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ABSTRACT
BACKGROUND: Polygenic scores (PGSs), which assess the genetic risk of individuals for a disease, are calculated as
a weighted count of risk alleles identified in genome-wide association studies. PGS methods differ in which DNA
variants are included and the weights assigned to them; some require an independent tuning sample to help
inform these choices. PGSs are evaluated in independent target cohorts with known disease status. Variability
between target cohorts is observed in applications to real data sets, which could reflect a number of factors, e.g.,
phenotype definition or technical factors.
METHODS: The Psychiatric Genomics Consortium Working Groups for schizophrenia and major depressive disorder
bring together many independently collected case-control cohorts. We used these resources (31,328 schizophrenia
cases, 41,191 controls; 248,750 major depressive disorder cases, 563,184 controls) in repeated application of leave-
one-cohort-out meta-analyses, each used to calculate and evaluate PGS in the left-out (target) cohort. Ten PGS
methods (the baseline PC1T method and 9 methods that model genetic architecture more formally: SBLUP,
LDpred2-Inf, LDpred-funct, LDpred2, Lassosum, PRS-CS, PRS-CS-auto, SBayesR, MegaPRS) were compared.
RESULTS: Compared with PC1T, the other 9 methods gave higher prediction statistics, MegaPRS, LDPred2, and
SBayesR significantly so, explaining up to 9.2% variance in liability for schizophrenia across 30 target cohorts, an
increase of 44%. For major depressive disorder across 26 target cohorts, these statistics were 3.5% and 59%,
respectively.
CONCLUSIONS: Although the methods that more formally model genetic architecture have similar performance,
MegaPRS, LDpred2, and SBayesR rank highest in most comparisons and are recommended in applications to
psychiatric disorders.

https://doi.org/10.1016/j.biopsych.2021.04.018
Polygenic scores (PGSs), which assess the genetic risk of
individuals for a disease (1,2), are calculated as a weighted
count of genetic risk alleles in the genome of an individual, with
the risk alleles and their weights derived from the results of
genome-wide association studies (GWASs) (3). PGSs can be
calculated for any trait or disease with sufficiently powered
GWASs (discovery samples), and accuracy of PGSs applied in
independent GWAS target samples will increase as discovery
sample size increases. As genetic factors capture only the
genetic contribution to risk and as PGSs capture only part of
the genetic risk, PGSs cannot be diagnostically accurate risk
predictors [see review (4)]. Nonetheless, for many common
complex genetic disorders, such as cancers (5,6) and heart
disease (7,8), there is increasing interest in evaluating PGSs for
early disease detection, prevention, and intervention (9–11).
N: 0006-3223
There are now many methods to calculate PGSs, and the
methods differ in terms of two key criteria: which DNA variants
to include and what weights to allocate to them. In this article,
for simplicity, we assume that the DNA variants are single
nucleotide polymorphisms (SNPs), but other DNA variants
tested for association with a trait can be used. While stringent
thresholds are set to declare significance for association of
individual SNPs in GWASs, PGSs are robust to inclusion of
some false positives. Hence, the maximum prediction from
PGSs tested in target samples may include nominally associ-
ated SNPs. The optimal method to decide which SNPs to
select and what weights to allocate to them may differ among
traits depending on the sample size of the discovery GWAS
and on the genetic architecture of the trait (the number, fre-
quencies, and effect sizes of causal variants), particularly given
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the linkage disequilibrium (LD) correlation structure between
SNPs. Often, when new PGS methods are introduced, com-
parisons are made between a limited set of methods using
simulated data, together with application to some real data
examples. However, it can be difficult to compare across the
new methods, particularly because in real data there can be
variability in PGS evaluation statistics between target cohorts
that is not encountered in idealized simulations. The reasons
for this variability are usually unknown and not simple to
identify (12) but could reflect a number of factors, such as
phenotype definition, ascertainment strategies of cases and
controls, cohort-specific ancestry within the broad classifica-
tion of ancestry defined by the GWAS discovery samples (e.g.,
European), or technical artifacts in genotype generation.

