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Abstract. We analyze a splitting method for a canonical fluid structure interaction problem. The

splittling method uses a Robin-Robin boundary condition, explicit strategy. We prove the method
is stable and, furthermore, we provide an error estimate that shows the error at the final time T is

O(
√
T∆t) where ∆t is the time step.

1. Introduction

In this work we are interested in the stability analysis of a loosely coupled scheme for the approx-
imation of the interaction of a viscous fluid and an elastic solid. In a loosely coupled (or explicit)
scheme the two systems are solved separately in a staggered manner, passing interface data from
one system to the other between the solves. It is well known that loosely coupled schemes for fluid
structure interaction have severe stability problems in situations where the density ratio between the
two phases is close to one. This is due to what is known as the added mass effect [8]. There has
been intense research on approaches that allow for a partial or even complete decoupling of the two
systems without loss of stability, however very few fully decoupled approaches have been developed
with a satisfactory theoretical foundation.

A first step in the direction of decoupling the two systems is the semi-implicit copling schemes
[9, 16, 2, 4], where the implicit part of the coupling, typically the elasticity system and the pressure
velocity coupling in the fluid, guarantees stability, and the explicit step (transport in the fluid) reduces
the computational cost. Such splitting methods nevertheless retain an implicit part of the same size as
the original problem, although the equations are simplified. Fully explicit coupling was first achieved
by Burman and Fernàndez [6] using a formulation based on Nitsche’s method, drawing on an earlier,
fully implicit formulation by Hansbo et al. [14]. Stability was achieved by the addition of a pressure
stabilization that relaxed incompressibility in the vicinity of the interface. Although the proposed
scheme was proved to be stable it suffered from a strong consistency error of order O(τ/h) where
τ and h are the time and space discretization parameters, respectively. The source of this error
was the penalty term of the Nitsche formulation. This led to the need for very small time steps
combined with iterative corrections, for the method to yield sufficiently accurate approximations. In
a further development Burman and Fernàndez compared the Nitsche based method with a closely
related method using a Robin type splitting procedure [7]. Robin type domain decomposition had
already been applied for the preconditionning of monolithic fluid structure interaction problems by
Badia et al. [1]. The loosely coupled scheme based on Robin type coupling of [7] was proved to be
stable, but only with the addition of the stabilization term on the pressure at the interface and using
a weight in the Robin condition scaling similarly as the penalty term in the Nitsche method. It was
however observed numerically that the Robin-Robin coupling method was stable also without such a
pressure stabilizing term.

It is the objective of the present paper to revisit the analysis of the Robin-Robin method without
any additional stabilization (what the authors of [7] referred to as the genuine Robin-Robin method)
and prove stability and error estimates for this method. To make the results cleaner and more
transparent we do not discretize in space. Instead, our splitting scheme solves a fluid and a solid
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PDE on each time step. Assuming enough regularity of the local time PDEs, we give a rigorous error
analysis that shows the error in a certain energy norm decreases as O(

√
T∆t) for sufficiently smooth

solutions, with a parameter λ of the Robin condition chosen O(1). This leads to convergence of the
time discrete approximation independently of the space discretization. This was not the case in [7],
where as mentioned above the convergence was hampered by the h−1-scaling of the Robin parameter,
imposing a very small time step and iterative correction steps to achieve sufficient accuracy. Observe
that it is likely that the accuracy of the approach suggested here can be improved using correction
steps for moderate values of the time step, thanks to the absence of the h−1 scaling in the estimate.
We would like to highlight that our estimates grow like

√
T instead of an exponential growth. We

accomplish this by using a technique used by G. Baker [3].
Finally we should mention recent papers for the simpler case of interaction between a fluid and a

thin structure that also have rigorous convergence analysis [10, 11, 5]. For the case of thick solids the
paper of [12] seems to be the first paper with a rigorous error analysis of a thick wall structure. The
method considered in [12] is a Robin-Neumann coupling that first appeared in [13]. There stability
is achieved by handling the inertial effects of the solid in an implicit coupling with the fluid. This is
then combined with extrapolation to reduce the splitting error. The leading error in that method for
this approach is O(∆t/

√
h) which scales like our error estimates if ∆t = O(h). It should be mentioned

that the constant of their estimates grow exponentially with T .
The outline of the present paper is as follows. In section 2 we introduce the linear model problem.

