identifying the distribution appropriate for the present
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FIG. 7. The real part of the susceptibility at 11 Hz as a function
of field and decreasing temperature, demonstrating that the isolated
response is revealed by low temperature as well as high frequency
and that the distribution of peak intensities is no longer that of a
Boltzmann distribution (contrast with Fig. 6).

case would be a significant project (albeit an interesting one)
that we defer to the future.

V. LOW-TEMPERATURE BEHAVIOR

Because the isolated susceptibility separates population
changes from state vector changes, the decline of peak in-
tensity with increasing field (having allowed for the basal
spin contribution on peak 2) is a measure of the decline in
population with increasing energy and hence a measure of
the temperature. This gives an interesting method of directly
investigating the effective temperatures reached when spin ice
falls out of thermal equilibrium at T < 0.6 K [30]. Figure 7
shows the temperature dependence of χ ′ at a fixed frequency
of 11 Hz as the dilute sample is cooled. As the tempera-
ture is lowered to the base temperature of 76 mK, the four
peaks indicative of isolated response again appear, but there
are two features that mark these as reflecting nonequilibrium
populations. First, at 76 mK, direct calculation shows that all
peaks should have zero intensity if equilibrium is maintained,
yet their observed intensities suggest a temperature of order
1 K. Second, peak 4 is now anomalously intense, which is a
signature that the system, initially zero field cooled, does not
fully reequilibrate as the field is applied. Thus, referring to
the energy level diagram in Fig. 2(b), if the system retains the
equilibrium populations of zero field, then the I = 7/2 reso-
nance (a former ground state) will have the strongest intensity,
not the weakest. We deduce that, in contrast to higher temper-
atures where the state populations are thermally equilibrated
before the ac probe field is applied, at low temperature the
system does not fully equilibrate in response to the changes in
temperature and applied magnetic field that take place before
the measurement. Yet it is clear that Eq. (3) is valid, regard-
less of whether or not the pi’s are Boltzmann populations,
so observation of the isolated susceptibility can be used to
measure how the actual pi’s depend on energy. Analyzing
the details of this behavior theoretically is an interesting chal-
lenge that is beyond the scope of this paper. We also remark

that there is potential for the control of nonequilibrium state
populations by pumping and then subsequent measurement by
susceptometry.

VI. CONCLUSION

In conclusion, although there has been much work on
the susceptibility of isolated rare-earth ions, including de-
tailed master-equation-based analyses of experimental data
[21–25], it appears that a simple reduction to a well-defined
isolated susceptibility has not been previously observed. Our
observation of it in dilute spin ice has been enabled by the
unique local environment of the Ho3+ ion, which allows a
very simple effective Hamiltonian [Eq. (13)] to be enacted.
Effects similar to those reported here should be observable
for Ho3+ in other environments or for other non-Kramers
rare-earth ions. However, variations in the spin Hamiltonian
may shift the regime of observability of the isolated suscepti-
bility outside the usual frequency window. For example, in the
well-studied system LiHoxY1−xF4 [31], there is a low-lying
crystal field level above the ground state doublet that will
introduce further transverse terms into the spin Hamiltonian,
assisting relaxation. This means that the new generation of ac
susceptometers [3] that can measure into the megahertz range
could be crucial to observe a purely isolated response.

In regard to the specific case of Ho3+ in the spin ice
environment, it is worth comparing our results with the cal-
culations of Tomasello et al. [32]. These authors used the
full crystal field Hamiltonian, rather than making the effective
spin-1/2 approximation used here, but they did not include
hyperfine contributions or our phenomenological � terms that
arise from random strains in practical samples. Use of the
full crystal field Hamiltonian allows coupling of the effective
spins to a transverse field, leading to level crossing resonances
similar to those induced by �, but at high transverse field
values: typically of order 10 T and above. This justifies our
neglect of g⊥ in the present work. The χ zz susceptibility
calculated in Ref. [32] is equivalent to our χT . Figure 8(a) of
Ref. [32] shows that the calculated χT in zero field is in close
agreement with our experimental measurement (our Fig. 4) in
the equivalent temperature range, again justifying our neglect
of higher crystal field states.

