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Abstract
1.	 Population density estimations are essential for wildlife management and con-

servation. Camera traps have become a promising cost-effective tool, for which 
several methods have been described to estimate population density when in-
dividuals are unrecognizable (i.e. unmarked populations). However, comparative 
tests of their applicability and performance are scarce.

2.	 Here, we have compared three methods based on camera traps to estimate popu-
lation density without individual recognition: Random Encounter Model (REM), 
Random Encounter and Staying Time (REST) and Distance Sampling with camera 
traps (CT-DS). Comparisons were carried out in terms of consistency with one 
another, precision and cost-effectiveness. We considered six natural populations 
with a wide range of densities, and three species with different behavioural traits 
(red deer Cervus elaphus, wild boar Sus scrofa and red fox Vulpes vulpes). In three of 
these populations, we obtained independent density estimates as a reference.

3.	 The densities estimated ranged from 0.23 individuals/km2 (fox) to 34.87 individ-
uals/km2 (red deer). We did not find significant differences in terms of density 
values estimated by the three methods in five out of six populations, but REM 
has a tendency to generate higher average density values than REST and CT-DS. 
Regarding the independents’ densities, REM results were not significantly differ-
ent in any population, and REST and CT-DS were significantly different in one 
population. The precision obtained was not significantly different between meth-
ods, with average coefficients of variation of 0.28 (REST), 0.36 (REM) and 0.42 
(CT-DS). The REST method required the lowest human effort.

4.	 Synthesis and applications. Our results show that all of the methods examined 
can work well, with each having particular strengths and weaknesses. Broadly, 
Random Encounter and Staying Time (REST) could be recommended in scenar-
ios of high abundance, Distance Sampling with camera traps (CT-DS) in those 
of low abundance while Random Encounter Model (REM) can be recommended 
when camera trap performance is not optimal, as it can be applied with less risk 
of bias. This broadens the applicability of camera trapping for estimating densi-
ties of unmarked populations using information exclusively obtained from camera 
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1  | INTRODUC TION

Obtaining accurate estimates of population density (i.e. the number 
of individuals per area) continues to be a constant challenge for wild-
life management and conservation (Nichols & Williams, 2006). It is 
widely recognized that estimating population size is costly, and that 
results are often not sufficiently precise for well-informed manage-
ment purposes (Morellet et al., 2007). Feasible methods with which 
to attain precise and accurate estimates of population density are, 
therefore, in great demand. The use of remotely triggered cameras 
(camera traps) for this purpose has substantially increased over the 
last few years (Rovero & Zimmermann, 2016). Camera trapping is rel-
atively low cost (except the initial inversion), generates information 
on multiple species, is minimally invasive and makes it possible to 
obtain information on highly cryptic species inhabiting a wide range 
of habitats (Steenweg et  al.,  2017). As a result, camera trapping 
methods are increasingly core tools for wildlife population monitor-
ing (e.g. for wild boar at the European level, ENETWILD-consortium 
et al., 2019).

When population densities are the target parameter, cam-
era trapping is frequently used to obtain data for spatially explicit 
capture–recapture models that require individually identifiable an-
imals (Royle et  al.,  2013). However, many wildlife species have no 
natural markings to allow individual identification, so require phys-
ical capture and marking to apply this family of models to camera 
trap data. In this case, the application of such capture–recapture 
models (in a broad sense) can be expensive, invasive and logistically 
challenging. Validating methods for estimating population density 
using camera traps in the absence of identifiable individuals can 
broaden their applicability for wildlife monitoring. In this context, 
there are different methods to estimate population size (number 
of animals) without individual recognition: Time to Event Model 
(Moeller et  al.,  2018), Random Encounter Model (REM; Rowcliffe 
et  al.,  2008), Spatial Counts (Chandler & Royle,  2013; Evans & 
Rittenhouse, 2018), Distance Sampling based on camera traps (CT-
DS; Howe et al., 2017), Random Encounter and Staying Time (REST; 
Nakashima et al., 2018) and, more recently, a model that considers 
the species’ use of space (Luo et al., 2020). Most of these methods 
are based on modelling the encounter rate, and the main divergence 
point between them is the procedure to address the effective sam-
pling frame (i.e. the broader study area about which one wishes to 
make inference). While some of them estimate abundance within an 
area explicitly defined in the model by accounting when and where 

animals are detected (Chandler & Royle, 2013), others estimate den-
sity within the collective field of view (FOV) of the cameras which 
are representative of the sampling frame (Rowcliffe et al., 2008). A 
more in-depth theoretical comparison between unmarked methods 
was described by Gilbert et al. (2020). However, an empirical com-
parison of these methods under field conditions is lacked and highly 
demanded.

