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Testing the inverted neutrino mass ordering with neutrinoless double-β decay
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We quantify the extent to which future experiments will test the existence of neutrinoless double-β decay
mediated by light neutrinos with inverted-ordered masses. While it remains difficult to compare measurements
performed with different isotopes, we find that future searches will fully test the inverted-ordering scenario, as a
global, multi-isotope endeavor. They will also test other possible mechanisms driving the decay, including a large
uncharted region of the allowed parameter space assuming that neutrino masses follow the normal ordering.
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Neutrino oscillation [1–4] proves that the neutrino has
mass and the standard model of particle physics is incom-
plete. The unknown origin of the neutrino mass has drawn
enormous attention to neutrinoless double-β (0νββ) decay,
a matter-creating nuclear transition in which two neutrons
decay simultaneously into two protons, emitting only two new
electrons and no antineutrinos [5]. The discovery of 0νββ

decay would establish that the neutrino is its own antiparticle
and has a Majorana mass [6]. It would also mark the first
observation of a lepton-creating process, proving that neither
lepton number (L) nor baryon minus lepton number (B − L)
are symmetries of the standard model, as predicted by leading
theories explaining the matter-antimatter asymmetry of our
universe [7]. Indeed, searching for 0νββ decay is the most
sensitive experimental approach to test Majorana neutrino
masses and their associated L violation. It is also a unique
probe of new physics at ultrahigh energy scales not accessible
by current accelerators [8,9].

Different physics mechanisms can lead to 0νββ decay
[10]. However, the exchange of light Majorana neutrinos
interacting via standard, weak left-handed currents plays a
special role. It is the only mechanism allowed by all theories
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predicting 0νββ decay, and typically dominates the rate of the
process [11,12]. Assuming that the decay is mediated by light
neutrinos, its half-life is [13]

T −1
1/2 = G g4

A M2
m2

ββ

m2
e

, (1)

where G is the phase-space integral, gA � 1.276 [14] is the
axial-vector coupling, M is the nuclear matrix element, and
mββ is the effective Majorana mass, normalized for conve-
nience by the electron mass me. The Majorana mass captures
the physics of the exchanged neutrinos and is a function of the
neutrino oscillation parameters, the neutrino mass eigenvalues
mi, and the Majorana phases: mββ = |∑i U 2

ei mi|, where Uei

are the elements of the full 6-parameter PMNS matrix [15].
Neutrino oscillation measurements constrain the range of

allowed mββ values [16] and prove that |U 2
e3| � |U 2

e2| < |U 2
e1|

and m2
2 − m2

1 � |m2
3 − m2

2| [17–26]. This implies that the ef-
fective Majorana mass is strictly larger than zero if neutrino
masses follow the inverted ordering, i.e., m3 < m1 � m2. In
this case, the lowest mββ value, minimized with respect to the
unknown Majorana phases and m3, is given by

(
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ββ

)
IO = ∣∣U 2

e1

∣∣m1 − ∣∣U 2
e2

∣∣m2 − ∣∣U 2
e3

∣∣m3, (2)

with m3 = |U 2
e3|/(|U 2

e1|/m1 − |U 2
e2|/m2) ≈ 3 meV. Using the

latest values and uncertainties from the Particle Data Group
[4], we obtain

(
mmin

ββ

)
IO = 18.4 ± 1.3 meV, (3)

whose uncertainty is dominated by the uncertainty on the
solar mixing angle θ12. Using the latest NuFIT results [27],
we obtain (mmin

ββ )IO = 18.6 ± 1.2 meV. The lower bound on
mββ corresponds to an upper bound on T1/2 at the scale of
1027–1028 years, depending on the value of the parameters
in Eq. (1).
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TABLE I. Nuclear matrix elements M for 0νββ decay mediated
by light neutrinos, calculated with the NSM, QRPA, EDF, and IBM
methods. The ranges correspond to the minimum and maximum
values obtained with the same many-body method.