We compared 10 PGS methods [PC1T (3,13), SBLUP (14),
LDpred2-Inf (15), LDpred2 (15), LDpred-funct (16), Lassosum
(17), PRS-CS (18), PRS-CS-auto (18), SBayesR (19), and
MegaPRS (20)] (Table 1). Some of these methods (PC1T,
LDpred2, MegaPRS, Lassosum, and PRS-CS) require a tuning
sample, a GWAS cohort with known trait status that is inde-
pendent of both discovery and target samples, used to select
parameters needed to generate the PGSs in the target sample.
Whereas only GWAS summary statistics are needed for dis-
covery samples, individual-level genotype data are needed for
tuning and target samples. Information about the LD structure
is supplied by a reference data set of genome-wide genotypes
that can be from independently collected GWAS data of
matched ancestry.

Briefly, PC1T (p value–based clumping and thresholding,
also known as P1T or C1T) uses the GWAS effect size esti-
mates as SNP weights and includes independent SNPs
(defined by an LD r2 filter for a given chromosomal window
distance) with association p values lower than a threshold
(chosen after application in a tuning sample). PC1T is the most
commonly used and basic method and so is the benchmark
method here. Other methods assume either that all SNPs have
an effect size drawn from a normal distribution (SBLUP and
LDpred2-Inf) or that SNP effects are drawn from mixtures of
distributions with the key parameters defining these architec-
tures estimated through Bayesian frameworks (LDpred2, PRS-
CS, SBayesR). The methods LDpred-funct and MegaPRS
include functional annotation to SNPs to up- or downweight
their contributions to the PGSs, which could improve predic-
tion accuracy if this functional information helps to better
separate true- and false-positive associations (21). The Meg-
aPRS software implements a suite of methods (Table 1) and
selects the method, together with its parameter estimates, that
maximizes prediction in the tuning cohort. MegaPRS uses the
BLD-LDAK model (22), in which the variance explained by each
SNP depends on its allele frequency, LD, and functional an-
notations. Notably, some methods (SBayesR, PRS-CS-auto,
and LDpred2-auto) do not require a tuning cohort, so that
the SNPs selected and their weights reflect only the properties
of the discovery sample. As LDpred2-auto is shown to perform
similarly to LDpred2, we did not include it in comparisons
made here. We applied these methods to data from the Psy-
chiatric Genomics Consortium (PGC) Working Groups for
schizophrenia (SCZ) (23) and major depressive disorder (MDD)
(Tables S1 and S2 in Supplement 2) (12,24,25). We selected
SCZ and MDD to study as they have the largest GWAS
2 Biological Psychiatry - -, 2021; -:-–- www.sobp.org/journal
samples for psychiatric disorders to date but are diverse in
lifetime risk and are representative of all psychiatric disorders,
which have been shown to be highly polygenic (26). The PGC
provides a useful resource for undertaking this study because
it brings together many independently collected cohorts for
GWAS meta-analysis. This allows the application of repeated
leave-one-cohort-out GWAS analyses, generating robust
conclusions from evaluation of PGSs applied across multiple
left-out target cohorts.

METHODS AND MATERIALS

Data

All samples were of European ancestry; see full details in
Supplement 1 and Tables S1 and S2 in Supplement 2. Briefly,
GWAS summary statistics were available from the PGC SCZ
Working Group for 37 European ancestry cohorts (23) (31,328
SCZ cases and 41,191 controls), of which 34 had individual-
level data available. PGSs were calculated in each of the 30
cohorts (target samples) using the GWAS discovery sample
based on a meta-analysis of 37 2 2 = 35 cohorts (23) (the
target sample was excluded from the discovery sample as well
as a sample selected to be a tuning sample). Analyses were
repeated using 4 different tuning samples, 2 large (swe6: 2313;
gras: 2318) and 2 small (lie2: 406; msaf: 466). Similarly, GWAS
MDD summary statistics were available from 248,750 cases
and 563,184 controls (24), which included data from the 26
cohorts from the PGC MDD Working Group with individual-
level data (15,805 cases and 23,340 controls). We left one
cohort out of those 26 cohorts in turn as the target sample and
then used a meta-analysis of remaining data as discovery
samples. A cohort (24) that was not included in the discovery
GWAS was used as the tuning sample (N = 1679).

