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Abstract

Aims: Although morphological attributes of cells and their substructures are recognised

readouts of physiological or pathophysiological states, these have been relatively under-

studied in amyotrophic lateral sclerosis (ALS) research.

Methods: In this study, we integrate multichannel fluorescence high-content microscopy

data with deep learning imaging methods to reveal—directly from unsegmented images—

novel neurite-associated morphological perturbations associated with (ALS-causing)

VCP-mutant human motor neurons (MNs).

Results: Surprisingly, we reveal that previously unrecognised disease-relevant informa-

tion is withheld in broadly used and often considered ‘generic’ biological markers of

nuclei (DAPI) and neurons (β III-tubulin). Additionally, we identify changes within the

information content of ALS-related RNA binding protein (RBP) immunofluorescence

imaging that is captured in VCP-mutant MN cultures. Furthermore, by analysing MN cul-

tures exposed to different extrinsic stressors, we show that heat stress recapitulates key

aspects of ALS.

Conclusions: Our study therefore reveals disease-relevant information contained in a

range of both generic and more specific fluorescent markers and establishes the use of

image-based deep learning methods for rapid, automated and unbiased identification of

biological hypotheses.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and

incurable neurodegenerative disease characterised by the loss of

motor neurons (MNs). Key hallmarks of the disease include the mis-

localisation and accumulation of ubiquitously expressed RNA bind-

ing proteins (RBPs) from the nucleus to the cytoplasm including

TAR DNA-binding protein of 43 kDa (TDP-43), Fused in Sarcoma

(FUS) and Splicing factor Proline and Glutamine rich (SFPQ) pro-

teins.1–4 What drives pathological mislocalisation and aggregation of

RBPs in ALS remains unknown. However, alteration in liquid–liquid

phase separation dynamics has been proposed to underlie this pro-

cess.5–9 RBPs are highly dynamic and have been shown to undergo

changes in localisation in response to various stressors.10–16 Nota-

bly, mitochondrial dysfunction and oxidative stress are recognised

and robust phenotypes in ALS pathogenesis in vitro.17 The role of

RBPs in ALS and cellular stress highlights that a diverse and com-

plex interplay exists.
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Cell shape and morphology are recognised readouts of a cell’s

physiological state or phenotype.18 We previously reported common

morphological descriptors that strongly discriminate sporadic ALS

from control post-mortem tissue at single cell resolution,19 further

indicating that key information related to cellular state might be con-

tained in cell shape in ALS. Dystrophic neurites are a common patho-

logical feature in ALS, and disrupted synaptic integrity has been

shown in valosin-containing protein (VCP) mutant human induced plu-

ripotent stem cell (iPSC) cultures of MNs.20 Taken together, these

studies suggest that the neuronal processes (collectively termed neu-

rites or the ‘neuritome’) may be a good cellular subcompartment to

reveal ALS pathomechanisms. However, neurites are challenging to

study both in tissue sections (as the arborisation of processes is not

captured in tissue sections) and in vitro due to difficulty in accurate

segmentation and association of neuronal processes with individual

cells. Consequently, neuronal processes remain comparatively under-

studied in ALS, and it is still unknown how, and to what degree, the

neuritome is affected, whether ALS-related stress insults modify this

compartment or if cytoplasmic accumulation of RBPs in ALS MNs

relates to other aberrant cellular phenotypes such as dystrophic

neurites.

We previously generated a high-content imaging dataset of

control and ALS-related VCP-mutant iPSC-derived MN cultures co-

labelled with a combination of three fluorescent markers, specifically,

(i) a nuclear-specific marker (DAPI), (ii) a neuron-specific marker of

the neurites (β III-tubulin) and (iii) an antibody against one of five

ALS-relevant RBPs: TDP-43, SPFQ, FUS, heterogeneous nuclear ribo-

nucleoprotein A1 (hnRNPA1) or heterogeneous nuclear ribonucleo-

protein K (hnRNPK).16 In our previous study, we specifically analysed

the spatio-temporal responses of the aforementioned ALS-related

RBPs to different stressors (oxidative, heat and osmotic). Here, we

applied deep learning methods to this rich imaging dataset to test in

an automated fashion: (1) Whether aberrant cellular morphological

phenotypes, including neuronal processes, associate with ALS;

(2) whether these morphological phenotypes correlate to aberrant

ALS-related RBP phenotypes; and (3) whether extrinsic stress insults

in control MN cultures can recapitulate ALS phenotypic changes.

Deep learning models such as convolutional neural networks (CNNs)

are now widely used to efficiently perform image classification and

image segmentation.21–25 Such methods are able to analyse images

without prior image segmentation, feature selection or human-

directed training and automatically extract features from raw data,

removing significant bias from this process. Importantly, CNN-based

image classifier performance largely depends on whether sufficient

information is contained in the provided set of images. DAPI and β III-

tubulin capture complementary and non-overlapping information

related to the nuclear shape and neuronal/neurite morphology,

respectively. We hypothesised that comparing the performance of dif-

ferent classifiers trained with iterative combinations of fluorescent

images can be used to identify which cellular compartment or specific

RBP is most affected between any two given culture conditions. Addi-

tionally, we hypothesised that similar phenotypes between different

MNs culture conditions can be quantified using the trained model

predictions. We demonstrate the utility of this approach, which

enables the discovery of novel phenotypes in ALS MN cultures and

the identification of the relevant extrinsic stress condition that best

approximates ALS pathogenesis. The advantage of our method is that

it is highly versatile and can quickly guide the scientist towards the

most promising hypothesis for further experimental validation. By

providing our fluorescence microscopy raw images together with

open-source implementations of the methods and trained models, we

aim to allow other researchers to readily apply these methods and test

additional hypotheses. In summary, we propose the use of deep

learning methods to leverage the power of large image databases

from ALS-related MN cultures to generate testable biological hypoth-

eses automatically and rapidly, a method that could prove transforma-

tional in promoting innovative research directions, diagnostics and

therapies.

RESULTS

Repurposing image-based deep learning methods to
test biological hypotheses

We previously studied the spatio-temporal responses of ALS-related

RBPs to different stressors in control vs ALS-related VCP-mutant

iPSC-derived electrically immature MN cultures using image-based

analysis (Figure 1A and Table S1).16 These MN cultures have been

generated using our previously published protocol for the generation

of highly enriched spinal cord MNs20 and have been further

characterised by the presence of MN-specific markers choline

acetyltransferase (ChAT) and SMI-32 (Figure S1A). These cultures

were immunolabelled after 1 h of exposure to oxidative stress, heat

stress and osmotic stress, along with recovery timepoints from heat

stress (2 h) and osmotic stress (1, 2 and 6 h). A combination of three

specific markers was used: a nuclear marker (DAPI), a neuronal marker

allowing precise identification of neurites (β III-tubulin) and an anti-

body against one of the following RBPs: TDP-43, SPFQ, FUS,

hnRNPA1 or hnRNPK. Using this approach, we generated a large-

scale imaging dataset of 156,577 images, which is publicly available in

the Image Data Resource (IDR) (Figure 1B–D). In our previous study,

we focused on nuclear-to-cytoplasmic ratio measurements of the

aforementioned RBPs. Here, we aimed to capitalise on the richness of

information contained within this high-dimensional image dataset to

Key points

• CNN-based image classifiers enable automatic detection

of phenotypic changes in unsegmented images.

