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Abstract

We study the effects of incentivizing individuals to use healthcare in the presence of congestion

externalities. Our theoretical model highlights interesting interactions between the size and

shape of the congestion externality, and what drives selection into institutional delivery.

We focus on a conditional cash transfer program (JSY) in India that paid women to give

birth in medical facilities. In areas with below-median health-system capacity, JSY increased

perinatal mortality. We provide evidence that a congestion externality was a key driver

of these harmful effects. Moreover, JSY reduced childhood vaccination rates suggesting a

diversion of resources away from routine services.
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1 Introduction

It is increasingly common for governments to incentivize individuals to use healthcare.1

The rationale is clear; barriers, such as a lack of information or a lack of resources, might

prevent individuals from seeking out beneficial care. However, health systems in many

low- and middle-income countries (LMICs) that use demand-side incentives are often poorly

resourced and provide poor quality care.2 Given this, incentivizing demand could backfire.

The additional demand may lead to a congestion externality if, by causing fixed resources to

be spread more thinly, it results in the quality of care falling for everyone, including those

who would have used the care without any subsidy. Moreover, when healthcare quality is

poor, the marginal group who take up care due to the incentive may not benefit. Finally, to

manage an increase in demand for the incentivized care, providers may substitute effort and

resources away from other types of care, which could risk a wider deterioration in quality.

This paper examines these issues in the context of the world’s largest conditional cash

transfer program: India’s Janani Suraksha Yojana (JSY). Introduced in 2005, JSY pays

substantial cash incentives – around 28 times the average rural daily wage for casual labor –

to women who give birth in a health facility.3 The scheme does not provide increased funds

to facilities to cover the cost of additional deliveries. JSY is widely credited with causing a

rapid decline in home births, which fell from 80% in 2005 to 40% in 2011 in the states where

the program focused.4 Yet rigorous research has found that it had no overall impact on

birth outcomes (Powell-Jackson, Mazumdar, and Mills 2015). This is puzzling since a set of

simple medical procedures can mitigate the vast majority of mortality risks associated with

childbirth for both mother and infant (Lawn et al. 2005). The pervasive poor quality and
1For example, many conditional cash transfer programs condition payments on the take-up of healthcare

(Lagarde et al. 2009).
2See, for example, Das et al. (2016), Das et al. (2008) and Mohanan et al. (2015).
3The JSY payment is Rs. 1400 in the states we focus on (see Section 3). The average daily wage for

casual labor (across rural areas) in 2004/5 was Rs. 48.89 (NSS, 61st round).
4Authors’ calculations using DLHS-III and NFHS-IV.
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low capacity of much of India’s government health system provides a potential explanation

for why bringing births into medical facilities had no overall effect on health. At less than

1% of GDP, India’s public spending on health is a third (relative to national income) of

other major emerging economies and the system has a huge shortage of qualified health

professionals (Rao et al. 2011) compounded by high rates of absenteeism (Chaudhury et al.

2006).5

This study explores the effects of incentivizing the demand for healthcare in this highly

supply-constrained system. We begin by creating a flexible general-equilibrium model of

birth outcomes and families’ decisions about whether to deliver at home or in a facility.

Crucially, we allow for births to be heterogeneous in their complexity and in how much they

have to gain (in expectation) from a facility delivery. We allow births to sort into facilities

endogenously, whether partially or fully or not at all on the basis of these gains. Key to

our model is a congestion, or overcrowding, externality that causes the expected riskiness of

all facility births, and especially the most complex facility births, to increase when overall

facility usage rises relative to facility capacity.

In our model, introducing a subsidy has two effects. First, it results in private benefits (or

harms) to the marginal births that switch due to the subsidy. Second, it results in social costs

to the births that already occurred in facilities, the inframarginal facility births, which now

become riskier due to increased congestion. The degree to which births select into facility

delivery based on their private gains plays an important role in shaping both effects. For

example, in the extreme case of perfect selection on gains (a classic Roy model), the marginal

births will be harmed by being incentivized into facilities since these births were making a

privately optimal choice to deliver at home before the subsidy. What’s more, in this case the

inframarginal facility births who will be exposed to the additional congestion are the most
5In 2005 (2018) India’s public spending on health was 0.8% (0.9%) of GDP while Brazil’s was 3.3% (3.9%)

of GDP, Russia’s was 3.1% (3.0%), China’s was 1.4% (2.9%), and South Africa’s was 2.8% (4.4%). Source:

http://apps.who.int/nha/database.
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complex births, which are precisely the births that are most harmed by congestion. In this

extreme case, then, a subsidy unambiguously worsens health outcomes.

On the other hand, our model highlights that there are circumstances where a subsidy

could improve health outcomes. The more complex are the marginal births brought into

facilities due to the subsidy, the more they will benefit from the move. At the same time,

the fewer complex births that occur in facilities to start with, the smaller the aggregate size

of the congestion externality. Weak initial sorting on gains but a marginal utility of receiving

the subsidy that is increasing in birth complexity could give rise to such conditions.6 While

how the impact of the subsidy varies with respect to pre-existing capacity is theoretically

ambiguous and is ultimately an empirical question, we show that there are several channels

through which higher pre-existing capacity increases the chance that a subsidy will be useful.

We examine the impacts of JSY empirically, focusing on two dimensions of heterogeneity

that our model suggests will be key: pre-existing system capacity and birth complexity. We

use geographic disparities in the pre-existing capacity of district health systems – disparities

caused by central government’s allocation of funds and variation in states’ political priorities

(Kumar et al. 2011) – to assess how the effects of stimulating demand depend on supply

constraints. Specifically, exploiting exogenous variation in JSY’s rollout, we examine whether

the pre-existing capacity (specifically the numbers of doctors, nurses, and beds relative to

the size of the population served) affected its impacts.

We find that JSY led to a large average increase, of 7.86 percentage points, in the prob-

ability that births were delivered in health facilities. In aggregate, this doubled the number

of institutional deliveries per day for which each government-run secondary care facility was

responsible. The increase in deliveries per facility was particularly stark in districts with

below-median capacity in the secondary care system. Here caseload increased by a factor of

2.5, from 1.92 deliveries per facility per day to 4.80. We show evidence that while there was
6For instance, poorer women may have less access to prenatal care which might increase their average

birth compexity while poorer women might also have a higher marginal utility of consumption.
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some degree of sorting on gains – more complex births were more likely to occur in facilities

than less complex births both before and after JSY – JSY did not disproportionately draw

in complex births. More and less complex births were equally likely to be marginal to the

subsidy, suggesting that JSY was not particularly effective at targeting the deliveries that

would have privately gained the most from moving to a facility.

We show that in these districts with below-median capacity in the secondary healthcare

system, the average risk of perinatal mortality increased as a result of JSY by 0.90 percentage

points, or by 24.3% relative to the rate before JSY. While JSY caused the same increase in

the institutional delivery rate in areas with above-median pre-existing capacity, it had no

impact on perinatal mortality, neither positive nor negative, in these areas. We further show

that this increase in perinatal mortality risk was entirely concentrated on complex births.

We show that this pattern of heterogeneity can, in our model, only be rationalized by the

presence of a congestion externality. Moreover, we find that JSY reduced the probability

that infants received any check-up between 2 and 10 days after a facility birth, which could

indicate that facilities reacted to congestion by discharging women earlier, or by reducing

check-ups for babies still in inpatient care.

Our empirical analysis goes further by examining whether the above responses are short-

lived and whether the effects of the subsidy spill over other areas of care. We present more

tentative evidence suggesting that harmful effects of JSY in low-capacity areas may have

persisted up to 5 to 10 years after the start of JSY: over this period, low-capacity areas

with higher compliance with JSY had higher mortality than low-capacity areas with lower

compliance. And, finally, we also find that stimulating demand for institutional delivery had

adverse spillover effects on rates on the proportion of children who were up to date with all

vaccinations, which fell by 2.05 percentage points.

Our findings have clear implications for policy. They show that the capacity of a health

system to deliver a rapidly increasing amount of the incentivized care at sufficient quality and

without reducing the quality of services should be a first-order consideration when deciding
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whether to adopt demand-side incentives. These considerations are likely to be particularly

crucial in determining whether to incentivize the take-up of invasive, time-consuming and

potentially risky procedures like institutional delivery.

Our paper contributes to several literatures. First, it contributes to the study of demand-

side incentives in health, which have proved especially popular policies in LMICs (Dupas and

Miguel 2017; Kremer and Glennerster 2011), by bringing an explicit focus on congestion and

by offering a flexible general-equilibrium model of the effects of incentives in the presence of

congestion externalities. Demand incentives are generally effective at increasing uptake of

healthcare (Giedion and Díaz 2010; Lagarde et al. 2009) and therefore, unless there is spare

or rising capacity in the system, will increase congestion. The mixed evidence on the impact

of such incentives on health is consistent with the idea that congestion externalities might be

key to shaping their effects. For less invasive health interventions, such as the health check-

ups, vaccinations, or nutrition advice that early conditional cash transfers in Latin America

typically incentivized, health benefits have sometimes, but not always, been found (see review

by Lagarde et al. (2009)). However, when demand for more invasive procedures has been

targeted with no change to the supply side studies, including previous studies of the effect

of JSY, have generally not found health benefits (Giedion and Díaz 2010; Powell-Jackson

et al. 2015; Okeke et al. 2020; Das and Hammer 2014; Randive et al. 2013). Conversely,

where the supply side has been improved simultaneously, health benefits have often followed

(Gruber et al. 2014; Miller et al. 2013; Cesur et al. 2017). Our paper contributes by directly

examining the role of supply in explaining heterogeneity in how demand-inducing policies

affect health. We do so within a single health system and focus on invasive procedures

whose riskiness depend directly on quality. And finally, by exploring heterogeneity by case

complexity, we can provide empirical evidence that congestion externalities, rather than

only the private impacts of healthcare on the marginal cases, are important in limiting the

effectiveness of demand-inducing policies in low-capacity areas.

