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Abstract 

Multiple sclerosis (MS) patients have heterogeneous clinical presentations, symptoms and 

progression over time, making MS difficult to assess and comprehend in vivo. The 

combination of large-scale data-sharing and artificial intelligence creates new opportunities 

for monitoring and understanding MS using magnetic resonance imaging (MRI).  

First, development of validated MS-specific image analysis methods can be boosted 

by verified reference, test and benchmark imaging data. Using detailed expert annotations, 

artificial intelligence algorithms can be trained on such MS-specific data. Second, 

understanding disease processes could be greatly advanced through shared data of large MS 

cohorts with clinical, demographic and treatment information. Relevant patterns in such 

data that may be imperceptible to a human observer could be detected through artificial 

intelligence techniques. This applies from image analysis (lesions, atrophy or functional 

network changes) to large multi-domain datasets (imaging, cognition, clinical disability, 

genetics, etc.). 

After reviewing data-sharing and artificial intelligence, this paper highlights three 

areas that offer strong opportunities for making advances in the next few years: 

crowdsourcing, personal data protection, and organized analysis challenges. Difficulties as 

well as specific recommendations to overcome them are discussed, in order to best leverage 

data sharing and artificial intelligence to improve image analysis, imaging and the 

understanding of MS. 
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1 Introduction 

Multiple sclerosis (MS), is highly heterogeneous across patients in terms of symptoms, sites 

of damage, degree of recovery, and development of the disease across time. This makes the 

disease more difficult to comprehend. Relevant patterns may be imperceptible to a human 

observer, but by analyzing large amounts of imaging data from MS patients with 

sophisticated artificial intelligence techniques, urgently required advances in understanding 

MS disease pathological heterogeneity may be made.  

Furthermore, to tracking of disease progression in individual MS patients, MRI 

markers are needed. This could benefit from MS-specific image analysis methods, because 

existing generalized methods tend to exhibit poorer performance in cases with MS1, as has 

been demonstrated quantitatively for segmentation of deep grey matter (GM) structures2. 

Large amounts of MS imaging data, with expert annotations as appropriate, can be used to 

train and validate more accurate measurement and analysis tools specifically for MS. 

 Against this background, we review the possibilities of data-sharing and artificial 

intelligence for improved applications of MRI to study MS, addressing both the need to 

understand MS disease processes and the need for MS-dedicated quantitative 

measurement and analysis techniques for MRI assessments. We first survey relevant 

existing efforts regarding data-sharing and artificial intelligence, and then highlight three 

areas of interest in bringing the field forward: crowd-sourcing, personal data protection, and 

organized analysis challenges (see Figure 1 for the methods used to create this manuscript). 

Specific recommendations aim to achieve the best outcomes for MS patients. 

 

2 Data-sharing 

2.1 Data-sharing in MS: Non-imaging 

The multicenter collection of MS clinical data provides valuable information on disease 

prevalence, current treatment patterns and general distribution of patients’ outcomes. 

Thus, clinical registries including data from several MS centers have been strongly promoted 

in the last decades. National and regional MS registries exist in most countries, especially in 

Europe3 and North America4. Data collected by national initiatives have often been included 

in computerized platforms, such as the European Register for Multiple Sclerosis (EUReMS)5 

or the MSBase6. Collaborative research studies have used these data to define the value of 
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prognostic indicators in different patient populations7, to investigate the influence of 

demographic and geographic factors on MS clinical course8, and to evaluate the 

comparative efficacy of different drugs9 (additional references in eAppendix 1 

[https://doi.org/10.5061/dryad.2fqz612p9]). 

 

2.2 Data-sharing in neuro-MRI: Non-MS 

Data sharing in MRI is becoming increasingly prevalent, large-scale and open in the 

neuroimaging community. Table 1 lists several prominent examples, including Alzheimer’s 

Disease Neuroimaging Initiative (ADNI), which in the neuroimaging field is a template for 

data acquisition and fostering of methodological developments. These datasets are 

associated with a range of access policies (from free, unrestricted downloads to 

collaboration-only agreements) and cover various sizes, demographics and pathologies. 