• Novel neurite-associated morphological perturbations in

(ALS-causing) VCP-mutant human motor neurons.

• Heat stress recapitulates key aspects of ALS.
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F I GU R E 1 Overview of the high-dimensional immunofluorescent image dataset and paradigm to evaluate the relevance of markers in stress
and ALS pathogenesis. (A) Experimental design for obtaining immunofluorescence microscopy images of motor neurons (MNs). Control (n = 3 cell
lines) and VCP-mutant (n = 4 cell lines) induced pluripotent stem cells (iPSC)-derived MNs in different cellular stress (untreated, osmotic, heat and
oxidative) and stress recovery (2 h after heat stress, 1, 2 and 6 h after osmotic stress) conditions were fluorescently labelled with DAPI, β III-
tubulin (BIII) and key ALS-linked RNA-binding proteins (RBPs) and then imaged, resulting in 156,577 images. (B,C) Total number of images in
CTRL and ALS cell lines grouped by stress conditions: untreated (UT) in grey, oxidative (OX) in purple, heat (HS, 2-h recovery) in blue and osmotic
(OSM, 1-h recovery, 2-h recovery and 6-h recovery) in yellow. (D) Representative images of nuclear marker DAPI, neuronal marker β III-tubulin
and ALS-linked RBPs in iPSC-derived motor neurons. Scale bars=25 μm. (E) Fifty-two CNN-based classifiers have been trained in this study to
discriminate (1) ALS from control MN cultures (isALS test), or untreated MN cultures from MN cultures exposed to (2) oxidative (isOXIDATIVE
test), (3) heat (isHEAT test) and (4) osmotic stress (isOSMOTIC test) using 13 combinations of RGB images composed of different channels: Either
a single channel was used (DAPI, BIII or RBP), either two channels (DAPI:BIII) or three channels (DAPI:BIII:RBP), and pitch-black images were
assigned to the unused channels (Table S2). For each of the four tests (siALS, isOXIDATIVE, isHEAT and isOSMOTIC), the 13 classifiers’
performance as obtained from the area under the receiver operating characteristic curve (AUC) were extracted and compared to uncover the
importance of those markers in discriminating two conditions (Table S3). Additionally, 13 model predictions for each of the 4 tests have been
extracted for each MN culture (Tables S4–S7)

IMAGE-BASED DEEP LEARNING REVEALS THE RESPONSES OF HUMAN MOTOR NEURONS
TO STRESS AND VCP-RELATED ALS
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test whether different MN stressors (including extrinsic stressors

and endogenous ALS-causing mutations in the VCP gene) are

characterised by detectable phenotypes in cellular compartments

and/or RBP fluorescent images. Specifically, we hypothesised that

ALS-related phenotypic changes will be recapitulated by one of our

aforementioned stress conditions. CNN-based classifiers are powerful

deep learning models that can be trained to discriminate images from

different conditions by identifying complex relationships between

pixels. Here, we trained the following 52 CNNs-based classifiers to

recognise cellular phenotypes associated with (i) ALS, (ii) oxidative

stress, (iii) heat stress or (iv) osmotic stress using 13 different combi-

nations of immunolabelled images, ranging from DAPI fluorescent

images only to the combination of three channels, that is, DAPI, β III

and an RBP (Figure 1E and Table S2): 13 classifiers trained to discrimi-

nate untreated ALS from untreated control MN cultures (hereafter

called ALS classifiers), 13 classifiers trained to discriminate untreated

control MN cultures from control MN cultures exposed to oxidative

stress (hereafter called OX classifiers), 13 classifiers trained to discrimi-

nate untreated control MN cultures from control MN cultures

exposed to heat stress (hereafter called HS classifiers) and 13 classifiers

trained to discriminate untreated control MN cultures from control

MN cultures exposed to osmotic stress (hereafter called OSM classi-

fiers). The CNN-based classifiers were obtained through transfer

learning from MobileNetV2, which has been pre-trained using the

ImageNet dataset.21 The performance of each classifier was evaluated

using the total area under the receiver operating characteristic (ROC)

curve (AUC). AUC was calculated using 10-fold cross-validation, train-

ing on 90% of the dataset, testing on the remaining 10% of the

dataset and repeating with 10 different train/test combinations

(Table S3). The 52 trained classifiers assigned class (e.g., ALS and

stress) probabilities for all the �10 views from each cell culture (con-

trol vs ALS; untreated vs stressed; different timepoints) that were

then averaged to obtain a final per culture classification probability

(Tables S4–S7 and Figure S1B).

Noting that the information content of images determines the

performance of a CNN-based classifier to discriminate between con-

ditions, we harnessed distinct fluorescent markers (DAPI, β III-tubulin

and RBPs) to capture different cryptic attributes that reveal cellular

state. Against this background, we propose that the performance of

the 13 different classifiers trained to identify a specific MN culture

condition can reveal the relevant cellular compartment or RBP. During

training, a classifier learns to identify a phenotype associated with a

specific MN culture condition (ALS vs control; stressed vs untreated).

Therefore, we propose that, once trained, this classifier can be used

to predict whether similar phenotypes are shared among different

conditions. Consequently, we use image-based deep learning methods

in two novel ways that are expected to greatly facilitate and acceler-

ate the process of hypothesis testing in biology. In the following sec-

tions, we first validate our approach by recapitulating previous

findings. We next specifically demonstrate the utility of this approach

by testing the following hypotheses: (1) ALS-causing VCP mutations

result in previously unrecognised phenotypes contained within the

information content of DAPI and/or β III-tubulin fluorescence images

alone; (2) addition of ALS-related RBPs immunofluorescence images

will improve phenotype detection in an RBP-specific manner; and

(3) conventional extrinsic stressors can recapitulate phenotypic

aspects of ALS.