Second, this paper adds to the evidence on the importance of healthcare quality. In
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many health systems in low- and middle-income countries, including in rural India, inputs

such as trained health professionals and equipment are often not effectively translated into

evidence-based care (Das et al. 2018; Das et al. 2016; Das et al. 2008; Mohanan et al. 2015;

Chaudhury et al. 2006). Nevertheless, we show that even if existing health professionals

and equipment are not used as effectively as they might be, their availability can still be

an important predictor of how increased use of healthcare translates into health outcomes.7

Interestingly, we find that capacity in secondary health facilities is a very important predictor

of the impacts of increasing institutional deliveries on health.

Third, it contributes to the literature on congestion externalities in health systems. Over-

crowding has been the focus of much attention within the medical literature (Hoot and

Aronsky 2008), and a growing number of papers have also considered these issues from an

economic perspective (Freedman 2016; Hoe 2019; Marks and Choi 2019). We focus on India’s

public health system, which, similarly to public health systems in many LMICS, operates

with far fewer resources than the USA’s or UK’s systems where the empirical economic

research on congestion externalities has focused to date. We might expect congestion ex-

ternalities to play a more prominent role in such resource-constrained settings. Differently

from much of the empirical work, which has focused on day-to-day fluctuations in demand

(Freedman 2016; Hoe 2019; Marks and Choi 2019), we focus on a context where a high level

of congestion is a constant feature of the health system and thus we explicitly model how

patients endogenously react to congestion in choosing whether or not to seek healthcare.

The final literature we contribute to considers the spillover effects from policies that target

one aspect of healthcare onto another, in line with Holmstrom and Milgrom (1991). Previous

work has found that when health providers are incentivized in reimbursement contracts to

carry out more of a certain procedure, this often comes at the expense of non-incentivized
7While it might be the case that the presence of health professionals and beds are correlated with other

drivers of care quality, we consider it likely that these physical and human resources are causally important

determinants of quality in our setting.
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tasks (e.g. Dumont et al. (2008)). Our paper is the first to assess whether incentivizing the

demand for specific procedures leads to a deterioration in the use or quality of others. We find

that it does. Whether such reallocations are optimal depends on the relative productivity

of different procedures. In this case, however, the reallocation of resources induced by JSY

provided no aggregate health benefits but caused a reduction in childhood vaccinations.

This paper proceeds as follows. Section 2 sets up our conceptual framework. Section

3 provides a basic overview of JSY while Section 4 discusses our data, choice of sample

and construction of measures. Section 5 presents our methods and results for assessing the

impact of JSY and discusses the different mechanisms. Section 6 concludes.

2 Conceptual Framework

We begin our exploration of the impacts of JSY by creating a theoretical model to clarify the

different mechanisms through which subsidizing facility demand might affect birth outcomes.

To this end, we develop a general equilibrium model of both health and facility choice

that allows births of heterogeneous complexities to select into facility delivery endogenously.

Crucially, the model allows for congestion externalities whereby an increase in overall facility

usage increases the risk associated with facility delivery for all births.

Given the model’s various mechanisms, it does not, in general, provide an unambiguous

prediction of whether or not subsidizing demand will improve health outcomes. However, it

nests a classic Roy model which does give unambiguous predictions. Instead, our goal is to

characterize the features of the underlying environment that make a positive subsidy more

or less likely to be optimal.

2.1 Set-up

Determinants of health Births are indexed by i and may result in either a good health

outcome (Hi = 1) or a bad health outcome (Hi = 0). We allow births to be heterogeneous
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in their ex-ante risk, in how much they gain or lose from facility delivery, and in the degree

to which they suffer from congestion. We summarize this heterogeneity by allowing births

to differ along one underlying dimension: their “complexity”, denoted by ηi. Without loss of

generality, we assume that ηi is uniformly distributed across the interval [0, 1] with 0 being

the least complex birth and 1 being the most complex.

Women may either give birth at home (Fi = 0) or in a health facility (Fi = 1). We let

the ex-ante probability of a good health outcome for home birth i be denoted πh(ηi) while

the ex-ante probability of a good health outcome from a facility birth is πf (F/X, ηi). We

make the following assumptions over how complexity affects the private costs/benefits from

facility birth independently of the presence of any externality:

A1. More complex births are always more risky than less complex births happening in the

same location: dπh(ηi)
dηi

< 0 and dπf (F/X,ηi)
dηi

< 0, ∀F/X.

A2. More complex births have more to gain (or less to lose) from facility delivery: ∂πf (F/X,ηi)
∂ηi

−
dπh(ηi)
dηi

> 0, ∀F/X

Our model nests a model with no congestion externality. In that case, we have assump-

tions A1 and A2 and a “no externality” condition (i.e. dπf (F/X,ηi)
d(F/X) = 0 ∀ηi). If a congestion

externality is present, then the probability of a good health outcome from a facility delivery

will depend negatively on the current crowding of the health system F/X, with capacity

X and overall usage F ≡
∫
i Fidi, and this is particularly so for highly complex births. In

particular, we assume:

E1. Increased congestion (F/X) increases the risk for all facility births: dπf (F/X,ηi)
d(F/X) < 0, ∀ηi

E2. More complex births are at least as harmed by congestion as less complex births:
d2πf (F/X,ηi)
d(F/X)dηi ≤ 0

E3. The harmful effects of congestion on the health of facility births are increasing in current

congestion: d2πf (F/X,ηi)
d(F/X)2 < 0
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Preferences In the absence of any subsidy, let utility over place of birth be driven by

a consideration for health and a consideration for non-health costs and benefits, with the

weight given to health being λ ∈ [0, 1]. Then let utility be derived from a subsidy s at a

marginal rate of θ(ηi), with θ(ηi) > 0, ∀ηi, which we consider as the marginal utility of

consumption and which is allowed to depend on the complexity of the birth. The possibility

of this dependence can capture, for example, the idea that more complex births might be

disproportionately from poorer families who may derive higher utility from the subsidy than

richer families. Overall, then, we denote utility:

u(Hi, Fi, ηi, νi) = λHi + (1− λ)Fiνi + Fiθ(ηi)s (2.1)

where νi is an idiosyncratic preference for facility delivery. Given this preference is likely

to be formed of many different factors, for example tastes, family tastes, social norms, or

distance to a facility, the central limit theorem suggests νi will be well approximated by

a normal distribution. We assume this distribution is independent from birth complexity:

νi|ηi ∼ N(ν̄, σ2
ν). Expected utility is thus:

Ũ(Fi, ηi, νi) = λ[Fiπf (F/X, ηi) + (1− Fi)πh(ηi)] + (1− λ)Fiνi + Fiθ(ηi)s (2.2)

Although not formally modeled, we note that a lack of responsiveness to ex-ante risk

(i.e. a low λ) could be driven by uncertainty over birth complexity rather than families not

valuing health outcomes per se.

2.2 Social Planner’s Problem

It is informative to consider the allocation of births to facilities that a social planner trying

to maximize overall health would choose.8 We assume that the social planner can perfectly

observe each birth’s complexity, and thus each birth’s ex-ante risk conditional on place of
8This is equivalent to a planner maximizing welfare when she does not know idiosyncratic preferences.
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Figure 1: Social Planner’s Problem

Notes: Figure plots the private benefit to the marginal birth and the social

marginal cost to all births already in facilities as more births enter under the

condition that births enter in the order of their complexity, from most complex

first to least complex last. Points B and C are discussed in Section 2.4.1.

delivery. Conditional on allocating a fraction F of births to facilities, the social planner will

always assign the fraction F with the highest complexity. In other words, she will perfectly

sort births based on their ex-ante gains from facility delivery. The red line in Figure 1 plots

the private benefits gained by the marginal births as the planner allocates more and more

births to facilities. This curve slopes downwards for two reasons: (1) as the proportion

of births occurring in health facilities increases, the complexity of the marginal birth falls

and with it the idiosyncratic gain for the marginal birth falls; (2) as the total number of

births in facilities increases, crowding increases, facility quality decreases, and the gain for

the marginal births decreases.

In choosing how many births to allocate to facilities, the planner will trade-off gains

to the marginal births with the marginal increase in the congestion externality (the Social

Marginal Cost, or the dashed line in Figure 1), which is experienced by all births already

happening in facilities. The social planner chooses F to equate the social marginal cost from
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moving an additional birth to the facility with the private marginal benefit to the birth that

is moved. This social optimum is marked as point A on Figure 1.