The proposed Robin-Robin loosely coupled scheme is introduced in section 3 and the stability is
analyzed in section 4. Finally in section 5 we derive the truncation error of the splitting and use this
result together with the stability estimate to prove the error estimate.

2. The Model Problem

Figure 1. An example of the domains Ωs and Ωf with interface Σ.

Let Ωs and Ωf be two domains with a matching interface Σ = ∂Ωs ∩ Ωf . We also set Σi = ∂Ωi\Σ
for i = s, f . Our fluid is modeled by the Stokes equation on the fluid domain Ωf .

(2.1)


ρf∂tU− div σF =0, in Ωf × (0, T ),

divU =0, in Ωf × (0, T ),

U =0, on Σf × (0, T ).

Our structure is modeled by the classical linear elasticity equations on the structure domain Ωs.

(2.2)

{
ρs∂ttE− div σS =0, in Ωs × (0, T ),

η =0, on Σs × (0, T ).
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Here, U is the velocity of the fluid, P is the pressure of the fluid, and E is the displacement of the
structure. The constants ρf , ρs are the fluid and solid densities, and n and ns represent the outward-
facing normal of the fluid and solid domains, respectively. Furthermore, σF, σS denote the fluid and
solid stress tensors, respectively, and are given by

σF =2µε(U)− PI,

σS =2L1ε(E) + L2(divE)I,

where ε denotes the symmetric gradient, µ the viscosity coefficient and L1 > 0, L2 ≥ 0 the Lamé
constants. Then the two problems are coupled via the following interface conditions:

U =∂tE on Σ,(2.3a)

σSns + σFn =0 on Σ.(2.3b)

3. Splitting Method

In [7], several splitting methods were given for the following FSI problem. We will consider one
such method. In order to describe it, we consider a uniform grid for the interval [0, T ], with step size
∆t. We assume that there is an integer N so that N∆t = T and we let tn = ∆t n. The splitting
method sequentially solves the following two sub-problems. The first is the solid problem:

Find ηn+1 and η̇n+1 such that

ρs∂tη̇
n+1 − div σn+1

s =0 in Ωs × [tn, tn+1],(3.1a)

η̇n+1 =∂tη
n+1 in Ωs × [tn, tn+1](3.1b)

σn+1
s =2L1ε(η

n+1) + L2(div ηn+1)I in Ωs × [tn, tn+1](3.1c)

ηn+1 =0 on Σs × [tn, tn+1],(3.1d)

λη̇n+1 + σn+1
s ns =λũn − σ̃nfn on Σ× [tn, tn+1],(3.1e)

ηn+1(·, tn) = ηn(·, tn), η̇n+1(·, tn) =η̇n(·, tn) on Ωs.(3.1f)

We set, of course, η0(·, t0) = E(·, t0), η̇0(·, t0) = ∂tE(·, t0). Below we will also set u0(·, t0) = U(·, t0).
Here for n ≥ 1 we set

ũn(x) =
1

∆t

∫ tn

tn−1

un(x, s)ds, σ̃nf (x) =
1

∆t

∫ tn

tn−1

σnf (x, s)ds,

and for n = 0 we set

ũ0(x) = u0(x, t0) σ̃0
f (x) = σF(x, t0).

