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● There new AI ecosystems created to facilitate use of AI in clinics
● New computing ecosystems can include reconstructions of vendor neutral format raw

PET list-mode data
● Custom workflows including image reconstructions and list-mode data processing can be

used in new AI ecosystems

Synopsis:

Artificial intelligence (AI) has significant potential to positively impact and advance medical
imaging, including positron emission tomography (PET) imaging applications. This paper
provides an overview of these industry-specific challenges for the development, standardization,
commercialization, and clinical adoption of AI in PET, and explores the potential enhancements
to PET imaging brought on by AI in the near future. In particular, the combination of on-demand
image reconstruction, AI, and custom designed data processing workflows may open new
possibilities for innovation which would positively impact the industry and ultimately patients.

Abbreviation list:

AI - artificial intelligence

LM - list mode

TOF - time of flight

PPI - Parent PET image

PI - PET image

PPI-AI - Parent PET image artificial intelligence

SLM - standardized list mode

ECG - electrocardiogram

AMC - academic medical center

PHI - protected health information

PACS - picture archiving and communication system

SUV - standardized uptake value

VOI - volume of interest

CNN - convolutional neural network
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Abstract

Artificial intelligence (AI) has significant potential to positively impact and advance medical
imaging, including positron emission tomography (PET) imaging applications. AI has the ability
to enhance and optimize all aspects of the PET imaging chain from patient scheduling, patient
setup, protocoling, data acquisition, detector signal processing, reconstruction, image
processing and interpretation. AI poses industry-specific challenges which will need to be
addressed and overcome to maximize the future potentials of AI in PET. This paper provides an
overview of these industry-specific challenges for the development, standardization,
commercialization, and clinical adoption of AI, and explores the potential enhancements to PET
imaging brought on by AI in the near future. In particular, the combination of on-demand image
reconstruction, AI, and custom designed data processing workflows may open new possibilities
for innovation which would positively impact the industry and ultimately patients.
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1 Introduction

The recent popularity of artificial intelligence (AI) heralded as a game changing technology has
generated high hopes for breakthrough advancements and changes across the entire
healthcare industry. The specific area of clinical positron emission tomography (PET) imaging is
no exception. In this work, we provide an industry perspective on specific opportunities and
challenges for PET arising by the emergence of AI and deep learning methods.

Deep learning (DL) [1] is a machine learning technique which uses deep neural networks to
create a variety of models which can process raw data. In recent years, DL has demonstrated
significantly promising results for several PET applications, including segmentation,
reconstruction, outcome modeling, decision support, etc. [2-8].

In this work, a manufacturer is defined as an industry member manufacturing PET scanners,
and a vendor as an industry member providing AI and other processing software solutions.
These two groups are not exclusive. In the present work, we sometimes interchangeably use
the terms deep learning and artificial intelligence, although AI (and its subset machine learning)
are wider fields. The recent spike of interest in AI is due to increased popularity of DL, especially
the use of convolutional neural networks, which is why we use this convention in this paper.

The paper is organized as follows. Section 2 identifies selected challenges in the adoption of AI
from the industry point of view. They are general and not PET specific. The goal of this section
is not to discuss potential solutions to those challenges but rather paint a perspective on specific
challenges from the industry point of view. In section 3, specific applications of AI in PET are
discussed in more detail. In particular a concept of reconstruction of the list-mode data on
demand is combined with AI algorithms and presented.

2 Challenges for commercialization

One of the main concerns for industry is to release reliable, extensively tested and validated
products that impact disease and patient management. For the purpose of this article, we define
a reliable product as working as intended and within a set of predefined specifications. Equally
important, the product should demonstrate clinical utility. In this section we discuss some of the
major concerns and obstacles the industry has to overcome.

2.1 Development and clinical evidence

2.1.1 Access to data

Obtaining large amounts of data to develop AI products is challenging, and often ownership of
the data is not with the industry. The need for obtaining sufficient amounts of data for training,
which encompass all expected variations in the data, i.e. population-based variations (both
locally and geographically), body locations, disease state variations (including
normal/non-disease cases) etc., adds further challenges. Federated learning (FL) is an
approach that may at least partially alleviate the issue. In FL, AI models are trained based on
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data that never leave the medical institutions [9] and therefore data security and privacy are
much less of a concern. The paradigm of federated learning is being widely explored (e.g. the
work on FL from the London Medical Imaging & AI Centre for Value-Based Healthcare [10,11]).