We have compared the performance of three methods to esti-
mate population density with compatible sampling design: REM, 
REST and CT-DS. The CT-DS is based on Distance Sampling, a 
framework that is considered as a core method for wildlife moni-
toring (Buckland et  al.,  2001; Thomas et  al.,  2010). Considering 
the robust theoretical framework, specific software and advice for 
study design, testing CT-DS could considerably increase the applica-
bility of camera traps for the monitoring of unmarked populations.  
To date, CT-DS has been applied in a chimpanzee population (Cappelle 
et al., 2019), a community of species of the rainforest (Bessone et al., ​
2020, Cappelle et al., 2021), a bighorn sheep population (Harris 
et al., 2020) and a marmot population (Corlatti et al., 2020). The REM 
is, without a doubt, the most applied method (Gilbert et al., 2020). 
Over the last few years, it has been used for a wide range of spe-
cies (Cusack et  al.,  2015; ENETWILD-consortium et  al.,  2019; 
Pfeffer et al., 2018; Zero et al., 2013), and it is constantly developing 
(Caravaggi, 2017; Lucas et  al.,  2015). Its application was originally 
limited by the need to estimate day range (i.e. distance travelled by 
an individual during a day). However, approaches for estimating day 
range exclusively from camera trap data were described (Palencia 
et al., 2021; Rowcliffe et al., 2016), which has significantly increased 
its applicability. Nakashima et al. (2018) described the REST model 
as an extension of REM, but we would like to highlight the mathe-
matical equivalence between REST and CT-DS (Appendix S1). The 
REST model considers the staying time (i.e. the amount of time 
detected animals remain within a specific area within the FOV of a 
camera trap) instead of day range. This could enhance applicability 
relative to REM, as day range is the most time-consuming parameter 
to be obtained for REM. To date, the REST model has been applied 
to estimate the density of forest ungulates (Nakashima et al., 2020) 
and has been tested with human volunteers (Garland et al., 2020). 
We have summarized the assumptions of these methods in Table 1. 
A common feature of these methods is that they do not require spa-
tial autocorrelation in the captures as mark–recapture and related 
methods do (i.e. one animal does not need to have probability of 
been captured in more than one camera trap). This allows sampling 

traps. This strengthens the case for scientifically based camera trapping as a cost-
effective method to provide reference estimates for wildlife managers, including 
within multi-species monitoring programmes.
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designs to use any spacing of camera traps, and therefore larger 
areas and a wide range of species can be sampled with single sur-
veys. Moreover, these methods share most of the assumptions, and 
analyses are based on rescaling encounter rate accounting for that 
on movement parameters (REM and REST) or detectability pro-
cess (CT-DS). In this respect, we would like to clarify key points. 
Regarding the closure assumptions, it should be noted that if abun-
dance does change during the survey, these methods will provide an 
average density across the sampling period. This is a key difference 
in relation to capture–recapture methods, in which violations of clo-
sure can result in detection probability estimates that are too low or 
the effective sampled area being considered too small, generating 
positively biased densities (Obbard et al., 2010). Regarding the cer-
tain detection at distance 0, estimates of density are negatively bi-
ased in proportion to p(0). For instance, if p(0) = 0.30, estimates will 
on average be only 30% of the true density (Borchers et al., 2002). 
Similarly, if detection is not certain in REST focal area, density will 
be underestimated. To minimize violations of these assumptions, 
camera trap should be set at an appropriate height, and activated 
as faster as possible. Second, in spite of all the methods assumed 
that animal movement behaviour is not affected by camera traps, 
each method deals with violations of that assumption in a different 
way. For REM, those sequences in which animals react to the camera 
trap are considered for encounter rate but not for speed (Rowcliffe 
et al., 2016). However, there is not a clear procedure for this violation 
in REST and CT-DS. Those animals which react by leaving the detec-
tion zone will suppose an underestimation of staying time in REST, 
and encounter rate in CT-DS, and in consequence, underestimation 
of density. For animals that stand in the detection zone, staying time 
(REST) and encounter rate (CT-DS) will be inflated. Also, a severe 
violation of the independence between events is expected because 
multiple detections of the same individual are considered, but this 
assumption can be avoided by estimating density variances using a 
nonparametric bootstrap, resampling points with replacements; and 

in CT-DS, by applying specific selection criteria to choose the best 
models (Howe et al., 2019).