They provide access to large, diverse, groups of subjects including rare diseases and a wider 

range of disease stages (including prodromal cases) than is possible from single studies. In 

addition, the increasingly large numbers provide greater statistical power and the 

opportunity to apply state-of-the-art deep learning techniques. They also allow common 

standards to be applied in the evaluation of methodological tools, as pioneered by the 

MICCAI challenges (e67). As such they provide the community with fair and open 

comparisons of methods, a richer set of data on which to test hypotheses, and greater 

ability for assessing reliability and repeatability. There are also benefits for those involved in 

creating and managing such datasets, since the process of designing, piloting and pre-

processing provides impetus for novel developments in acquisition and analysis, 

demonstrated by state-of-the-art methodologies developed within the Human Connectome 

Project. In addition, there are benefits in visibility, engagement, and publications. 

Challenges still exist (e.g., IT infrastructure, access policies, ethics policies, etc.) but currently 

many such datasets are already accessible, with a range of solutions to these problems, thus 

offering options for the creation of new datasets focusing on MS. The datasets listed also 

highlight that standardized MR acquisition protocols can harmonize data only to a certain 

extent. Therefore, alternative approaches such as synthetic MRI, should also be investigated 

(additional references in eAppendix 1). 
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2.3 Data-sharing of MRI in MS 

MRI is one of the most important tools for diagnosing and monitoring MS10. However, MRI 

data collected by clinical MS registries usually includes just conventional measures and/or 

metadata regarding fulfilment of diagnostic criteria5, 6. Recent collaborations (e.g., the 

publicly funded German Competence Network Multiple Sclerosis (e68) or the privately 

funded MS PATHS11) promoted the use of relatively standard conventional MRI protocols 

(typical T1-weighted, proton density-weighted, and T2-weighted or FLAIR images), but did 

not include advanced MRI techniques (such as quantitative mapping techniques of tissue 

properties, tractography, spectroscopy, functional MRI, etc.). Table 2 lists MS Registries 

identified from public sources that collect MRI information. 

As an example, one can take the Italian Neuroimaging Network Initiative (INNI) 

(e69)12. This has recently been established among four sites leading MRI research in MS in 

Italy, with the support of the Italian MS Society. INNI’s major goal is to determine and 

validate novel MRI biomarkers, including biomarkers based on more advanced, non-

conventional imaging techniques, to be utilized as predictors and/or outcomes in future MS 

studies. INNI aims also to standardize MRI procedures of acquisition and analysis in MS at a 

national level. 

A large population of MS patients and healthy controls (more than 1,800 subjects 

and more than 3,000 MRI exams) has been collected in the INNI platform so far. Although 

MRI data had to meet some minimum requirements in order to be included12, a full 

standardization of acquisition protocols was not requested from sites, at least in the first 

phase of the project.  

The main challenges faced at the beginning of the INNI initiative were related to 

ethical approvals, to the creation of the online platform, to ensure proper handling of 

subjects’ anonymity, and to define guidelines to regulate database access levels and their 

implementation as access procedures12. Conversely, most of the subsequent challenges are 

related to the quality assessment (QA) of the data collected, which will now be used for 

different research projects at the four promoting sites. Systematic QA (on subjects’ 

positioning, image inhomogeneity, distortions and artefacts, and measurement of contrast-

to-noise ratio) has been established to verify source data and ensure maintenance of high 

quality. QA results will be used to propose effective guidelines on acquisition protocols and 

scanning options, to improve harmonization of MRI data. Basic analysis (e.g., T2-

hyperintense lesion segmentation, T1-hypointense lesion refilling, minimal pre-processing 
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on diffusion-weighted MRI and resting-state fMRI scans) that may be shared in the INNI 

platform to harmonize future projects is also being performed in a centralized manner. 

 

2.4 Recommendations on MRI data-sharing in MS 

Clearly define variables to be shared. This avoids ambiguity and heterogeneity at a later 

stage. 

Set up proper QA and QC (quality control) procedures to ensure compliance with 

minimum standards. Preferably quantitative and automated, such procedures guarantee 

the integrity of the included data. 

Implement clear policies and procedures on how access to data can be obtained. 

Create a flexible data-sharing system, permitting a manifold use of collected data. By 

choosing maximally permissive data licenses (within legal and institutional boundaries), 

combined with clear data storage organization, database management and flexible access 

choices, data can be flexibly and easily selected, accessed and used for a variety of 

purposes.  