Baseline SNP Selection

For baseline analyses, only SNPs with minor allele frequency
(MAF) . 0.1 and imputation quality INFO score . 0.9 (con-
verted to best-guess genotype values of 0, 1, or 2) were
selected. Sensitivity analyses relaxed the MAF threshold to
MAF . 0.05 or 0.01 and INFO score threshold to 0.3. All
methods were conducted using HapMap3 SNPs (27) except
PC1T, which was conducted based on all imputed SNPs (8
million in SCZ and 13 million in MDD).

Prediction Methods

We defined a PGS of an individual, j, as a weighted sum of

SNP allele counts:
Pm
i¼1

bbixij, where m is the number of SNPs

included in the predictor, bbi is the per allele weight for the SNP,
xij is a count of the number (0, 1, or 2) of trait-associated alleles
of SNP i in individual j. We compared 10 risk prediction
methods, described in Prediction Methods in Supplement 1
and summarized in Table 1. The methods differ in terms of

the SNPs selected for inclusion in the predictor and the bbi

values assigned to the SNPs. All methods use the GWAS
summary statistics as the starting point, but each makes

choices differently for which SNPs to include and for the bbi

values to assign. Some methods use a tuning cohort; param-
eter estimates that maximize prediction in that tuning cohort
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Table 1. Summary of Methods Used to Generate Polygenic Scores

Method Distribution of SNP Effects (b)
Tuning
Sample

Predefined
Parameters

Parameters Estimated in
Tuning Sample

PC1T None Yes – p-value threshold

SBLUP
bwN

 
0;
h2g
m

!
h2g: SNP-based heritability, m: number of SNPs; l ¼ mð1 2 h2gÞ=h2g

No l

LD radius in kb
–

Ldpred2-Inf Same as SBLUP No h2g
LD radius in cM or kb

–

LDpred-funct bjwN ð0; cs2j ÞPM
j¼1

1s2j .0cs
2
j ¼ h2g, c is a normalizing constant, s2j is the expected

per SNP heritability under the baseline-LD annotation model
estimated by stratified LDSC from the discovery GWAS within
LDpred-funct software

No h2g
LD radius in number of
SNPs

–

LDpred2

bjw

8><>:
N

 
0;

h2g
pm

!
; with probability of p

0; with probability of 12p

When sparsity is “true,” the bj for SNPs in the (1 2 p) partition are
all set to zero

Yes h2g
p software default

values, LD radius in
cM or kb

p, sparsity

Lassosum fðbÞ ¼ yTy1ð1 2 sÞbTXT
r Xrb 2 2bTXTy1sbT

b12 lkbk11
Xr : n 3 m matrix of genotypes of LD reference sample, where n is
sample size

Yes LD blocks l, s

PRS-CS
bjwN

�
0;
s2

n
jj

�
jjwG ða; djÞ
djwG ðb;fÞ,f is a global scaling parameter

Yes a = 1, b = 0.5
n
LD blocks

f

PRS-CS-auto Same as PRS-CS, but estimates f from the discovery GWAS No a = 1, b = 0.5
n
LD blocks

–

SBayesR

bj j p;s2bw

8>>>>>>>><>>>>>>>>:

0; with probability of p1

N ð0;g2s
2
bÞ; with probability of p2

«

N ð0;gcs
2
bÞ; with probability of 12

XC21

c¼1

pc

s2bwInv 2 c2 ðd:f : ¼ 4Þ
piwDirð1Þ, estimated from discovery GWAS in SBayesR software
gi are scaling parameters

No LD radius in cM or kb
C = 4
g software default

values

–

MegaPRS Lasso: bjwDE ðl =sjÞ
Ridge regression: bjwN ð0; vs2j Þ

BOLT-LMM: bjw

8>>><>>>:
N

 
0;
ð12 f2Þsj2

p

!
;with probability of p

N

 
0;

f2sj2

12p

!
; with probability of 12p

f2 is the proportion of the total mixture variance in the second normal
distribution