In this work, we compared the consistency, precision and cost-
effectiveness of the REM, REST and CT-DS methods for population 
density estimation in a Mediterranean environment, monitoring six 
wildlife populations of three species (red deer Cervus elaphus, wild 
boar Sus scrofa and red fox Vulpes vulpes), spanning different be-
havioural traits and a wide range of densities. Additionally, in three 
of these populations, we obtained independent estimates by apply-
ing distance sampling on line transects and drive counts.

2  | MATERIAL S AND METHODS

2.1 | Study area

The study was carried out in two natural areas of Spain with dis-
tinct environmental conditions. One of them (site-A), the Doñana 
Biological Reserve, is a territory of approximately 6,800 ha located 
in Doñana National Park (37°0′N, 6°30′W). It is located on the 
Atlantic coast of south-west Spain, dominated by Mediterranean 
shrubland and 300 ha of marshland. The climate is thermomediter-
ranean, with marked seasons. The average altitude is 15 m a.s.l. The 
second study area (site-B) is a territory of approximately 6,800 ha 
that is located in Montes de Toledo (39°23′N, 4°4′W), a mountain 
chain located in central Spain. Vegetation is dominated by wood-
land habitats (Quercus spp.) and ‘dehesas’ (savannah-like habitats 
composed of pastures that mainly include oak trees). The climate is 
mesomediterranean, and the average altitude is 900 m a.s.l.

2.2 | Camera trap survey

In all, 25 camera traps Bushnell Aggressor Trophy Cams were used 
in site-A (from September till November 2018), and 20 in site-B 
(from November 2018 till April 2019) covering the central zone of 
each study area. We used a systematic design with a random origin. 
Camera traps were deployed facing north at the intersection of a 
grid with 2 km (site-A) or 1.5 km (site-B) spacing, 40–50 cm above 
the ground and angled to be parallel to the slope of the ground. 
Camera traps were not baited. Realized sampling locations devi-
ated from the design by as much as 80 m in order to mount camera 
traps on trees and avoid very unfavourable conditions (e.g. dense 
shrubland). Only one camera trap in site-B had to be deployed out-
side the 80 m buffer. During the installation of each camera trap, 
natural marks (rocks, branches, etc.) were placed in the FOV at 
2.5 m intervals from the camera trap (Figure 1). These marks were 
later used to locate the position of the individuals captured with 
the camera trap.

The camera traps were set to be operative all day, to record a 
burst of three consecutive photos (rapid fire) at each activation, and 
with the minimum triggering interval between activations (0.6  s). 
The date and time of capture were automatically stamped onto each 

TA B L E  1   Assumptions for the three methods to estimate 
density of unmarked species tested on this study: Random 
Encounter Model (REM), Random Encounter and Staying Time 
(REST) and Distance Sampling based on camera traps (CT-DS)

Assumption REM REST CT-DS

Camera trap placed randomly with 
respect to animal movement

X X X

Certain detection at 0 distance X X

Certain detection at focal area X

Closed population X X X

Animal movement and behaviour not 
affected by camera trap

X X X

Objects are detected at their initial 
locations

X X

Measurements are exact X X X

Observations are independent events X X X

Snapshot moments selected 
independently of animal locations

X
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image. Camera traps were checked every 3 weeks to change their 
batteries and memory cards.

2.3 | Camera trapping analysis

We exclusively consider the information obtained from camera traps 
to apply REM, REST and CT-DS.

2.3.1 | Shared features between methods

Some parameters and practical considerations are shared between 
methods:

1.	 Animal location: it is necessary to identify the position of each 
photo-captured animal in the detection zone for the three 
methods. The natural marks that we deployed in the cameras’ 
FOV during the deployment of the camera traps were used 
for that purpose (Appendix S2).

2.	 Regarding group size: because accurate group size estimations 
are not easily obtained from camera traps, individuals were con-
sidered as the unit of observation in the three methods (see also 
Cusack et al., 2015; Thomas et al., 2010).

3.	 Movement behaviour: consistent with the approach for estimating 
day range described by Rowcliffe et al. (2016), those sequences in 
which animals react to the camera trap were considered for the 
estimation of the encounter rate, but not for the estimation of 
either staying time or day range.