2.1.2 Ground truth

In some applications of AI such as supervised learning, obtaining ground truth will present a
great challenge. Ground truth can be obtained by an independent measurement (e.g. biopsy,
post-mortem analysis), clinical outcomes (death, morbidity), previous diagnoses (e.g. radiology
reports), or new reads or annotations can be utilized. Ideally, the data sets should be large, but
new reads and annotations make data preparation a lengthy and expensive process.

2.1.3 Robustness

Of particular commercial interest is a reliable, regulatory cleared product that performs
according to specifications regardless of geographical location, patient mix and local
preferences and guidelines. Unfortunately, AI algorithms can generalize poorly and are
dependent on the data sets used to train and test the algorithms. An AI algorithm may produce
unreliable results if characteristics of the input deviate from the training data. This has critical
consequences. It is acceptable to publish an AI algorithm tested on homogeneous data (e.g.
from a single or small number of institutions using well-defined study inclusion criteria) as long
as those limitations are transparently disclosed in the publication. However, a commercially
available product ought to be applied to real life data that may be more diverse and complex
than single center study data, which may render certain limitations of an algorithm as
non-acceptable. In general radiology, there are many large publicly available datasets which can
be used to test generalization of developed AI algorithms. Unfortunately, there are few such sets
available that include PET data, making the development of AI algorithms for PET more difficult.

2.1.4 Underspecification

Another obstacle to generalization of AI is a recently documented problem of underspecification
[12]. This term denotes the problem that if we train the same model a number of times with
slightly different initial weights on the same large dataset and achieve similar performance on
the test set, there is no guarantee that those models will perform the same in the real world.
This is a very difficult problem to tackle and extremely important from the industry point of view
as the real-world performance is what matters. When many models are trained on the same set of
data with random initial weights and applied to a certain unseen real-world scenario, some models
may work and some other models may not. At the phase of model development, it is difficult to tell
which of those models will work and which ones will not. Testing models with diverse real-world data
will alleviate the problem although not entirely. Therefore, we emphasize the importance of
post-market surveillance after algorithm deployment which becomes even more important
compared to classical (not deep learning) offerings.
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2.1.5 Clinical value

When commercializing AI algorithms, there is a need to demonstrate that the product provides
clinical value and evidence that supports the intended use. To generate such data that can be
utilized as evidence for potential regulatory claims that translate into customer value, often
multi-center, multi-reader studies are required. Here, we emphasize that often one develops an
excellent technological solution to a clinical problem but when introduced to clinical workflows it
is not widely used in routine clinical practice by clinicians. Appropriately designed external
evaluation studies at clinical sites by clinicians could mitigate the problem.

2.2 Regulatory pathways

AI’s towering dependence on data exposes MedTech´s regulatory and privacy challenges more
than ever before: compounded by the sharp teeth that GDPR has afforded the EU, with global
effects, academia and industry are only now learning to safely share massive amounts of data.

Regulatory bodies, too, increasingly demand being shown the data used to train the AI parts of
software submitted for their approval. However, basing approval on the data creates the
conundrum as once approved, retraining with new data would invalidate it and burden industry
and administration with incessant re-approval cycles. Luckily, everybody agrees a solution is
direly needed. In the USA, the FDA is working on an action plan, and the EU has just released a
white paper with very similar thoughts [13-15]. Obviously, an eventual world-wide joint
framework will be key for industry and data-owning individuals alike.

2.3 Return on investment

The healthcare industry requires a reasonable return of investment in order to create or sustain
a viable business. For applications of AI in PET products investment in development should be
properly justified by balancing the growth potential of the AI technology with the considerable
risks. AI may require a non-traditional business model in which subscription approaches,
architectures open to third parties like marketplaces and new ecosystems are used (see section
3 of this article). It is an industry challenge to figure out why and how clients would pay for AI
innovations.