2.3 Decentralised location choice and sorting

We next explore the decentralized equilibrium where families choose their birth location

based on their own preferences and ex-ante risk, without any consideration for externalities

generated by their choice. Given our set-up, the probability that a birth of complexity ηi

will occur in a facility given crowding F/X and subsidy s, which we define F̄ (ηi, F/X, s), is:

F̄ (ηi, F/X, s) = Pr
(
λπf (F/X, ηi) + (1− λ)νi + θ(ηi)s+) > λπh(ηi)

)
= Φ

( λ
1−λ [πf (F/X, ηi)− πh(ηi)] + 1

1−λθ(ηi)s+ ν̄

σ2
ν

)
(2.3)

In equilibrium, the overall proportion of births occurring in a facility is the fixed point, F ,

such that:

F =
∫ 1

0
Φ
( λ

1−λ [πf (F/X, ηi)− πh(ηi)] + 1
1−λθ(ηi)s+ ν̄

σ2
ν

)
dηi (2.4)

In appendix section B.2, we show that dF
ds

> 0, i.e. that a subsidy will unambiguously

increase the proportion of facility births. The degree to which births of complextiy ηi are

marginal to the subsidy is described by dF̄ (ηi,F/X,s)
ds

(Equation (B.8) in Appendix B).

2.4 Health impacts of the subsidy

Let H̄(ηi, X, s) be the proportion of good health outcomes for births of complexity ηi when

capacity is X and the subsidy is s:

H̄(ηi, X, s) = F̄ (ηi, F/X, s)
[
πf (F/X, ηi)− πh(ηi)

]
+ πh(ηi) (2.5)
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Differentiating with respect to s we see that the marginal impact of a subsidy on the

proportion of good health outcomes for births complexity ηi is composed of two effects:

dH̄(ηi, X, s)
ds

= dF̄ (ηi, F/X, s)
ds

[
πf (F/X, ηi)− πh(ηi)

]
︸ ︷︷ ︸

(1) Private Cost/Benefit to Marginal Birth(s)

+ F̄ (ηi, F/X, s)
dπf (F/X, ηi)
d(F/X)

1
X

dF

ds︸ ︷︷ ︸
(2) Crowding externality on current facility births

(2.6)

Appendix B.1 gives the full expressions for the total differentials.

In words, effect (1) is the expected private health cost or benefit to marginal births of

complexity ηi. It is the difference in ex-ante risk between facility and home births for births of

complexity ηi at the current levels of crowding (F/X) weighted by the extent to which births

of this complexity are marginal to the subsidy. Effect (2) is the congestion externality. It is

the reduction in the probability of a good health outcome from facility births of complexity

ηi that occurs due to the overall increase in facility births due to the subsidy. This is scaled

by the proportion of births of complexity ηi that will be subject to this externality (i.e. the

proportion of births of complexity ηi currently happening in facilities).

To get the overall effect we average across complexities:

H(X, s) =
∫ 1

0
H̄(ηi, X, s) dηi ,

dH(X, s)
ds

=
∫ 1

0

dH̄(ηi, X, s)
ds

dηi (2.7)

Overall, a positive subsidy will be optimal whenever there is a marginal gain in health

from moving from a zero subsidy to a marginally positive subsidy, i.e. whenever dH(X,s)
ds
|s=0>

0. Whether a positive subsidy is optimal will depend on the sign and magnitude of the private

marginal benefits accrued, and, if these are positive, then whether they are large enough to

offset the congestion externality imposed on births currently happening in facilities. We now

discuss each effect in turn.
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2.4.1 Private Benefits/Costs to the Marginal Births

The sign and size of the marginal private costs or benefits will depend on which births are

marginal to the subsidy. The more complex the set of marginal births are, the more the

marginal births will gain from being moved into facilities. The precise amount they will gain

(πf (F/X, ηi)−πh(ηi)) will be determined by shape of πf (., .) and πh(.) as well as the current

capacity X and usage F .

In our framework, the complexity of the marginal births depends both on: (1) the weight

that families give to health in the decision about where to deliver, λ, and (2) on how the

marginal utility from the subsidy (θ(ηi)) varies across the complexity distribution. Figure

2 illustrates how varying these two factors changes, across the complexity distribution, the

prior probability that births will occur in facilities (plot a), the degree to which births are

marginal to the subsidy (plot b) and the private marginal benefits/harms from the subsidy.

Each example scenario is calibrated to match pre-JSY mortality rates (3.7%), facility delivery

rates (20%) and to have a constant aggregate responsiveness of facility usage to the subsidy.

As shown by the “high sorting” (blue dashed lines) example in Figure 2, a high λ, indicating

a high degree of selection on gains, implies that the most complex births already largely occur

in facilities even without the subsidy (plot (a)), which means that they are not marginal to

the subsidy (plot (b)). In this scenario, the subsidy will primarily draw in the next-most

complex births out of the births currently happening at home (plot (b)).

As λ approaches 1, the model approaches a pure Roy model with complete selection on

gains. In this case, without the subsidy, births select into facilities in the order of their com-

plexity (from the most complex first to the least complex last) up until the point where the

marginal private health gain to the last birth is zero (marked by point B on Figure 1). While

even in the absence of the subsidy, the congestion externality means that too many births

occur in facilities relative to the social optimal (point A on Figure 1), subsidizing demand

in this case unambiguously worsens health. Subsidizing demand under perfect selection on

gains brings in marginal births (point C on Figure 1) that are harmed from occurring in a
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facility (since all births that would gain were already happening in facilities). And this is on

top of any costs from the overcrowding externality.

Figure 2: The same increase in institutional delivery rates due to a subsidy will translate into
higher health gains if there is little initial sorting on health gains but the marginal utility of
consumption is increasing in birth complexity.

(a) Prior prob. of facility birth:
F̄ (ηi, F/X, s)|s=0

(b) Marginality to subsidy:
dF̄ (ηi,F/X,s)

ds |s=0

(c) Private Marginal Benefit:(
dF̄ (ηi,F/X,s)

ds [πf (F/X, ηi)− πh(ηi)]
)
|s=0

Notes: Figure plots: (a) the prior probability of facility birth by complexity (equation (2.3)); (b) marginal-

ity to the subsidy by complexity (equation (B.8)); and (c) the private marginal benefit from the subsidy by

complexity (equation (2.6)). Simulations use the following functional forms: πh(ηi) = Φ(πh0 +πh1 (ηi−0.5)),

πf (F/X, ηi) = Φ(πf0 + πf1 (F/X) + πf2 (ηi − 0.5) + πf3 (F/X)(ηi − 0.5)) and θ̄(ηi) = θ0 + θ1(ηi − 0.5). In

the “high sorting” scenarios, we set λ = 0.9 while in the “low sorting” scenarios we set λ = 0.2. In the

“constant MU” scenarios we set θ1 = 0 while in the “increasing MU” scenario we set θ1 = 0.5. We set:

πh1 = −0.8, πf1 = −0.15, πf2 = −0.5 and πf3 = −0.5. We calibrate πh0 , π
f
0 , and ν̄ to match pre-JSY

observed rates of institutional delivery (20%) and perinatal mortality (3.7%) under the (not required)

restriction that the riskiness of home and facility births are the same for the least complex births. We

calibrate θ0 to give an overall responsiveness to the subsidy of dF/ds = 1.

If births respond only very weakly to ex-ante health risk in selecting into facilities (i.e. if λ

is low), then there is a pool of highly complex births that currently happen at home and could

gain a lot from being moved into facilities. However, if the marginal utility of consumption

θ(ηi) is independent of ηi (as in the red solid line in Figure 2), the subsidy will always draw

in the births that were already on the margin of choosing facility delivery. In the case of

low selection on gains, these will be births with a high idiosyncratic preference for facility
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delivery drawn from across the complexity distribution. However, if the marginal utility of

consumption θ(ηi) is increasing in birth complexity (as demonstrated by the black dashed

line in Figure 2) then more complex births will be more likely to be marginal. Since more

complex births have more to gain from facility delivery, this would result in larger private

gains from the subsidy. Such a scenario might arise if complex births are disproportionately

from poorer families, who might for example, have poorer access to prenatal care. We might

expect that poorer families might have a higher marginal utility of consumption.

2.4.2 Congestion Externality

Figure 3: Under sorting on gains, the costs of the congestion externality will be concentrated
on complex births. Overall costs will be larger the more concentrated the harmful effects of
crowding are on complex births.

(a) Prior prob. of facility birth:
F̄ (ηi, F/X, s)|s=0

(b) Marginal reduction in
facility quality: dπf (F/X,ηi)

ds |s=0

(c) Social Marginal Cost:(
F̄ (ηi, F/X, s)dπ

f (F/X,ηi)
ds

)
|s=0

Notes: Figure plots : (a) the prior probability of facility birth by complexity distribution (equation

(2.3)); (b) the marginal reduction in facility quality due to the subsidy (equation (B.4)); and (c) the

social marginal cost from the externality (equation (2.6)). We use the functional form assumptions,

parameter assumptions and calibrations outlined in 2 except here we set πf1 = −0.2 and πf1 = −0.5

for the “larger and concentrated” externality case, and πf1 = −0.2 and πf1 = 0 in the “smaller and

unconcentrated” case. Further, we set λ = 0.9 and θ1 = 0.