Post-stress recovery of RBP- and neuritome-related
phenotypes are closely correlated

Cell shape and morphology are recognised readouts of cell state or

phenotype.18 Here, we first sought to test whether oxidative, heat or

osmotic stress are characterised by changes in cell shape. We

analysed and compared the performance of CNN-based models

trained to discriminate images of untreated control MN cultures from

images of stress-treated control MN cultures either using the DAPI

staining only (hereafter named stressjDAPI classifier), either the β III-

tubulin immunolabelling only (hereafter named stressjBIII classifier) or
the combination of two fluorescent markers (hereafter named

stressjDAPI:BIII classifier). As shown in Figure 2A, stressjDAPI and

stressjBIII classifiers outperform a random classifier (AUCDAPI > 0.5

and AUCβIII > 0.5) across all stress conditions, indicating that DAPI and

β III-tubulin fluorescent images capture relevant information related

to stressed MNs. This supports the hypothesis that MNs stressed with

oxidative, osmotic or heat exhibit previously unrecognised phenotypic

changes in both nuclear and neuritome compartments. Furthermore,

comparing the performance of these classifiers revealed that the β III-

tubulin immunolabelling consistently leads to a significantly higher

performance across all three stress conditions, suggesting that the

compartment most affected by all three stressors is the neuritome.

Although we cannot rule out the possibility that the increase in model

performance between stressjDAPI and stressjBIII is due to the larger

surface occupied by the neuronal processes compared with the nuclei,

the minor increase in model performances across the three stress con-

ditions between stressjBIII and stressjDAPI:BIII supports the hypothesis

that DAPI-stained images are not major contributors in these classi-

fiers. The greater performance of osmjDAPI compared with oxjDAPI
and heatjDAPI finally suggests larger nuclear-related changes upon

osmotic stress compared with the other stress insults.

We previously showed that different stressors affect the

localisation of ALS-associated RBPs in control MNs.16 Thus, we next

aimed to test whether our image-based deep learning approach could

shed light on the most relevant RBPs to each stress condition in order

to replicate these previous findings. Several ALS-causing mutations

occur in genes that encode RBPs, including TDP-43, FUS and

hnRNPA1,26–28 which typically exhibit subcellular mislocalisation of

RBPs. Indeed, TDP-43 is mislocalised from the nucleus to the cyto-

plasm in the vast majority of cases.29 More recently, we reported

widespread SFPQ and FUS mislocalisation in various ALS models.2,3

Furthermore, additional RBPs have been shown to be mislocalised in

models of ALS, including hnRNPK, one of the most abundant

hnRNPs.30 Examining the performance of the stressjRBP models to

discriminate untreated MN cultures from those exposed to osmotic,

heat or oxidative stress and comparing these with the performance of
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stressjDAPI models revealed significantly higher performances of all

five stressjRBPs models compared with stressjDAPI irrespective of the

stress (Figure S2A,B). This result indicates that, although these RBPs

mostly localise to the nucleus,16 their respective fluorescent images

carry information beyond nuclear shape or texture as identified by

DAPI. We also find that stressjTDP43 exhibits the highest AUC across

the three stressors. We next compared the performance of the

stressjDAPI:BIII:RBPs models with the stressjDAPI:BIII models in each

stress condition in order to test whether the integration of RBPs

fluorescent images together with those of DAPI and β III-tubulin

enables the identification of additional stress-related phenotypes. This

analysis revealed that TDP-43 significantly increases the ability of the

classifier to identify MN cultures under oxidative stress (Figure 2B).

While CNN-based models are not suited to specifically address the

subcellular localisation of RBPs, our finding that TDP-43 images, in

conjunction with nuclear and neurite fluorescent markers, enable rele-

vant oxidative-stress-related phenotypic information to be captured

suggests that TDP-43 exhibits changes in localisation upon oxidative

stress. This result is consistent with our prior finding that TDP-43—

but not the other four RBPs analysed—exhibits a reduction in nuclear-

to-cytoplasmic ratio upon oxidative stress.16 We also find that all five

stressjDAPI:BIII:RBPs perform significantly better than stressjDAPI:BIII
to discriminate untreated from heated MN cultures. Furthermore, we

find that the most informative RBPs to heat stress are TDP-43, FUS

and hnnRNPK. While in our previous study we detected significant

reduction in nuclear-to-cytoplasmic ratio for TDP-43 and FUS upon

F I GU R E 2 Different kinetics of stress recovery related to distinct cellular changes captured by CNN-based classifiers. (A) Boxplots showing
the distributions of model performances as evaluated using the AUC for classifiers trained using DAPI, β III-tubulin (BIII) and the combination of
DAPI and β III-tubulin markers, respectively, to discriminate untreated from stressed MN cultures. Each classifier was submitted to 10-fold cross-
validation in 5 different subsets of the data, resulting in 50 points per classifier. Boxplots display the five-number summary of median, lower and
upper quartiles, minimum and maximum values. P-values obtained from a one-sided Mann–Whitney test. (B) Bar graphs representing the increase
in performance as obtained from �log10(P-values) of one-sided Mann–Whitney test comparing the AUCs from the stressjDAPI:BIII classifier and
the AUCs from individual stressjDAPI:BIII:RBP classifiers for oxidative, heat and osmotic stresses. (C) Effect size (mean � standard errors) of
heatjDAPI-based (blue) and heatjBIII-based (red) classifier predictions of control MN cultures after 1 h of exposure to heat stress and 2h of
recovery from heat stress. Effect size of the treatment at each timepoint is obtained using linear mixed effects analysis accounting for
idiosyncratic variations due to cell lines and experiment bias. (D) Effect size (mean � standard errors) of osmjDAPI (blue) and osmjBIII (red)
classifier predictions of control MN cultures 1 h after osmotic stress and 1, 2 and 6 h after recovery from osmotic stress. (E) Same as (C) for
heatjTDP43, heatjFUS and heatjSFPQ classifier predictions. Solid lines= control MN cultures. Dashed lines=VCP-mutant MN cultures. (F) Same
as (D) for osmjTDP43, osmjFUS and osmjSFPQ classifier predictions. Solid lines= control MN cultures. Dashed lines=VCP-mutant MN cultures
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TO STRESS AND VCP-RELATED ALS
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heat stress, we can speculate that the present approach captures

more subtle changes beyond the previously studied cellular rel-

ocalisation that could explain the detected relevance of hnRNPK to

heat stress. Finally, while we previously found that all five RBPs

exhibit nuclear-to-cytoplasmic relocalisation upon osmotic stress,

here, we find that TDP-43 and SFPQ immunolabelling only contrib-

utes to significantly increase the stressjDAPI:BIII performance to iden-

tify MN cultures under osmotic stress. It is however important to note

that osmjDAPI:BIII exhibits an AUC of �1.0, implying that a significant

improvement is difficult to achieve in this case and that, in the case of

osmotic stress, this analysis may underestimate the contribution of

the RBP immunolabelling. Altogether, these results indicate that the

performance of a classifier is a reliable approach to prioritise which

RBPs are most relevant to a specific cell culture condition.