 

3 Artificial intelligence 

3.1 Artificial intelligence in medical image analysis beyond MS 

Artificial intelligence can be roughly divided into “classical” machine learning techniques 

such as support vector machines, and (newer) deep learning techniques based on 

convolutional neural networks. Classical machine learning approaches typically make 

predictions using classifiers trained not directly on images, but on features extracted from 

images13. While this can be advantageous, it precludes the discovery of features not 

perceptible to or appreciated by the human observer. Deep learning, when applied to 

classification or segmentation of images14, instead analyzes image data directly, without 

prior feature selection. This has given rise to excellent classifier performance in a range of 

medical imaging applications13. However, as shown for example by Ghafoorian and 

colleagues15, at least given the current limitations regarding sizes of available datasets and 

networks, performance may be further improved by incorporating well-chosen features 

extracted from the images using domain knowledge and “classical” image analysis 

techniques. Specifically, in their work, they incorporate measures reflecting location in the 

brain to improve segmentation of age-related white matter hyperintensities15. 
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3.2 Artificial intelligence in imaging of MS 

Existing studies applying artificial intelligence in MS imaging can generally be divided into 

descriptive and predictive experiments. Descriptive studies use cross-sectional data sets in 

order to segment from MRI WM lesions16 or specifically contrast-enhancing lesions17, 

identify imaging patterns based on MS phenotype or clinical or cognitive disease severity18, 

or perform an automated diagnosis using uni- or multi-modal information19. Predictive 

studies, on the other hand, detect patterns in baseline data that allow for predicting future 

disease outcome or severity by incorporating clinical follow-up information20, 21. The 

majority of studies to date used classic machine learning techniques such as Support Vector 

Machines or Random Forests, where features have to be defined and extracted from the 

data a priori, while more recent studies also use deep learning methods allowing automated 

detection of relevant features in the data. Deep learning has now been used not only to 

segment WM lesions22-24 or their enhancing subset17, but also to quantify lesion changes25, 

26, to detect the central vein sign27, classify different lesion types based on diffusion basis 

spectrum imaging28, to predict Gd-enhancement from other image types29, to perform MRI-

based diagnosis30, 31, to segment and analyze non-lesion structures32, 33, to analyze myelin 

water fraction34 or quantitative susceptibility mapping data35, to synthesize absent image 

types36, to perform automatic QC37, to improve image quality38, or to correct intensity 

differences between scanners39 (additional references in eAppendix 1). 

 

3.3 Challenges of artificial intelligence in MS imaging 

Although showing impressive performance, state-of-the-art deep learning methods 

(convolutional neural networks) rely solely on the use of local intensity patterns and 

contextual features to guide the image analysis process. Importantly, they lack high-level 

abstract thinking and have limited understanding of human anatomy and physiology. 

Learning from relatively small and noisy datasets, learning systems are commonly unable to 

extrapolate and handle uncertain situations. Furthermore, in precision medicine 

applications, fully automatic, robust and quick measurements are required for every single 

subject. Three important categories of current limitations of learning systems are:  

1) Inputs: The main limitation of many machine learning models is the strong 

dependence on (good) training data. While human raters may intuitively extrapolate from a 

few examples to new cases that may be very different, a supervised (deep) learning model 
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has to be fed with sufficient examples to cover the whole range of heterogeneity in the 

population, disease and scanning parameters. Differences in imaging devices, acquisition 

parameters, tissue contrasts, artefacts, and noise patterns can degrade algorithm 

performance if not handled appropriately. To overcome between-scanner or between-

acquisition image differences, many approaches for post-processing based data 

harmonization have been proposed, including traveling phantoms40, which requires physical 

travel of objects or subjects39, limiting scalability; data augmentation41, which requires 

sufficiently accurate signal simulating models; and domain adaptation42, which has shown 

promising results. Ultimately, the most robust results may come from combinations of the 

above, together with basic steps such as intensity normalization (additional references in 

eAppendix 1).  

Given the relatively low prevalence of MS, lack of training data is an issue of 

particular relevance here. Insufficient variability in training data can lead to overfitted 

models that do not perform well on new data, and single-center data-sets seldom exceed a 

few hundred MS cases. This effect can be reduced with regularization, augmentation and 

cross-validation, but not fully removed. Therefore, pooling data from different sources is 

advantageous, but this introduces new challenges due to differences between centers, 

scanners and scanning protocols, which require standardizing and post-processing. 