4.	 Activity level: the activity level (i.e. the proportion of time that 
animals spend active) is a key parameter in the three approaches. 
Camera traps record animals only when they move outside ref-
uges (Rowcliffe et al., 2014). In the case of REM, the activity level 
is required to estimate the day range (Rowcliffe et al., 2016). In 
the case of REST and CT-DS, the activity level is necessary to es-
timate the proportion of animals that are available for detection 

(i.e. active). The final density value is corrected by multiplying the 
density estimated (through REST or CT-DS) by the inverse value 
of activity (Howe et  al.,  2017; Nakashima et  al.,  2018). Activity 
level was estimated following Rowcliffe et al. (2014) and using the 
R package activity R package (Rowcliffe, 2019).

2.3.2 | REM parameterization

REM is based on modelling the process of random encounters be-
tween animals and cameras and accounting for all the variables that 
affect the encounter rate (Rowcliffe et al., 2008). The equation for 
estimating density from camera trap encounter rate is:

in which Y is the number of encounters (i.e. number of independent 
photographic sequences), H is the total camera survey effort, v is the 
average distance travelled by an individual during a day (day range), and 
r and � are the radius and angle of the camera traps detection zone, re-
spectively. We considered an individual of the target species entering 
and exiting the FOV of the camera trap as independent contact. Day 
range was estimated as the product of speed and activity. First, speed 
was measured on each sequence by dividing the distance travelled 
by the duration of the sequence. Second, we estimated activity level. 
Finally, we estimated day range by following the procedure described 
by Palencia et al.  (2021). Briefly, using trappingmotion R package 
(Palencia, 2020), we identified different movement behaviours on the 
basis of the speeds measured for the sequences. For each behaviour, 
we estimated the average speed and we weighted the activity level 
considering the proportion of the time that the population spent on 
each behaviour. Day range was finally estimated as the sum of the 
product of the mean speed and the proportion of the activity level 
associated with each behaviour. We recorded the position (radial dis-
tance and angle) of an animal when it first triggered the camera trap 

(1)D =
Y

H
⋅

�

v ⋅ r ⋅ (2 + �)
,

F I G U R E  1   (a) Scheme of the position 
markers (grey dots) used to reference 
the animal captured by the camera trap 
(black dot). The central triangle represents 
the detection zone considered for REST. 
XC indicates the position of the wild 
boar captured in the image c. (b) Marks 
(stones) were used as references to locate 
individual positions. Numbers indicate 
the distance between the stones and 
the camera trap. (c) A wild boar photo-
capture [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a) (b)

(c)

www.wileyonlinelibrary.com
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and we then applied a distance sampling analysis to estimate effective 
radius and angle (Rowcliffe et al., 2011). The variance associated with 
the encounter rate was estimated by resampling camera locations with 
replacement. We also considered standard errors of day range, radius 
and angle of detection. We computed the overall variance of density 
estimates using the delta method (Seber, 1982) and R package ‘emd-
book’ (Bolker, 2019). All the analyses were carried out using ‘camtools’ 
R functions (https://github.com/Marcu​sRowc​liffe/​camtools).

2.3.3 | REST parameterization

The REST model describes the relationship among population den-
sity, encounter rate and staying time of animals in a predetermined 
detection zone (Nakashima et al., 2018):

where T is the staying time per encounter and s is the area of the de-
tection zone (Y and H previously defined). The REST model assumes 
that camera traps detect animals entering the detection zone (focal 
area) with certainty. To define the focal area, we fitted distance sam-
pling functions to each species detected (Hofmeester et al., 2017), 
and selected the area in which the detection was certain for the 
three species sampled in this study. It was an isosceles triangle that 
covers the central area of the FOV of the camera trap, from 2.5 to 
5 m (Figure 1). The outer corners of this triangle were defined during 
image processing as the central half of the FOV. The initial description 
of REST estimates T from information recorded from camera traps 
in video mode. Since video processing is more time-consuming than 
photos, we here generalized REST to be applied with information 
from photo mode obtaining consistent results (Appendix S3). Thus, 
staying time in the focal area was measured as follows: considering 
the references located in the FOV of the camera (Figure 1), we re-
corded the difference of time between the last and the first photo in 
which an individual was inside the focal area (see also Appendix S2). 
As in the REM parametrization, we considered an individual of the 
target species entering and exiting the focal area of the camera trap 
as an independent contact. Model fitting used maximum likelihood 
estimation as in Nakashima et al. (2018), using an exponential distri-
bution for expected staying time, and a negative binomial distribution 
for the expected number of encounters. The variance of the popula-
tion density was estimated by the delta method combining model and 
activity level variances.