Note that P(x, t0) is not data and hence, we technically do not know σF(x, t0). However, we assume
that we have a good approximation of P(x, t0). In fact, for simplicity, we will assume that we know
P(x, t0) exactly. The fluid sub-problems is given in the following:

Find un+1 and pn+1 such that

ρf∂tu
n+1 − div σn+1

f =0, in Ωf × [tn, tn+1],(3.2a)

σn+1
f =2µε(un+1)− pn+1I, in Ωf × [tn, tn+1],(3.2b)

divun+1 =0, in Ωf × [tn, tn+1],(3.2c)

un+1 =0 on Σf × [tn, tn+1],(3.2d)

λun+1 + σn+1
f n =λη̇n+1 + σ̃nfn on Σ× [tn, tn+1],(3.2e)

un+1(·, tn) =un(·, tn) on Ωf .(3.2f)

We require λ > 0. This strict positivity determines the balancing of the two interface coupling
conditions (2.3a) and (2.3b). A large value of λ will emphasize the continuity of velocities and a small
value that of stresses.
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Before proceeding, we define the space-time norm on X, a Hilbert space

‖v‖2L2(r1,r2;X) :=

∫ r2

r1

‖v(s)‖2Xds.

Remark 3.1. We will assume that the (3.2) and (3.1) are well posed and have enough regularity so that
σn+1
f n ∈ L2(tn, tn+1; Σ), σn+1

s n ∈ L2(tn, tn+1; Σ), un+1 ∈ L2(tn, tn+1; Σ), η̇n+1 ∈ L2(tn, tn+1; Σ).

We note, for example, σn+1
s n ∈ L2(tn, tn+1; Σ) provided ηn+1 ∈ L2(tn, tn+1;H3/2(Ωs)). We have not

been able to find exactly these regularity results in literature nor have we been able to prove them,
however, we have found some encouraging results in the literature (see for example [17], [15]).

Throughout this paper we will assume that the regularity mentioned in the above remark holds.

4. Stability Analysis

We will now prove stability of the splitting method introduced in the last section. We start with a
few preliminary results. The following identity easily follows:

(4.1)

∫
Σ

(v −w) ·ψ =
1

2

(
‖v‖2L2(Σ) − ‖w‖

2
L2(Σ) + ‖ψ −w‖2L2(Σ) − ‖ψ − v‖

2
L2(Σ)

)
.

Additionally, if we set w̃(x) = 1
∆t

∫ tn
tn−1

w(x, s)ds then we see that∫ tn+1

tn

‖w̃‖2L2(Σ) =∆t

∫
Σ

(w̃(x))2 =
1

∆t

∫
Σ

(

∫ tn

tn−1

w(x, s)ds)2

≤
∫ tn

tn−1

∫
Σ

(w(x, s))2 ds =

∫ tn

tn−1

‖w(s)‖2L2(Σ)ds.(4.2)

For the analysis that follows, we define the bilinear form as(w,v) to be

as(w,v) := 2L1(ε(w), ε(v))s + L2(divw,div v)s.

It induces the norm:
‖w‖2S := 2L1‖ε(w)‖2L2(Ωs) + L2‖divw‖2L2(Ωs).

Finally, the following quantities willl allow us to state our stability estimates

En :=
ρf
2
‖un(tn)‖2L2(Ωf ) +

ρs
2
‖η̇n(tn)‖2L2(Ωs) +

1

2
‖ηn(tn)‖2S ,

Tn := 2µ

∫ tn

tn−1

‖ε(un)(s)‖2L2(Ωf )ds+
λ

2

∫ tn

tn−1

‖(η̇n − ũn−1)(s)‖2L2(Σ)ds,

Sn :=
1

2λ

∫ tn

tn−1

‖σnf (s)n‖2L2(Σ)ds+
λ

2

∫ tn

tn−1

‖un(s)‖2L2(Σ)ds, for n ≥ 1,

S0 : =
∆t

2λ
‖σF(t0)n‖2L2(Σ) +

λ∆t

2
‖U(t0)‖2L2(Σ).

The stability result is given in the following theorem.

Theorem 4.1. Let λ > 0 and suppose that ηn+1 solves (3.1) and un+1, pn+1 solve (3.2) for 0 ≤ n ≤
N − 1. Then we have

EN +

N∑
n=1

Tn + SN ≤ E0 + S0.