2.4 Understanding AI

2.4.1 Explainability

Explainability is an important factor associated with the adoption of AI from the commercial point
of view. In short, in deep learning methods the decisions made by AI are often opaque, black
box decisions. For more details on this problem please refer to [16]. For AI algorithms to
succeed in the commercial world, the users of the algorithms have to gain trust in them. For
example, a clear explanation on how the AI algorithm arrived at a certain classification can
increase trust in the subsequent clinical decisions which AI recommends.
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2.4.2 Education and trust

It is critically important to educate users about AI’s capabilities and even more importantly its
limitations. Most current applications of neural networks are some form of image denoising
where very noisy images, presumably from short or low dose scans, are converted into images
that appear less noisy. However, this does not mean that nothing is lost due to shorter or lower
dose scans. Users need to understand that the quantitative lesion/ROI performances of their
images are still governed by the statistics of the acquisition. AI can mimic longer or higher dose
scans by making backgrounds smoother but cannot create the information that is lost due to
shorter or lower dose scans. Nonetheless, we note that AI can improve image quality such as
lesion detectability or signal-to-noise ratio by using better priors, system models, data
correction, or noise models learned from data.

Another related topic is how clinicians determine the reliability of lesion SUVs. They may look at
how noisy a large, approximately constant region such as the liver is and decide that smoother
regions indicate more reliable lesion quantitation. For typical reconstruction algorithms such as
OSEM this approach works reasonably well because if the noise correlation lengths are short,
the single-image-noise in the liver is related to the standard deviation of a single liver voxel.
That is in turn related to the standard deviations of individual lesion voxels which finally
determine the standard deviation of the lesion SUV. In contrast, when the background is
smoothed using AI-based methods, this connection is lost. The single-image-noise in the liver
may be greatly reduced without any significant changes to the lesion ensemble noise properties.
Therefore a clinician looking at an image denoised with neural networks should be cautious
about interpreting the variability (or uncertainty) of the lesion SUV. It should also be noted that
denoising could introduce an additional bias in the lesion SUV.

2.4.3 Combining human and AI insights

In the foreseeable future, human decision makers will be augmented/assisted and not replaced
by automated algorithms. Unavoidably there will be situations where a human opinion is
different from that of an algorithm. This creates opportunities and challenges. Opportunities
because the combination of AI and humans may create a better and more accurate decision
[17,18]. However, it creates a problem on how to meaningfully combine human and AI insights.
The final decision in the foreseeable future will be made by humans and some solutions are
needed to deal with disagreements. One such approach could be that AI provides explanations
or examples from the past of similar images with known outcomes, which may persuade the
physician. Another resolution of such conflicts could be that we teach the AI algorithm to
consider the physician’s arguments for the different opinion (similarly as the difference in
opinions is resolved between two physicians) and then to recompute the estimates. It is
however unclear how this can be accomplished in the current workflows, and requires future
research. These are important ethical issues of paramount importance to industry which need to
be resolved with cooperation with stakeholders including clinical and ethical experts, patient
advocacy groups, governmental bodies, and of course the industry [19]. Finally, we anticipate
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that, when AI makes a clinical decision without human intervention some day perhaps in the
not-too-distant future, we will face a complex problem of who is liable for a wrong decision made
by AI, similar to self-driving car liability.

2.5 Failures

2.5.1 Critical failures

If algorithms do not perform according to specifications, it constitutes a major problem for
vendors. For example, DL-based image reconstruction can be unstable resulting in severe
artifacts [20]. This risk is often a consequence of the poor generalization of the AI algorithms
and the fact that results presented by an AI algorithm are often not explainable. If a spectacular
error is made by AI, it is very damaging to the perception of a product even if it works within
specified characteristics. When publishing a paper, the same penalty is applied if the algorithm
had an error or a spectacular error. However, when we deploy an AI-product, a spectacular
failure could be much more detrimental to the trust in the algorithm. These types of errors,
although very damaging, are very hard to mitigate with the current state of knowledge about
neural networks. On a positive note, as much as critical failures of AI are damaging to its
reputation, they are at least easily identifiable as errors. There are some safety features that can
be used (“graceful failure”). For example, if we use AI to compute quantitative values and if the
computed values are outside of the physiological range, one may display a message that AI
failed to compute the value rather than providing it to the user. For classification problems these
types of mitigations are much more difficult to implement. This is certainly important from an
industry point of view and an important direction of future research.