BayesR: similar to SBayesR with C = 4, and pi and gi estimated in the
tuning sample

s2j is the expected per SNP-heritability under BLD-LDAK model using
SumHer

Yes LD radius in cM
or kb

Parameters used
in BLD-LDAK

Grid search parameter
values for each
method

The tuning cohort is used to
estimate the parameters
that maximize prediction
for each model, and from
these the model that
maximizes prediction is
selected

Distributions: N: normal distribution; G: gamma distribution; Inv 2 c2: inverse chi-squared distribution, Dir: Dirichlet distribution; DE: double
exponential distribution; kbk11 ¼ P

i jbi j. When h2g (SNP-based heritability) is a predefined parameter, it is estimated from the discovery GWAS,
where discovery GWAS is the genome-wide set of association statistics (SNP identification number, reference allele, frequency of reference
allele, association effect size for reference allele, standard error of effect size, association p value, sample size). Bold indicates matrix notation,
and italic indicates scalar notation. All methods require a reference sample with genotypes to model LD between SNPs.

cM, centimorgan; GWAS, genome-wide association study; kb, kilobase pair; LD, linkage disequilibrium; SNP, single nucleotide polymorphism.
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are selected for application in the target sample. Several
methods employ an LD reference sample to infer the expected
correlation structure between SNP association statistics; those
recommended by each software implementation were used.

Evaluation of Out-Of-Sample Prediction

The accuracy of prediction in each target cohort was quanti-
fied by the following statistics:

1. Area under the receiver operator characteristic curve (AUC)
[R library pROC (28)]. AUC can be interpreted as a proba-
bility that a case ranks higher than a control.

2. The proportion of variance on the liability scale explained by
PGS (29). We used the population lifetime risk of SCZ and
MDD as 1% and 15%, respectively, to convert the variance
explained in a linear regression to the liability scale
(24,30,31).

3. Odds ratio (OR) of tenth PGS decile relative to the first
decile.

4. OR of tenth PGS decile relative to those ranked in the middle
of the PGS distribution, which is calculated as the average of
OR of tenth decile relative to fifth and sixth decile.

5. Standard deviation unit increase in cases. The PGSs in
each target cohort were scaled by standardizing the PGSs
of controls and applying the standardization to cases:
PGScase 2meanðPGScontrolÞ

SDðPGScontrolÞ , where SD is standard deviation. This

does not impact PGS evaluation statistics but simply
means that PGSs are in standard deviation units for all
cohorts.

The regression analyses for evaluation statistics 2 through 4
include 6 ancestry principal components as covariates. These
covariates are not included in the AUC model and the standard
deviation unit increase in cases model (see Supplement 1).

RESULTS

Prediction evaluation statistics based on all 10 PGS methods
and applied to SCZ across 30 study cohorts (Figure 1,
Figure S1 in Supplement 1, and Tables S3 and S4 in
Supplement 2) and to MDD across 26 cohorts (Figure S2 in
Supplement 1 and Tables S5 and S6 in Supplement 2) are
presented. There was variability in prediction statistics across
target cohorts [as observed before (12,30)] that was not a
reflection of sample size (Figure S3 in Supplement 1 and
Table S4 in Supplement 2 for SCZ; Figure S4 in Supplement 1
and Table S6 in Supplement 2 for MDD). Some significant
associations were found from regression of prediction statis-
tics on principal components estimated from genome-wide
SNPs for SCZ (Figure S3 in Supplement 1), but not MDD
(Figure S4 in Supplement 1), where the principal components
captured both within-European ancestry and array differences
between cohorts. The correlations of PGS between different
methods were high (Table S7 in Supplement 2), but were
lowest between PC1T and other methods (minimum 0.68). In
contrast, the correlations between the other 9 methods were
always . 0.82. In theory, LDpred2-Inf and SBLUP are the
same method. In practice, there were differences in imple-
mentation (e.g., different input parameters associated with
definition of LD window), and although the correlation between
4 Biological Psychiatry - -, 2021; -:-–- www.sobp.org/journal
their PGSs was 0.974, the prediction accuracy was consis-
tently higher for LDpred2-Inf. For SCZ, the AUC from methods
that directly model genetic architecture, other than PRS-CS-
auto, was significantly higher than the PC1T method at the
nominal level (Figure 1A). PGSs from LDpred2, SBayesR, and
MegaPRS were significantly higher than the PC1T method
after Bonferroni correction (p , .0011 = .05/45 (45 pairwise
comparisons between 10 methods), one-tailed Student’s t
test). For MDD, none of the differences between methods were
significant (Figure S2A in Supplement 1). For both SCZ and
MDD across all statistics, regardless of tuning cohorts,
LDpred2, SBayesR, and MegaPRS showed relatively better
performance (median across target cohorts) than other
methods, although there was no significant difference between
the 9 methods that directly model genetic architecture. For
variance explained on the liability scale, the PC1T PGS
explained 6.4% for SCZ, averaged over the median values
across the 4 tuning cohorts (Figure 1B), while this variance was
8.9%, 9.0%, and 9.2% for MegaPRS, LDpred2, and SBayesR,
corresponding to an increase of 39%, 41%, and 44%,
respectively. For MDD, although the variance explained is
lower in absolute terms, 2.2% for PC1T versus 3.4% for
MegaPRS, 3.5% for LDpred2, and 3.5% for SBayesR, the
variance of SBayesR represents a 59% increase (Figure S2B in
Supplement 1).