Proof. We multiply the first equations of (3.1) and (3.2) by η̇n+1 and un+1, respectively, integrate,
and add the results to get

ρf
2
∂t‖un+1‖2L2(Ωf ) + 2µ‖ε(un+1)‖2L2(Ωf ) +

ρs
2
∂t‖η̇n+1‖2L2(Ωs) +

1

2
∂t‖ηn+1‖2S = J,(4.3)
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where

J :=

∫
Σ

σn+1
f n · un+1 +

∫
Σ

σn+1
s ns · η̇n+1.

We can then write

J =

∫
Σ

σn+1
f n · (un+1 − η̇n+1) +

∫
Σ

(σn+1
s ns + σn+1

f n) · η̇n+1.

From (3.1e) and (3.2e) we get

σn+1
s ns + σn+1

f n =λ(ũn − un+1),

un+1 − η̇n+1 =
1

λ
(σ̃nfn− σn+1

f n).

Thus,

(4.4) J =
1

λ

∫
Σ

σn+1
f n · (σ̃nfn− σn+1

f n) + λ

∫
Σ

(ũn − un+1) · η̇n+1.

By the relation (4.1) and the fact that 1
λ‖σ̃

n
fn− σ

n+1
f n‖2L2(Σ) = λ‖η̇n+1 − un+1‖2L2(Σ), we obtain

J =
λ

2

(
‖ũn‖2L2(Σ) − ‖u

n+1‖2L2(Σ)

)
+

1

2λ

(
‖σ̃nfn‖2L2(Σ) − ‖σ

n+1
f n‖2L2(Σ)

)
− λ

2
‖η̇n+1 − ũn‖2L2(Σ).

If we plug this into (4.3) we arrive at

ρf
2
∂t‖un+1‖2L2(Ωf ) + 2µ‖ε(un+1)‖2L2(Ωf ) +

ρs
2
∂t‖η̇n+1‖2L2(Ωs) +

1

2
∂t‖ηn+1‖2S

+
1

2λ
‖σn+1

f n‖2L2(Σ) +
λ

2
‖un+1‖2L2(Σ) =

1

2λ
‖σ̃nfn‖2L2(Σ) +

λ

2
‖ũn‖2L2(Σ) −

λ

2
‖η̇n+1 − ũn‖2L2(Σ).

After integrating on [tn, tn+1] and using (4.2), we obtain

En+1 + Tn+1 + Sn+1 ≤ En + Sn.

The result now follows after summing the above inequalities over all n from 0 to N − 1. �

5. Error Estimates

We now show that the splitting method with Robin-Robin type boundary conditions described
above is, in fact, weakly consistent. In fact, we will prove that the error is

√
T∆t. Consider the

solutions U,P, σF,E, σS of (2.1), (2.2) and (2.3). We use the notation Un+1(t, x) = U(t, x) for
tn ≤ t ≤ tn+1 and x ∈ Ω; this similarly holds for the other variables. We then set the errors:

enu = Un − un, enf = σnF − σnf

ens = σnS − σns , enη = En − ηn, ėnη = Ė
n
− η̇n

We also define the following quantities which will be useful to describe our error estimates:

En :=
ρf
2
‖enu(tn)‖2L2(Ωf ) +

ρs
2
‖ėnη (tn)‖2L2(Ωs) +

1

2
‖enη (tn)‖2S ,

Tn := 2µ

∫ tn

tn−1

‖ε(enu(s))‖2L2(Ωf )ds+
λ

4

∫ tn

tn−1

‖ėnη − ẽn−1
u ‖2L2(Σ)

Sn :=
1

2λ

∫ tn

tn−1

‖enf (s)n‖2L2(Σ)ds+
λ

2

∫ tn

tn−1

‖enu(s)‖2L2(Σ)ds, for n ≥ 1,

S0 :=
∆t

2λ
‖e0
f (t0)n‖2L2(Σ) +

λ∆t

2
‖e0

u(t0)‖2L2(Σ).