The majority of published machine learning studies in MS used research data rather 

than clinical data, which has limitations: patients were filtered through inclusion criteria; the 

number of subjects and scans is limited by the obtained funding; and more severe patients 

are more likely to drop out, biasing data towards more benign cases. Clinical data is more 

representative of the general (disease) population but is typically more heterogeneous and 

requires additional patient consent. 

2) Labels: Training with high-quality labels is crucial to attaining good performance of 

machine learning systems. Labels can be the person’s diagnosis or other overall features, or 

typically in image analysis tasks, manual outlines of anatomical structures or pathological 

entities like MS lesions. Distinguishing MS lesions in the white matter from other white 

matter lesions and from normal-appearing white matter requires skill and expertise. The 

variability of labeling protocols and inter- and intra-rater variability, introduce errors when 

training machine learning systems. Such errors degrade the performance of learning 

systems and limit to what extent that performance can be validated. Those errors could be 

quantified by expanding training sets, based on common protocols applied by larger 
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numbers of raters, and subsequently overcome by modelling or machine learning 

approaches. 

3) Uncertainty & Confidence: Algorithms commonly solve a categorical hard problem, 

but clinical decisions are rarely categorical, and involve intrinsic uncertainty. The 

introduction of biomarker- and subject-specific error-bars, and the development of novel 

ways to convey and introduce this information into the clinical workflow, will present 

challenges to clinical adoption. Recent work addresses that uncertainty for MS lesion 

detection and segmentation43. Other areas of medicine with inherently uncertain 

predictions may suggest ways of introducing this uncertainty into the clinical workflow in 

the context of MS imaging (additional references in eAppendix 1). 

 

3.4 Recommendations on machine learning in MS imaging 

Compile large, annotated datasets for training. To obtain sufficient amounts of training 

data, large-scale data-sharing of MS imaging data is required; both for homogeneous 

datasets (for generating new knowledge), and heterogeneous datasets (for deriving more 

generalizable classifiers).   

Create methods that are robust to data variability.  Harmonize data using both classical 

and machine learning techniques to improve robustness to unseen datasets. 

Include non-research data in training. Train machine learning methods also on data 

acquired in a real-life clinical setting, to increase robustness to heterogeneity and to 

improve applicability in the clinical population. 

Create high-quality labels. Validating algorithms for clinical use will require large multi-

center labeling efforts yielding, depending on the aims, consensus-based “ground truth” 

labels or collections of individual raters’ labels.  

Allow more subtle information in labels than global yes/no answers. The use of soft labels 

(e.g. image wide disease classification) to model the intrinsic anatomical and pathological 

variability should also be investigated. 

Incorporate the uncertainty of classifier predictions. Algorithms should learn the intrinsic 

uncertainty and confidence of every decision they make. Diagnostic and prognostic 

guidelines should be modified to enable clinical usage of biomarker- and subject-specific 

uncertainty metrics. 

 

 

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.  

 



4 Opportunity 1: Crowd-sourcing 

4.1 Crowd-sourcing in research 

The first highlighted opportunity here is “crowd-sourcing”. Crowd-sourcing, not to be 

confused with “crowd-funding”, refers to people donating their time and skills to complete 

certain tasks. In the context of scientific research, it is sometimes called “citizen science”. Its 

premise is that there are many enthusiastic members of the general public who are willing 

to donate some of their time to science. By making it easy for them to contribute, the 

scientific community can reward their enthusiasm and willingness by letting them really 

help the field forward. Successful projects have been conducted this way, including 

examples in astronomy on differentiating different galaxy types (Galaxy Zoo (e70)), in 

organic chemistry on the topic of protein folding (Foldit, a game with tens of thousands of 

players (e71)), in biology on identifying bat calls (Bat Detective (e72)), and in paleontology 

on dinosaur limb bone measurements (Open Dinosaur Project (e73)). The potential for brain 

imaging applications has been noticed, and a successful approach to interface-building, data 

management and analysis has been described. SPINE (e74), Open Neuroimaging Laboratory 

(e75), and OpenNeuro (e76) are examples of web-based infrastructures for crowd-sourced 

brain imaging research. 