Ref. 76Ge 100Mo 136Xe

NSM [35] 2.89, 3.07 2.28, 2.45
[36] 3.37, 3.57 1.63, 1.76
[37] 2.66 2.39
All 2.66–3.57 1.63–2.45

QRPA [38] 5.09 1.55
[39] 5.26 3.90 2.91
[40] 4.85 5.87 2.72
[41] 3.12, 3.40 1.11, 1.18
[42] 3.38
All 3.12–5.26 3.90–5.87 1.11–3.38

EDF [43] 4.60 5.08 4.20
[44] 5.55 6.59 4.77
[45] 6.04 6.48 4.24
All 4.60–6.04 5.08–6.59 4.20–4.77

IBM [46]a 5.14 3.84 3.25
[47] 6.34 5.08 3.40
All 5.14–6.34 3.84–5.08 3.25–3.40

aWith the sign change in the tensor part indicated in Ref. [47].

In the last decades, a vast experimental program has been
mounted to develop experiments with sensitivity reaching
(mmin

ββ )IO, able to exhaustively test whether 0νββ decay is
mediated by the exchange of light neutrinos with inverted-
ordered masses [28,29]. Mature designs are now available
for multiple detection techniques, and the physics commu-
nity is discussing how to proceed. As part of this process,
the Astroparticle Physics European Consortium (APPEC) is
updating its 0νββ decay road map [29] and the United States
Department of Energy has started a ton-scale-experiment
portfolio review. Conceptual designs are available for three
experiments [30–32], whose construction can start as soon
as funding is available. These experiments use different
0νββ-decaying isotopes and detection technologies, and can
perform independent and complementary measurements.

As mentioned above, observing 0νββ decay would un-
ambiguously demonstrate matter creation and prove the
Majorana nature of neutrinos. However, the conversion be-
tween T1/2 and mββ in Eq. (1) is not trivial and requires
inputs from nuclear theory. While the phase-space integral
G has been calculated with negligible uncertainty [33], ob-
taining reliable nuclear matrix elements M is challenging, as
it requires computationally intensive many-body calculations
and the evaluation of several operators [13,34]. Four pri-
mary many-body methods have been historically used in the
field: the nuclear shell model (NSM) [35–37], the quasipar-
ticle random-phase approximation (QRPA) method [38–42],
energy-density functional (EDF) theory [43–45], and the in-
teracting boson model (IBM) [46,47]. For each of these
methods, several calculations have been performed under
different assumptions and approximations. The most recent
results are listed in Table I. They can differ by up to a fac-

tor of three for a given isotope, and significant differences
are present even within each method. The spread of values
gives a rough idea of the many-body uncertainties on M (ad-
ditional uncertainty contributions are discussed below). For
some methods, calculations are not available for all isotopes.

The reach of 0νββ decay experiments is conventionally
expressed in terms of discovery and exclusion sensitivities
on mββ . The discovery sensitivity corresponds to the smallest
mββ value for which an experiment has 50% probability of
observing a signal at 99.7% confidence level (CL). The ex-
clusion sensitivity corresponds to the median 90%-CL upper
limit that an experiment will set on mββ assuming 0νββ decay
is not observable. As stated earlier, fully testing the inverted-
ordering scenario requires sensitivity to (mmin

ββ )IO, accounting
for its uncertainty. For discovery mode, this condition is met
when the discovery sensitivity reaches the central value of
(mmin

ββ )IO: the (mmin
ββ )IO uncertainty is symmetric, so the prob-

ability of lower or upper fluctuations is the same, and the
50% probability for an observation is preserved. However, for
exclusion mode, the (mmin

ββ )IO uncertainty reduces the CL by
a variable amount that depends on the experimental parame-
ters, mainly the background statistical uncertainty. Therefore
the exclusion sensitivity on mββ cannot be used to set an
experiment-independent condition corresponding to fully cov-
ering the inverted-ordering scenario. The discovery sensitivity
is anyway the most appropriate metric for searches aiming to
discover a process. Thus, reaching a discovery sensitivity of
18.4 meV is the right concrete goal for experiments aiming to
explore the full inverted-ordering parameter space.

Figure 1 shows the discovery and exclusion sensitivities of
proposed future experiments. We converted the T1/2 sensitivity
values quoted by the LEGEND [31], CUPID [30], and nEXO
[48] collaborations to mββ values using the nuclear matrix
elements of Table I. We group the calculations by many-body
method to aid in the comparison of more consistent quan-
tities. Remarkably, these experiments all show sensitivity to
measure a 0νββ decay signal at the bottom of the inverted-
ordering parameter space. Some many-body methods, such as
EDF theory and IBM, give systematically larger M values,
pushing the mββ sensitivity even lower. QRPA calculations on
the other hand give a broad range of results, partially due to
the role of nuclear deformation in this framework. The NSM
provides M values which are typically smaller than for the
other methods, but are not available for 100Mo.