We note that E0 = 0 and S0 = 0.
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For the proof of the error estimates, we will make use of the following lemma. We define

gn+1
3 := λ(Un+1 − Ũ

n
),(5.1)

gn+1
2 := (σn+1

F n − σ̃nFn).(5.2)

Lemma 5.1. For Un and σnF defined above, we have for n ≥ 1∫ tn+1

tn

‖gn+1
3 (s)‖2L2(Σ)ds ≤Cλ

2(∆t)2

∫ tn+1

tn−1

‖∂tU(s)‖2L2(Σ)ds,(5.3) ∫ tn+1

tn

‖gn+1
2 (s)‖2L2(Σ)ds ≤C(∆t)2

∫ tn+1

tn−1

‖∂tσF(s)n‖2L2(Σ)ds.(5.4)

For n = 0 we have ∫ t1

t0

‖g1
3(s)‖2L2(Σ)ds ≤Cλ

2(∆t)2

∫ t1

t0

‖∂tU(s)‖2L2(Σ)ds,(5.5) ∫ t1

t0

‖g1
2(s)‖2L2(Σ)ds ≤C(∆t)2

∫ t1

t0

‖∂tσF(s)n‖2L2(Σ)ds.(5.6)

Proof. We only prove (5.3) as the proof of the other estimates are similar. We have

Un+1(s)− Ũ
n
(s) =

1

∆t

∫ tn

tn−1

(U(s)−U(r)) dr =
1

∆t

∫ tn

tn−1

∫ s

r

∂tU(θ) dθ dr.

Hence, ∫ tn+1

tn

‖λ(Un+1(s)− Ũ
n
(s))‖2L2(Σ)ds =λ2

∫ tn+1

tn

∫
Σ

(
1

∆t

∫ tn

tn−1

∫ s

r

∂tU(θ) dθ dr)2 ds

≤2λ2

∫ tn+1

tn

∫
Σ

∫ tn

tn−1

∫ s

r

(∂tU(θ))2 dθ dr ds

≤Cλ2(∆t)2

∫ tn+1

tn−1

‖∂tU(θ)‖2L2(Σ).

�

The error estimates are given in the following theorem. Note that we will implicitly assume the
regularity mentioned in Remark 3.1. In addition, we assume that ∂tU ∈ L2(0, T ;L2(Σ)) and ∂tσFn ∈
L2(0, T ;L2(Σ)).

Theorem 5.2. Let U,P, σF,E, σS solve (2.1), (2.2) and (2.3). Furthermore, let un+1, σn+1
f , pn+1

solve (3.2) and ηn+1, η̇n+1 solve (3.1). If T = N∆t with N ≥ 1, the following estimate holds:

EN +

N∑
n=1

Tn + SN ≤ C∆tT

(
λ‖∂tU‖2L2(0,T ;L2(Σ)) +

1

λ
‖∂tσFn‖2L2(0,T ;L2(Σ))

)
.

Proof. Using (3.1e), (3.2e) and (2.3) we see that

en+1
s ns + λėn+1

η = λẽnu − ẽnfn + gn+1
1 ,

en+1
f n + λen+1

u = λėn+1
η + ẽnfn + gn+1

2 ,

where gn+1
2 is given in (5.2) and

gn+1
1 := λ(Un+1 − Ũ

n
) + (σ̃nFn − σn+1

F n).

By adding the two equations we get

en+1
s ns + en+1

f n = λ(ẽnu − en+1
u ) + gn+1

3 ,(5.7a)
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where gn+1
3 is given in (5.1). Also, we re-arrange the second equation and write

en+1
u − ėn+1

η =
1

λ
(ẽnfn− en+1

f n) +
1

λ
gn+1

2 .(5.7b)

We may therefore proceed with the same initial steps from the stability analysis. This yields

ρf
2
∂t‖en+1

u ‖2L2(Ωf ) + 2µ‖ε(en+1
u )‖2L2(Ωf ) −

∫
Σ

en+1
f n · en+1

u = 0,

ρs
2
∂t‖ėn+1

η ‖2L2(Ωs) +
1

2
∂t‖en+1

η ‖2S −
∫

Σ

en+1
s ns · ėn+1

η = 0.