At a more conceptual level, our results highlight the dif-
ference between the processes imagined when one formulates
the thermodynamic adiabatic and quantum adiabatic (isolated)
susceptibilities [Eqs. (2) and (3)] to describe the response
of the system to a change in applied field, B → B + dB. In
the thermodynamic case, the process is thermodynamically
reversible: the state of the system in the field B + dB is a
thermal equilibrium state. In the quantum case the process
is only mechanically reversible: the system is out of thermal
equilibrium in the field B + dB. This begs the question, if state
populations cannot respond to a change in field, how could
a Boltzmann population be prepared in the first place? The
answer is that one needs the equilibrium state in a field B
to be prepared on some timescale that is sufficiently long for
equilibrium to be established but the perturbing field dB to be
applied on a timescale that is sufficiently short that changes
in state population do not occur. Our experiments furnish
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examples that achieve this condition (here, at higher tem-
perature) as well as examples that do not (here, at lower
temperature). In the latter case our results indicate that a
Boltzmann population cannot be prepared, and we would
expect that the actual distribution (and hence response) will
show a complicated history dependence: our initial measure-
ments confirm this expectation, but fully characterizing this
behavior will be a major project. Here, we confine ourselves to
the conclusion that the isolated susceptibility may potentially
be used to directly measure the nonequilibrium state popu-
lations. This indicates a promising avenue of research in the
context of spin ice and other rare-earth magnets, as it suggests
a way to test nonequilibrium theories, the concept of effective
temperature [33], and so on.

Finally, we have shown how the isolated susceptibility is
a direct measure of concurrence C between spin states, with
C = 1 at the avoided level crossings. This infers that the apical
spin population in our dilute spin ice sample shows com-
plete, or nearly complete, concurrence at these special points.
We are not aware of any other examples of an experimental
measurement of state concurrence in a real magnetic system.
Whether or not this ability to measure concurrence translates
to more strongly interacting systems is an open question, but
a strongly interacting system showing these effects may be
afforded by bulk (concentrated) spin ice, where spin flipping
associated with “monopole” excitations gives similar peaks in
the high-frequency susceptibility [34,35].

ACKNOWLEDGMENTS

S.R.G. and S.T.B. would like to thank EPSRC for funding,
Grants No. EP/S016465/1 and No. EP/S016554/1, respec-
tively. E.L. and C.P. acknowledge financial support from
ANR, France, Grant No. ANR-15-CE30-0004. S.R.G. would
also like to thank A. Armour for illuminating discussions.

APPENDIX: DERIVATION OF EQUATIONS (1)–(3)

We define m as the magnetic moment of the system and
assume thermodynamic equilibrium, so that m is parallel to
the applied magnetic field H = B/μ0 and can be treated as
a scalar. The magnetic moment is given rather generally by
m = Tr[ρm̂], where ρ is the (normalized) density operator and
m̂ is the magnetic moment operator, but in terms of eigenstates
i and energy eigenvalues Ei, it can be more conveniently
written: m = ∑

i mi pi, where mi = −∂Ei/∂B is the magnetic
moment of each state and pi is the Boltzmann probability:
pi = e−Ei/kBT∑

i e−Ei/kBT . The magnetization is the magnetic moment
per unit volume, and the susceptibility is the gradient of this
with respect to applied field. Performing the differentiation

gives

χ = ∂M

∂H
= 1

V

[∑
i

mi(∂ pi/∂H ) +
∑

i

(∂mi/∂H )pi

]
. (A1)

The three susceptibilities in Eqs. (1)–(3) in the main text are
determined by the constraints applied as the field is adjusted
such that H → H + dH . The isothermal definition, Eq. (1),
assumes that pi → pi + d pi, which are the equilibrium prob-
abilities at temperature T in applied field H + dH . Hence, χT

is composed of both terms in the square brackets of the above
expression. The quantum adiabatic or isolated susceptibility,
Eq. (3), in contrast assumes that d pi = 0, so only the second
term survives. In terms of thermal (canonical) averages 〈· · · 〉
at fixed T the difference may be expressed as

χT = d〈M〉/dH, χI = 〈dM/dH〉. (A2)

Finally, the thermodynamic adiabatic susceptibility assumes
that d pi are changes in equilibrium probabilities reached by
holding the entropy, rather than the temperature, constant.
The thermodynamic relationship (2) is derived as follows. We
write M = M(H, T ) so that

dM =
(

∂M

∂H

)
T

dH +
(

∂M

∂T

)
H

dT (A3)

and that (
∂M

∂H

)
S

=
(

∂M

∂H

)
T

+
(

∂M

∂T

)
H

(
∂T

∂H

)
S

. (A4)

To obtain Eq. (2), we then note that the first two terms in
Eq. (A4) are χS and χT , respectively, and that the third term
may be rearranged with the help of the following three rela-
tions:

(∂T/∂H )S = − (∂S/∂H )T

(∂S/∂T )H
, (A5)

(∂S/∂H )T = μ0V (∂M/∂T )H , (A6)

(∂S/∂T )H = CH/T . (A7)

The first of these relations is an identity of partial derivatives,
the second is a Maxwell relation derived from the fundamen-
tal equation dU = T dS + μ0V HdM, and the third is easily
derived from the latter equation via a Legendre transform
to the magnetic enthalpy E = U − μ0V MH . The adiabatic
susceptibility can also be expressed in terms of averages over
the energies Ei and their field derivatives (see Ref. [8]), but we
retain the thermodynamic definition here to emphasize that χS

does not contain any information that is not already contained
in measurements of the magnetization and specific heat.
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