2.5.2 Uncertainty estimation

Clear communication to the interpreting physician of uncertainty in the AI result is crucial in
building trust in the AI system, since, as previously discussed, no AI system will be perfect or
able to handle the huge range of real world inputs. It is not practical, or even possible, for AI
developers to aim for a perfect result every time, so communication of uncertainty is of
paramount importance[21,22]. Large uncertainty alerts about low confidence in provided
inference. This is particularly true for nuclear imaging techniques which produce data with high
noise compared to other modalities, and this noise may translate to uncertainty in reconstructed
images and AI decisions. Suppose we develop an AI algorithm which automatically detects the
volume of interest (VOI) of abnormal uptake of FDG. Ideally the algorithm would also provide an
estimation of uncertainty on the VOI size and SUV. This uncertainty can be expressed by
providing a range of values that with a high likelihood contains the true value (confidence
intervals). This can also be done using Bayesian approaches where each value of the volume or
SUV is assigned probability of being true [23]. Estimation of such uncertainty can be
accomplished with neural networks using approximations to Bayesian approaches [24,25] or
some other approximate methods [26,27].

Sitek et al, PET Clinics (2021), accepted 9



2.5.3 Malicious AI, adversarial attacks

Another potential concern is that AI and deep learning methods either by accident or maliciously
may introduce perturbations in the images. Some of these perturbations can be imperceptible to
humans but may have a drastic effect on AI outcomes. For example, in an image manufactured
by malicious AI, the analyzing AI may detect a tumor with 100% certainty which remains
completely invisible to a human observer. For more on adversarial attacks refer to [28]. When
used for PET image reconstruction, AI may also introduce perturbations with image textures
different from those obtained by standard iterative methods, which may be misinterpreted as
abnormalities.

2.6 To err is human. How does this apply to AI?

Another issue that industry faces is to roll out products that will over time earn the trust of
radiologists and nuclear medicine physicians and convince them to use algorithmic advice. We
already drew the reader’s attention to challenges associated with explainability. Algorithm
aversion is another, potentially more serious, obstacle which may prevent seamless acceptance
of AI solutions. Human decision makers are averse to algorithmic predictions after seeing them
perform; even with evidence of non-inferiority of the AI algorithm, humans still tend to follow
advice given by humans because people more quickly lose confidence in algorithms than in
human forecasters after observing them repeating a mistake [29]. Algorithmic aversion may be
a major obstacle to adoption of AI. AI algorithms used in augmenting human decision making
will likely have to be held to very high standards by enforcing inter- and extra-user
reproducibility. If we can, we should also provide quantitative values with confidence measures
(see also section 2.2). Confidence is also important for yes/no or other classification decision
tasks and some type of confidence measures should always be provided.

3 Looking into the future of AI in PET

Various academic medical centers (AMC) worldwide are currently investing to incorporate
artificial intelligence (AI) in both research and clinical research settings as a prelude to
AI-supported clinical workflows. For those applications, AI is largely used to scale and automate
data analysis for large cohorts in multi-year studies whereby thousands of images are analyzed
retrospectively. In clinical research, AI is typically used for clinical decision support as a “second
opinion” to that of the clinician, to increase the saliency of structures and functions of interest in
images while increasing efficiency of acquisition, and/or to identify possible regions or planes of
interest in images so the clinician may improve diagnosis, increase efficiency and minimize
fatigue [30-32].

The important question for the industry is how we bring AI into the clinical workflow in an
efficient and scalable way. In section 3.1 we consider using AI during PET data acquisition. In
section 3.2 we explore new AI ecosystems already proposed elsewhere [33-35] and discuss
how to leverage the uniqueness of PET raw data (e.g. list mode) in such ecosystems.
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3.1 AI during PET-data-acquisition

AI offers a whole new array of promising approaches that have the potential to optimize the
utility of PET imaging by adjusting controllable parameters based on the specific
patient-anatomy, patient-physiology, and scanner type. The basic idea of how to achieve this is
summarized in figure 1. We present the ability of AI algorithms to combine various types of
information to provide just-in-time inferences which help to create high fidelity PET data at the
PET scanner while data is being acquired.