If we set

In+1 :=
ρf
2
∂t‖en+1

u ‖2L2(Ωf ) + 2µ‖ε(en+1
u )‖2L2(Ωf ) +

ρs
2
∂t‖ėn+1

η ‖2L2(Ωs) +
1

2
∂t‖en+1

η ‖2S ,

we have that

In+1 =

∫
Σ

en+1
f n · en+1

u +

∫
Σ

en+1
s ns · ėn+1

η

=

∫
Σ

en+1
f n · (en+1

u − ėn+1
η ) +

∫
Σ

(en+1
s ns + en+1

f n) · ėn+1
η

=
1

λ

∫
Σ

en+1
f n · (ẽnfn− en+1

f n) + λ

∫
Σ

(ẽnu − en+1
u ) · ėn+1

η

+
1

λ

∫
Σ

en+1
f n · gn+1

2 +

∫
Σ

gn+1
3 · ėn+1

η .

In the last equality we used (5.7). Also, the following holds after using (5.7)

‖ẽnfn− en+1
f n‖2L2(Σ) =‖λ(en+1

u − ėn+1
η )− gn+1

2 ‖2L2(Σ)

=λ2‖en+1
u − ėn+1

η ‖2L2(Σ) + ‖gn+1
2 ‖2L2(Σ) − 2λ

∫
Σ

gn+1
2 · (en+1

u − ėn+1
η ).

If we use the above equations and (4.1) we obtain

In+1 =A+
1

λ

∫
Σ

en+1
f n · gn+1

2 +

∫
Σ

gn+1
3 · ėn+1

η − 1

2λ
‖gn+1

2 ‖2L2(Σ) +

∫
Σ

gn+1
2 · (en+1

u − ėn+1
η ),

where

A :=
1

2λ

(
‖ẽnfn‖2L2(Σ) − ‖e

n+1
f n‖2L2(Σ)

)
+
λ

2

(
‖ẽnu‖2L2(Σ) − ‖e

n+1
u ‖2L2(Σ) − ‖ė

n+1
η − ẽnu‖2L2(Σ)

)
.

Again using (5.7b) and applying Cauchy-Schwarz and Young’s inequalities, we have

In+1 = A+

∫
Σ

gn+1
3 · (ėn+1

η − ẽnu) +

∫
Σ

gn+1
3 · ẽnu +

1

λ

∫
Σ

ẽnfn · gn+1
2 +

1

2λ
‖gn+1

2 ‖2L2(Σ)

≤ A+
λ

4
‖ėn+1
η − ẽnu‖2L2(Σ) +

1

λ
(1 +

1

2δ
)‖gn+1

3 ‖2L2(Σ) +
1

λ
(
1

2
+

1

2δ
)‖gn+1

2 ‖2L2(Σ)

+
δ

2λ
‖ẽnfn‖2L2(Σ) +

λδ

2
‖ẽnu‖2L2(Σ),

where δ > 0.
Taking the integral on [tn, tn+1] and applying (4.2) we have:

En+1 + Tn+1 + Sn+1 ≤ En + (1 + δ)Sn +Gn+1,

where

Gn+1 :=
1

λ
(1 +

1

2δ
)

∫ tn+1

tn

‖gn+1
3 (s)‖2L2(Σ)ds+

1

λ
(
1

2
+

1

2δ
)

∫ tn+1

tn

‖gn+1
2 (s)‖2L2(Σ)ds.
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We then clearly have

En+1 + Tn+1 + Sn+1 ≤ En + Sn + δ max
1≤m≤N

Sm +Gn+1.

If we sum from 0 to M − 1 with 1 ≤M ≤ N and set δ = ∆t
2T we obtain

EM +

M−1∑
n=0

Tn+1 + SM ≤ 1

2
max

1≤m≤N
Sm +

M−1∑
n=0

Gn+1.

Here we used that E0 = 0 and S0 = 0. Since this holds for any 1 ≤M ≤ N we have

1

2
max

1≤m≤N
Sm ≤

N−1∑
n=0

Gn+1.

Thus, we have

(5.8) EN +

N∑
n=1

Tn + SN ≤ 2

N−1∑
n=0

Gn+1.