2.3.4 | CT-DS parameterization

This method is an adaptation of point transect distance sampling 
considering camera traps instead of humans as observers. In tradi-
tional point transect surveys, the observer samples each location 
at one or a few instants in time; however, camera traps remain at 
the point for prolonged periods. Considering that, it is necessary 

to discretize the number of times that the camera trap can poten-
tially record an animal (Tk/t see below). The main equation is (Howe 
et al., 2017):

where e = � ⋅ H∕2 ⋅ � ⋅ t is the sampling effort, t is the length of the 
time step between snapshot moments (fixed value of 2 s in this case), 
Ɵ is the angle of the FOV of the camera trap, w is the truncation dis-
tance and p is the estimated probability that an animal within distance 
w is detected by the camera trap, estimated from a detection function 
model fitted to animal distances from camera (Buckland et al., 2001). 
Parameters Y and H were previously defined.

We recorded observation distances between camera traps and 
animals at 2 s intervals (i.e. at 0, 2, 4, …). Following the exploratory 
analyses, we left-truncated the data when fewer than expected de-
tection near the camera traps were recorded (Buckland et al., 2001). 
We right-truncated the data when the probability of detection was 
lower than 0.1. As multiple detections of the same animal during a 
single pass through the detection zone are considered, we estimated 
variances using a nonparametric bootstrap, resampling points with 
replacement and we followed Howe et al. (2019) to select the best 
models.

To evaluate the cost-effectiveness of each method, we recorded 
the time taken to process the images (i.e. parameter estimation) and 
carry out the analysis for each method. Finally, the density values 
were statistically compared using the Wald test, with a test statistic 
W assessed on the chi-squared distribution with one degree of free-
dom (Wald & Wolfowitz, 1940).

2.4 | Independent density estimates

2.4.1 | Red deer populations (A and B)

In the red deer populations, we obtained independent estimates by 
applying line-transect distance sampling, which is considered a gold 
standard method for reed deer in Mediterranean habitats (Acevedo 
et  al.,  2008). Surveys were carried out during the rutting season 
(September), began 2  hr before the sunset and were carried out 
from a four-wheel-drive vehicle with an average speed of 10 km/hr 
in population A, and carried out on foot in population B. The total 
distance surveyed considering all the transects were 71 and 51 km 
in populations A and B, respectively. Each transect was repeated 
twice. When a group of deer was detected, we recorded distance 
between the observer and the animals with a telemeter, as well as 
group composition considering different sex and age classes when 
it was possible.

We applied stratified convectional distance sampling. We con-
sidered two strata in both populations, one of them characterized 
by high encounter rate and good visibility (open habitats), and the 
other one by low encounter rate and poor visibility (woody habitats). 

(2)D = Y ⋅ T∕(s ⋅ H),

(3)D =
Y

� ⋅ w2
⋅ e ⋅ p

,

https://github.com/MarcusRowcliffe/camtools
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Data were right-truncated to eliminate the 10%–15% (approx.) of the 
furthest observations (Buckland et  al.,  2001). Half-normal, hazard 
rate and uniform models using cosine, hermite polynomial and sim-
ple polynomial were fitted for detection function. The selection of 
the best model and adjustment term was based on AIC (Buckland 
et al., 2001).

2.4.2 | Wild boar population B

In this population, we applied drive counts to estimate the density 
of wild boar (ENETWILD-consortium et  al.,  2019). Concretely, we 
applied three independent drive counts between November and 
January in three different scrubland zones of the study area, and 
overlapping with hunting activities. Each day we surveyed an aver-
age of 697.21 ha ± 74.42 (SE), with an average of 37.33 observers ± 
5.37 (SE). Observers were placed in fixed locations with a relatively 
open field of view (e.g. firebreaks). The drive count duration was 4 hr 
(from 11:00 to 15:00), and while the observers were in their loca-
tions, 44 beaters ± 5.29 (SE) with 440 dogs ± 52.92 (SE) were moving 
across the area; and assuming that all the animals were detected. 
Finally, a coordinator collected all the information and minimize the 
likelihood of double counting. Density was estimated by dividing the 
number of observed animals between the survey area, and by as-
suming that at the moment of drive counts (midday), all the wild boar 
were in the scrubland and woodlands areas, and density in grassland 
zones (dehesas) was 0. This assumption was supported by telemetry 
data of animals tagged on this population (E. Laguna, unpubl. data).