While the potential benefits of crowd-sourcing to the researchers are clear, the 

benefits to the participants (the “crowd”) may be less obvious. There is the potential 

gratification of contributing to science, and in the case of MS research, these volunteers 

may be people with an interest in brain imaging or neuroscience, or they may personally 

know someone who suffers from MS and want to help develop a solution. Furthermore, 

well-designed crowd-sourcing activities can also carry the reward of being entertaining to 

perform. The field of “gamification” is a rapidly developing area of research and 

development in its own right which has already been applied in the radiological field44, 

which creates important opportunities for helping volunteers enjoy participating in crowd-

sourced research and remain committed to finishing their contribution. 

 

4.2 Potential for crowd-sourcing in MS imaging 

For processing large amounts of image data on a regular basis, as in a clinical setting, 

automation of analysis methods is key. The training that goes into such automated 

methods, whether based on deep learning or using other approaches, obviously plays a 

large role in their performance. Ideally, reference labels, e.g., of specific imaging features 
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such as MS lesions or particular anatomical structures, would be generated by intensively 

trained expert raters. However, if this is not possible, for example due to the associated 

costs, crowd-sourcing such training labels could provide a realistic alternative, if properly 

used. A potential issue concerns the quality of crowd-sourced image annotations. For the 

example of image segmentation, this has been addressed. Specifically, Bogovic and 

colleagues45 demonstrated that for cerebellar parcellation, it is possible to achieve high-

quality labels from a group of non-expert raters. 

This suggests that, provided that training and quality assurance procedures are adequately 

employed, a large group of non-expert volunteers could create reference labels on a large 

enough dataset to train deep learning or other methods robust to data variability. 

Nevertheless, as the task becomes more complex, the degree of communication required 

between the participants in order to achieve an adequate performance is likely to increase, 

with the risk of the efforts becoming an outsourcing initiative instead of a crowd-sourcing 

one. Thus, the project to be carried out should be clearly defined in terms of tasks and 

expectations, with the inclusion of tutorials and support by an experienced professional in 

the field. 

Besides providing training labels for image segmentation, crowd-sourcing may also 

assist in other tasks such as (providing training labels for) image artifact detection, quality 

control, or disease classification. Especially niche applications such as MS imaging, where 

the costs of expert training labels can be prohibitive, can provide a “sweet spot” where 

crowd-sourcing can make a crucial contribution that advances the field. A first such 

approach has been proposed recently46. 

 

4.3 Recommendations for crowd-sourcing in MS imaging 

Ensure high-quality instruction of volunteers. In order to help the crowd participate 

effectively, especially for longer and more complex tasks, comprehensive tutorials are 

essential. 

Define clear tasks and expectations. In order to allow volunteers to experience making 

contributions to research, their tasks should be clearly defined, and generally limited in 

scope and time investment. 

Enforce rigorous quality control. In order to ensure high quality of the crowd-sourced 

contributions, quality control procedures such as repeatability and agreement with experts 

on selected samples are essential. 
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5 Opportunity 2: Solutions to personal data protection and 

consent requirements 

5.1 Personal data protection and consent in the GDPR framework 

When sharing data, protecting personal data is a crucial guarantee to the participants. Since 

MAGNIMS Study Group is a European collaboration, the expertise available on data 

protection laws in other jurisdictions is limited and we therefore focus here mainly on the 

situation in the EU. Personal data protection is required by law in the EU with very specific 

rules set out in the General Data Protection Regulation (GDPR (e77)). While the specific legal 

requirements vary, concerns about preserving confidentiality of data of participants exist 

around the globe, and different legal frameworks to address these concerns exist in 

different countries. Differences between GDPR and the US HIPAA framework include the 

more limited scope of the latter, and have been discussed in detail elsewhere47. Personal 

data is understood as any information relating to an identified or identifiable natural 

person. An identifiable natural person is one who can be identified, either directly or 

indirectly. Now to determine whether someone is identifiable, all the means reasonably 

likely to be used have to be taken into account, and for each of these, the costs and the 

amount of time required for identification, the available technology at the time of the 

processing and expected technological developments have to be assessed. This is important 

because GDPR holds the controller, i.e. the researcher’s organization, accountable. Security 

of personal data must be demonstrated through the existence of both technical and 

organizational measures (e77). GDPR places the persons whose data it concerns (referred to 

as “data subjects”) in full control of what happens to their data. If personal data are meant 

to be shared and/or the possibility of identification cannot be excluded, written informed 

consent must be obtained from all participants for data sharing, including whether data will 

be shared with countries where EU regulations do not apply. Furthermore, procedures must 

be in place for removal of data when participants ask for that removal. It must be noted that 

the data protection authorities consider coded or pseudonymized data as personal data. If 

personal data are to be shared written data protection agreements are necessary to 

demonstrate compliance with the GDPR. 