In the presence of a congestion externality, i.e. if E1 through E3 are true, then an increase

in aggregate facility usage due to the subsidy will decrease the probability that facility births

of all complexities result in a good outcome. An important thing to notice is that in our
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framework it will always be the most complex births that will be most harmed by the new

congestion externality. This is for two reasons. First, under sorting on gains, more complex

births are more likely to occur in facilities to begin with and therefore to be exposed to the

congestion. Second, by assumption E2 more complex facility births are more harmed by

congestion than are less complex facility births. The comparison between the blue dashed

lines and the red lines in Figure 3 demonstrates that, under positive sorting on gains, the

more concentrated the negative impacts of congestion are on the most complex births, the

greater the total harms due to the externality. More generally, the more births that occurred

in facilities to begin with and the more elastic total facility usage is to the subsidy, the greater

the size of the externality.

2.4.3 Impact of pre-existing capacity

How pre-existing capacity, X, shapes the impact of the subsidy will, in general, be theoret-

ically ambiguous since areas with different capacities will be in different equilibria to start

with. To provide intuition, it is informative to consider the extreme case of no sorting on

gains (λ = 0) where the initial equilibrium is independent of capacity. Here births only enter

facilities due to idiosyncratic preferences unrelated to health risk. Therefore the proportion

of births already occurring in facilities, the proportion of births drawn in by the subsidy,

and the complexity of the marginal births will all be independent of capacity. In this case,

higher pre-existing capacity will lead unambiguously to the subsidy being more beneficial (or

less harmful) because higher capacity: (1) increases the health gain for marginal births that

enter facilities; (2) means the identical absolute increase in facility usage would translate

into a smaller increase in congestion F/X thus reducing the size of the marginal crowding

externality; and (3) means additional increases in congestion will be less harmful because

higher-capacity areas are starting from a lower initial level of congestion (Assumption E3).

When there is sorting on gains, including in the extreme case of the Roy model (λ = 1),

how capacity affects the impact of a marginal subsidy will be theoretically ambiguous, as we
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document in Appendix B.3. Thus this is ultimately an empirical question. Intuitively, the

same three factors as listed in the paragraph above go in the direction of a subsidy being

more useful, or less harmful, in higher-capacity areas.910 On the other hand, though, higher

capacity areas will have more births already occurring in facilities, and thus more births will

suffer from the increase in congestion. The greater the extent to which each additional unit

of congestion is more harmful to birth outcomes than the last, the more likely it will be that

low-capacity areas will be at particular risk from the subsidy backfiring.

2.4.4 Conclusions from model

Our model illustrates that the impact of a demand subsidy for facility delivery is theoretically

ambiguous, rendering it a key question for empirical research. It highlights that the impact

of a subsidy will be composed of two key effects: first, the benefits/costs to the marginal

births; and, second, social costs to all facility births due to the congestion externality. The

distribution of costs/benefits across the complexity distribution will be informative on the

role of a congestion externality relative to the aggregation of private gains/losses to the

marginal births. Particularly, conditional on being marginal, private benefits are likely to

be concentrated on more complex births and any private costs concentrated on less complex

births. Conversely, any social costs due to a congestion externality will be concentrated on

complex births.

The model shows how a positive subsidy for facility delivery could be optimal if: (i) the

private health benefits of facility delivery to the marginal births are high; and (ii) the costs

due to the crowding externality faced by births already in facilities are low. The first of

these conditions is more likely if the facilities are less crowded (more capacity, less usage) to

begin with, and if it is more complex births are more likely to be marginal to the subsidy.

The second of these conditions is more likely if the effect of congestion on health is small
9In the extreme case of the Roy model, the private gain will be zero regardless of capacity.

10Note, we show in Appendix B.3.1 that private marginal gains may not be increasing in capacity if the
marginal utility of consumption θ(ηi) is increasing in complexity ηi
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and, more interestingly, if in the absence of the subsidy the births taking place in facilities

are few and of relatively low complexity, which is consistent with low selection on gains. On

the other hand our model indicates that perverse effects of a subsidy are more likely if the

subsidy attracts a lot of non-complex births, if the overcrowding externality is large, and if

the overcrowding externality is felt particularly strongly by more complex births.

Our model highlights that under selection on gains because areas with different capacities

are in different equilibria to begin with, how capacity shapes the usefulness of a subsidy is

theoretically ambiguous and is ultimately an empirical question.

3 JSY and Background on Institutional Delivery

JSY was launched in April 2005 with the aim of reducing maternal and infant mortality

through increasing rates of institutional delivery (Ministry of Health and Family Welfare

Government of India 2005). Just as before JSY, under JSY women can choose whether they

attend a primary facility or a secondary facility for their delivery. In addition, primary facil-

ities can make onward referrals to secondary facilities for births that require more specialist

intervention. We note that facilities may make strategic referrals to other facilities with more

capacity available but our data do not enable us to analyze such behavior directly. Given

that whether a birth ends up taking place in a primary or a secondary facility will depend

on a mixture of both the choice of the family and decisions made by health providers, we

focus simply on whether or not the birth occurred in any health facility.

There are many lifesaving procedures that can only be carried out in facilities or by

a trained birth attendant (Lawn et al. 2005) which generate a multitude of reasons why

facility delivery could improve birth outcomes, especially for more complex births. On the

other hand, evidence of poor quality in the form of few health professionals compounded by

absenteeism, a lack of physical resources, and the presence of dangerous pathogens could all

reduce the potential gains from facility delivery or even make facility delivery more risky
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than home birth (Das et al. 2016; Das et al. 2008; Mohanan et al. 2015; Chaudhury et al.

2006). We note, though, that under a congestion externality it could be case that all births

gain privately from facility delivery yet the aggregate impact of increasing facility delivery

on birth outcomes is negative.

We focus on JSY’s effects on rural households living in states where the scheme focuses

most of its attention. These are the states designated as “Low Performing States” based on

their low prior institutional delivery rates. In rural areas of these states, JSY is universal

and cash incentives are more generous than in either “High Performing States” or in urban

areas. Specifically, JSY provides financial incentives of Rs.1400, or USD 32, to all pregnant

women who give birth in a government health facility.11 JSY also provides incentives of Rs.

600, or USD 14, to community health workers for every pregnant woman they bring to a

facility. JSY did not provide any additional funding to help health facilities expand obstetric

services (Ministry of Health and Family Welfare Government of India 2005).

4 Data and Sample

We focus our analysis on the households JSY primarily targeted: rural households in the

nine states JSY designated as “Low Performing States”.12 Together, the rural population of

these states comprised 33.9% of India’s population in the 2001 census and 48.7% of India’s

deaths of infants under seven days of age between 1990 and 2001.13

11Exchange rate: 44 Rs./USD (April 2005). By contrast, in High Performing States only pregnant women

with a Below Poverty Line card are eligible and transfers are lower than in Low Performing States (Rs. 700).

Urban births receive lower transfers too (Rs. 1000).
12Uttar Pradesh, Chhattisgarh, Bihar, Madhya Pradesh, Rajasthan, Assam, Orissa, Jharkhand and Ut-

tarakhand. Jammu and Kashmir was also designated a “Low Performing State” however we estimate that

JSY only began in a single district before 2008 and so we drop it from all analysis.
13Calculated from DLHS-II using sample weights.
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4.1 Perinatal Mortality and Place of Birth

Data on perinatal mortality, defined as stillbirth after 22 weeks of pregnancy or death within

seven days of birth, come from the 2007/8 DLHS-III pregnancy roster for ever-married

women, which recorded all pregnancies since January 1, 2004. We focus on perinatal mor-

tality given its particular sensitivity to the quality of care during the birth (World Health

Organization 2006). We use all births – i.e. live births and stillbirths but excluding miscar-

riages and abortions – that occurred between January 1 2004 and December 31 2007 and

within nine quarters of JSY’s rollout in the district as our sample. We thus drop the 36

districts where JSY was not rolled out until after quarter 4 of 2007, which leaves us 256

districts. Table 1 provides sample descriptives. Place of birth is available for each respon-

dent’s most recent birth, and thus effects here should be interpreted as averages for this

sub-population.

4.2 Capacity

We construct measures of pre-existing capacity in each district using three inputs that are

easy to measure and over which national guidelines exist: (i) beds, (ii) doctors/medical

officers, and (iii) nurses/midwives. We distinguish between inputs in primary-care and

secondary-care facilities.14

We use the facility survey of the DLHS-II which, in 2003, surveyed government health

facilities in 370 of India’s 640 districts and in 182 of the 256 districts we focus on in this

paper.15 These data cover all secondary health facilities and a random sample of primary

health centers (PHCs).16 We estimate the number of beds, doctors and nurses/midwives per

10,000 of the rural population in each district’s primary and secondary care facilities using
14Secondary facilities comprise district hospitals, community health centers, rural hospitals, and first

referral units.
15The survey focused on districts that the earlier DLHS-I facility survey had not covered
16It covered all PHCs if the district had 30 or fewer and a random sample if the district had more.
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Table 1: Sample Descriptives

Mean Standard Deviation N
Birth Outcomes
Perinatal Mortality 0.0398 0.195 104057
Stillbirth 0.0153 0.123 104057
Died within 7 days | Live birth 0.0248 0.156 102461
Place of Birth
Home 0.723 0.447 81242
Government Hospital/CHC 0.124 0.330 81242
PHC 0.0598 0.237 81242
Private/NGO Hospital/Clinic 0.0926 0.290 81242
Mother Characteristics
Age 24.34 5.432 104057
Husband’s age 30.53 11.20 104057
Age at marriage 16.32 3.413 104057
Years of education 7.184 2.057 104057
Household Characteristics
Scheduled caste 0.198 0.399 104057
Scheduled tribe 0.164 0.370 104057
Other backward class 0.446 0.497 104057
Below poverty line 0.333 0.471 104057
Hindu 0.860 0.347 104057
Muslim 0.122 0.327 104057

population figures from the 2001 census. We graph these measures in Figure A.1. 17

We use exploratory factor analysis, adopting the principal-component method, to assess

the dimensionality of these six measures and to create summary indices. We first assess

dimensionality by running a single factor analysis. We estimate and rotate two orthogonal

factors with eigenvalues greater than one (the Kaiser criterion for retaining and rotating

a factor) which implies that these six measures can be well summarized by two underlying

factors: one primarily being informative for measures of secondary capacity and the other for

measures of primary capacity (factor loadings shown in columns (1) and (2) of Table A.1).