3  | RESULTS

3.1 | Camera trapping methods

The densities estimated from camera trapping methods ranged from 
0.23 individuals/km2 (red fox—CT-DS—site-B) to 34.87 individuals/km2  

(red deer—REM—site-B; Figure 2). The estimated parameter values 
are shown in Table 2. We found a significant positive correlation be-
tween the density values (per species and site, n = 6) estimated by 
each method (Pearson correlation: REM-REST: R = 0.87, p = 0.025, 
n  =  6; REM-CTDS: R  =  0.93, p  =  0.0063, n  =  6; REST-CTDS: 
R = 0.88, p = 0.02, n = 6). We only found significant differences be-
tween the estimates obtained with the three methods in wild boar 
population, site-B (Wald test: CT-DS vs. REM: W = 5.63, p = 0.02; 
REM vs. REST: W = 4.90, p = 0.03). Significant differences among 
methods were not found in the other populations. In general, the 
REM estimates tend to be higher than those obtained by REST and 
CT-DS (Figure 2).

In relation to the precision of the estimates, we did not find sig-
nificant differences in coefficients of variation (CV) between meth-
ods (ANOVA repeated measurements, p: 0.698). The average CV for 
REST was 0.28, for REM was 0.36 and 0.42 for CT-DS.

In relation to the effort required (Table 2), REST was the least 
time-consuming method both in terms of image processing and car-
rying out the analysis. REM required more time for image processing, 
and CT-DS required more time for the analysis.

3.2 | Independent density estimates

During the surveys, 51 groups (site-A) and 259 (site-B) of red deer 
were observed. Best detection models were half normal cosine (site-
A) and hazard-rate cosine (site-B). The average densities estimated 
in red deer populations surveyed with line transects were 10.68 indi-
viduals/km2 ± 2.31 (SE) and 22.94 individuals/km2 ± 2.98 (SE) in sites 
A and B, respectively.

Regarding the drive counts, the average number of wild boar 
detected per day was 66.33 ± 22.81. After discarding open areas, 
average population density was 8.24 individuals/km2 ± 2.18 (SE).

In the red deer populations, we did not find significant differ-
ences in estimates from line transects and camera trapping meth-
ods. In wild boar site-B, drive counts results were not significantly 

F I G U R E  2   Estimated densities plotted in pairwise comparisons between methods. Solid points represent density values (circles and 
triangles, respectively, populations a and b), and translucent ellipses represent 95% confidence intervals. The diagonal is the equality line. 
Lines joining points to the equality line indicate independent estimates (line-transect distance sampling and drive counts) [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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different from the REM estimate (Wald test, W = 0.50, p = 0.48), but 
it was significantly different from the REST (Wald test, W = 8.33, 
p = 0.004) and CT-DS estimates (W = 9.13, p = 0.003).

4  | DISCUSSION

The possibility of using camera traps to estimate densities of un-
marked populations substantially increases the range of species and 
situations for which density estimates can be obtained. In this study, 
we have compared three methodologies (REM, REST and CT-DS) to 
estimate population density from camera trap data without the need 
for either individual identification or spatial autocorrelation in the 
captures. Two of them, REST and CT-DS, have so far been very little 
tested on natural populations (but see Bessone et al., 2020; Cappelle 
et al., 2019; Nakashima et al., 2020).

Our results show a high correlation, and no significant differ-
ences in the density values estimated through each method in five 
of the six populations monitored. Additionally, comparing the cam-
era trapping results with the independent estimates available for red 
deer populations and wild boar site-B population, REM estimates 
were not significantly different in any comparison while REST and 
CT-DS were only significantly different from the independent es-
timate in the wild boar population. This suggests a consistency of 
camera trapping methods to estimate density of unmarked popu-
lations, especially REM. Regarding the wild boar site-B population, 
the results suggest that REST and CT-DS may be underestimating 

density in this population, but we do not currently have a clear hy-
pothesis about why this is.

Our results highlight a general tendency for REM to gener-
ate higher density values than REST and CT-DS, which generated 
equivalent results. We found this pattern in five of the six sampled 
populations. Previous study described a tendency of CT-DS to un-
derestimate density (Corlatti et al., 2020). The equivalence obtained 
between REST and CT-DS estimates (Figure 2) reinforces the mathe-
matical equivalence of both methods (Appendix S1). The higher values 
obtained by REM can be partially explained as a consequence of a 
malfunction problem of the camera traps. Despite being set to record 
bursts of three consecutive photos, we noted that in around 12% ac-
tivations the camera traps only took one or two photos, and in a fur-
ther 9% of activations, time between photos within a burst was longer 
than 2 s (Appendix S4). Furthermore, other evaluations of this camera 
trap model have concluded that the recovery time is higher than the 
manufacturer's rating (0.6 s) and it is not consistent between activa-
tions (https://www.trail​campro.com/produ​cts/bushn​ell-troph​y-cam-
hd-low-glow?_pos=40&_sid=6a15c​66a4&_ss=r). These problems 
could suggest an underestimation of density in the case of CT-DS and 
REST because, in some sequences, we did not effectively record com-
plete trajectories of animals within the field of view. In the case of CT-
DS, this could underestimate the number of observations (Y, Equation 
3). In the case of REST, this could underestimate both the staying 
time (if precise times of entry to and exit from the focal zone were 
not recorded) and the encounter rate (if the animal entered and left 
the focal zone without being photographed). The influence of these 