Next, the extent of recovered cellular compartment- and RBP-

related phenotypes after heat and osmotic stress were assessed using

linear mixed effects analyses of the individual classifier predictions,

accounting for idiosyncratic variations due to either individual cell

lines or experiments. As shown in Figure 2C, 2 h after recovery from

heat stress, the nuclear compartment has fully recovered, as predicted

by heatjDAPI, while the neuritome compartment still exhibits some

degree of aberrant phenotype, as predicted by heatjBIII. As opposed

to heat stress, the nuclear compartment takes longer to recover after

osmotic stress compared with the neuritome compartment; however,

both compartments exhibit full recovery 6 h after treatment

(Figure 2D). Next, looking at the RBP-related phenotypes, we find

large heterogeneity in their predicted recovery pattern after both heat

and osmotic stresses, with no complete recovery for any of the

analysed RBPs 2 h after heat stress (Figure S2C,D) and long-term

effects for several RBPs after osmotic stress (Figure S2E,F). In particu-

lar, we find that 2 h after heat stress, MN cultures still exhibit high

heatjTDP-43 and heatjSFPQ model predictions and lower (albeit still

elevated) heatjFUS model prediction (Figure 2E). The results indicate

that the TDP-43- and SFPQ-related phenotypes are still present at

this stage and that the FUS-related phenotype is only partially

resolved, partly reflecting on our previous study, where we did not

detect reconstitution of nuclear TDP-43 and FUS to basal levels fol-

lowing 2 h of recovery from heat stress.16 Our previous study also

revealed slower nuclear relocalisation dynamics for TDP-43 and FUS

after osmotic stress, with FUS exhibiting exceptionally aberrant

nuclear-to-cytoplasmic distribution as long as 6 h post-stress.16 Here,

we find that TDP-43-related phenotype is fully resolved 2 h after

treatment while FUS-related phenotype is not resolved 6 h after

treatment (Figure 2F). We also find delayed hnRNPK-related pheno-

type recovery. Notably, we find that the recovery kinetics for most

RBPs after both heat and osmotic stresses correlate over time with

the neuritome-related phenotype, suggesting that changes in neu-

ritome relate to change in RBP-related phenotype or vice versa.

Finally, and in line with our previous study, we do not find any major

difference between control and ALS-related VCP-mutant MNs cul-

tures in their response to stress (Figure S2D,F). While these results at

least in part recapitulate our previous findings, thereby confirming the

validity of our approach, it is important to note that the trained

classifiers do not necessarily capture a phenotype related to the previ-

ously studied nuclear-to-cytoplasmic relocalisation and that this may

relate to more complex cellular response. Altogether, these results

indicate that the performance of a classifier is a reliable approach to

prioritise which RBPs are most relevant to a specific cell culture condi-

tion and that the CNN-based method can, at least in part, reproduce

previous results showing slower TDP-43 and FUS relocalisation

dynamics following heat and osmotic stress16 that in some cases

these might relate to changes in neuritome.

Heat stress-related changes in the MN neuritome
resemble those occurring in ALS

We previously reported common morphological descriptors that

strongly discriminate ALS from control tissue at the single cell

level,19 indicating that key information related to ALS cellular state

might be contained in cellular shape. Having found that our

approach is suitable to reproduce prior findings related to stress in

MNs, we next sought to test whether ALS-related VCP-mutant

MNs are characterised by changes in cellular shape in the nucleus,

neuritome or the combination of both. This was achieved by com-

paring the performances of CNN-based classifiers trained to discrim-

inate images of untreated control MN cultures from images of VCP-

mutant MN cultures either using the DAPI staining only (hereafter

named ALSjDAPI classifier), either the β III-tubulin immunolabelling

only (hereafter named ALSjBIII classifier) or the combination of two

markers (hereafter named ALSjDAPI:BIII classifier). As shown in

Figure 3A, both ALSjDAPI and ALSjBIII classifiers outperform a random

classifier (AUCDAPI > 0.5 and AUCβIII > 0.5), indicating that, similarly to

stress-related conditions, both compartments exhibit phenotypic

changes associated with VCP mutation. Further comparing the perfor-

mances of these classifiers revealed that the inclusion of the β III-

tubulin immunolabelling leads to consistently significantly higher per-

formance (AUCDAPI+ βIII =0.85 >AUCβIII =0.83 >AUCDAPI =0.65),

indicating that the compartment most affected by VCP mutation at

this early disease stage is the neuritome. Notably, the consistently

high model predictions among the four mutant cell lines according to

both classifiers confirm the absence of experimental or cell line bias,

as further confirmed by linear mixed model analysis (Figures 3B and

S3A). Additionally, the significant correlation between the ALSjDAPI
and ALSjBIII model predictions for each MN culture further indicates

that the ALS-related changes identified by these classifiers in the

nucleus or the neuritome respectively co-occur in the same MNs cul-

tures (Pearson correlation coefficient= 0.67 and P =2.93e-33;

Figure 3C). Notably applying these classifiers to images from TARDBP

G298S mutant MNs further validated that the neuritome compart-

ment exhibits phenotypic changes when compared with control MNs

(Figure S3B).

We next aimed to understand what information is used by these

ALS classifiers to discriminate images from control and VCP-mutant

MN cultures. Integrated gradient (IG) is one popular approach for

CNN model interpretation enabling the visualisation of the relevant

6 of 14 VERZAT ET AL.



pixels for a specific image that contribute to its classification.31

Looking at the IGs of randomly selected images with high ALSjDAPI
model predictions showed relevant pixels mostly overlap with the

outline of the nuclei, with some contribution from pixels located

inside the nuclei (Figure 3D). This indicates that the ALS-related phe-

notype identified by the ALSjDAPI classifier primarily relates to nuclear

F I GU R E 3 Heat stress-related changes in the MN neuritome resemble those occurring in ALS. (A) Boxplots showing the distributions of
model performances as evaluated using the AUC for classifiers trained using DAPI, β III-tubulin (BIII) and the combination of DAPI and β III-tubulin