Below, we provide example scenarios of how such AI inferences can be applied.
Scenario 1: While the data is being acquired during a single bed position, AI analyses the
data acquired (figure 1) and uses criteria of acceptable data quality to determine if a
sufficient number of counts was acquired up to this moment. An example of what problem
this may partially solve is patient motion. If AI detects substantial patient motion it triggers
additional time for data acquisition also informing the operator. Scenario 2: Suppose we
scan a patient to determine whether the SUV in a given VOI changed vs. the SUV
measured in a previous PET scan. We provide the AI the previous PET/CT scan, data
acquired, and maximum threshold for uncertainty of a decision (figure 1). We want to
know if the SUV increased/decreased by 20% with 95% certainty. AI analyzes the data
and computes the maximum possible certainty that can be reached and the additional
acquisition time to reach it.

The PET scanner is also a location where manufacturer-specific AI can be deployed.
Once the raw data is created and the image is reconstructed, an AI algorithm can
generate insights which can be sent to PACS or other destinations along with the data.
Such solutions may be very effective as the manufacturer controls the type of data the AI
algorithm is exposed to. The downside is of course that it is limited to individual
manufacturers.

3.2 Vendor-neutral data processing (VNDP) platforms

An effective approach to deployment of AI in radiology and other clinical environments is
unclear. It is likely however that in the near future we will have hundreds of AI algorithms
approved for use in clinics and operating on different parts of clinical workflow and data. If we do
not have a common platform to deploy them and rather depend on each AI vendor to use their
own methods, the deployment and growth of AI in PET could stall as the complexity quickly
becomes unmanageable.

To address this, new vendor-neutral data processing platforms (VNDPs) are proposed [33-35].
In radiology the VNDPs are interfaced with PACS. AI and other algorithms can process the data
pulled from PACS and other hospital IT systems. After processing, the output can be sent back
to the PACS, be saved on different archives, or displayed as shown in figure 2. We will not
discuss these workflows in detail here, and refer the reader to references available on this topic
(vid. [33-35]). Software units that operate in VNDPs can be stacked together if their output/input
type fits. Once stacked, blocks can be replaced by different blocks or stack of blocks. Such an
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architecture has a similarity with those used by smartphones [34] because software units are
“sitting” on the platform and are activated if the “right” data arrives and they can be
swapped/updated on user requests. Using this analogy we will refer to the software units as
‘apps’ (figure 2).

To provide an example of data processing in a VNDP platform let us consider figure 2 and
processing by apps 4, 5, and 6. The input consists of PET/CT images. App 4 segments the liver
using CT, app 5 detects liver lesions using PET and CT, and app 6 performs diagnosis and
computes SUV using PET and CT if lesions were detected. Note that outputs from apps 4 and 5
are used by app 6.

3.2.1 Extended VNDP platform - processing standardized list mode (SLM)

Archiving PET data in a raw list-mode format has many advantages as it gives the ability to
retrospectively reconstruct images on-demand. There are many examples of where such
flexibility is beneficial. For example, when training AI algorithms, it allows the developer to
create a larger variety of images in terms of resolution and noise from just a single raw datafile.
It also allows the developer to vary the total number of counts simulating different doses. The
LM format may contain information about deposited energy and time-of-flight per event
information, exact crystal pairs in which the gamma photons were detected, which may lead to
development of improved reconstruction algorithms or correction algorithms compared to
histogrammed (sinogram) data. Since timing information is available for each event it allows for
various patient motion corrections.