TA B L E  2   Estimated parameter values for each method (see main text for details) including those related to effort, namely the time 
required for image processing and for data analysis

Method Parameter

Site-A Site-B

Red deer Wild boar Red fox Red deer Wild boar Red fox

REM Y/H (individuals·cam/day) 0.74 0.93 0.22 0.7 0.15 0.05

v (km/day) 4.85 13.10 26.74 3.83 5.03 16.71

r (km) 0.0084 0.008 0.0049 0.006 0.0057 0.0064

Ɵ (radians) 0.733 0.733 0.705 0.733 0.733 0.733

Image processing (min) 610 900 288 1,269 505 140

Analysis (min) 40 45 32 39 41 35

REST T (s) 9.00 3.05 1.14 7.14 2.58 1.16

Y (individuals) 72.71 153.98 116.71 317.75 167.34 63.64

s (km2) 2.5 × 10−6 2.5 × 10−6 2.5 × 10−6 2.5 × 10−6 2.5 × 10−6 2.5 × 10−6

H (s) 3.85 × 107 3.85 × 107 9.84 × 107 1.02 × 108 2.09 × 108 2.09 × 108

Image processing (min) 220 250 61 340 113 55

Analysis (min) 10 15 8 12 11 7

CT-DS Y (individuals) 751 821 305 2,567 958 116

w (m) 10 11.5 10 9.5 10.5 7

P 0.23 0.44 0.22 0.12 0.34 0.71

Image processing (min) 577 490 188 11,035 370 110

Analysis (min) 110 100 85 123 97 81

Activity level 0.62 0.32 0.48 0.47 0.45 0.39

https://www.trailcampro.com/products/bushnell-trophy-cam-hd-low-glow?_pos=40&_sid=6a15c66a4&_ss=r
https://www.trailcampro.com/products/bushnell-trophy-cam-hd-low-glow?_pos=40&_sid=6a15c66a4&_ss=r


1590  |    Journal of Applied Ecology PALENCIA et al.

problems on REM estimates is lower because (a) one photo is enough 
to consider the sequence for encounter rate and (b) those sequences 
with high time-lapse between consecutive photos were not consid-
ered for travel speed estimation. In these methods, it is recommended 
to use camera traps with reliably fast trigger and photo burst rates to 
generate more accurate registration of animal trajectories inside the 
FOV, and in consequence, more accurate density results. Any poor 
performance of the camera traps will compromise population density 
estimates (McIntyre et al., 2020).

In relation to precision, previous studies did not consider the un-
certainty associated with all the parameters (e.g. Cappelle et al., 2019; 
Howe et al., 2017; Nakashima et al., 2018), but we have considered 
the variance in all the parameters of each method, including the ac-
tivity level. We found no significant differences between methods, 
with an average CVs ranging from 0.28 (REST) to 0.42 (CT-DS). Most 
of the variance in these methods was attributable to the variation in 
encounter rate between camera traps (Buckland et al., 2001; Howe 
et al., 2017). This variation could be reduced using a stratified sam-
pling design (Buckland et al., 2001; Rowcliffe et al., 2008), but this 
may be challenging in camera trapping studies because of the small 
sampling area covered by each camera; this means that encounter 
rate is more strongly influenced by microsite conditions than by 
larger-scale habitat characteristics that can be defined across wide 
areas and therefore used for pre-stratification. Additionally, to 
consider covariates accounting of microsite conditions could also 
improve estimates precision. The variance can also be reduced by 
increasing the sampling effort, by means of increasing the number 
of camera placement (Schaus et  al.,  2020). Eventually, a protocol 
equivalent to adaptive distance sampling surveys can be applied. It 
consists of conducting an additional survey effort in those sampling 
points where more animals are recorded, which is especially useful 
in populations distributed patchily and sparsely (Buckland,  2004). 
Simulations have shown that a situation of high variance in encoun-
ter rate with around 20–25 camera traps is expected to yield a co-
efficient of variation around 0.40 (figure 4, Rowcliffe et al., 2008), 
which is consistent with the results of our study (mean CV of 0.36 
in REM estimates). Accordingly, to obtain a CV lower than 0.20, re-
quired for effective wildlife management (Williams et al., 2002), the 
effort with REM will be around 100 camera traps. Regarding CT-DS, 
Bessone et al. (2020) obtained an average CV of 0.37 in spite of sam-
pling 750 locations. In this respect, Cappelle et al. (2021) concluded 
that a wide variety of survey designs can be applied to achieve CV 
between 0.10 and 0.20 with CT-DS, for instance, with at least 100 
sampling days at as few 50 camera trap placements. Future field 
studies are needed to evaluate the improvement in precision regard-
ing the number of sampled locations. For instance, a moving survey 
(i.e. place camera traps in one place and then move them to a new 
location) will increase the sampled locations, and in consequence 
precision. This is a relatively cost-effective approach as it reduces 
the required number of devices.