We provide several evaluation statistics that focus on those
in the top 10% of PGSs because clinical utility of PGSs for
psychiatric disorders is likely to focus on individuals who are in
the top tail of the distribution of predicted genetic risk. The
ORs for top versus bottom decile were large, ranging from 14
for PC1T to 30 for MegaPRS for SCZ and 3 for PC1T to 3.7
for SBayesR for MDD. While these top versus bottom decile
ORs (Figure 1C and Figure S2C in Supplement 1) were much
larger than the OR obtained by using PGSs to screen a general
population (Figure 1D and Figure S2D in Supplement 1) or
patients in a health care system to identify people at high risk
(32,33), these comparisons are useful for research purposes,
which could, for example, make experimental designs focusing
on individuals with high versus low PGSs cost-effective (34).
The ORs of top 10% versus middle 10% were much less
impressive, up to median of 6 for SCZ and 2 for MDD, but more
fairly represent the value of PGSs in population settings. These
values can be benchmarked against risk in first-degree rela-
tives of affected individuals, which are on the order of 8 for
SCZ and 2 for MDD; low values are always expected for MDD
because it is more common (lifetime risk approximately 15%
compared with approximately 1% for SCZ). The ORs were
particularly high for some cohorts (Table S4 in Supplement 2)
because in some SCZ cohorts the bottom 10% included very
few or no cases, especially in cohorts with relatively small
sample sizes.
Impact of Tuning Cohort

Five methods (i.e., PC1T, LDpred2, Lassosum, PRC-CS, and
MegaPRS) use tuning cohorts to determine key parameters for
application of the method in the target cohorts. Tuning pa-
rameters impact results in two ways. First, the parameters may
be dependent on the choice of tuning cohort. Second, the
discovery GWAS sample may be reduced in size (and hence

http://www.sobp.org/journal


Figure 1. Prediction results for schizophrenia
case/control status using different polygenic score
(PGS) methods. The PGSs were constructed from
schizophrenia genome-wide association study
summary statistics excluding the target cohort and a
tuning cohort (shading legend). Each bar reflects the
median across 30 target cohorts; whiskers show the
95% confidence interval for comparing medians. (A)
The area under the receiver operator characteristic
curve (AUC) statistic can be interpreted as the
probability that a case ranks higher than a control.
(B) The proportion of variance explained by PGSs on
the scale of liability, assuming a population lifetime
risk of 1%. (C) The odds ratio when considering the
odds of being a case comparing the top 10% vs.
bottom 10% of PGSs. (D) The odds of being a case
in the top 10% of PGSs vs. the odds of being a case
in the middle of the PGS distribution. The middle was
calculated as the averaged odds ratio of the top 10%
ranked on PGSs relative to the 5th decile and 6th
decile. PC1T (also known as P1T) is the benchmark
method and is shown in orange. The methods that
use an infinitesimal model assumption are shown in
pink. The methods that model the genetic architec-
ture are shown in green; light green shows the
methods using a tuning cohort to determine the
genetic architecture of a trait, and dark green shows
the methods learning the genetic architecture from a
discovery sample, without using a tuning cohort.
MegaPRS using the BLD-LDAK model that assumes
the distribution of single nucleotide polymorphism
effect depends on its allele frequency, linkage