markers to discriminate control from VCP-mutant MN cultures. Each classifier was submitted to 10-fold cross-validation in 5 different subsets of
the data, resulting in 50 points per classifier. P-values are from a one-sided Mann–Whitney test. Data shown as in Figure 2A. (B) Distributions of
the ALSjDAPI (left) and ALSjBIII (right) model predictions for the individual MN cultures originating from three control cell lines (grey dots) and four
VCP-mutant cell lines (green dots). Linear mixed effects analysis of the relationship between each model prediction and VCP mutation to account
for idiosyncratic variation due to cell line or experiment differences. VCP mutation significantly increases ALSjDAPI predictions, χ2 1ð Þ¼14 and
P¼2:28e�04, by about 0:13�0:023 (standard errors), and ALSjBIII predictions, χ2 1ð Þ¼23 and P¼2:1e�06, by about 0:4�0:033 (standard errors).
(C) Scatter plot of ALSjDAPI and ALSjBIII model predictions on individual control and VCP-mutant MN cultures. Grey= control MN cultures.
Green=VCP-mutant MN cultures. PCC=Pearson correlation coefficient. (D,E) Randomly selected images with high model prediction according
to the ALSjDAPI (D) and ALSjDAPI:BIII (E) classifiers. Images shown are the original image (upper) and the corresponding attribution magnitude
image overlayed on the original image (lower). The magnitudes range from 0 (white), indicating no contribution of the pixel, to 1 (blue), indicating
the strongest contribution of the pixel to the model prediction. Scale bars=25 μm. (F) Scatter plot of the ALSjDAPI and ALSjBIII model predictions
on individual control MN cultures 1 h after oxidative, heat and osmotic stress. Magenta=MN cultures 1 h after oxidative stress. Blue=MN
cultures 1 h after heat stress. Yellow=MN cultures 1 h after osmotic stress. (G) Boxplots showing the distributions ALSjDAPI model predictions
on untreated control and VCP-mutant MN cultures, and control MN cultures 1 h after oxidative, heat and osmotic stress. Magenta=MN cultures
1 h after oxidative stress. Blue=MN cultures 1 h after heat stress. Yellow=MN cultures 1 h after osmotic stress. Stress treatment effect analysis
on model prediction obtained using linear mixed effects analysis. P-value is indicated when significant. (H) Same as (G) for ALSjBIII model

IMAGE-BASED DEEP LEARNING REVEALS THE RESPONSES OF HUMAN MOTOR NEURONS
TO STRESS AND VCP-RELATED ALS

7 of 14



shape (including the size) rather than to other DAPI-related measure-

ments such as texture or intensity. Next, looking at the IGs of ran-

domly selected images with high ALSjDAPI:BIII model predictions

showed relevant pixels primarily located at the edges of the neurites,

indicating that relevant information mostly arises from the outline

of the neurites rather than from the texture or the intensity of the

β III-tubulin immunolabelling (Figure 3E). Altogether, these results

indicate the network of neurites carries most ALS-related phenotype

information.

Mitochondrial and oxidative stress are recognised and robust

phenotypes in ALS development in vitro, and thus, in vitro models of

cellular stress are important tools to investigate ALS.17 However, it

remains unknown which type of cellular stress is most physiologically

relevant to study ALS pathogenesis. Thus, we next sought to test

whether heat, osmotic or oxidative extrinsic stress insults induce simi-

lar nuclear and/or neuritome-related phenotypic changes in control

MNs cultures as those captured by ALSjDAPI and ALSjBIII classifiers.
First, looking at the scatter plot of these two model predictions for

individual MN cultures colour-coded according to the stress condi-

tions showed that heated MN cultures consistently score high

according to both classifiers forming a coherent cluster, as opposed to

oxidative and osmotic conditions (Figure 3F). We next quantified the

extent of ALS-related nuclear vs neuritome phenotypes induced by

each individual treatment (oxidative, heat and osmotic) by analysing

the ALSjDAPI or ALSjBIII model predictions of individual stressed MN

cultures using linear mixed modelling (see Section 4). This analysis rev-

ealed that heat stress, and to some extent osmotic stress, induces a

minor however non-significant ALS-related nuclear phenotypic

change in control MN cultures, as indicated by the increase in

ALSjDAPI model predictions for these two MNs cultures (Figures 3G

and S3C). This is in contrast with the neuritome compartment which

ALSjBIII model predicts significant phenotypic changes in heated MNs

cultures only (Figures 3H and S3D). Altogether, these results indicate

that the neuritome is the compartment most affected by ALS-related

VCP mutation and that heat stress induces similar neurite-associated

changes in control MN cultures.

FUS immunolabelling best captures ALS-related
phenotypes that are recapitulated by heat stress

Two thirds of RBPs are expressed in a cell type-specific and tempo-

rally regulated manner.32 While previous studies showed RBP-specific

mislocalisation in various ALS models,2–4,33,34 it remains unknown

which RBP is most predictive of ALS at a particular disease stage.

Thus, we next sought to test whether different ALS-related RBPs cap-

ture distinct ALS-related information in VCP-mutant MN cultures by

analysing the model performances of ALS classifiers trained with

images immunolabelled with antibodies against TDP-43, FUS, SFPQ,

hnRNPK or hnRNPA1 only (hereafter named ALSjRBPs classifiers).

Because all five aforementioned RBPs exhibit predominant nuclear

localisation,16 we first tested whether ALSjRBPs classifiers exhibit sig-
nificant improvement compared with the ALSjDAPI classifiers. This

analysis showed that all five ALSjRBP classifiers outperform ALSjDAPI
classifier (AUCALSjRBPs > AUCALSjDAPI), ruling out the possibility that

the phenotypic changes captured by these classifiers simply overlap

with those identified by the ALSjDAPI classifier and indicating that

they identify ALS-related phenotypes beyond changes in the

nuclear shape (Figure 4A). Comparing their individual performances

further revealed large differences in the individual RBP-based classi-

fiers’ ability to discriminate ALS from control MN cultures, with

ALSjTDP-43 exhibiting the best performance and ALSjSFPQ the least

(AUCALSjSFPQ = 0.7 < AUCALSjhnRNPK = 0.73 < AUCALSjFUS = 0.79 <

AUCALSjhnRNPA1 = 0.85 < AUCALSjTDP43 = 0.9). Examining the IGs for

randomly selected images with high ALSjRBP model predictions indi-

cated that the relevant pixels in all five ALSjRBPs classifiers are

excluded from the nuclear areas as opposed to the most relevant

pixels of the ALSjDAPI classifier that are most commonly localised at

the inner nuclear membrane or inside the nucleus (Figure 4B). This

demonstrates that the better the performance of the classifier, the

less relevant the intranuclear pixels. For example, relevant pixels in

the ALSjTDP-43 classifier are fully excluded from the nuclear area.

Altogether, these results suggest that the different performance of

ALSjRBPs classifiers in identifying ALS MNs cultures result from dis-

tinct RBPs localisation rather than nuclear shape. We previously

showed that considering DAPI and β III-tubulin together significantly

increases the performance of both ALSjDAPI and ALSjBIII classifiers.
We next analysed how the performance of the ALS classifier would

change by adding a third channel composed of RBPs immunolabelling

and compared the performances of the ALSjDAPI:BIII classifier with

the five ALSjDAPI:BIII:RBP classifiers. This analysis indicates that all

five RBPs significantly increase the ability of the trained CNN to dis-

criminate VCP mutant from control MN cultures; however, while

hnRNPK leads to the most modest improvement, TDP-43 and FUS

immunolabelling lead to the highest increases in classification perfor-

mance (Figure S4A). These results support the hypothesis that TDP-

43 and FUS exhibit changes in localisation that are detected by

these classifiers. Indeed, our prior studies have shown that in the

same experimental model used here and at the same development

stage, TDP-43 and FUS mislocalisation already occur16,20,35; thus,

we can expect similar RBP mislocalisation. These results further sug-

gest that all five RBPs exhibit mislocalisation at different degrees,

which previous studies could not demonstrate possibly due to lower

sensitivity.