Our application of the three methods explored here was free-
standing, in that it derived all the necessary parameters exclusively 
from the camera trap survey, without references to auxiliary data that 

is a habitual practice in previous studies (Caravaggi et al., 2016; Cusack 
et al., 2015; Manzo et al., 2012). In this respect, it should be noted that 
more accurate day range values are estimated from camera trap data, 
because telemetry usually underestimates this parameter (Palencia 
et al., 2021; Rowcliffe et al., 2012). Derive all the parameters from the 
camera trap data required additional effort in the field to identify ref-
erence objects at known distances from camera traps (Figure 1), and 
these time costs were similar across methods. However, time costs for 
image processing were distinctly different across methods (Table 1). 
The REST method was the least-time consuming, mainly because 
not all the animals captured by the camera traps were considered in 
the analysis, only those that crossed the focal triangle of detection 
defined within the wider camera field of view. Although this can be 
considered as a strong point for REST, we should highlight that this 
can limit the applicability of the method when low-density species 
are monitored, with low sampling efforts, in which the expected en-
counter rate can be not enough to obtain precise estimates. On the 
other hand, the image processing effort for CT-DS was relatively high 
in this study (Corlatti et al., 2020), but it could be substantially re-
duced using a snapshot interval longer than 2 s, or by analysing only 
the data collected in the peak of the activity pattern, assuming that all 
individuals in the population are active at this time (Howe et al., 2017). 
In this respect, CT-DS could be proposed as a useful method to mon-
itor low-density species because the number of records is increased 
when the same individual spends more than one snapshot moment in 
front of the camera trap. In terms of the effort needed to analyse the 
data, CT-DS is the most time-consuming method, mainly because the 
exploratory analyses, goodness-of-fit testing and model selection are 
critical (Howe et al., 2019).

Finally, we would like to discuss how to deal with those animals 
that react to the camera traps, since these reactions influence time 
spent in front of the camera, and can therefore result in bias. While 
REM and REST can adjust for this by discarding records with evi-
dent reactions for the purposes of speed and staying time estima-
tions, respectively (see ‘Shared features between methods’ section 
in Materials and methods), there is no consensus on how to deal with 
this problem in CT-DS. It is well described that attraction or avoid-
ance of observers is expected to induce bias in distance sampling 
(Buckland et al., 2001). Because of this, some authors proposed to 
discard the first period of the survey to allow animals to become 
accustomed to the camera traps (Howe et al., 2017); other authors 
discarded all the observations where animal behaviour indicated 
a reaction to the camera traps (Bessone et al., 2020) while others 
discarded some data to obtain a reasonable detection function fit-
ting (Cappelle et al., 2019). In our opinion, none of these approaches 
totally solves the bias induced by reactive animals, and further re-
search is needed to solve this problem in CT-DS.

In conclusion, this is the first study in which REM, REST and CT-
DS have been compared. The results showed no significant differ-
ences in terms of density estimates (in five of the six populations 
sampled), or in precision; which clearly enhances the applicability 
of any of these methods. However, a high priority for future devel-
opment is to improve the precision of estimates (e.g. as function of 
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the number of camera traps placements) which would notably in-
crease the utility of these methods. Considering the human effort 
and the optimization of the camera trap records, REST could be 
recommended in scenarios of highly abundant species, CT-DS could 
be recommended for low-density species, while if the camera traps 
used do not have a reliably rapid response time, REM may be prefer-
able because it can be applied with less risk of bias in this case. But it 
should be noted that camera traps with fast response and recovery 
times are highly recommended for the three methods.
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