disequilibrium, and function annotation is shown in dark orange. MegaPRS assigns 4 priors to each single nucleotide polymorphism: LASSO, Ridge, BOLT-
LMM, BayesR. Each prior has different hyperparameters that are identified using the tuning cohort. The dashed gray lines are the maximum of the average
across the 4 tuning cohorts. The sample sizes of the tuning cohorts are swe6, 1094 cases, 1219 controls; lie2, 137 cases, 269 controls; msaf, 327 cases, 139
controls; and gras, 1086 cases, 1232 controls.
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power) if a tuning cohort needs to be excluded from the dis-
covery GWAS. In all our analyses, the tuning cohort was
excluded from all GWAS discovery samples so that the GWAS
discovery sample was not variable across methods for each
target cohort. Our results show that the tuning cohort can have
considerable impact (Figures 1 and 2). In our results, the tuning
cohort that generated higher PGSswasmethod dependent and
differed between cohorts. For the methods that used tuning
samples, the larger tuning samples (swe6 and gras) mostly
generated higher prediction statistics compared with the two
smaller tuning samples (lie and msaf), but the differences were
not statistically significant. Although methods SBLUP,
LDpred2-Inf, LDpred-funct, PRS-CS-auto, and SBayesR
require no tuning cohort, they serve as a benchmark, as the
differences in their results reflect differences in the changed
discovery samples (e.g., msaf is in the discovery sample when
swe6 is the tuning cohort, and vice versa) as well as the sto-
chasticity inherent in the Gibbs sampling of Bayesian methods.

Impact of MAF/INFO Threshold

A MAF threshold of 0.1 and an INFO threshold of 0.9 were
used to be consistent with applications in the PGC SCZ (30)
and PGC MDD (24) studies, which had been imposed recog-
nizing that these thresholds generated more robust PGS re-
sults than using lower threshold values. In the second
sensitivity analysis applied to the SCZ data, the MAF threshold
was relaxed to 0.05 or 0.01 (Figure 3). The prediction
B

evaluation statistics increased for some cohorts and
decreased for others (trends with sample size were not sig-
nificant). PC1T was more impacted that the other 9 methods.
Across target cohorts, different evaluation statistics were
almost identical when including less common SNPs (Table S3
in Supplement 2). Relaxing the INFO score to 0.3 had a
negligible effect (Figure S5 in Supplement 1).

DISCUSSION

Comparison of PGS risk prediction methods showed that all 9
methods that directly model genetic architecture had higher
prediction evaluation statistics over the benchmark PC1T
method for SCZ and MDD. While the differences between
these 9 methods were small, we found that MegaPRS,
LDpred2, and SBayesR consistently ranked highest. Given that
the PGS is a sum of many small effects, a normal distribution
of PGSs in a population is expected (and observed, as shown
in Figures S6–S9 in Supplement 1). In idealized data, such as
the relatively simple simulation scenarios usually considered in
method development, all evaluation statistics should rank the
methods in the same order, but with real data sets this is not
guaranteed. This is the motivation for considering a range of
evaluation statistics. Our focus on statistics for those in the top
10% of PGSs is relevant to potential clinical utility. In the
context of psychiatry, it is likely that this will focus on people
presenting in a prodromal state with clinical symptoms that
have not yet been recognized to be specific to a diagnosis
iological Psychiatry - -, 2021; -:-–- www.sobp.org/journal 5
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Figure 2. (A–C) Sensitivity analyses using
different tuning cohorts comparing different poly-
genic score methods. Differences in the area under
the receiver operator characteristic curve (AUC) of
schizophrenia (SCZ) of a polygenic score method
when using different tuning cohorts. The different
bars in each method (x-axis) refer to different vali-
dation cohorts ordered by sample size. The y-axis is
the AUC difference when using alternative tuning
cohorts, i.e., lie2 (137 cases, 269 controls), msaf (327
cases, 139 controls), or gras (1086 cases, 1232
controls), compared with swe6 (1094 cases, 1219
controls). The minor allele frequency quality control
threshold is 0.1. Note: SBLUP, LDpred2-Inf and
LDpred-funct, PRS-CS-auto, and SBayesR do not
need a tuning cohort, but serve as a benchmark to
the other methods, which need a tuning cohort.
These methods differ when a different tuning cohort
is left out because the discovery genome-wide as-
sociation study also changes.
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(11,35). High PGSs in people presenting to clinics could
contribute to clinical decision making by identifying individuals
for closer monitoring or earlier intervention. As a genetic-based
predictor predicts only part of the risk of disease, and as a PGS
predicts only part of the genetic contribution to disease, it is
acknowledged that PGSs cannot be fully accurate predictors.
Hence, the discriminative ability of PGSs is low in the general
population, and the use of PGSs in clinical settings requires
evaluation, including related ethical issues (4). Nonetheless,
PGSs in combination with clinical risk factors could make a
useful contribution to risk prediction (35–37).