We next run two separate factor analyses for the primary and secondary capacity measures
17We scale the primary care ratios by the number of PHCs in the district in 2004 and trim all capac-

ity measures at the 99th percentile, available from: https://data.gov.in/resources/district-wise-availability-

health-centres-india-sept-2004. We use 2006 data for Uttar Pradesh as 2004 data is unavailable.
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to create summary indices for each without imposing orthogonality. These are the indices

that we use in our analysis and columns (3) and (4) show the loadings.

In our main analysis we use an indicator of whether the district had above- or below-

median pre-existing capacity in the primary and/or secondary system based on these factor

measures. We use the continuous measures in robustness analysis.

4.3 JSY rollout

We estimate JSY’s rollout from the DLHS-III. Each respondent was asked whether they

had received a payment through JSY or another state-specific scheme for their last birth.

Once JSY was rolled out in a district, all births in government institutions should have

received payments. We define JSY as being active in a district from the first quarter (after

its official launch) in which 25% of births that occurred in government institutions were

reported to have received a JSY payment in both that quarter and the following year.18

There is strong variation in the timing of implementation within and between states (Figure

A.2). In robustness analysis, we use an alternative, fractional measure of JSY intensity –

the proportion of eligible births that received the payment (see Figure A.3).

Since we hope to use the rollout of JSY to identify causal effects, we now examine how

the rollout relates to longer-run trends in our outcomes of interest – perinatal mortality

rates, institutional delivery rates, and vaccination rates. An association between the rollout

and already-existing trends could suggest that parallel-trends assumptions required for our

differences-in-differences approach to be valid might not be plausible. To this end, we use

the DLHS-II to calculate district-level changes in rates of institutional delivery, 7-day infant

mortality, and vaccinations between 1990 and 2001.19 We then run district-level regressions
18The latter condition prevents erroneous reports of respondents receiving JSY leading us to mistakenly

infer a too-early start date where there are few births recorded in a district-quarter cell.
19DLHS-II’s birth roster does not include stillbirths, so we check for parallel pre-trends only for 7-day

mortality. We use “short” differences for vaccination rates (between 2001 quarter 1 and 2002 quarter 4).

because the DLHS-II only contains vaccination information for a subset of recent births.
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of JSY’s start date on these changes interacted with the prior capacity of the district (Table

A.2). Columns 1, 4, and 7 show that the start date of JSY is uncorrelated with long-

run changes in these variables, confirming the finding of Powell-Jackson, Mazumdar, and

Mills (2015) that the rollout appears uncorrelated with prior trends. The other columns

of Table A.2 show that the start date of JSY is correlated with capacity in the primary

and secondary care sectors, but not with the interaction of pre-existing capacity with the

long-run changes. Appendix Figures A.4, A.5, and A.6 provide a more detailed study of the

relationship between these prior trends and the rollout and find no evidence that districts

where JSY rolled out at different points were on different trends before the program.

5 JSY’s Impact on Birth Outcomes

5.1 Empirical strategy

We seek to assess the causal impact of JSY on place of birth and perinatal mortality and

how these impacts vary by the pre-existing capacity of the district health system. To this

end, we exploit the rollout of JSY across districts between its formal launch in April 2005

and the end of 2007. Impacts may vary with the time JSY had been operational (“event

time”) if, for example, it took time for all households to hear about the scheme or if facilities

adapted gradually to the new demand. For each outcome, we thus begin our analysis with

an event study to estimate the effect of JSY at each event-time period k. Specifically, we

estimate the following linear probability model:

Yibdt = α +
9∑

k=−9
βk1{Kibdt = k}+ θb + θd + θt + νibdt, (5.1)

where Yibdt denotes our outcome of interest (perinatal mortality or place of birth) for birth

i, of birth order b, in district d, in quarter t. Kibdt denotes the event time (in quarters) since

JSY became active in district d, with Kibdt = 0 in the quarter of initiation. θb , θd and
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θt are, respectively, birth-order, district and quarter-of-birth fixed effects. νibdt is the error

term which we allow to be arbitrarily correlated amongst births within a district over time

by clustering standard errors at the district level (Bertrand et al. 2004).

We do not have a large “always untreated” sample as JSY had rolled out to almost all

districts by the end of our sample period. Therefore, we must restrict two lags to identify

the model (Borusyak and Jaravel 2017); we thus set β−9, the first event period, and β−1,

the period immediately before JSY’s rollout, to zero. The specification allows us to test for

differences in non-linear pre trends – by testing the null hypothesis H0 : β−8 = ...β−2 = 0

– but not for differences in the linear component of pretrends (Borusyak and Jaravel 2017).

This test complements our earlier analysis, in Section 4.3, which suggested that the rollout

was unrelated to longer-run trends in the outcomes of interest.

Our identifying assumption is that, conditional on district, quarter of birth and birth

order, birth-specific shocks are mean independent of JSY’s rollout, i.e. E[νibdt|1{Kibdt =

k}, θb, θd, θt, ∀k = {−8, ...− 2, 0, ..9}] = 0. This is a multi-period parallel trends assumption

and rules out that the rollout of JSY was related to birth-specific shocks but does not rule

out that the rollout was related to birth-specific gains from JSY.20 Under this assumption,

and the assumption of no systematic heterogeneity in treatment effects across cohorts (Sun

and Abraham 2020), βk identifies the average causal effect of JSY k periods after it began.21

To examine dynamic treatment effects by pre-existing capacity we repeat this analysis

but interact JSY’s rollout with capacity indicators:

Yibdt = α +
9∑

k=−9
βk1{Kibdt = k}+

9∑
k=−9

γkCd1{Kibdt = k}+ θb + θd + θt + νibdt (5.2)

20To see this, decompose νibdt into
∑9
k=0(βik − βk)1{Kibdt = k} + εibdt where βk is the average effect

of JSY at event time k. For E[νibdt|1{Kibdt = k}, θb, θd, θt,∀k = {0, ..9}] = 0 we require E[εibdt|1{Kibdt =

k}, θb, θd, θt,∀k = {0, ..9}] = 0 but not E[βik|1{Kibdt = k}, θb, θd, θt,∀k = {0, ..9}] = 0.
21Appendix Table A.14 formally tests for evidence of cohort heterogeneity and finds no evidence of it.
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where Cd is a vector containing measures of the capacity of district d prior to the rollout and

where we again impose effects at k = −9 and k = −1 to be zero. The identifying assumption

here is E[νibdt|1{Kibdt = k}, Cd1{Kibdt = k}, θb, θd, θt,∀k = {−8, ...− 2, 0, ..9}] = 0 and rules

out that the rollout within districts with the same pre-existing capacity level was related to

birth specific risks once conditioning on district, quarter of birth and birth order. In our

main analysis Cd is simply a binary indicator for district d having above-average pre-existing

capacity; in this case βk represents the effect of JSY in low-capacity districts k periods after

it began and βk + γk represents JSY’s effect in high-capacity districts.

Where we fail to reject the null of no differential non-linear pre trends, we next place

more structure on our analysis to increase precision while maintaining the ability to pick up

treatment effects that vary over time. We thus, using the identical sample estimate a model

which allows the treatment effect associated with JSY to comprise both a level shift and a

trend break:

Yibdt = α + βshiftJSYdt + βbreakJSYdt ×Kibdt + θb + θd + θt + νibdt (5.3)

where JSYdt is an indicator for whether JSY had begun in district d and quarter t, i.e.

JSYdt = 1{Kibdt ≥ 0}. We estimate the identical model allowing for an interaction between

treatment terms and pre-existing capacity to examine heterogeneity.

Finally, we summarize the dynamic treatment effects - estimated using specifications (5.1)

and (5.2) – into a single average effect. To do so, we follow Borusyak and Jaravel (2017) and

estimate a weighted average effect, β̂average, and corresponding standard error ̂se(β̂average),

using weights proportional to sample size at each event time:

β̂average =
9∑

k=0
wkβ̂k,

̂se(β̂average) =
9∑

k=0
wkŝe(β̂k), wk =

∑
i 1{Kibdt = k}∑9

k′=0
∑
i 1{Kibdt = k′}

(5.4)

When treatment effects vary with time, this approach is preferable to a two-way fixed ef-

fects regression which recovers a weighted average of treatment effects that places negative
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Figure 4: Effects of JSY on Institutional Delivery over Time

Notes: Figures plot: (1, in blue) event-time effects by pre-existing capacity from event studies described by

equations (5.1) and (5.2). Specifically we plot coefficients βk, k = −9, ...9; (2, in red) dynamic effects

allowing for JSY to cause both a level shift and a trend break as estimated from equation (5.3); (3, in grey)

average effects of JSY, i.e. quarter-specific effects weighted by event-time distribution of sample according

to equation (5.4).

weight on longer-run effects (Borusyak and Jaravel 2017). To increase precision, we estimate

dynamic effects under the restriction that the coefficients on the lags of JSY’s rollout, β−8

through β−2, are zero after first testing this restriction.