 

5.2 Challenges related to personal data protection and consent 

Ensuring protection of personal data while providing adequate access for research purposes 

is challenging. Full anonymization, meaning that the person cannot be identified from the 
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data at all, may be difficult to achieve in several cases. In “extreme” groups (rare diseases, 

extremely tall persons, etc.) some basic information accompanying the imaging data may 

help reveal the identity of the person. The increasing accumulation of “big data” on people’s 

behavior from many different sources by many companies and organizations, poses another 

hurdle to achieving full anonymization. New technologies, notably artificial intelligence 

techniques, allow, e.g., reconstruction of faces from low-resolution pictures48. In brain 

imaging, structural images allow 3D face reconstructions, possibly enabling identification. 

Face removal and face scrambling49, 50 do not fully solve this, as these procedures may 

impact subsequent image analysis, e.g., radiotherapeutical dose distributions or EEG signals, 

or further brain image analyses51. Finally, removed faces can be (partially) reconstructed, 

and the structure of each brain may soon be enough to identify the person52. 

It may therefore be difficult to reach full anonymization at all. Hence, a second option may 

be more viable: to request, upfront, informed consent of the persons to share their data in 

an identifiable or not directly identifiable way. This informed consent should comply with 

national laws including those based on GDPR, where applicable as well as indicate the 

various options for planned or as yet unforeseen data sharing, such as with researchers in 

countries outside the EU, or perhaps with members of the general public through crowd-

sourcing initiatives as discussed above. In addition, to further ensure the protection of 

personal data, an agreement on the use of the personal data must be made between the 

institutions or organizations sharing the data. An increasingly important way of generating 

large cohorts is by sharing the data across large groups of many different centers from many 

countries, which can lead to additional legal uncertainties about personal data protection, 

data ownership and data usage. The extreme case of this informed consent approach, 

where legally allowed, would be to ask the participants to consent to sharing their data 

without restricting that sharing to specific parties or applications. 

A third way to share research data is by using an infrastructure that allows researchers to 

analyze the data remotely53. Such “trusted data ecosystems” at their core are similar to a 

federated database but are much more comprehensive and encompass not just data 

management but all features necessary to perform analyses on the data including the 

computing infrastructure and audit trail. An example of such an infrastructure, currently 

under development in the Netherlands, is the Health-RI infrastructure (e78). The approach 

taken by Health-RI is that the personal data is on the inside and the platform performs the 

analyses, so researchers only receive the outcome measures but have no access to the 
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actual data. Examples focused on federated deep learning, in which model parameters but 

not data are transferred between sites, are described by Chang and colleagues54
 and by 

Remedios and colleagues55. A limitation of such a federated approach is that the careful 

scrutiny of analysis pipeline success and inspection of intermediate results, is less directly 

feasible than in the more standard data-sharing approach, which would hamper not just any 

particular research project but also use of those data for further methodological 

improvements. An advantage is that their comprehensive approach, including technological, 

legal and business layers ensures compliance with regulations, governance, legal issues for 

data sharing, security issues and accountability. 

Thus, the trade-off between protecting privacy and allowing access remains the main 

challenge that needs to be addressed properly. In this context, “differential privacy” may 

offer solutions. By limiting how much algorithms can learn from each data point, it prevents 

algorithms from learning enough to identify individuals, yet allows them to learn the 

relevant information at the population level56. 

5.3 Recommendations related to personal data protection and consent 

Protect personal data. Implement technical, legal and organizational guarantees for 

protecting personal data. For MRI, these include DICOM anonymization and face removal. 

Always request consent for data sharing. Maximize possibilities for re-use by requesting 

participant’s consent for subsequent sharing and aiming for a broad scope of future 

projects. Invest in standardization of the necessary data protection agreements. 

Invest in developing optimized infrastructure. Investigate how the strengths of Trusted 

Data Ecosystems can be combined with access to raw data and intermediate results.  