In sensitivity analyses that used different quality criteria for
SNPs, e.g., MAF of 0.01 versus 0.05 or INFO of 0.3 versus 0.9,
6 Biological Psychiatry - -, 2021; -:-–- www.sobp.org/journal
we concluded that currently there is little to be gained in PGSs
from including SNPs with MAF , 0.10 and INFO , 0.9 for the
diseases/data set studied (Tables S8 and S9 in Supplement 2).
This result may seem counterintuitive, as variants with low
MAF are expected to play an important role in common dis-
eases, and some may be expected to have larger effect sizes
than more common variants (38,39). However, sampling vari-
ance is a function of allele frequency, z var (y)/[2 * MAF (1 2

MAF) * n], where y is the phenotype and n is sample size, such
that a variant of MAF = 0.01 has sampling variance 9 times
greater than a variant of MAF = 0.1. Moreover, in real data sets,
small sample size of contributing cohorts means that technical
artifacts can accumulate to increase error in effect size
Figure 3. Sensitivity analyses using different mi-
nor allele frequency (MAF) quality control thresholds.
Differences in area under the receiver operator
characteristic curve (AUC) of schizophrenia (SCZ) of
a polygenic score method when using different MAF
quality control thresholds. The different bars in each
method (x-axis) refer to different validation cohorts
ordered by sample size. The y-axis is the AUC dif-
ference between analyses using (A) MAF , 0.05 and
MAF , 0.1 and (B) MAF , 0.01 and MAF , 0.1 as a
quality control threshold. The tuning cohort is swe6.
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estimates, particularly of low-frequency variants. As larger in-
dividual cohorts in discovery samples accumulate, our
conclusion that little is gained from including variants of MAF
, 0.1 or from reducing INFO threshold will need to be revisited.
Moreover, our comparison of methods uses only study sam-
ples of European ancestry. More research and data are needed
to understand the properties of prediction methods within
other ancestries and across ancestries, given potential differ-
ences in genetic architectures (in terms of number, fre-
quencies, and effect sizes of causal variants) and LD between
measured variants and causal variants (40,41).