5.2 Impacts on Institutional Delivery

Our event studies indicate that JSY led to a very substantial increase in the rate of insti-

tutional delivery and that the impact of JSY increased with the time it was operational

in a district (Figure 4). After two years of operation, the analysis suggests that JSY had

increased the probability that a birth took place in a medical facility by around 20 per-

centage points. We cannot reject that effects prior to JSY’s rollout are zero for all levels of

pre-existing capacity and dynamic effects look similar across areas with different pre-existing

capacities (Figure A.7).
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Next, we estimate the average of these dynamic effects, weighted according to the event-

time distribution of our sample (equations (5.4)). Overall, JSY increased the average prob-

ability of institutional delivery by 7.86 percentage points (p < 0.001), or 35% of the mean

before the policy’s launch, across all sample districts (Table 2, Panel A, column 1) and 7.62

percentage points across districts with capacity data available (column 2). These effect sizes

are in line with those found by Powell-Jackson, Mazumdar, and Mills (2015). The increase

appears similar in districts with more and with less prior capacity (columns 3-5).

As we see in Appendix Table A.3, breaking this down into different types of institutional

deliveries, we see that this increase was comprised of an increase of 6.30 percentage points

(p < 0.001) in the probability of births occurring in government-run secondary care facilities,

an increase of 3.14 percentage points (p < 0.001) for government-run primary care facilities

and a decrease of 1.58 percentage points (p = 0.003) for private facilities (in most states

payments were not given for births in private facilities)

The magnitudes of these increases are large relative to the prior rate of institutional

delivery and the capacity of the government health system. A back-of-the-envelope calcula-

tion suggests that an increase in the proportion of births occurring in government facilities

(secondary and primary) of 9.44 percentage points (Table A.3) translates into an increase

in the average number of births per day occurring in each government-run secondary care

facility, or in a government-run primary care facility under the supervision of that secondary

facility, from 1.73 before JSY to 3.59 afterwards. Even though the increase in institutional

delivery was the same across districts with more and with less capacity in the secondary care

system, the difference in the number of facilities means the increase in caseload was much

more pronounced in districts with low pre-existing secondary care capacity (from 1.92 to

4.80) than with higher capacity (1.54 to 2.38).22

22Taking India’s 2005 crude birth rate of 24.2 per thousand people (from data.worldbank.org) we estimate

the number of births per day in each district using population figures from the 2001 census. We then estimate

the average number taking place each day in government health facilities both before JSY’s rollout (using

the observed rate in the district before JSY) and after (using this baseline rate plus 0.0944). We finally
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Table 2: Effect of JSY on Institutional Delivery and Perinatal Mortality by Pre-Existing
Capacity

Panel A: Instiutional Delivery
(1) (2) (3) (4) (5)

JSY 0.0786*** 0.0762*** 0.0769*** 0.0830*** 0.0748***
(0.0095) (0.0114) (0.0170) (0.0127) (0.0181)

JSY x High secondary cap. 0.0018 0.0183
(0.0170) (0.0208)

JSY x High primary cap. -0.0143 0.0152
(0.0143) (0.0239)

JSY x High sec. X High prim. -0.0433
(0.0313)

Observations 81242 59901 59901 59901 59901
Number of districts 256 182 182 182 182
Mean Prior to 2005Q2 0.2240 0.2260 0.2260 0.2260 0.2260

Panel B: Perinatal Mortality
(1) (2) (3) (4) (5)

JSY 0.0015 0.0032 0.0090** 0.0048 0.0111**
(0.0027) (0.0033) (0.0039) (0.0038) (0.0044)

JSY x High secondary cap. -0.0082** -0.0117**
(0.0035) (0.0052)

JSY x High primary cap. -0.0043 -0.0040
(0.0034) (0.0041)

JSY x High sec. X High prim. 0.0061
(0.0063)

Observations 104057 76804 76804 76804 76804
Number of districts 256 182 182 182 182
Mean Prior to 2005Q2 0.0347 0.0370 0.0370 0.0370 0.0370

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. Effects are weighted (weights

proportional to sample size, defined in (5.4))) averages of dynamic effects (estimated using specifications (5.1)

and (5.2)). All estimates control for quarter-of-birth, birth-order and district fixed effects. Standard errors

are clustered at the district level. First column includes data for all sample districts. The remaining columns

include data only for districts with capacity data available. High secondary cap. (High primary sec.) is

an indicator taking the value 1 if district has above-median secondary (primary) care capacity, as defined in

section 4.2.
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Figure 5: Effects of JSY on Perinatal Mortality over Time

(a) Low Secondary Care Capacity (b) High Secondary Care Capacity

Notes: Figures plot: (1, in blue) event-time effects by pre-existing capacity from event studies described by

equations (5.1) and (5.2). Specifically we plot coefficients βk (in graph a), k = −9, ...9 and βk + γk (in

graph b); (2, in red) dynamic effects allowing for JSY to cause both a level shift and a trend break as

estimated from equation (5.3); (3, in grey) average effects of JSY, i.e. quarter-specific effects weighted by

event-time distribution of sample according to equation (5.4).

5.3 Impacts on Perinatal Mortality

We now move on to assess impacts on perinatal mortality. In line with Powell-Jackson,

Mazumdar, and Mills (2015) we find that the average effect, across districts with high and

low pre-existing capacity, of JSY is close to zero and not statistically significant; this holds

both in terms of the dynamic effects (Figure A.8(a)) and when averaged over event time

(Table 2, Panel B, columns 1 and 2).

However, the results are markedly different in districts with below-median pre-existing

capacity in the secondary healthcare system from districts with above-median capacity. In

the former, low-capacity districts, Figure 5(a) shows that JSY increased the risk of perinatal

mortality with effects growing somewhat in magnitude over time. The average impact across

event times (Table 2, Panel B, column 3) is an increase in the risk of perinatal mortality

of 0.90 percentage points (p = 0.020). In districts with above-median secondary capacity,

on the other hand, JSY had no impact at any event time or averaged across event times

divide these figures by the number of secondary care facilities in the district.
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(p = 0.811), with the difference in the average effect between these above-median capacity

districts and the districts with low capacity being statistically significant (p = 0.022). These

magnitudes are substantial compared to the rate of perinatal mortality of 3.70% in the 15

months before JSY’s launch.

Although point estimates for the effect of JSY of perinatal mortality in districts with low

primary care capacity are positive (an increase in mortality risk), these are not statistically

significant (Table 2, Panel B, column 4 and 5). And neither is the difference in effects

between districts with high and low primary care capacity.

5.4 Robustness

In the appendix we show results using a static specification, i.e. Yibdt = α + β1{Kibdt ≥

0}+θb+θd+θt+νibdt. Effect sizes for perinatal mortality (Table A.4) are nearly identical to

the weighted average of the dynamic effects which is unsurprising as the dynamic effects do

not vary substantially with time (Figure 5). For institutional delivery the static specification

produces smaller, but still highly statistically significant, estimates (Table A.5) which is

expected given, as shown in Figure 4, the dynamic effects increase with time (Borusyak and

Jaravel 2017). We further show that results are robust to using a probit model (Tables A.6,

A.7) and to using a fractional indicator of JSY’s rollout (Table A.8, A.9), to using continuous

measures of pre-existing capacity (Tables A.10, A.11) and to allowing for differential time

trends by pre-existing capacity (Tables A.12, A.13). In Appendix Table A.14, we show that

we find no evidence of heterogeneity in the impact of JSY on perinatal mortality across

districts who adopted JSY earlier and later.23

Given health system capacity was not randomly assigned, heterogeneity by capacity
23In exploiting JSY’s rollout, our estimates are formally weighted averages of effects across early and late

adopters (Sun and Abraham 2020). The fact that early and late adopters appear to experience similar

impacts reassures us that this weighted average is representative of the average causal effects on for both

groups.
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could, theoretically, be capturing heterogeneity across distinct but correlated characteristics

of districts (see Table A.15). We mostly rely on our conceptual framework to motivate why

system capacity is a natural dimension over which heterogeneity would arise. However, we

also use LASSO penalized regression to analyze the relative importance of different district

characteristics as predictors of heterogeneity in the impact of JSY on perinatal mortality.

We allow for heterogeneity to be predicted by district-level measures of: poverty, men’s ed-

ucation, women’s education, distance from different health facilities, and our two measures

of system capacity. Appendix Figure A.9 shows that at all levels of penalization, the stan-

dardized coefficients on both measures of capacity are greater than all alternative predictors.

Moreover, LASSO sets coeficients all other predictors to zero well before setting either of

the capacity coeficients to zero. This reassures us that the heterogeneity we have recovered

is not simply standing in for heterogeneity across other dimensions.