The availability of LM data in new ecosystems would open opportunities to processing PET
data, training new AI algorithms, and deriving AI inferences. The data reconstruction in such an
ecosystem would just be another processing app which can be inserted in the processing
pipeline (recon apps in figure 4). An example of such processing could be, for example, raw LM
data correction for randoms or scatter which could be done before image reconstruction. Ideally,
in such an ecosystem one would like to standardize the format of LM data to make it easier for
vendors to develop apps which would work directly on LM data irrespective of the type of
scanner the data was generated on. We refer to such a format as standardized LM (SLM)
format. To perform state-of-the-art reconstruction, reconstruction applications need information
including geometry, detector calibration, sensitivity, etc which would have to be included in the
SLM. We note that such a format does not exist at the time of writing this paper as each scanner
vendor uses a proprietary format. We note that standards for raw data are long established in
SPECT [36,37], and more recently MRI [38]. The SLM format for PET needs to be designed and
approved by all stakeholders. A first step towards this goal would be that manufacturers
disclose non-sensitive parts of their file formats, as some have already agreed to in the context
of open source projects [39-41].

3.2.2 Extended VNDP platform - processing parent PET image (PPI)

Although SLM in the VNDP platform provides enormous flexibility in constructing custom
processing pipelines, handling list mode files presents challenges. They are very large files
(3-20 GB) and storage and network demands are considerable. Each vendor has proprietary
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highly optimized software which reconstructs images directly from the LM or sinograms created
from the LM. Reconstruction software may have specific computing hardware requirements that
may not be readily available in the VNDP platform.

AI offers an alternative approach towards creating a practical platform for generalization of the
reconstruction process across different scanners and manufacturers without explicitly using LM
files. The suggested approach gives up some generalizability compared to the SLM approach
described in section 4.2.1, but it is more practical and well suited for use within a VNDP
platform. We refer to this concept as the parent PET image (PPI) and summarize it in figure 4.

The main idea is that instead of handling SLM in the new ecosystem as shown in figure 3, we
reconstruct on the scanner a parent image (or images) and use it instead of SLM in the VNDP
platform. In the VNDP platform PPI is then used to generate on-demand various child images
(figure 4). The generation of child images from the PPI is done using deep convolutional neural
networks (CNNs) referred to in this paper as PPI-AI. The PPI-AI are types of apps in the
ecosystem (figure 2) that convert PPIs to child images.

The PPI can be for example the high-fidelity image. PPI can actually also be a set of images,
such as hi-fidelity images with and without attenuation correction, resolution modelling etc. If
time-of-flight is available, it could also contain back-projections at different angles, as used by
the DIRECT method [42]. There are many possibilities on how to define PPI and research is
needed to determine which of those choices would be optimal. The PPI is reconstructed on the
scanner and it is stored in PACS possibly along with some child images. The PPI can be pulled
to the VNDP platform and almost instantaneously converted to any child image as the inference
using the PPI-AI CNN model is fast. Once converted to a child image it can be further
processed by AI apps or other apps as a regular PET image (figure 5).

Looking at figure 4, the PPI can be converted to a high-fidelity image, the best utility image that
a vendor can generate from the LM file. When training AI apps to be used in new ecosystems
(figure 2) we would like to use images of various quality with various artifacts for the app to be
more robust and general. A PPI-AI model can be trained to generate poorer quality images from
the PPI. Examples of such are shown as different noise/resolution tradeoff and lower dose child
images in figure 4.

There are ongoing efforts to harmonize and standardize results obtained on different scanners
[43,44]. This can also be done using the PPI by creating harmonized child images. For this, we
would require collaboration between vendors to create a single PPI-AI CNN model which could
generate harmonized images from PPIs of different vendors. We can take this concept further
and imagine a situation where the user points a cursor on a lesion when viewing a high-fidelity
image and transparently to the user the standardized image is created in the background and
the viewing system displays standardized SUV values.

The fifth child image example provided in figure 4 is physiological motion (e.g. respiratory)
correction using PPI-AI. If no motion correction is applied, regions of the PPI with motion will
appear blurry. PPI-AI models can be trained to recover resolution from blurred PPIs.
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Alternatively, a PPI could contain several images, e.g., in different motion states, or one in
end-expiration and one without motion correction, from which a fully motion corrected image can
be produced.