For both SCZ and MDD, while the methods other than
PC1T had similar performance, LDpred2, MegaPRS, and
SBayesR saw the highest prediction accuracy in most of the
comparisons. We note that we did not consider a version of
PC1T that has been shown to have higher out-of-sample
prediction compared with the standard implementation (13).
This method conducts a grid search in a tuning cohort to
determine LD r2 and INFO score thresholds for SNPs as well as
the p-value threshold. As the optimal LD threshold is likely to
vary across genomic regions, the grid search approach is less
appealing than the methods that implicitly allow this to vary. A
sensitivity analysis in which we varied the r2 threshold in the
PC1T showed only a small gain from optimizing this
(Table S10 in Supplement 2). LDpred2 has a version that does
not require a tuning sample, LDpred2-auto, but the authors
showed that the two methods give similar results. SBayesR
assumes that the SNP effects are drawn from a mixture of 4
distributions, which allows more flexibility in distributions of
SNP effects by varying the proportion of SNPs in each distri-
bution. Hence, SBayesR can fit essentially any underlying ar-
chitecture in terms of variance explained by each SNP so that
the SBLUP, LDpred2-Inf, and LDpred2 models are, in principle,
special cases of the mixture model used in SBayesR (although
method implementations are different). In addition to traits with
a highly polygenic genetic architecture, we have recently
shown that SBayesR outperforms other methods for two less
polygenic diseases, Alzheimer’s disease (42) (which includes
the APOE locus, which has a very large effect size) and
amyotrophic lateral sclerosis (43) [for which there is evidence
of greater importance of low MAF variants compared to SCZ
(44)]. The original SBayesR publication showed that in both
simulations and applications to real data, the method per-
formed well across a range of traits with different underlying
genetic architectures. MegaPRS uses 4 different priors for the
distribution of SNP effect, i.e., Lasso, Ridge, BOLT-LMM, and
BayesR (Table 1). It rescales SNP effects based on each of
those priors and for each method selects the combination of
parameters that maximizes prediction in the tuning sample and
then selects the best method among these. Hence, MegaPRS
is a collection of the other methods, and the SNP distribution
selected varies depending on both tuning and target
(Table S11 in Supplement 2). Here we found that it selects
BayesR 87% of the time when the tuning samples are large
(otherwise BOLT-LMM) and selects Lasso 78% of the time
when tuning samples are small. We implemented MegaPRS
using the BLD-LDAK model recommended by the authors,
which assumes that the distribution of SNP effects depends on
its allele frequency and functional annotation. While adding
functional annotation to up or down weight SNPs is appealing,
B

in practice there seemed to be no advantage in MegaPRS
compared with LDpred2 and SBayesR, which did not use
functional annotations. Surprisingly, LDpred-funct performed
consistently less well than LDpred2-Inf, but this should be
revisited, as currently the LDpred-funct article is available only
as a preprint (16).

Another study has compared 8 PGS methods for 8 disease/
disorder traits (including MDD) and 3 continuous phenotypes
comparing methods in two large community samples, the UK
Biobank and the Twins Early Development Study (45).
Consistent with our results, SBayesR attained a high predic-
tion accuracy for MDD, although performance of SBayesR was
reported to vary across traits. As SBayesR expects effect size
estimates and their standard errors to have properties
consistent with the sample size and with the LD patterns
imposed from an external reference panel, if GWAS summary
statistics have nonideal properties (perhaps resulting from
meta-analysis errors or approximations), SBayesR may not
achieve converged solutions. SBayesR in general is more
sensitive to any inconsistent properties between GWAS and
LD reference samples than methods that select hyper-
parameters based on cross-validation in a tuning sample, such
as LDpred2 (15). We note that the above-mentioned LDpred-
funct preprint article reported that SBayesR performed well
across a range of quantitative and binary traits. A key advan-
tage of SBayesR is that there is no need for the user to tune or
select model or software parameters. Moreover, it does not
need a tuning cohort to derive SNP effect weights, but rather
learns the genetic architecture from the properties of the
GWAS results. Computationally, SBayesR is also very efficient;
using one central processing unit (CPU), it takes approximately
2 hours to generate SNP weights based on each discovery
sample and predict into the left-out-cohort using a Markov
Chain Monte Carlo chain of 10,000 iterations (the computing
time can be reduced by running a shorter chain as a negligible
change in prediction accuracy was found after 4000 iterations),
which compares to PRS-CS, 40 hours using 5 CPUs; LDpred2,
5 hours using 15 CPUs; and MegaPRS, 1 hour using 5 CPUs.
Last, given that SBayesR uses only HapMap3 SNPs that are
mostly well imputed, it should be possible to provide these
SBayesR SNP weights as part of a GWAS pipeline to apply in
external target samples.

All methods are compared using their default parameter
settings. An optimal setting of each method could potentially
increase the prediction accuracy. Most likely the optimal
parameter settings are trait (genetic architecture) dependent
(13). In this study, we found that all methods that more formally
model the genetic architecture than PC1T perform better than
PC1T, but there is little to choose between those methods. For
application in psychiatric disorders, which are all highly poly-
genic traits, we particularly recommend LDpred2, MegaPRS,
and SBayesR, which consistently rank high in all comparisons.
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