5.5 Mechanisms

We have so far shown that JSY increased the perinatal mortality risk in areas with low pre-

existing capacity in the secondary care system. Our theoretical model demonstrates that

two mechanisms could have led to this. Even in the absence of any congestion externality,

JSY could harm health if the marginal births moved by the subsidy were riskier when taking

place in a facility than in at home. As discussed in section 3, if facilities had poor quality

hygiene conditions, this is not implausible. However, our model also suggests that a second

mechanism: that the overall increase in facility delivery rates increased congestion in facilities

leading to a deterioration in the quality of medical care for all facility births, including those

that would have happened in facilities even in the absence of the subsidy.

In this section, we explore the mechanisms at play. We begin by looking at how the im-

pacts of JSY differed by birth complexity to attempt to shed light on the role of a congestion

externality in driving the negative effects of JSY. To this end, we create a proxy for birth

complexity by using variables containing information that would have been known to families
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at the time of the choice of delivery location: complications experienced during pregnancy,

the number of previous pregnancies, whether the woman had previously had a miscarriage,

whether she had previously had a stillbirth, and whether she had previously given birth to

a baby who subsequently died. We use these variables, and their interactions, to predict

perinatal mortality in the full sample for which this information is available (the sample of

last births). To do so, we used penalized LASSO regression to avoid overfitting. We then

predict a risk index using the chosen predictors. See Appendix Table A.17 for details. We

divide births into those with a risk index above and below the median.

In Table 3 Column (1), we estimate the impact of JSY on institutional delivery using the

identical methods to those we employed earlier but now interacting secondary health system

capacity with our proxy for birth complexity in addition to JSY’s rollout. The first important

thing to notice here is that even in the absence of JSY, in both low-capacity (line e) and

high-capacity areas (line f), more complex births were more likely to occur in facilities than

less complex births were. This immediately suggests that births select into health facilities

at least partially on this basis of their complexity. While this evidence suggests that prior

to JSY births sorted into facilities somewhat based on gains, lines (a) though (d) of Column

1 show that JSY drew in more complex and less complex births to the same degree and

this was true in both low and high capacity areas.24 We argued in Section 2 that for JSY

to stand the best chance of being effective at improving health outcomes, it would have to

disproportionately induce the most complex births into health facilities. We see here that

this does not seem to have been the case.

Next we turn to how JSY’s impacts on perinatal mortality differed by births’ complexity

in Column (2). In rows (a) and (b) we see that practically all the increase in perinatal
24In itself, this result is not informative on the degree of selection on gains and/or the degree to which

the marginal utility of consumption is increasing in birth complexity. Our binary measure of complexity

simply divides births above and below the median. As we can see from Figure 2, the subsidy having the

same average impact on usage above and below the median could be the result of different combinations of

selection on gains and marginal utility of consumption.
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Table 3: Impacts on Institutional Delivery, Perinatal Mortality, and Post-Birth Check-Ups
by Birth Complexity

Institutional
Delivery

Perinatal
Mortality

Checkup day 1
| Facility Birth

Checkup days
2-10 | Facility

Birth
(1) (2) (3) (4)

(a) JSY x Low sec. cap. x Less complex 0.0763*** 0.0041 -0.0045 -0.0664***
(0.0174) (0.0045) (0.0248) (0.0241)

(b) JSY x Low sec. cap. x More complex 0.0739*** 0.0159*** -0.0373 -0.0748***
(0.0172) (0.0053) (0.0255) (0.0258)

Difference (b-a) -0.0023 0.0118*** -0.0328* -0.0084
(0 .0099) (0.0043) ( 0.0175) (0.0202)

(c) JSY x High sec. cap. x Less complex 0 .0752*** 0 .0004 0.0229 0.0007
(0.0131) (0.0035) (0.0232) (0.0259)

(d) JSY x High sec. cap. x More complex 0.0789*** 0.0084* 0.0336 -0.0328
(0.0153) (0.0044) (0.0260) (0.0261)

Difference (d-c) 0.0037 0.0079* 0.0107 -0.0335
(0.0135) (0.0041) (0.0228) (0.0232)

(e) Low sec. cap. x More complex 0.0526*** 0.0176*** 0.0530*** 0.0445**
(0.0063) (0.0031) 0 .0184 (0.0173)

(f) High sec. cap. x More complex 0.0700*** 0.0160*** 0.0192 0.0621***
(0.0124) (0.0038) (0.0218) (0.0226)

Observations 59,880 59,888 16,498 15,858
Number of districts 182 182 182 182
Mean Prior to 2005Q2 0.2260 0.0370 0.6972 0.4225

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. Effects are weighted (weights proportional to

sample size, defined in (5.4))) averages of dynamic effects (estimated using specification (5.2)). All estimates control for

quarter-of-birth, birth-order and district fixed effects. Standard errors are clustered at the district level. High secondary

cap. is an indicator taking the value 1 if district has above-median secondary care capacity, as defined in section 4.2.

More complex (less births) are defined as those with above (below) median values for the LASSO-predicted index of birth

complexity (detailed in Appendix Table A.17).

mortality in low capacity areas was driven by more complex births. We estimate that the

perinatal mortality risk of these complex births in low-capacity areas increased by 1.59 per-

centage points due to JSY, while less complex births saw no change. The difference between
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the two is highly statistically significant. Interestingly, we even see tentative evidence that

in higher-capacity areas too, more complex births may have suffered due to JSY, although

to a lesser extent than in low capacity areas. The fact that the harms of JSY appear to

be concentrated on more complex births despite JSY having moved more-complex and less-

complex births into facilities at the same rate suggests that a congestion externality is key

to explaining JSY’s perverse effects.

To see this, first imagine the special case of our model with no congestion externality.

In this case, all of the aggregate harms due to the subsidy are made up of private harms

to the marginal births. In our model, conditional on moving the same proportion of less-

complex and more-complex births into facilities (which we see empirically) the more-complex

births would privately gain more or be harmed less. Therefore, the fact that harms appear

concentrated on complex births is inconsistent with the version of our model without a

congestion externality.

On the other hand, our model predicts that under sorting on gains (which we see empir-

ically) the overall cost of the externality will be disproportionately borne by complex births.

This is the case for two reasons. First, a disproportionate number of complex births will

already be occurring in facilities and thus will be subject to the externality. Second, we

anticipate (as set out in Assumption E2) that congestion will harm more complex facility

births the most. Thus the fact we find clear evidence that the harms associated with JSY

are concentrated on complex births is evidence that a congestion externality is crucial to

understanding our results.

Besides this indirect evidence on the importance of congestion externalities, the results

in columns (3) and (4) provide more direct evidence on congestion. Here we look at whether

respondents reported that their baby received a check-up after their facility birth. Note

that we condition on births occurring in facilities here since it would be surprising if moving

births into facilities did not result in some increase in the proportion reporting a check from
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a health professional;25 Instead, we want to focus on the quality of care provided by facilities.

In Column (3), we look at whether or not respondents reported that their baby received a

check-up within the first 24 hours. Overall, we don’t see evidence that JSY changed the

likelihood of this which, given that even a very cursory check-up from a health worker would

be counted here, is perhaps not surprising; In this light, it is perhaps more surprising that

32% of facility births report not receiving any such check-up at all. In Column (4) we look at

whether babies received a check-up between days 2 and 10. We take this as an indicator of

how long women remain in facilities after birth, and the intensity of the continued care they

receive (both in facilities and in the community). Here we find that in low capacity areas

(but not in high-capacity areas) JSY reduced the probability of such check-ups by around

7 percentage points (lines a and b). We interpret this as evidence that in low-capacity

areas, facilities reacted to congestion by either discharging births earlier or by providing less

continued care. What’s more, that reduction was equal for more-complex (line b) and less-

complex births (line a) suggests that facilities did not prioritize maintaining more intensive

care for more complex births in reacting to this congestion.

Finally, we note that a simple bounding exercise suggests that the detrimental impacts of

JSY on perinatal mortality in low capacity areas appear too large to be coming entirely from

marginal births. If we shut down any externality then this implies that the 0.9 percentage

point rise in perinatal mortality was being entirely driven be the 7.69 percent of births in

these areas that moved into facilities as a result of JSY. This would imply that the average

causal effect of institutional delivery for marginals births is an increased risk 11.7 percent

points (0.9 p.p./7.69 p.p.). This is implausibly large given a baseline mortality risk of 3.7

percent. This argument too, therefore, suggests that a good portion of JSY’s negative

impacts in low-capacity areas arose from congestion externalities.
25Appendix Table A.16 shows that we do indeed see the overall rate of postnatal care increasing with JSY

although this increase is concentrated in high-capacity areas.
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5.6 Spillovers onto Vaccination Rates

We employ the same empirical strategy to examine spillover impacts of JSY on another

service that the local health system performs: childhood vaccinations. Our outcome here

is the proportion of vaccinations a child has received of those that a child her age should

have received.26 Given polio vaccinations are largely administered by a parallel system, the

“Pulse Polio Initiative”, we focus on the 6 non-polio childhood vaccinations that are delivered

through the public health system.