Comparing the performance of experiments using differ-
ent isotopes is challenging because of the large uncertainties
affecting the nuclear matrix element predictions. In particular,
each many-body method uses different approximations, which
are likely to result in a common over- or underestimation of
the calculated M values. Even comparisons considering one
many-body method at a time can raise concerns. The number
of calculations available for each isotope and method can
be significantly different, suggesting that not all many-body
approaches are equally suitable for all isotopes. Consequently
the range of M values cannot be quantitatively interpreted as
the uncertainty, which currently remains unknown. One might
be tempted to make comparisons based on the central value of
the mββ sensitivity within a specific nuclear method, but this
value can be disproportionately affected by a single outlier
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FIG. 1. Comparison of mββ 99.7%-CL discovery and 90%-CL median exclusion sensitivities for different isotopes at stated half-life
sensitivities [30,31,48], grouped by nuclear many-body frameworks with matrix element ranges from Table I. The horizontal bands show
the variation on (mmin

ββ )IO under variation of the neutrino oscillation parameters.

matrix element. Weighted averages are also problematic, as
the weight given to each calculation would be to some extent
arbitrary. Given the lack of objective criteria to compare ex-
perimental sensitivities in different isotopes, and the lack of a
clear estimate of the uncertainties, we advocate to refrain from
ranking experiments’ reach quantitatively, and focus instead
on the fact that we have a global, multi-isotope endeavor that
will fully test the inverted-ordering scenario.

A broad effort to reduce uncertainties is ongoing within the
nuclear theory community, with significant advances made in
the last few years. Ab initio calculations that incorporate wider
nuclear correlations and two-body currents have recently suc-
ceeded in predicting single-β decay rates [49] with no need for
“quenching”—an ad hoc reduction of the value of calculated
matrix elements involving the nuclear spin required by less
sophisticated calculations [13]. The first available ab initio
0νββ matrix element calculations in medium-sized nuclei,
supported by studies in lighter systems [50,51], indicate a
relatively mild suppression by tens of percent with respect
to the lower limit of the ranges given in Table I [52]. Ef-
forts are underway to improve the quality of these results,
extend them to heavier nuclei, and include two-body cur-
rents at finite momentum transfers [53]. On the other hand,
the contact term introduced in Refs. [34,54], which until
recently went unrecognized, is a leading-order contribution
to M. Effective field theory and ab initio nuclear structure
provide a scheme for estimating this contribution [55,56]. A
first study in 48Ca suggests that this term can enhance M by
about 40% percent [57], leading to a faster decay rate. In
heavier systems, preliminary results suggest a roughly simi-
lar impact for all 0νββ isotopes, only slightly dependent on
the nuclear many-body method [58]. Complementary studies
using, e.g., lattice QCD [59,60] will test whether this claimed

enhancement is robust. If so, it may compensate the reduc-
tion in decay rate due to the inclusion of the “quenching”
physics, leading to a picture similar to the one represented
by Fig. 1. Thus, should the current theoretical results be
confirmed, the proposed global 0νββ decay experimental ef-
fort would still fully probe the inverted-ordering parameter
space.

In this Letter, we have focused on the inverted-ordering
scenario as a prominent goalpost for the proposed experi-
mental 0νββ decay program. However, the discovery power
of these experiments is high even assuming other, equally
reasonable scenarios. By reaching a sensitivity of the order of
tens of meV, these searches will probe a significant fraction
of the remaining parameter space for left-handed neutrino
exchange even if neutrino masses follow the normal ordering.
Bayesian analyses suggest up to 50% discovery probabilities
for the normal ordering scenario [61,62], and a nonvanishing
discovery probability even assuming the most unfavorable
value of the Majorana phases [63]. Significant advancement
would also be made in probing the exchange of heavy me-
diators. For many such models, 0νββ decay searches probe
energy scales beyond the reach of current accelerator tech-
nology [9]. Additional physics mechanisms could completely
change the parameter space of interest, potentially even in-
creasing the discovery power of future experiments [64–67].
In general, pushing 0νββ decay sensitivity to increasingly
large half-life values explores uncharted territory, and new
physics could manifest at any time.
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