We next sought to test whether the ALS-related changes identi-

fied by the individual ALSjRBPs models are recapitulated in any of the

extrinsic stressor cultures conditions. We first considered the effect

size, as obtained by linear fixed effect analysis (Section 4), of each

extrinsic stressor culture condition on the predictions of the seven

ALS classifiers (ALSjDAPI, ALSjBIII, ALSjhnRNPK, ALSjSFPQ, ALSjFUS,
ALSjhnRNPA1 and ALSjTDP-43) trained using a single channel. This

revealed that oxidative and osmotic stress recapitulate only one or

two ALS-related phenotypes out of the seven captured by the ALS

classifiers. However, heat stress induced more than a 10% increase in

ALS prediction across five out of seven classifiers (Figure 4C).

ALSjTDP-43 classifier, which performs best in ALS MN classification, is
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indeed the unique model that leads to significant, however modest,

model prediction across the three stress conditions (Figures 4D and

S4B,C). Additionally, we find that heat stress is the unique condition

that leads to similarly high disease model prediction in control MN

cultures and in untreated VCP-mutant MN cultures, given the

ALSjFUS and ALSjhnRNPK classifiers (Figures 4E and S4B,C). Hierarchi-

cal clustering of the untreated ALS MN cultures together with the

three stress conditions according to the effect size of each classifier

(Euclidean distance and Ward clustering) eventually confirmed that

heat stress induces overall the most similar cellular changes to ALS

(Figure 4F). Altogether, these results confirm that MNs exposed to

heat stress most closely resemble ALS cells with respect to pheno-

types captured by the majority of ALS classifiers. Additionally, it

shows that while TDP-43 is the RBP that carries the strongest

information related to ALS, it is the FUS immunolabelling that cap-

tures most similar phenotypes between heat stress and ALS MNs

cultures.

DISCUSSION

In this study, we combine multichannel fluorescence high-content

microscopy data with deep learning imaging methods to unveil—

directly from unsegmented images—novel neurite-associated morpho-

logical perturbations. This approach can be used to leverage existing

high-content imaging datasets to gain new phenotypic insight into the

original biological questions asked, as established by this study. We

uncovered a surprising degree of previously unrecognised disease-

F I GU R E 4 Heat stress as the most physiologically relevant stress condition to study ALS pathogenesis. (A) Boxplots showing the
distributions of model performances as evaluated using the AUC for classifiers trained using the ALS-related RBPs markers SFPQ, hnRNPK, FUS,
hnRNPA1 and TDP-43 to discriminate control from VCP-mutant MN cultures, and compared with ALSjDAPI classifier performance. Each classifier
was submitted to 10-fold cross-validation in 5 different subsets of the data, resulting in 50 points per classifier. P-values are from a one-sided
Mann–Whitney test. Data shown as in Figure 2A. (B) Randomly selected images with high model prediction according to the ALSjDAPI and
ALSjRBPs classifiers. Images shown are the original image (upper) and the corresponding attribution magnitude image overlayed on the original
image (lower). The magnitudes range from 0 (white), indicating no contribution of the pixel, to 1 (blue), indicating the strongest contribution of the
pixel to the model prediction. Scale bars = 25 μm. (C) Comparisons of the effect sizes of each stress treatment on control MNs cultures ALSjDAPI,
ALSjBIII and the five ALSjRBPs model predictions 1 h after treatment. Magenta = oxidative stress. Blue = heat stress. Yellow = osmotic stress.
Stress treatment effect analysis on model prediction obtained using linear mixed effects analysis. (D) Boxplots showing the distributions of
ALSjTDP-43 model predictions on untreated control and ALS MN cultures, and control MN cultures 1 h after oxidative, heat and osmotic stress.
Magenta = oxidative stress. Blue = heat stress. Yellow = osmotic stress. Stress treatment effect analysis on model prediction obtained using
linear mixed effects analysis. P-values obtained from linear mixed models are indicated when significant. (E) Same as (D) however for ALSjFUS.
(F) Unsupervised hierarchical clustering of treatment effect sizes on ALSjDAPI, ALSjBIII and the five ALSjRBPs model prediction groups. Oxidative
and osmotic stresses cluster together while heat stress is the closest to the ALS group. Euclidean distance and ward clustering
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relevant information in broadly used and often considered ‘generic’
biological markers of nuclei (DAPI) and neurons (β III-tubulin) in the

context of our human stem cell model of VCP-related ALS. Addition-

ally, we reveal changes associated with ALS-related RBP immunofluo-

rescence imaging that can be captured in VCP-mutant MN cultures.

We were also able to systematically examine whether heat, oxidative

or osmotic stress induce similar modifications that could therefore

reinforce their utility in modelling aspects of MN dysfunction in ALS.

Our study establishes the use of CNN-based methods for rapid, auto-

mated and unbiased testing of biological hypotheses.

CNN-based methods are now widely used for image classification

and segmentation and have been successfully applied to medical

imaging data for disease detection and prediction.36–38 Here, CNN-

based image classifiers have been trained to identify stress- and ALS-

related phenotypic changes in unsegmented images of multiple MN

cultures. We further showed that the performance of such classifiers

is a reliable approach to prioritise which RBPs are most relevant to a

specific cell culture condition, although refined analysis will be

required to interpret their precise relevance to the underlying dis-

ease/stress process. CNN-based classifiers face challenges with inter-

pretability and are not suited to specifically address the subcellular

localisation of RBPs as previously described with conventional

methods based on image segmentation.16,35 Nevertheless, we showed

that the phenotypes identified in the DAPI or β III-tubulin fluorescent

images are indeed contained in the outlines of the nuclei and in the

edges of the neurites, respectively. Furthermore, we could demon-

strate that training a classifier with fluorescent images of a given RBP,

in conjunction with nuclear and neurite fluorescent markers, enables

the recapture of previously found phenotypes related to RBP cellular

localisation. Specifically, we could reproduce previous results showing

TDP-43 and FUS mislocalisation in ALS iPSC-derived MNs.3,20,35

Additionally, our study suggests that SFPQ, hnRNPA1 and hnRNPK

also exhibit mislocalisation however at different degrees. Notably,

hnRNPA1 is a component of RNA transport granules in neurons,39

and we can speculate that the extent of cytoplasmic relocalisation for

this primarily nuclear RBP 16 may be too subtle to be captured by

analysing its nuclear-to-cytoplasmic ratio.