The training of PPI-AI models is conceptually straightforward. Suppose we want to create a
PPI-AI model that generates from the PPI a half-dose image. First, we identify a training set
which contains, say 1000 PET scans from some patient population. Next, we reconstruct those
1000 images from LM data using only half of the counts available in the LM. Then, we create
PPIs by reconstructing images using all counts and high-fidelity reconstructions. We train neural
networks (PPI-AI) with PPIs as the input and half-dose images as the target. This completes the
creation of the PPI-AI model. Similarly, any other PPI-AI model can be trained. In the above we
assumed that high-fidelity reconstruction image is the PPI, but this may not necessarily be the
optimal choice as already discussed.

A disadvantage of using the PPI compared to SLM is that the PPI contains less information than
the LM file. Timing information is not available and although the PPI can in general be a
dynamic (or ECG-gated) sequence it cannot be time reframed to a different sequence. We also
do not have access to deposited energy, time of flight etc. However, we remember that some of
the information is transferred to PPI-AI models during training. Intuitively, during PPI-AI
inference when child images are generated from the PPI, not only the information in the PPI is
used but also the information “stored” in PPI-AI models.

Another disadvantage of PPI is that if a manufacturer improves the tomographic reconstruction
algorithm and wants to update it on the scanner, all PPI-AI models have to be retrained which
could be an automated process but it is computationally intensive. If novel reconstruction is to
be applied retrospectively to data acquired in the past the PPIs have to be updated as well.

4 Summary

In section 2 we presented important challenges for creating and adopting AI solutions in clinics
from the point of view of the industry. In section 3 we concentrated on PET explored unique to
PET applications of AI during data acquisition. We examined a flexible and scalable ecosystem
for deployment of AI and described a synergy of such systems with an idea of standardized list
mode data and the other solution presented here based on the parent PET image concept.

There are emerging new workflows and data ecosystems in radiology. In addition to facilitating
AI deployment they provide a tremendous opportunity for the PET community to transform the
current paradigm of PET data processing.
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BOX points:

● Reconstruct PET data on-demand (e.g. just before or during reading) from raw data i.e.
standardized list-mode data or parent PET images

● Use raw data as a part of the “patient medical record”
● Include “DICOM push” for ease of raw data transfer/storage/management
● Archive raw data which is essential for future improved recon, such as motion correction

or harmonization/comparison with prior
● Process raw data in new AI ecosystems
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Figures:

Figure 1. Conceptual depiction of AI used at the PET scanner during data acquisition. Gray
arrows indicate input to AI (data acquired so far, other data acquired in the past, and criteria for
decision making) and red indicate output from AI.

Figure 2. Simplified PET data flows in new AI ecosystems. Data stored in e.g. PACS is pulled to
the VNDP platform where they are processed by software units (‘apps’). Apps can be used as a
single processor (app 1) or stacked (e.g. app 2 and 3 or apps 4, 5, and 6). VNDP platforms
allow for creation of custom workflows with custom apps. Output from VNDP platform can either
be sent back to original storage, other archive, or displayed. Interactions with hospital
information systems and other sources of information are omitted for clarity. Applications of AI
before data reaches storage are not shown.
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Figure 3. PET Data flow in VNDP. Orange arrows show dataflow in the new AI ecosystem with
standard PET images processed by a single AI app. Green arrows show new PET-specific
dataflows proposed in this work. (3) SLM can be reconstructed by recon app and processed by
AI app. In the third example, SLM is pre-processed (e.g. randoms correction) and then
reconstructed by the recon app. Interactions with hospital information systems and other
sources of information are omitted for clarity.

Figure 4. LM data is reconstructed using vendor-specific proprietary software at the scanner.
Each manufacturer creates manufacturer-specific AI models (PPI-AI) to transform the parent
PET image to child images needed for various clinical and research tasks.
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Figure 5. PET Data flow in VNDP with parent PET image (PPI) concept. Orange arrows show
dataflow in the new AI ecosystem with standard PET images processed by a single AI app.
Green arrows show new PET-specific dataflows proposed in this work. PET parent image is
pulled from PACS and converted by PPI-AI app to a PET image which is processed by a single
AI app. Interactions with hospital information systems and other sources of information are
omitted for clarity.
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