 

6 Opportunity 3: Organized Analysis Challenges 

6.1 Organized Analysis Challenges as a tool for accelerating methodological 

developments 

With image analysis and machine learning algorithms advancing at a rapid pace, there exists 

a need to understand the performance and limitations of state-of-the-art approaches. 

Evaluating the performance of an automated algorithm, such as lesion segmentation, is a 

fundamental part of methods development that can require significant resources. Grand 

challenges are organized, competitive events that provide data to be analyzed, an analysis 

objective, ground truth data, and evaluation metrics for achieving the objective (e79). They 
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provide a means to compare the performance of multiple algorithms, to which a single lab 

would not typically have access.  Furthermore, by providing these critical resources, 

research labs may participate in the challenge that might not otherwise engage in MS 

research.  

The format of a grand challenge typically involves several key steps. Participating 

teams are first provided with a training data set that includes both imaging data and the 

ground truth. For the aforementioned lesion segmentation challenges, this consisted of 

multi-contrast MRI data from multiple patients, and a set of manual lesion delineations. The 

training data allow the teams to optimize performance of their algorithms and achieve 

results consistent with the ground truth. Next, teams are provided with a test data set that 

includes imaging data but no ground truth. The teams apply their approach to the test data 

set and submit results for evaluation. Finally, the teams and organizers discuss performance 

of the different algorithms, as well as the evaluation and related issues.  

There have been three segmentation challenges focused specifically on the 

segmentation of MS brain lesions in the past: the 2008 MICCAI Challenge e106,57, the 2015 

ISBI Longitudinal Challenge58, and the 2016 MICCAI Challenge59. These provide clear 

examples of what can be achieved through this kind of approach. An enduring key benefit of 

these challenges, beyond the papers, is that the organizers have continued to make the data 

available after the meeting, and have set up web-based systems for continually 

benchmarking new algorithms. In this way, all three challenges continue to actively make an 

impact aiding software developers to develop improved methods (e80, e81, e82). 

 

These advances notwithstanding, challenges thus far have only released portions of 

the full data sets for training, with the testing data reserved by the challenge organizers for 

algorithm evaluation. Furthermore, data use licenses have been restricted to research or 

educational use. Those previous MS challenges have also focused rather narrowly on 

different aspects of MS white matter lesion segmentation. For example, the 2015 challenge 

focused on longitudinal data58, while the 2016 data focused on multi-centric data, including 

those acquired at different field strengths59. Continued organization of challenges could 

target benchmarking algorithms for applications directly relevant to patient care, such as 

clinical trials or patient monitoring. Instead of metrics based on lesion segmentation 

accuracy, algorithms could be evaluated based on predicting the efficacy of therapies or 

clinical measures. Besides white matter lesion segmentation, a number of other promising 
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imaging biomarkers could be tested: Cortical lesions, cortical gray matter measurements, 

and thalamic volumes have all been found to be promising predictors of disease 

progression60. An MS database with whole-brain labels, currently not available, would aid 

training and validation of algorithms to more accurately extract such biomarkers. Other 

grand challenges could examine MR imaging of spinal cord morphology and pathology, and 

characterization of retinal morphology using optical coherence tomography. In summary, 

there is ample opportunity for challenges to contribute to further improvements in methods 

for studying MS, as well as proof from previous years that challenges can be a successful 

approach. 

6.2 Recommendations on Organized Analysis Challenges for MS image analysis 

Include additional aspects of MS image analysis other than WM lesions, such as cortical 

lesions and measures of brain volume. 

Evaluate algorithms also against clinical outcomes, instead of just against imaging data. 

Ensure challenge datasets contain large numbers of images and labels, to improve 

robustness and generalizability. 

Reduce restrictions on challenge data, to allow more diverse applications and to build more 

expansive data resources for algorithm development and evaluation. 

7 Conclusion 

To maximize improvements of both the understanding of MS disease processes and in vivo 

MRI methods to study those, using “big data” and machine learning, specific 

recommendations were provided on data sharing, machine learning, crowdsourcing, 

personal data protection, and organized analysis challenges. 
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Figure 1. Methods used to create the current manuscript 
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Tables 

 

Table 1: Shared datasets. Please see eReferences for citations of URLs and associated journal 

papers. 