DAPI and β III-tubulin are often considered ‘generic’ biological

markers, and the usage of their fluorescent images are most often

intended for nuclear or neuronal segmentation. Our study uncovers

previously unrecognised disease-relevant information that is con-

tained within DAPI and β III-tubulin fluorescent images. Given that

DAPI and β III-tubulin are broadly used markers, and given that our

method can be easily implemented in other biological conditions,

future studies might use DAPI and β III-tubulin fluorescent images

from different biological systems and experimental paradigms to

reveal innovative research directions. For example, this approach

could be useful in interrogating the presence and onset of aberrant

cellular morphologies in time course experiments and across neurolog-

ical disorders.

Morphological attributes of cells and their substructures are

recognised readouts of physiological or pathophysiological states18;

however, these have been relatively understudied in ALS research.

Here, we demonstrate that the neuritome compartment exhibits

aberrant phenotypes in ALS pathogenesis, as evidenced by the high

efficiency of deep learning classifier to identify ALS MN cultures

uniquely based on β III-tubulin fluorescent images. We also show

modest (albeit significant) perturbations in the nuclear compartment

given the predictive value of the DAPI fluorescent images in identify-

ing ALS MN cultures. While it remains unclear whether these are

strictly pathogenic events, the similar phenotypes detected in the

neuritome of MN cultures exposed to heat stress suggest that these

events relate to a form of MN stress. Through a thorough comparison

of heat, oxidative and osmotic stress-induced changes in both cellular

shape and ALS-related RBP immunolabelling, we further demonstrate

that neuritome-associated perturbations were also detected in control

MNs cultured in three different stress conditions. These findings sup-

port the notion that the neuronal processes exhibit large perturba-

tions across various stress conditions and argue for increased focus

on this cellular subcompartment in future research, such as testing

these methods on ALS human pathological tissue sections. Another

striking finding is the correlation between recovery kinetics of the

neuritome compartment after osmotic and heat stresses, and those of

several RBP-related phenotypes. Assuming that the RBP-related phe-

notypes captured by the CNN-based classifier relate to an RBP

change in cellular localisation, this result suggests that previously

observed stress-induced RBPs mislocalisations are coupled to global

changes in the neuritome.16 Indeed, neurite degeneration has been

shown to occur upon oxidative stress through the cytoplasmic

sequestration of two proteins (PRMT1 and Nd1-L) in in vitro models

of FUS mutant-related ALS.40 Furthermore, TDP-43 mislocalisation

and aggregation has also been demonstrated in dystrophic

neurites,1,33 while we recently reported an increase in wild-type FUS

within neuronal processes in VCP-mutant MNs.35 Finally, a regulatory

role for FUS has also been shown in synaptic formation and

function,40–43 and aberrant FUS activity in the axonal compartment

has been evidenced in a FUS mutant ALS mouse model.44 Altogether,

these studies support the hypothesis of an association between RBP

mislocalisation and aberrant neuronal processes in ALS. The finding

that several RBP-related phenotypes present similar recovery patterns

as the neuritome further suggests that additional ALS-related RBPs

might exhibit similar aberrant neurite localisation in ALS. Future work

will directly address the nature of these perturbations using classic

approaches that necessitate nuclear and neurite segmentation and

the acquisition of hundreds of measurements from each cellular

compartment.

Several lines of evidence support the hypothesis that cellular

stress is one central mechanism by which MN death occurs in ALS

and in vitro models of cellular stress are therefore important tools to

investigate ALS disease.17 It remains however unknown which type of

extrinsic cellular stress most closely approximates ALS pathogenesis,

and relatively little is known about the effect of thermal stimulation,

hyperosmolarity or arsenite-induced oxidative stress on the neuritome

compartment. Here, we find that iPSC-derived MNs exposed to heat

stress, as opposed to hyperosmolarity or arsenite-induced oxidative

stress, closely recapitulate the phenotypes of ALS MN cultures

10 of 14 VERZAT ET AL.



captured by several classifiers. This result suggests that heat stress

more closely approximates ALS pathogenesis compared with osmotic

and oxidative stressors. This is in line with previous non-mammalian

studies that have defined heat stress as being relevant to the

study of neurodegeneration. Heat stress-induced stress granules

sequester more misfolded proteins, are less dynamic and have

increased protein poly-ubiquitination compared with arsenite-related

stress granules.45–48 The lack of similarity between oxidative stress

and ALS here may be attributed to the use of arsenite, which although

widely used as an inducer of oxidative stress, may not truly approxi-

mate physiological oxidative stress that has been reported in ALS. As

the pathogenic cascades underlying ALS are multifactorial and not

fully determined, heat stress could indeed be a useful cellular model

to study disease mechanisms. Our study demonstrates the ability of

heat stress to induce subtle ALS-related cellular changes associated

within the neuritome compartment and within the FUS immunofluo-

rescent images. In particular, our study demonstrates the ability of

heat stress to induce subtle ALS-related cellular changes associated

within the neuritome compartment and within the FUS fluorescent

images. Interestingly, we previously found that heat stress alone cau-

sed cell death in an iPSC-derived model of MNs.16 Furthermore, heat

stress,49,50 ageing and neurodegeneration51–53 all associate with

intron retention.2,4,54,55 Future research will investigate the molecular

mechanisms by which elevated temperatures lead to similar responses

as those observed in patient-specific ALS MN cultures.

MATERIALS AND METHODS

Compliance with ethical standards

Informed consent was obtained from all patients and control controls

in this study. Experimental protocols were all carried out according to

approved regulations and guidelines by UCLH’s National Hospital for

Neurology and Neurosurgery and UCL’s Institute of Neurology joint

research ethics committee (09/0272). Cell culture, stress treatments,

immunohistochemistry and image acquisition were performed as in

Harley and Patani.16 Indeed, these data are utilised in the current

manuscript and no additional experiment was required.

High-content imaging dataset

The imaging dataset used in this study consists of fluorescence

microscopy images of iPSC-derived MNs as previously reported.16

The neurons either came from control cell lines or cell lines with the

ALS-related VCP mutation and underwent experimentation after

6 days of terminal differentiation. Details of iPSC lines are provided in

Table S1. To induce stress, the cultures were subject to 1 h of oxida-

tive stress, 1 h of osmotic stress and 1 h of heat stress. To examine

recovery, the cultures were subject to 1 h of stress and then returned

to untreated conditions for 2 h following heat stress and 1, 2 and 6 h

following osmotic stress. Following stress treatments or recovery,

cultures were fixed and then immunostained with a combination of

three markers, specifically a nuclear-specific marker (DAPI), a neuron-

specific marker allowing to outline the neurites (β III-tubulin) and an

antibody against TDP-43, SPFQ, FUS, hnRNPA1 or hnRNPK. The

dataset is divided in different experiments (repeats done different

days), each with several 96-well plates. Each well corresponds to one

cell line, one stress condition and one combination of fluorescent

markers. Each well has several non-overlapping fields of view (ranging

from 10 to 12), and each field of view has several planes or z-stacks

(ranging from 3 to 5) with 1-μm steps, generating a large-scale imaging

dataset of 156,577 images (Figure 1A,B). The dataset is publicly avail-

able in IDR and can be found under study idr0112 and using the direct

link https://idr.openmicroscopy.org/webclient/?show=screen-3001.