Using Lemma 5.1 and that δ = ∆t
2T we immediately have

N−1∑
n=0

Gn+1 ≤ C∆tT

(
λ‖∂tU‖2L2(0,T ;L2(Σ)) +

1

λ
‖∂tσFn‖2L2(0,T ;L2(Σ))

)
.

Here we used that T ≥ ∆t. Combing this with (5.8) completes the proof. �

6. Conclusion

In this paper we analyzed a Robin-Robin splitting scheme for an FSI problem. We showed that
the error is bounded by

√
T∆t. Since the splitting does not discretize in space this gives several

possibilities for spatial discretizations. In a forthcoming paper, we will analyze a fully discrete scheme
and present numerical experiments.
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[4] M. Bukac̆, S. C̆anić, R. Glowinski, B. Muha, and A. Quaini. A modular, operatorsplitting scheme for fluidstructure
interaction problems with thick structures. International Journal for Numerical Methods in Fluids, 74(8):577–604,

2014.
[5] M. Bukac̆ and B. Muha. Stability and convergence analysis of the extensions of the kinematically coupled scheme

for the fluid-structure interaction. SIAM Journal on Numerical Analysis, 54(5):3032–3061, 2016.
[6] E. Burman and M. A. Fernández. Stabilization of explicit coupling in fluid–structure interaction involving fluid

incompressibility. Computer Methods in Applied Mechanics and Engineering, 198(5-8):766–784, 2009.
[7] E. Burman and M. A. Fernández. Explicit strategies for incompressible fluid-structure interaction problems:

Nitsche type mortaring versus Robin–Robin coupling. International Journal for Numerical Methods in Engineering,
97(10):739–758, 2014.

[8] P. Causin, J.-F. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned algorithms for fluid–
structure problems. Computer methods in applied mechanics and engineering, 194(42-44):4506–4527, 2005.

[9] M. A. Fernández, J.-F. Gerbeau, and C. Grandmont. A projection semiimplicit scheme for the coupling of an elastic
structure with an incompressible fluid. International Journal for Numerical Methods in Engineering, 69(4):794–821,

2007.
[10] M. A. Fernández and M. Landajuela. A fully decoupled scheme for the interaction of a thin-walled structure with

an incompressible fluid. Comptes Rendus Mathematique, 351(3-4):161–164, 2013.
[11] M. A. Fernández, M. Landajuela, and M. Vidrascu. Fully decoupled time-marching schemes for incompressible

fluid/thin-walled structure interaction. Journal of Computational Physics, 297:156–181, 2015.



ROBIN-ROBIN COUPLING 9

[12] M. A. Fernández and J. Mullaert. Convergence and error analysis analysis for a class of splitting schemes in
incompressible fluid-structure interaction. IMA Journal of Numerical Analysis, 36(4):1748–1782, 2016.

[13] M. A. Fernández, J. Mullaert, and M. Vidrascu. Generalized Robin–Neumann explicit coupling schemes for incom-

pressible fluid-structure interaction: Stability analysis and numerics. International Journal for Numerical Methods
in Engineering, 101(3):199–229, 2015.

[14] P. Hansbo, J. Hermansson, and T. Svedberg. Nitsche’s method combined with space-time finite elements for ale

fluid-structure interaction problems. Computational Methods in Applied Mechanical Engineering, 193(39-41):4195–
4206, 2004.

[15] K. Hayashida. On a mixed problem for hyperbolic equations with discontinuous boundary conditions. Publications
of the Research Institute for Mathematical Sciences, 7(1):57–67, 1971.

[16] A. Quaini and A. Quarteroni. A semi-implicit approach for fluid-structure interaction based on an algebraic frac-

tional step method. Mathematical models and methods in applied sciences, 17(6):957–983, 2007.
[17] K. Taira. A mixed problem of linear elastodynamics. Journal of Evolution Equations, 13(2):481–507, 2013.


	1. Introduction
	2. The Model Problem
	3. Splitting Method
	4. Stability Analysis
	5. Error Estimates
	6. Conclusion
	References