We find that, averaged across event time, JSY reduced the proportion of the recom-

mended vaccinations that children aged 9 months or older had received by 2.05 percentage

points (p = 0.007). Breaking this down by the six non-polio recommended vaccinations,

we find that JSY significantly reduced the probability that children received four of these

recommended vaccinations. Interestingly, the negative effect of JSY on vaccination rates is

smaller in vaccines given closer to birth than in those given later. This is consistent with JSY

reallocating resources and reducing vaccination rates but this being offset for vaccines given

at an early age because JSY also led to an increase in institutional deliveries. Such increase

in institutional deliveries could increase parents’ attachment to health care providers right

after birth leadning to a positive effect on vaccination rates.

Reductions in vaccination rates do not vary with pre-existing capacity (Figure A.10, Table

A.18).27 In the appendix we show these findings are robust to using a static specification

(Table A.19), to using a probit model (A.20) and to using a fractional indicator of JSY

intensity (A.21). In Appendix C, we argue that these results are not driven by differential

selection caused by JSY’s impacts on mortality.
26This data is available for each respondents’ two most recent surviving children.
27One reason why heterogeneity in effects might not mirror that found for perinatal mortality is that

in areas with lower secondary care capacity roughly one half of the increase in institutional delivery came

through primary care facilities (Table A.3). This increase in the use of primary care facilities for deliveries

might have mitigated some of the detrimental effects of JSY on vaccination rates if giving birth there meant

local health professionals could follow up more easily with the parents on the child’s vaccinations.
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Table 4: Effect of JSY on Vaccination Rates

(1) (2) (3) (4) (5) (6) (7)
Mean BCG DPT-1 DPT-2 DPT-3 Measles Vitamin A

JSY -0.0205*** -0.00818 -0.0135* -0.0115 -0.0311*** -0.0323*** -0.0225**
(0.00757) (0.00741) (0.00804) (0.00992) (0.0109) (0.00908) (0.00920)

Observations 79298 96284 95886 95175 93894 79298 79298
Administration age (months) 0 1.5 2.5 3.5 9 9
Mean Prior to 2005Q2 0.639 0.786 0.717 0.614 0.510 0.648 0.557

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. Effects are weighted (weights proportional to

sample size, defined in (5.4))) averages of dynamic effects (estimated using specification (5.1)). All estimates control for

quarter-of-birth, birth-order and district fixed effects. Standard errors are clustered at the district level. Sample for each

regression include all children who are older than the recommended age of administration for that vaccination. Sample for

the mean coverage rate (column 1) includes only children older than 9 months who should have received all vaccinations.

5.7 Tentative evidence on medium-run effects

We have provided evidence that in the short run JSY caused an increase in perinatal mortality

in areas with low pre-existing rates of capacity in the secondary care system. A crucial

question is whether this was a short term effect, in which case the impacts could have been

due to transition difficulties, or whether JSY’s negative impacts persisted. Here, we briefly

attempt to establish whether the available evidence points towards persistence. To do this,

we draw on the birth recode of the fourth National Family Health Survey (2014-15). The

NFHS-4 records detailed information, including JSY uptake and place of delivery, of all

births since 2010 in addition to mortality data for a longer history of births.

In the short term, we used the staggered roll out of JSY across districts to estimate its

effects. However, by 2010 JSY had been operational for upwards of 4 years in most districts,

making this approach less plausible. Instead, we explore how variation in JSY compliance

between districts correlates with variation in both institutional delivery rates and perinatal

mortality rates over the medium run. Specifically, we create an indicator for whether or not

90% or more of births that should have been eligible for a JSY payment (i.e. births that

occurred in a government facility) between 2010 and 2015 reported receiving one. We use
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the identically-constructed measures of pre-JSY health system capacity.

Beginning with rates of institutional delivery in Table 5, we find that, after controlling for

quarter-of-birth fixed effects, districts where compliance was greater than 90% had institu-

tional delivery rates of 4.5 percentage points greater than in districts with lower compliance

(Column 1). Note that because we have no historical data from this dataset on institutional

delivery, we cannot control for district fixed effects.

We then go onto analyze the medium-run effects on perinatal mortality. Column 2 shows

that districts with 90% or higher JSY compliance had perinatal mortality rates of 0.71

percentage points higher than districts with lower compliance (controlling for time trends).

Columns (3) to (5) show that, consistent with our short-term results, this result is driven

by low capacity areas, although whether the difference is statistically significant depends on

the precise specification. Note that these results are subject to some important limitations.

In columns (3) and (4) where we only use births from 2010 onwards, the sample size is much

smaller than in Table 3 and we cannot include district fixed effects. In Column (5), we append

the data with births between 2000 and 2005 which enables us to include district-level fixed

effects, however this assumes that the unobserved district-level components remain constant

over that long period, which is a strong assumption.

While the extent to which different districts complied with JSY over the medium run

may not be exogenous for many reasons, these associations are certainly consistent with JSY

continuing to have perverse effects on perinatal mortality up to 10 years after it was first

introduced. The associations are perhaps most convincing at suggesting that it is unlikely

that the short-term harmful impacts of JSY in low-capacity areas turned beneficial over the

medium run. In many ways, this seems unsurprising given that since JSY’s introduction in

2005, India’s public spending on healthcare has remained unchanged at less than 1% of GDP,

far less than other rapidly growing economies. Low and steady levels of public expenditure

since JSY’s introduction perhaps gave little scope for a rapid improvement in the capacity

of the supply side over this period.
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Table 5: Relationship between JSY intensity, Institutional Delivery and Perinatal Mortality
after 2010

(1) (2) (3) (4) (5)
Inst. Del. Mort. Mort. Mort. Mort.

High Intensity 0.0452∗∗ 0.00710∗∗∗ 0.00743∗ 0.00732∗∗ 0.00726∗
(0.0218) (0.00249) (0.00438) (0.00368) (0.00385)

High sec. cap. × High Intensity -0.00462 -0.00907∗ -0.00662
(0.00577) (0.00533) (0.00556)

Historical perinatal mort. rate 0.515∗∗∗
(0.0894)

Observations 24277 38589 27815 27815 110805
Quarter of Birth FEs x x x x x
State FEs x
District FEs x
Sample: Post 2010 births x x x x x
Sample: Pre 2005 births x

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. High secondary cap. is an indicator

taking the value 1 if district has above-median secondary care capacity, as defined in section 4.2. Pre-2005

sample comprises births from 2000 up until the launch of JSY in 2005 quarter 2. Historical perinatal mortality

rates calculated using this pre-2005 sample

6 Conclusions

Conditional cash transfer programs are frequently used to increase the uptake of health

services, but evidence on their impact on health is mixed (Lagarde 2009). In this paper, we

bring to the fore the role of congestion externalities in explaining the detrimental effects of

JSY on perinatal mortality in areas of India with low capacity. The overall impact of JSY on

health is composed of both its effect on inframarginal facility births (those that would have

taken place in a facility regardless of JSY) and its effect on marginal births (those births

induced to take place in the facility due to JSY). The effect on the inframarginal births will

always be detrimental due to increased congestion; hence, for JSY to improve outcomes, any

positive effect on marginal births must outweigh the congestion externality.

The theoretical model highlights interesting interactions between the size of the conges-
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tion externality and what drives selection into institutional delivery. Under full selection

on gains, the inframarginal facility births are the riskiest and, consequently, they are the

most harmed by the additional congestion caused by JSY. Moreover, under full selection on

gains, the births that are marginal to JSY are harmed from switching from home to facility

delivery. Hence, in this case, JSY will have detrimental effects on health. On the contrary,

if the initial selection into health facilities is unrelated to health gains, then there could be

a large pool of potentially-marginal births that could gain a lot from facility delivery. And,

further, if more complex births are more responsive to the subsidy this would give JSY a

better shot at attracting the births that would particularly gain more from facility delivery.

Unfortunately, our empirical analysis reveals that JSY was not successful at attracting

disproportionately complex births; more- and less-complex births were similarly attracted

Moreover, we find evidence that in low-capacity districts JSY generated additional and

harmful congestion. In these districts, JSY decreased the likelihood that babies received

a postnatal check-up after the first day, which suggests that they were discharged sooner

or simply that check-ups were overlooked. More indirectly, we show that the detrimental

effects of JSY were concentrated on complex births, a result which in our model can only

be explained by the presence of a congestion externality. Overall, JSY caused perinatal

mortality to increase in low-capacity districts and more tentative evidence suggests that

these harmful effects may have persisted for up to 10 years.

Our general equilibrium framework points to alternative approaches on how to use public

funds to improve health outcomes when congestion externalities are a concern. First, policies

that help identify complex cases and direct those cases toward health facilities could be

particularly useful. Our framework demonstrates that, for a given degree of capacity and

usage, increasing the complexity of the cases that select into formal healthcare will improve

overall health. While patients discerning the usefulness of a given healthcare intervention

remains a fundamental barrier to individuals seeking out the optimal amount of care (Arrow

1963), good quality prenatal care could help direct more complex births towards facilities.
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Second, our framework highlights the potential of policies that effectively increase the

capacity of health systems and quality of care they provide, including both policies that

increase the resources available and those that ensure those resources are used efficiently

((Dupas and Miguel 2017; Kremer and Glennerster 2011; Björkman and Svensson 2009).

Our framework suggests that such efforts are likely to improve outcomes for existing users

of care and to attract more individuals to take up care. And our empirical results highlight

the stakes of such efforts to improve quality, especially as efforts to universalize access to

healthcare intensify; We found that in areas with few of the most basic healthcare inputs –

beds, nurses, and doctors – increased use of healthcare harmed overall health.
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