Image pre-processing

All images went through pre-processing steps described in Figure S1.

Raw images are 16-bit images. Sixteen-bit raw z-stack images

(1080 � 1080 pixels) from the same field of view were first merged

using Maximum Intensity Projection (MIP), where the pixel with maxi-

mum intensity across all z-stacks is selected at each location in the

image. Following conversion of MIP images to 8-bit images, channels

were merged together to form an RGB image. We created 13 types of

RGB images, either composed of one, two or three channels, to train

image classifiers with 13 different combinations of immunostained

images (Figure 1E). For images with three channels, DAPI was

assigned to blue channel, β III-tubulin to the red channel and the RBP

to green channel. For images with one or two channels, pitch-black

images were assigned to the remaining channels so that the image

would still be considered RGB. Images were then enhanced using

Python Image Library Pillow ImageOps56 auto contrast function, to

normalise image contrast. This function calculates a histogram of the

input image, removes 0.1% of the lightest and darkest pixels from the

histogram and remaps the image so that the darkest pixel becomes

black (0) and the lightest becomes white (255). In the fourth step, the

enhanced images were divided into 16 smaller images of size

270�270 pixels, which allowed better resolution and more images.

Structures at this scale proved to be more distinguishable with IGs

and yielded similar results than with whole images. This division also

made sense for the fifth step, which consisted in resizing images to

224�224 pixels. Finally, images were normalised using mean

intensity= [0.485, 0.456, 0.406] and std= [0.229, 0.224, 0.225]

across the images from the ImageNet dataset. The last two steps were

added in order to fulfil the requirements when using pre-trained

models, which expect input images to be normalised in the same way

as the dataset on which they were trained.

Data augmentation

In order to improve accuracy and reduce overfitting, we performed

five augmentations on each image of the training set as follows and
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as previously described57: (1) 90� rotation, (2) one horizontal mirror,

(3) one vertical mirror, (4) 90� rotation of horizontal mirror and

(5) 90� rotation of vertical mirror. This results in a sixfold increase

of the number of available images for training (five rotations

+ original).

CNN-based image classifiers training

We trained 52 CNN-based classifiers to discriminate (1) ALS from

control MNs cultures (isALS test), untreated MNs cultures from MNs

cultures exposed to (2) oxidative (isOXIDATIVE test), (3) heat (isHEAT

test) and (4) osmotic stress (isOSMOTIC test) using 13 combinations

of RGB images composed of different channels: Either a single chan-

nel was used (DAPI, BIII or RBP), either two channels (DAPI:BIII) or

three channels (DAPI:BIII:RBP), pitch-black images being assigned to

the unused channels (Table S2). Instead of training a full new neural

network, we performed transfer learning that can be used to address

the relatively small number of available images by introducing infor-

mation from another domain.58 For training, images were fed into

torchvision MobileNetV2 model, which has been pre-trained on

ImageNet.59,60 MobileNetV2 is a CNN based on a streamlined archi-

tecture that uses depth-wise separable convolutions to build light-

weight deep neural networks and that is effective for fine-grained

image classification. MobileNetV2 is a lightweight neural network of

3.5 million parameters, as opposed to the widely used ResNet that

contained 11.7 million parameters, making it suitable for fine-tuning

with limited number of images.61 All layers of the pre-trained CNN

classifier were fine-tuned on our dataset, allowing the training of a

highly accurate model with a relatively small training dataset.62 The

last layer was modified so that it turned the features into predictions

for two classes instead of the thousand classes from ImageNet. Train-

ing was performed by stochastic gradient descent with learning rate

0.001, batch size 32, using the cross entropy loss function. The train-

ing was stopped after 10 epochs. A 10-fold cross-validation scheme

has been used to evaluate the accuracy of the classification predic-

tions generated by the trained classifiers: The images were shuffled

randomly and divided into 10 stratified folds, preserving the percent-

age of samples for each class; each fold was used once as a test

dataset, while the remaining folds were used for the training dataset.

ROC curves were generated to evaluate the model’s ability to distin-

guish two cell culture conditions. ROC curves plot the true positive

rate (sensitivity) vs the false positive rate (1 � specificity). The area

under the ROC curve was used as the performance measure or classi-

fication accuracy. The classification accuracy over all folds is reported

in Table S3. We evaluated the 52 trained models on all MN cultures

when the right combination of markers were available (typically FUS,

DAPI and BIII are available for some MNs cultures while SFPQ, DAPI

and BIII are available for others). The probabilities to belong to one of

the four tested conditions (iALS, isOXIDATIVE, isOSMOTIC and

isHEAT) outputted by the classifiers are then aggregated by comput-

ing the average probability over all of the 16 cropped images originat-

ing from a single image, thereby obtaining a single probability per

original-sized images. A single probability per MN culture is reported

for each of the four tests by averaging the signal over all images (typi-

cally seven per MN culture) as reported in Tables S4–S7.

Model explainability and IG

The IG is a widely used interpretability algorithm that allows to iden-

tify what pixels of an image have the strongest effect on the model’s

predicted class probabilities and therefore allowing to visualise which

parts or the image are important for classification,31 by computing the

gradient of the model’s prediction output to its input features. We

used the Captum Insights method63 to obtain the IG for randomly

selected images associated with high classifier prediction scores.

Model prediction data analysis

We used R and lme464 to perform linear mixed effects analysis of the

relationship between individual model predictions and either stress

MNs culture condition (at the corresponding time after treatment) or

VCP-mutant MNs cultures, accounting for idiosyncratic variation due

to either cell line or experiments. As fixed effects, we either entered

the stress condition or the VCP-mutation variable into the model. As

random effects, we had intercepts for either cell lines (CTRL1, CTRL2,

CTRL3, MUT1, MUT2, MUT3 and MUT4) and experiments. P-values

were obtained by likelihood ratio tests of the full model with the

effect in question against the model without the effect in question,

that is, comparing a full linear model fitting the classifier predictions

using both the fixed effect (the stress or disease) and the random

effects (cell line and experiments), with a reduced linear model, which

only considers the random effects.

Data and software availability

We provide raw images, complete source code and trained models to

readily reproduce figures, tables and other results that involve compu-

tation in order to facilitate the development and evaluation of addi-

tional profiling methods. The image data that support the findings of

this study will be uploaded to the IDR.65,66 As this requires some more

time given the size of the data (1 TB), we have uploaded a subset of

the data on Zenodo under the accession number 4664177. The

52 trained deep learning models have been uploaded on Zenodo

under the accession number 4664252. The code for obtaining the

models as well as the Jupyter notebooks are available at https://

github.com/idiap/als-classification.
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