 

Dataset Name Age 

Range 

(y) 

Demo-

graphic 

Number 

of 

Subjects 

Modalities Selected 

additional 

data/info 

Started Website / 

References 

ADNI: 

Alzheimer’s 

Disease 

Neuroimaging 

Initiative 

55-90 AD + 

MCI + 

HC 

> 2000 sMRI + 

dMRI + 

fMRI + PET 

Genetics + 

clinical + 

neuropsyc

h tests + 

biosample

s 

2004 e83,e84 

Harvard Aging 

Brain Study 

65+ Normal 

Aging 

284 sMRI + fMRI 

+ dMRI + 

PET 

Longitudin

al 

2009 e85,e86 

DIAN: 

Dominantly 

Inherited 

Alzheimer 

Network 

18+ Autoso

mal 

Domina

nt AD 

430 sMRI + 

dMRI + 

fMRI + PET 

Repeat 

visits + 

biosample

s 

2008 e87,e88 

OpenNeuro 

(formerly 

OpenfMRI) 

Any Any > 1000 Mainly MRI, 

but also 

with MEG + 

EEG + PET 

Wide 

variety of 

different 

studies 

2013 e76,e89 

OASIS: Open 

Access Series 

of Imaging 

Studies 

18-96 HC + 

MCI + 

AD 

1664 sMRI + fMRI 

+ dMRI + 

PET 

Over 1000 

with 

longitudin

al data 

2007 e90,e91 

 

PPMI: 

Parkinson Prog

ression Marker 

Initiative 

33-85 PD + 

HC 

~ 1000 sMRI + 

dMRI + 

fMRI + PET 

+ SPECT 

Biosample

s 

2010 e92,e93 
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HCP: Human 

Connectome 

Project 

22-35 Healthy 1200 sMRI + 

dMRI + 

fMRI + 

some MEG 

Siblings 

and twins 

; genetic + 

lifestyle 

data  

2010 e94,e15 

dHCP: 

Developing 

HCP 

20-44 

weeks 

Fetal + 

Neonat

al 

(health

y and 

otherwi

se) 

1500 sMRI + 

dMRI + 

fMRI 

 2013 e95,e96 

UK Biobank 48-77 Any 100,000 

(currently 

25,000) 

sMRI + 

dMRI + 

fMRI 

Genetic, 

lifestyle 

and 

clinical 

data + 

non-neuro 

data  

2012 e97,e98 

Neurovault Any Any > 1000 

studies 

fMRI + sMRI 

+ PET 

Statistical 

results 

from 

publicatio

ns 

2014 e99,e100 

MICCAI 

Challenges 

Any Any > 160 

separate 

challenges 

Any medical 

imaging 

modality, 

and any 

body part 

Each 

challenge 

comes 

with a 

modest 

dataset 

and some 

training 

labels / 

2007 e101 

(Many 

papers) 
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ground 

truth 

 

Table 1: A small selection of open neuroimaging datasets currently available with partial 

information on the characteristics of each, highlighting the breadth and diversity. 

Abbreviations: AD = Alzheimer’s Disease ; MCI = Mild Cognitive Impairment ; HC = Healthy 

Controls ; PD = Parkinson’s Disease ; sMRI = structural MRI ; dMRI = diffusion MRI ; fMRI = 

functional MRI ; PET = Positron Emission Tomography. 
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Table 2: MS Registries that collect MRI information 

Registry Start date Reference 
National registry of Croatia 2007 5 
National registry of Denmark 1948/1996 5 
National registry of France 1976 5 
National registry of Germany 2001 5 
National registry of Greece 2011 5 
National registry of Italy 2001 5 
National registry of Norway 1998 5 
National registry of Russia 2006 5 
National registry of Spain 
(Catalonia) 

2009 5 

National registry of Sweden 1997 5 
National registry of Switzerland 2012 5 
National registry of United 
Kingdom 

2009 5 

MSBase 2004 6  
Expression, Proteomics, Imaging 
and Clinical (EPIC) 

2004 e105  

Kompetenznetz Multiple Sklerose 
(KKNMS) 

2005 e68  

Comprehensive Longitudinal 
Investigation of MS (CLIMB) 

2006 e104  

Italian Neuroimaging Network 
Initiative (INNI) 

2011 12  

OPTIMISE-MS 2017 e103  
North American Registry for Care 
and Research in MS (NARCRMS) 

2017 e102  
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